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“Intelligence is the ability to avoid doing work, yet getting the work done.” 
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ABSTRACT 
Cognitive impairment spans from minor subjective cognitive impairment to disabling 

dementia. Many biomarkers have been developed to monitor different aspects of cognitive 

impairment. Magnetic resonance imaging is the most used neuroimaging biomarker in 

research and can measure gray matter (GM) and white matter (WM) changes. Although 

there is a consensus that atrophy in GM is a marker for neuronal loss, there is little evidence 

assessing the role of WM changes. The aim of this thesis is to first develop a tool to reliably 

measure the changes in WM in the form of white matter hyperintensities (WMH) and 

second to evaluate the role of WM and GM changes in the early stages of cognitive decline. 

In Study I and Study II, a fully automated method for segmentation of WMH has been 

developed and validated. Validation results indicated that the WMH segmentation was 

performed with high similarity to manual delineation and with superb reproducibility. 

In Study III, coronary heart disease (CHD) and hypertension, which are known to 

contribute to WM damage, were examined and their effect on GM and WM changes was 

investigated on a group of 69 individuals with 30-year follow-up. We showed that CHD 

and hypertension indeed affect the GM volume and thickness and the effect of CHD is 

partially independent of hypertension. However, the results indicate no significant effect on 

WMH, which we believe is due to the fact that WMH were measured as a crude total 

volume. 

In Study IV, a pipeline was developed to isolate the WM tract connecting each GM region 

to the rest of the brain and to measure the burden of WMH on each tract, hereinafter tract-

based WMH. We used a cohort of 257 cognitively normal (CTL), 87 subjective cognitive 

impairment (SCI) and 124 mild cognitive impairment (MCI) subjects and examined their 

GM volume, tract-based WMH and cognitive performance. Our results indicated that the 

fraction of variance in GM volume that can be explained by tract-based WMH in SCI 

subjects is significantly higher than in both CTL and MCI subjects. The results also showed 

that in subjects with high and low cognitive performance, tract-based WMH can barely 

explain any GM volume change. However, in subjects with slight cognitive impairment 

tract-based WMH can explain the changes in GM volume. 

In summary, we investigated different ways of measuring the damage of WMH and showed 

that the role of WMH is more pronounced when measuring them in relation to the WM 

tract they affect. The effect of WMH on GM has been shown to be mainly in the earlier 

stages of cognitive impairment.   
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1 INTRODUCTION 

1.1 COGNITIVE IMPAIRMENT 

Cognitive impairment is a general term for the condition of decline of mental capabilities. It 

spans from minor subjective cognitive impairment, to mild cognitive impairment observed 

objectively all the way to its extreme disabling dementia. Cognitive impairment symptoms 

vary among individuals but most people with cognitive impairment experience impairment 

in their memory, language, attention, reasoning or visual perception. It is estimated that 

more than 46 million people worldwide suffer from dementia [Wimo et al., 2017]. Aging is 

the greatest known risk factor for cognitive impairment and dementia. Due to the constant 

increase in the aged population, its burden is expected to increase even more. Currently, 

there are more than 150,000 people with dementia in Sweden with an enormous health, 

social and financial burden [Socialstyrelsen, 2014]. The annual financial burden of 

dementia on the Swedish economy is reported to be 63 billion Swedish kronor [Wimo et al., 

2016]. To put this enormous burden into perspective, it is more than the annual operating 

income of IKEA and AstraZeneca combined or about five times Ericsson’s annual 

operating income (Figure 1). The global cost of dementia was estimated to be 

US $818 billion in 2015 [Wimo et al., 2017] which exceeds the gross domestic product 

(GDP) of Sweden and Finland combined [Organisation for Economic Co-operation and 

Development, 2016]. 

 

Figure 1 Annual cost of dementia compared to the operating income of famous companies in Sweden. The 

cost is equivalent to 1.5 times IKEA’s, 3 times AstraZeneca’s or 5 times Ericsson’s annual operating income. 
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Cognitive impairment due to neurodegeneration is diagnosed when a person experiences 

subjective or objective decline from a previous level of cognitive function which cannot be 

attributed to major psychiatric disorder [Albert et al., 2011; McKhann et al., 2011]. 

Dementia is believed to be caused in more than two thirds of the cases by Alzheimer’s 

disease (AD), Vascular dementia (VaD) or a combination of both according to the Swedish 

Dementia Registry (SveDem). The clinical diagnosis is based on clinical presentation, 

neuropsychological and language therapist testing, neuroimaging findings and/or 

cerebrospinal fluid (CSF) examination. 

Alzheimer’s disease is the most common type of dementia and accounts for 31% of the 

cases [Religa et al., 2015]. AD typically begins with subtle cognitive problems, mostly in 

the memory domain, which slowly develop, become more severe and finally impair daily 

life. The continuum of AD development has been divided into three phases: (1) pre-clinical, 

(2) prodromal and (3) dementia. The pre-clinical stage of AD includes cognitively normal 

subjects who have AD pathologies. They may never experience clinical symptoms but the 

hypothetical assumption is that should the subjects live long enough they ultimately 

become symptomatic AD. Prodromal AD is the next stage when individuals experience 

subtle cognitive declines, subjective or appreciable with neuropsychological tests, but not to 

the extent that impacts daily functioning [Bäckman et al., 2005]. Dementia is the final stage 

when the cognitive impairment becomes severe enough to interfere with the patient’s daily 

activities. 

Vascular dementia is the second most common type of dementia and accounts for 18% of 

the dementia cases [Religa et al., 2015]. It usually emerges from continuous vascular 

damages such as small vessel disease (SVD) or sudden damages such as stroke. As opposed 

to AD, VaD usually begins with impairment in non-memory cognitive functions and 

memory impairment develops at later stages. 

Pathological evidences show the pathologies of more than one type of dementia can be 

simultaneously evident in the brain. In those cases, the individual is considered to have 

mixed dementia. Mixed dementia is diagnosed when symptoms and biomarkers associated 

with more than one dementia, most commonly AD and VaD, are observed. Although mixed 

dementia accounts for just 18% of the dementia cases [Religa et al., 2015], it is estimated 

that mixed dementia is much more common than what was previously believed [Kovacs et 

al., 2013; White et al., 2005]. 
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Since the definite diagnosis can be confirmed only post-mortem, biomarkers are a crucial 

part of both research and clinical practice. Biomarkers are variables (physiological, 

biochemical, anatomical) that can be measured in-vivo and that indicate specific features of 

disease-related pathological changes [Strimbu and Tavel, 2010]. There are three major 

groups of biomarkers for differential diagnosis of individuals with cognitive impairment 

that monitor different aspects of brain changes: 

• Brain Amyloid beta (Aβ) deposition 
o Positive positron emmision topography (PET) amyloid imaging on e.g. 

Pittsburgh compound B (PiB) PET 
o Decrease in Aβ42 levels in CSF examination 

• Neuronal degeneration or injury 
o Increase in total and/or phosphorylated tau protein in CSF examination 
o Cerebral hypometabolism on 18Fludeoxyglucose (FDG) PET 
o Morphological changes 

§ Hippocampal atrophy on magnetic resonance imaging (MRI) or 
computerized topography (CT) 

§ Global cortical atrophy on MRI or CT 
§ Cortical thining visible on MRI 

o Cerebral hypoperfusion on single photon emission computerized topography 
(SPECT) 

• Cerebrovascular damages 
o T2 and fluid-attenuated inversion recovery (FLAIR) for white matter 

hyperintensities (WMH) 
o T2* and susceptibility weighted images for detecting cerebral microbleeds 
o Diffusion tensor imaging (DTI) for measuring white matter integrity 

These biomarkers do not become abnormal and detectable simultaneously but do follow a 

specific temporal pattern. The generally accepted hypothesis is that they follow an S-shape 

curve and their detectability thresholds come in a roughly specific order. For example, in 

AD, which is the most prevalent cause of cognitive impairment and dementia, the first 

change is Aβ deposition detectable through PET amyloid imaging and CSF Aβ42 

examination. The next change is the increase of tau protein in CSF which is an indicator of 

neuronal injury. The change in brain morphology, metabolism and perfusion comes next, at 

approximately the same time, followed by cognitive impairment symptoms. [Jack et al., 

2013, 2010] 
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1.2 NEUROIMAGING IN COGNITIVE IMPAIRMENT 

Neuroimaging is an integral part in the process of diagnosing different causes of cognitive 

decline as well as an essential tool in research. In Sweden, 94% of patients undergo 

neuroimaging examination during their basic dementia workup [Falahati et al., 2015]. It is a 

crucial step as it can monitor biomarkers for the diagnosis of individuals with dementia in-

vivo which among others includes medial temporal lobe atrophy (MTA) visible in MRI, 

reduced glucose metabolism visible on FDG-PET and Aβ deposition detectable with PiB-

PET. However, there is no single test for the diagnosis and neuroimaging serves as a 

complementary diagnostic and research tool. 

Many imaging modalities have been used in the clinical workup and research settings to 

measure different aspects of disease pathologies. Although MRI is the preferable tool for 

assessing morphological changes, CT is still the most used modality in clinical routine. Due 

to the significantly higher cost of PET and availability of CSF examination in Sweden, PET 

is only used in a limited number of cases in the specialized units (Table 1). Figure 2 

illustrates typical changes in cognitively impaired brains visualized using different 

modalities.  

The focal point of this thesis is the interaction between the changes in white matter (WM) 

and gray matter (GM) in individuals with early signs of cognitive impairment. Those 

changes are best visualized and measured using MRI scans, namely T1 scans for GM 

changes, and fluid-attenuated inversion recovery (FLAIR) and diffusion tensor imaging 

(DTI) for measuring changes in the WM. 

Gray matter changes in the form of cortical thinning and atrophy are associated with the 

emergence and progression of neuronal loss. GM changes are well studied and constitute 

the most used neuroimaging biomarker in clinical routine. For example, the atrophy in the 

temporal lobe and in particular hippocampus and entorhinal cortex are the signature of AD 

dementia. 

Damage to the WM has also been reported to contribute to the development of cognitive 

impairment. Most evidence comes from epidemiological studies and suggests a higher 

burden of WMH associates with higher incidence of dementia [Buyck et al., 2009; Coffey 

et al., 1989; Debette et al., 2010; Prins et al., 2005], more cognitive decline [Vermeer et al., 

2003], higher levels of Aβ deposition [Gurol et al., 2006; Marchant et al., 2012] and 

reduced functional connectivity [Zhou et al., 2015]. Some studies have considered more 
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Figure 2 Example of different neuroimaging modalities commonly used in dementia research and clinical use. 

 

 

Modality AD related finding Availability Usage 

CT Crude morphological changes Highly available 87% 

MRI  Highly available 16% 

  Structural GM atrophy, lesions   

  Functional Abnormal functional connectivity   

  DTI Loss of white matter integrity   

Nuclear Imaging  Specialized units 6% 

  FDG-PET Hypometabolism in temporal lobe   

  Amyloid-PET Amyloid deposition   

  SPECT Hypoperfusion in temporal lobe   

Table 1 Imaging modalities used in dementia care. Data from SveDem http://www.ucr.uu.se/svedem/. 

 

CT T1 FLAIR

SPECTFDG-PET PIB-PET
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FA MD DA RD 

Normal WM High − High Low 

High myelination WM High Low − Low 

Axonal injury Low High Low High 

Demyelination Low High − High 

Table 2 Change in diffusion parameters of white matter. WM: white matter. FA: fractional anisotropy. DA: 

axial diffusivity. RD: radial diffusivity. 

 

detailed measures of WMH and showed similar results when measuring WMH in different 

spatial location [Holland et al., 2008; Taylor et al., 2017; Tullberg et al., 2004]. 

1.3 WHITE MATTER CHANGES IN COGNITIVE IMPAIRMENT 

Traditionally, AD has been assumed to be a disease of the GM and the damage in WM was 

considered secondary to the GM damage. Advances in neuroimaging techniques have 

contributed to further understanding of the role of WM damages in cognitive impairment. 

Neuroimaging techniques that detect WM damage infer the damage through measurement 

of the water diffusion or water content. Water diffusion can be imaged with diffusion tensor 

imaging (DTI). One can obtain information about the underlying properties of WM by 

studying the diffusion properties. Fractional anisotropy (FA), mean diffusivity (MD), axial 

diffusivity (abbreviated here as DA to avoid confusion with the abbreviation used for 

Alzheimer’s disease) and radial diffusivity (RD) are the most common diffusion measures. 

The concrete relationship between diffusion measures and neurobiology of WM is not 

completely known. However, an increase in the diffusivity perpendicular to the perceived 

direction of WM fibers may reflect demyelination as the loosening of myelin sheaths allows 

for less restricted diffusion perpendicular to the axons. Similarly, a decrease in the 

diffusivity parallel to the perceived direction of WM fibers may indicate axonal injury 

(Table 2). 

Another use of DTI, or rather of diffusion weighted imaging in general, is tractography. 

Tractography is a modeling method in order to represent WM tracts by connecting the 

perceived directions of WM tracts, derived from the directional distribution of water 

diffusion. 
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Figure 3 Different burden of white matter hyperintensities showed on FLAIR images. 

Water content of the WM can be measured using traditional MRI techniques. Normal WM 

which has structured axons has a high lipid content. Therefore, normal WM appears 

hyperintense on T1-weighted images and hypointense on T2-weighted images. On the other 

hand, if, due to different pathological process (e.g. inflammation, ischemia or 

demyelination), WM becomes less hydrophobic with higher water content, it becomes 

hypointense on T1-weighted MRI images and hyperintense on T2-weighted images. The 

areas that appear as hyperintensities on T2-weighted and FLAIR images are called white 

matter hyperintensities (WMH) (Figure 3). They are radiological findings and look similar 

independent of the underlining pathological process. 

White matter hyperintensities correspond to tissue damage (ischemia/infarction, gliosis, 

rarefaction, loss of myelin, microglial infiltration, inflammation, and amyloid angiopathy) 

that is likely to cause disconnection of functionally-related cortical and subcortical 

structures that are important to cognitive function and speed. WMH are common especially 

for patients with different degrees of cognitive impairment: AD, VaD and mild cognitive 

impairment (MCI). Although WMH are very common pathological processes, their role in 

the abovementioned conditions is still far from being understood. 

Epidemiological studies have shown that WMH are often already present at a young age 

and their prevalence increases with age. Forty two percent of young adults, 80% of 55-65 

year olds and 92% of people aged 65 and older have detectable WMH and 19.5% of older 

adults aged 65 and older have severe WMH [Garde et al., 2000; Liao et al., 1997; Ylikoski 

et al., 1995]. WMH are more prevalent in patients with cardiovascular risk factors. 

Hypertension [Havlik et al., 2002; Schmidt et al., 2003; van Dijk et al., 2004], coronary 

heart disease, diabetes and atherosclerosis [Manolio et al., 1999] are among the most 

important risk factors for developing WMH. 
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1.4 MEASUREMENT OF WHITE MATTER CHANGES 

Visual assessment is the fastest and easiest way of measuring WMH burden. Visual 

assessment of WMH in the clinical settings is performed using Fazekas scale [Fazekas et 

al., 1987]. The Fazekas scale is a four-level scale that quantifies the overall presence of 

WMH in the entire brain. It is best scored on FLAIR or T2-weighted images as: 

• Fazekas 0: None or a single punctate WMH 
• Fazekas 1: Multiple punctate WMH 
• Fazekas 2: Beginning confluency of WMH (bridging) 
• Fazekas 3: Large confluent WMH 

In addition, in research settings several other visual rating scales are employed [Scheltens et 

al., 1998, 1993; Wahlund et al., 2001] all of which provide an impression of the burden of 

WMH in different brain regions. Visual scales are a fast and easy method, and they do 

correlate with clinical outcomes [Pantoni et al., 2002]. However, visual scales have low 

variability, cannot be incorporated in automated imaging pipelines and thus may not 

provide enough information for in-depth investigations. On the other hand, computerized 

segmentation of WMH can provide detailed quantification of the WMH burden and can be 

used in automated imaging pipelines. However, the usability of computerized methods is 

still limited. First, they usually require specific technical equipment, and second, they are 

challenging to use in large or multicenter studies or clinical trials. Employing computerized 

methods is precarious since they are sensitive to resolution, image contrast and acquisition 

parameters and settings, and to some degree, even to the burden of WMH. Most 

computerized measurements are not reproducible and require human interaction at some 

point. Currently, due to these technical hurdles, the measurement of WMH is not reliable 

enough and may even lead to inconsistent correlations with clinical variables [Gouw et al., 

2008; van Straaten et al., 2006]. Therefore, an accurate way of measuring WMH is very 

much required.  

Computerized methods generally consist of pre-processing, core segmentation and post-

processing steps. Methods are classified based on the core-segmentation as supervised 

[Steenwijk et al., 2013; Zijdenbos et al., 2002], unsupervised [Raniga et al., 2011; Schmidt 

et al., 2012; Shiee et al., 2010] or based on mathematical definition of WMH [Zhu and 

Basir, 2003]. As a result of recent improvements in machine learning techniques, such core 

methods are now able to produce decent classifications once given properly prepared data. 

However, feature selection and pre-processing are not robust enough to make a method 
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reproducible under different condition. We believe that, in order for a method to be 

reproducible in all conditions at least one of the following conditions must be satisfied: 

• Pre-processing normalizing the input image to a defined resolution, intensity range, 
and defined search area independent of imaging sequence or WMH burden. 

• Feature selection rendering the intensities of the image to features independent of 
imaging sequence or WMH burden. 

• Core-segmentation method classifying the images independent of imaging sequence 
or WMH burden. 

Usually methods address all of the above-mentioned points to some extent, however to date 

no method has been presented that fully handles one or many of them. 

Another difficulty in assessing WM is related to diffusion imaging. While DTI metrics such 

as FA or MD can be quantified, tractography in the presence of WMH is next to 

impossible. In a nutshell, tractography estimates the direction of WM tracts at each point 

and reconstructs the tract path by subsequently connecting the estimated tract directions. In 

areas with severe WM damage, such as WMH, reliable estimation of the tract direction may 

not be possible and thus traditional tractography can fail in the presence of WMH or other 

WM damage. 

These technical difficulties contribute to the fact that in many studies subjects with a high 

burden of WMH are excluded. As a result, little evidence is available to support or reject 

the role of WM damage in AD or other dementias in contrast to the established consensus 

about the role of GM atrophy. In the first part of this thesis, technical difficulties in 

processing subjects with a high burden of WMH were addressed and methods developed 

for WMH measurement. In the second part, the methods created in the first part, have been 

used to investigate the role of WMH and GM atrophy in the earliest stages of the 

development of cognitive impairment. 
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2 AIMS 

The main aims of this thesis are:  

I. To develop and validate an automated tool for the segmentation of WMH using 
different MRI sequences 

II. To study the role of cerebrovascular risk factors on WMH and brain structural 
changes 

III. To study the interaction between WMH, brain structures and cognition in cognitively 
healthy controls (CTL) , subjective cognitive impairment (SCI) and MCI subjects 

In particular, the aims of the thesis are achieved through the following studies: 

Study I: To develop an automated tool for segmentation of WMH 

Study II: To validate the automated tool developed in Study I, in different research 

scenarios to ensure its usability for answering our medical research questions independent 

of imaging sequence and WMH burden 

Study III: To study the long-term effect of coronary heart disease (CHD) on WMH and 

brain structural change 

Study IV: To investigate the relationship between GM atrophy and WMH in anatomically 

connected WM tracts in CTL, SCI and MCI subjects. 
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3 MATERIALS AND METHODS 

3.1 ETHICAL CONSIDERATION 

For all the studies, we have used pre-acquired data from Norway, England, Finland and 

Sweden. All ethical permissions have been acquired from the authorities in respective 

countries. Ethical permission for Study IV for which data was acquired in Sweden 

corresponds to document number 2008-695 and 2010-156. All procedures performed in the 

studies were in accordance with the ethical standards of the institutional and national 

research committees and with the 1964 Helsinki declaration and its later amendments or 

comparable ethical standards. 

3.2 SUBJECTS 

3.2.1 Study I: DemWest cohort 

Data from the Dementia Study in Western Norway (DemWest) from three centers in 

western Norway has been used. The study employs MRI scans of 102 subjects including 

CTL, AD, Lewy body dementia (LBD) and Parkinson disease dementia (PDD). Diagnosis 

was made according to consensus criteria for AD, LBD and PDD using standardized 

clinical instruments, blood tests and MRI. Details of the selection and diagnostic 

procedures are reported elsewhere [Aarsland et al., 2008]. The imaging protocol included: 

sagittal 3D T1-weighted and 2D FLAIR. All images had been acquired with a 1.5 Tesla 

scanner and had full brain and skull coverage. 

 ST(mm) SG(mm) TE(ms) TR(ms) TI(ms) AF(deg) 

3D T1 Stavanger 2 - 4.6 10.0 - 30 

2D FLAIR Stavanger 4 1 100 6000 2000 90 

3D T1 Haugesund 1 - 4.6 20.0 - 30 

2D FLAIR Haugesund 4 1 110 6000 2000 90 

3D T1 Bergen 1 - 3.1 8.2 500 7 

2D FLAIR Bergen 4 1 105 7927 1981 90 

Table 3 MRI parameters for the DemWest cohort. ST: Slice thickness, SG: Slice gap, TE: Echo time, TR: 

Repetition time, TI: Inversion time, AF: Flip angle. 
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 ST(mm) SG(mm) TE(ms) TR(ms) TI(ms) AF(deg) 

3D T1 1.2 - 3.80 8.6 1000 8 

2D PD 3 3 10.58 3000 - 90 

2D T2 4 5.5 88.16 5000 - 90 

2D FLAIR 4 5.5 160.70 10000 2500 90 

Table 4 MRI parameters for the KHP-DCR cohort. ST: Slice thickness, SG: Slice gap, TE: Echo time, TR: 

Repetition time, TI: Inversion time, AF: Flip angle. 

3.2.2 Study II: KHP-DCR cohort 

Data from King’s Health Partners-Dementia Case Register (KHP-DCR) in the UK was 

used for this study. MRI scans of 119 subjects (AD, MCI, CTL) were used. The AD 

diagnosis was made according to the Diagnostic and Statistical Manual for Mental 

Diagnosis IV (DSM-IV) [American Psychiatric Association, 1994] and MCI was defined 

according to the Petersen criteria [Petersen et al., 1999]. The imaging protocol included: 

sagittal 3D T1-weighted, axial proton density (PD), T2-weighted fast spin echo image, and 

2D FLAIR. All images had been acquired with a 1.5 Tesla scanner and had full brain and 

skull coverage and quality control was performed according to the AddNeuroMed image 

quality protocol [Simmons et al., 2011]. 

3.2.3 Study III: CAIDE cohort 

Data from the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study, 

performed in Eastern Finland, was used. CAIDE is a longitudinal, population-based study 

to assess the association between cardiovascular and life-style risk factors, and cognitive 

impairment and dementia. Participants were first evaluated between 1972 and 1987 in a 

study to evaluate the risks, morbidity and mortality of cardiovascular diseases. The first re-

examination was performed in 1997 on a random sample of 2000 participants. The second 

re-examination was conducted between 2005 and 2008. Cognitive status was assessed in 

both re-examinations with a three-step protocol: (1) screening, (2) clinical and (3) 

differential diagnosis, which includes brain MRI. One hundred and thirteen subjects that 

participated in the differential diagnosis in the second re-examination had MRI. For this 

study, subjects with dementia diagnosis and subjects with very low MRI quality were 

excluded and in total 63 MCI subjects and 6 CTL subjects were used. Table 5 shows the 

MRI parameters for the subjects used in this study. 



 

 15 

 ST(mm) SG(mm) TE(ms) TR(ms) TI(ms) AF(deg) 

3D T1 Magnetom Vision 1.5-2.0 - 4.0 9.7 300 12 

3D T1 Avanto 1.0-1.5 - 3.93 1900 1100 15 

2D FLAIR 5 5 119 9000 2200 180 

Table 5 MRI parameters for the CAIDE cohort. ST: Slice thickness, SG: Slice gap, TE: Echo time, TR: 

Repetition time, TI: Inversion time, AF: Flip angle. 

3.2.4 Study IV: BioFINDER I cohort 

Data for this study was from part of the Swedish Biomarkers for Identifying 

Neurodegenerative Disorders Early and Reliably (BioFINDER) study. In this study two 

cohorts from the BioFINDER were used: (1) Cognitively healthy elderly and (2) Patients 

with mild cognitive symptoms including SCI and MCI. 

People without any cognitive symptoms, older than 60 years of age, Mini-Mental State 

Examination (MMSE) greater than 28 at screening that do not fulfill the criteria for MCI or 

any dementia were recruited as CTL group. People with mild cognitive symptoms were 

recruited from those referred to the memory clinics due to cognitive symptoms experienced 

by the patient or informant, age between 60 and 80 years, MMSE greater than 24 that does 

not fulfill criteria for any dementia. Individuals with no significant impairment in any 

further test were grouped as SCI and the rest as MCI. Exclusion criteria for all groups were 

significant unstable systemic illness or organ failure, such as terminal cancer, current 

significant alcohol or substance misuse or cognitive impairment that can be explained by 

another condition or disease such as normal pressure hydrocephalus, major cerebral 

hemorrhage, brain infection, brain tumor, multiple sclerosis, epilepsy, psychotic disorders, 

severe depression, alcohol abuse in the last five years and on-going consumption of drugs 

that regularly cause cognitive symptoms. The detailed description of the cohort as well as 

recruitment procedures and eligibility criteria is available at http://BioFINDER.se. 

Four hundred and sixty-eight subjects with available MRI images (T1, FLAIR, DTI) with 

parameters presented in Table 6 are used for this study. MMSE and A Quick Test of 

Cognitive Speed (AQT) were used to assess the cognitive performance. 



 

16 

 ST(mm) SG(mm) TE(ms) TR(ms) TI(ms) AF(deg) 

3D T1 1.2 - 3.37 1950 900 9 

3D FLAIR 4.0 - 89 9000 2500 130 

2D DTI 2.0 2.0 86 8200 - 90 

Table 6 MRI parameters for the BioFINDER cohort. ST: Slice thickness, SG: Slice gap, TE: Echo time, TR: 

Repetition time, TI: Inversion time, AF: Flip angle. 

3.3 IMAGE PROCESSING 

3.3.1 Study I and II 

The first two studies aimed at developing and validating a fully automated WMH 

measurement tool. In Study I, a fully automated supervised WMH segmentation method 

was developed using a cascade of support vector machines (SVM), hence the software 

name Cascade. 

Study II aimed to validate and make the previously developed WMH segmentation tool 

unsupervised and completely independently of manual interaction or segmentation. The 

improved WMH segmentation method took advantage of the initial method in its 

calculation of evident normal brain (3.3.1.2 below). The final WMH measurement 

algorithm, published as paper II, consists of four main steps: 

I. Pre-processing 
II. Calculating the evidently normal brain 

III. White matter hyperintensities definition 
IV. Correction for multiple comparison and reporting 

3.3.1.1 Pre-processing 

The aim of the pre-processing was to register all input sequences together, correct them for 

inhomogeneity and estimate initial brain tissue segmentation as WM, GM and CSF. Pre-

processing comprised the following steps:  

I. Intra-subject registration using 3D rigid transformation with mutual information as 
the similarity measure using FSL FLIRT [Jenkinson and Smith, 2001]. 

II. Brain extraction using FSL BET [Smith, 2002]. 
III. Inhomogeneity correction for all registered input images using the N3 algorithm [Sled 

et al., 1998]. 
IV. Brain tissue segmentation into GM, WM, and CSF using FSL FAST [Zhang et al., 

2001]. 
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V. Refining brain tissue segmentation: GM-labeled voxels that were bright on either 
FLAIR or T2 images (top 15% voxels of GM intensity histogram) and surrounded by 
mostly WM were re-labeled as WM 

3.3.1.2  Calculating evident normal brain 

The proposed definition of WMH (3.3.1.3 below) requires a WMH free area as a reference. 

The aim of calculating evident normal brain was to have such an area with almost no WMH 

in it. In the studies, we used the following two simple steps:  

I. Capture the hypointense area of FLAIR (45%), T2 (50%), and/or PD (65%) and the 
hyper-intense area of T1 (15%) with thresholding. The thresholding was performed in 
1 mm, 2 mm, and 3 mm spatial scales (Figure 4-A). 

II. Thresholding using an optimal threshold calculated to resemble the mask calculated 
in the first step. The threshold was calculated using a single node SVM reduction 
algorithm [Schölkopf et al., 1999]. 

A proper closing morphological filter was then applied to the mask captured with both 

above steps (AND operation) in order to fill small holes. Proper closing is defined using 

morphological closing (C), and opening (O) functions with two-millimeter spherical 

structuring element. 

!"#$%"	'(#)*+, - ≝ - ∧ 0 ' 0 -  

The output voxels of the morphological filtering were considered as an evident normal 

brain (Figure 4-B). 

 
Figure 4 Steps in segmentation of white matter hyperintensities using statistical definition. 

(A) Basic 
thresholding

(B) Evident 
normal brain

(D) Final results(C) Statistical 
definition

Pre-processed 
images
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3.3.1.3 White matter hyperintensities definition 

We reformulated the common definition of WMH which is based on the appearance of the 

area on each image (hyperintensities or hypointensities) into a statistical definition that can 

be calculated robustly: 

White matter hyperintensities are areas in the WM in which their local image histograms 

are significantly different from the local histogram of the evidently normal brain on the 

one-tailed statistical test.  

This statistical definition can be applied to T1, T2, FLAIR and PD sequences (Figure 5) and 

is explicitly and implicitly independent of manual delineation. In the studies included in 

this thesis, a one-tailed Kolmogorov–Smirnov test (significance level 0.05) was used to test 

the significance of WMH definition. 

 
Figure 5 Local image histogram of T1, T2, FLAIR and PD sequences compared with the local histogram of 

evident normal brain. 
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3.3.1.4 Correction for multiple comparison and reporting 

The WMH definition assigns a p-value to each voxel. Since there are millions of voxels to 

be tested, one needs to correct the possibility of false discovery due to presence of multiple 

tests. To deal with this problem, the p-value map was first converted to a binary map and all 

segments which do not contain a fully connected (26-connected) patch of voxels were 

discarded. Finally, the significant segments were considered to be the WMH mask. Post 

processing then removed all detection that was connected to the cortex or that was smaller 

than 27mm3 to create the final segmentation Figure 4-D. 

3.3.2 Study III 

The image processing in this study consist of analyzing gray matter and white matter: 

I. Cortical thickness and brain tissue volume extracted using the CIVET pipeline 
available through the McConnell Brain Imaging Centre, Montreal Neurological 
Institute, McGill University, Montreal, Canada (http://www.bic.mni.mcgill.ca/). 

II. Measurement of the WMH volume using Cascade (Study I and Study II). 

Firstly, cortical thickness and brain tissue volume were calculated using the CIVET 

pipeline (Appendix I). The outputs extracted from the CIVET pipeline were cortical 

thickness maps, total WM volume and total GM volume. Cortical thickness maps were 

further analyzed using an in-house MATLAB script to assess difference in cortical 

thickness in different groups, to visualize and to prepare the data for further use in the 

statistical analysis. Secondly, Cascade was used to calculate the WMH volume using T1 

and FLAIR images. 

3.3.3 Study IV 

The image processing in this study consisted of several parts: 

I. GM parcellation using FreeSurfer software suite recon-all command (Appendix I). 
II. WMH segmentation using Cascade (Study I and Study II). 

III. Measurement of the WMH burden in tracts connected to each GM region. 

A software program was developed for the third step. The software isolates the WM tracts 

connecting each GM region to the rest of the brain and measures the amount of WMH on 

each connecting tract, henceforth tract-based WMH (Figure 6). The software, called 

Connectivity (https://github.com/Damangir/Connectivity), includes the following steps: 
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I. DTI pre-processing and parameter estimation 
II. Tractography on WMH free subjects to generate a database specific atlas of tracts 

III. DTI atlas propagation 
IV. Tract-based WMH measurement 

3.3.3.1 DTI pre-processing and parameter estimation 

Firstly, DTI images were corrected for eddy current distortions and head movement; then 

diffusion tensors were fitted to calculate fractional anisotropy (FA), mean (MD), axial 

(DA), and radial diffusivity (RD). These values were needed for the rest of the processing. 

3.3.3.2 Tractography on WMH-free subjects to generate a database specific atlas of tracts 

DTI images were used to calculate the probabilistic atlas of tracts connecting GM areas to 

the rest of the brain. This procedure was only performed on images with low WMH burden 

(Fazekas scale 0 and 1). The following procedure was performed in order to create the 

connectivity atlas: 

I. Estimation of the diffusion parameters per voxel using a two-fiber model using FSL 
bedpostx [Behrens et al., 2003]. 

II. Calculating the WM tracts connected to all previously segmented GM regions using 
FSL probtrackx2 [Behrens et al., 2003]. Each 72 GM region was separately set as a 
seed region with brain boundaries as the stopping criteria and 5000 streamline per 
voxel. 

III. Nonlinearly registering the calculated tracts to MNI space and then averaging them to 
obtain probabilistic distributions of tracts for each region using FSL FNIRT. 

The average tract distribution formed the database specific atlas of connectivity and was 

used in the rest of the analysis. 

3.3.3.3 DTI atlas propagation 

In order to measure the WMH on each tract, the probabilistic atlas of connectivity needed 

to be in the subject’s native space. This procedure is performed on all subjects including 

those with low WMH used in the previous step: 

I. Calculating the nonlinear transformation between the MNI space (connectivity atlas) 
and each subject’s native space using FA images and masking the area with WMH. 

II. Registering the probabilistic connectivity atlas to subject’s native space using the 
calculated transformation. 
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Figure 6 Connectivity pipeline for quantification of the tract-based white matter hyperintensities. 

3.3.3.4 Tract-based WMH measurements 

Once the probabilistic connectivity atlas is registered to the native space, tract-based WMH 

can be calculated as the weighted sum of the WMH map with each tract of the probabilistic 

connectivity map as the weighting factor. Figure 6 presents the full pipeline for 

measurement of tract-based WMH. 

3.4 STATISTICAL ANALYSIS 

Study I: A receiver operating characteristic (ROC) curve was used to assess the 

effectiveness of the algorithm. Pearson correlation was used to compare the segmented 

volume and manual delineated volume of WMH. All the analysis and visualization were 

performed in MATLAB 7.12 (The MathWorks Inc., Natick MA, USA, 2011). 
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Study II: Pearson correlation was used to compare the calculated WMH volumes and 

manual delineated WMH volumes. In order to assess the classification quality and compare 

the automatic segmentation to manual delineation, false negative rate, false discovery rate 

and the Dice coefficient [Dice, 1945] were used. MATLAB 8.4 (The MathWorks Inc., 

Natick MA, USA, 2014) was used for statistical analysis and visualization. 

Study III: Group-wise comparison of the cortical thickness in the whole brain and its 

corresponding visualization was performed using MATLAB 7.6 (The MathWorks Inc., 

Natick MA, USA, 2008). T-test was used to compare the two groups and false discovery 

rate (FDR) was used to correct for multiple comparisons. IBM SPSS Statistics for Windows 

19.0 (IBM Corp., Armonk, NY, USA, 2010) was used for all other statistical analysis and 

visualization. To explore the population characteristics, t-test and chi-squared were used for 

continuous and categorical variables respectively. Linear regression was used to investigate 

the possible effect of CHD and blood pressure on the regional cortical thickness, WMH 

volume and GM volume. Where applicable the analyses were corrected for age, follow-up 

time as well as the scanner type. 

Study IV: R 3.1.0 (R Core Team, 2016) was used for statistical analysis and visualization. 

Normality of distributions was tested using the Shapiro–Wilk test. Group differences were 

analyzed using analysis of variance (ANOVA). The relationships between tract-based 

WMH and GM volume were modeled using generalized linear model (GLM). Interaction 

terms were introduced to the model to account for the possible effect of the diagnosis on the 

relationship. “Fraction of variance explained” refers to R-squared values, calculated using 

the model prediction according to the method proposed by Magee [Magee, 1990]. 

Differences in effects and interactions terms (i.e. between diagnosis and effects) were 

directly calculated within the GLM. Differences in fraction of variance explained was 

estimated by bootstrapping. 

Throughout the thesis, corrected p-values < 0.05 were considered to be statistically 

significant. Normally distributed data are presented as mean and standard deviation (SD) 

and non-normally distributed data as median and interquartile range (IQR).  
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4 RESULTS 

4.1 STUDY I AND II 

Study I investigated the feasibility of Cascade as a WMH segmentation method. Study II 

focused on the reproducibility of the method for large multicenter data and validation of the 

WMH measurements obtained from different image modalities. 

In the first two studies, measurement of WMH was performed in both a supervised and an 

unsupervised way. In Study I, WMH were classified with high sensitivity (90.0%) and 

specificity (99.5%) of which 2.3% in sensitivity and 0.4% in specificity attributed to post 

processing. The WMH volume obtained with Cascade was significantly correlated (p<0.01) 

with the volume obtained from manual delineation. 

Study II used a dataset with available T1, T2, FLAIR and PD sequences that have a large 

variety of WMH burden (median 20.5 IQR 26.2 cc). Large variation in WMH volume made 

the validation more reliable, but visualization more challenging. Therefore, the Dice 

coefficient and volume ratio were used for the purpose of visualization to be invariant of 

the total WMH volume. 

Measured volumes of WMH using combinations of available sequences that contain either 

T2 or FLAIR were within 3% of the manual delineation volume (Figure 7). Although the 

WMH volume was highly underestimated in the absence of T2 or FLAIR, the WMH 

volume obtained without T2 and FLAIR still significantly correlated with the manual 

volumes. 

Dice coefficient, which measures overlap between two segmentations, was in the range of 

similarity expected from manual inter-rater agreement when either T2 or FLAIR was used. 

Segmentations which contained both T1 and FLAIR had higher agreement compared to 

manual inter-rater agreement (Figure 8). 

Apart from similarity with the manual delineation, the segmentation using different 

combinations of sequences was also compared to one another to ensure that they are 

comparable. This validation is crucial in studies where the data is pooled from already 

acquired datasets with different image sequences. The Dice coefficients between all 

segmentation using either FLAIR or T2 were more than 80%, which exceeds manual inter-

rater agreement (Figure 9). 
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Figure 7 Ratio between segmented volume of white matter hyperintensities and volume from manual 

delineation. 

 

Figure 8 Dice coefficient between segmented white matter hyperintensities and manual delineation. 
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Figure 9 Dice coefficient between the segmented white matter hyperintensities using different sequences to 

one another. 
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4.2 STUDY III 

Data from 69 individuals were analyzed. Of them, three patients were diagnosed with CHD 

at baseline, 19 at the first follow-up and 26 at the second follow up. Nineteen individuals 

diagnosed with CHD at the first follow-up were considered as the group with CHD and the 

remaining 50 individuals as the group without CHD. Demographic characteristics of both 

groups were not significantly different, but the group with CHD had lower SBP and DBP in 

the second follow-up (Table 7). The association of CHD and hypertension on subsequent 

change in the GM volume, WMH volume, and cortical thickness was analyzed using linear 

regression. The analyses were corrected for age, gender, follow-up time, and scanner type. 

Individuals with no CHD who had hypertension at midlife had the same association as the 

group with no CHD and no hypertension. Similarly, the participant with CHD who had no 

hypertension at midlife had the same association as the reference group except for the 

cortical thickness in the left anterior prefrontal cortex. In contrast, subjects with CHD who 

also had hypertension at midlife had stronger association between GM measures and CHD 

for many regions (Table 8). Interestingly, the associations for the WMH volume were not 

significantly different between all groups. 

 
All No CHD CHD p 

n 69 50 19  

Age (mean (SD))     

  Midlife 49.87 (6.01) 49.19 (6.21) 51.66 (5.18) 0.13 

  First follow-up 70.51 (3.43) 70.37 (3.41) 70.89 (3.55) 0.58 

  Second follow-up 77.95 (3.49) 77.78 (3.46) 78.40 (3.63) 0.51 

Gender = Female (%) 42 (60.8) 34 (68.0) 8 (42.1) 0.05 

Education (mean (SD)) 7.76 (2.59) 7.51 (2.46) 8.44 (2.90) 0.15 

SBP (mean (SD))     

  Midlife 148.86 (24.79) 146.72 (26.72) 154.47 (18.23) 0.25 

  First follow-up 158.61 (23.87) 162.79 (21.04) 147.37 (27.89) 0.03 

  Second follow-up 148.12 (21.54) 151.78 (22.31) 138.47 (16.22) 0.02 

DBP (mean (SD))     

  Midlife 90.55 (11.27) 89.50 (11.63) 93.32 (10.02) 0.21 

  First follow-up 85.15 (10.78) 86.60 (10.94) 81.25 (9.60) 0.09 

  Second follow-up 75.75 (11.20) 77.36 (10.98) 71.53 (10.95) 0.05 

APOE careers 22 (38.6) 17 (40.5) 5 (33.3) 0.65 

Table 7 Demographic information for the CAIDE cohort. 
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MRI measurements 
No CHD 

Hypertension 

CHD 

Hypertension 

CHD 

No hypertension 

n 16 10 9 

Mean cortical thickness    

  Left anterior insular cortex 0.01 (0.96) -0.54 (<0.01) -0.17 (0.15) 

  Right anterior insular cortex -0.13 (0.21) -0.61 (<0.01) -0.14 (0.20) 

  Left angular gyrus -0.13 (0.27) -0.50 (<0.01) -0.23 (0.05) 

  Right angular gyrus 0.04 (0.68) -0.47 (<0.01) -0.10 (0.35) 

  Left fusiform gyrus 0.02 (0.88) -0.52 (<0.01) -0.14 (0.23) 

  Right fusiform gyrus -0.04 (0.70) -0.62 (<0.01) -0.20 (0.08) 

  Left anterior prefrontal cortex -0.06 (0.62) -0.46 (<0.01) -0.24 (0.04) 

  Right anterior prefrontal cortex -0.06 (0.59) -0.48 (<0.01) -0.12 (0.31) 

  Left superior parietal gyrus 0.05 (0.66) -0.42 (<0.01) -0.16 (0.19) 

  Left superior temporal gyrus -0.05 (0.66) -0.52 (<0.01) -0.14 (0.24) 

  Right posterior middle frontal gyrus -0.07 (0.52) -0.59 (<0.01) -0.06 (0.54) 

  Right orbitofrontal area -0.03 (0.80) -0.58 (<0.01) -0.07 (0.54) 

  Right precentral gyrus -0.03 (0.80) -0.52 (<0.01) -0.09 (0.42) 

  Right inferior frontal gyrus -0.10 (0.34) -0.54 (<0.01) -0.07 (0.51) 

Total GM volume 0.07 (0.29) -0.16 (0.01) -0.03 (0.64) 

Total WMH volume 0.24 (0.07) 0.06 (0.63) -0.02 (0.88) 

Table 8 Neuroimaging measures of subjects with different cardiovascular diagnosis. Numbers presented as 

standardized coefficients (p-value). CHD indicate individuals with coronary heart disease diagnosed at the 

first follow-up and hypertension indicate individuals with SBP³160 or DBP³95 at baseline (midlife). All 

groups were compared against group with no CHD and no hypertension (n=34). Cortical measures were 

presented only for the area that has significant association in at least one group. 
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4.3 STUDY IV 

Two hundred fifty-seven cognitively healthy, 87 SCI and 124 MCI subjects were studied. 

Table 9 presents the background information for different groups and Table 10 provides the 

overall description of the neuroimaging measure. CTL, SCI and MCI groups were 

significantly different in terms of age, gender and years of education, hence all analyses in 

this study were corrected for age, gender and years of education. 

 

 
CTL SCI MCI p 

n 257 87 124  

Age (mean (SD)) 73.78 (5.09) 70.15 (5.72) 72.19 (5.69) <0.01 

Gender = Female (%) 157 (61.1) 49 (56.3) 55 (44.4) 0.01 

Education (mean (SD)) 12.27 (3.80) 12.82 (3.31) 11.27 (3.45) 0.01 

Smoking (%)    <0.01 

   Never smoker 118 (45.9) 51 (60.7) 69 (62.2)  

   Current smoking 20 (7.8) 4 (4.8) 12 (10.8)  

   Former smoking 119 (46.3) 29 (34.5) 30 (27.0)  

MMSE (mean (SD)) 29.02 (0.94) 28.39 (1.50) 27.11 (1.79) <0.01 

AQT test (mean (SD))     

   Color 24.51 (4.38) 26.79 (6.37) 31.53 (9.04) <0.01 

   Form 33.62 (6.42) 38.01 (10.61) 44.41 (14.89) <0.01 

   Color and Form 66.10 (12.65) 76.93 (23.70) 87.95 (31.52) <0.01 

Table 9 Demographic information for the BioFINDER cohort. 
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 CTL SCI MCI p 

n 257 87 124  

GM volume (mean (SD))     

   Temporal 2046.02 (215.92) 2053.82 (210.60) 2057.46 (230.02) 0.88 

   Frontal 2463.10 (273.18) 2470.30 (277.84) 2560.18 (302.09) 0.01 

   Parietal 3431.96 (389.65) 3476.32 (363.13) 3522.83 (405.28) 0.10 

   Occipital 2488.64 (291.50) 2540.62 (292.06) 2561.78 (296.95) 0.05 

   Hippocampus 7.27 (0.84) 7.23 (0.87) 6.70 (1.05) <0.01 

Tract-based WMH (mean (SD))     

   Temporal 0.27 (0.02) 0.27 (0.02) 0.26 (0.02) <0.01 

   Frontal 0.29 (0.02) 0.29 (0.02) 0.28 (0.03) <0.01 

   Parietal 0.26 (0.02) 0.25 (0.02) 0.24 (0.02) <0.01 

   Occipital 0.21 (0.02) 0.21 (0.02) 0.20 (0.02) <0.01 

WMH volume (mean (SD)) 11.75 (15.16) 13.57 (16.69) 26.06 (29.05) <0.01 

Table 10 Neuroimaging measures of the subjects in the study groups. 
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Figure 10 Tract-based White matter hyperintensities in the tracts connected to different gray matter regions. 

Tract-based WMH was measured using the steps described in section 3.3.3.4 on all subjects 

including those subjects used in the creation of the connectivity atlas. In order to visualize 

the damage in different groups, the z-score of the tract damage measure was calculated for 

each subject in relation to the control group.  Subjects in the CTL group had, by definition, 

on average zero tract-based WMH. SCI subjects had non-significantly higher tract-based 

WMH in all lobes but the damage was only significantly higher in the temporal lobe. MCI 

subjects had significantly higher tract-based WMH in all four lobes, however the damage 

was more prominent in temporal and occipital lobes (Figure 10). 

The fraction of variance in GM volume that is explained by the tract-based WMH in tracts 

connecting to specific regions (e.g. hippocampus volume vs. tract-based WMH on tracts 

connecting to hippocampus) was quantified. In the control group, there were small fractions 

of variance in the GM volume that could be explained by tract-based WMH. The highest 

fraction of variance explained was observed in the SCI group where the largest explained 

variances were observed in regions of the temporal and frontal lobe. In the MCI group, the 

fraction of variance in GM volume explained by the tract-based WMH was present, 

however the fraction of variance explained in the SCI group was much higher. In the MCI 

group the most prominent explained variance was observed in the temporal lobe (Figure 

11). 
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Figure 11 Fraction of variance in the gray matter volume explained by the tract-based white matter 

hyperintensities in different diagnostic groups. 

 

These results suggested a pattern of effect in each group with the largest effect in the SCI 

group. In order to assess the same pattern in different levels of cognition speed, the same 

model was created to measure the variance in GM volume explained by the tract-based 

WMH in the connecting tract but stratifying the subjects by the results of the AQT test 

instead of their diagnostic groups (Figure 12). Most of the variation in GM volume could be 

explained by the tract-based WMH in subjects with slower than normal (60-70 seconds) 

and slow (70-90 seconds) compared to the normal (<60 seconds) and very slow (>90 

seconds). In particular, the volume of temporal and frontal lobes could be explained by the 

tract-based WMH and the extent of it followed a peaked curved pattern, which was the 
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same pattern as the one previously observed when analyzing the subjects in CTL, SCI and 

MCI groups. The patterns however were not present for the parietal lobe and the occipital 

lobe.  

 

Figure 12 Fraction of variance in the gray matter explained by the tract-based white matter hyperintensities 

for different levels of cognitive performance. 
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5 DISCUSSION 

5.1 MEASUREMENT OF WHITE MATTER CHANGES 

White matter hyperintensities are areas with abnormally high signal intensities on FLAIR 

or T2-weighted MRI and with low signal intensity on T1-weighted images. This descriptive 

definition of WMH has been the cornerstone of WMH measurement, both for manual 

delineations and automatic segmentation. The descriptive definition is subject to 

interpretation. One can statistically infer the WMH definition using a large sample of 

manual delineation, however obtaining such a large sample is not easy, if not impossible. 

So most automatic methods rely on inferring the WMH definition using a small sample and 

generalizing it using either supervised or unsupervised methods. Therefore, machine-

learning methods explicitly or implicitly carry the subjectiveness of the descriptive 

definition to their results. In order to avoid the use of any explicit or implicit subjectiveness, 

we attempted to provide a concrete statistical definition of the WMH which implies no 

human decision. We defined WMH as areas in the WM in which the local image 

histograms are significantly different from the local histogram of the evidently normal brain 

on the one-tailed statistical test (3.3.1.3). 

Validation of the WMH segmentation using the new proposed definition showed that the 

definition produces reliable results using any combination of pulse sequences containing 

either FLAIR or T2 images. Performance of Lesion TOADS [Shiee et al., 2010] and LST 

[Schmidt et al., 2012], two other available tools for WMH segmentation, was compared to 

our method, Cascade. WMH volume and Dice coefficient of Cascade was shown to be 

higher (Figure 7 and Figure 8). The results using the statistical definition were also 

consistent when different sequences are used independently. This validates that results can 

be reliably compared or pooled together when using datasets acquired with different image 

protocols.  

The segmentation based on the proposed approach is shown to have marginally better 

accuracy than other already available methods in the literature and is comparable to manual 

delineation. However, since the accuracy is measured against the moving target of manual 

segmentation, accuracy may not be the most crucial performance indicator. One of the main 

contributions of this thesis is to reformulate the subjective way of WMH definition to an 

objective one and to show that the WMH segmentation based on the reformulation 

corresponds well with the manual delineation without implicitly or explicitly relying on it. 
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The accuracy of the proposed method will be, if not already been, surpassed by other 

methods relying on the manual delineation in the future. However, the inherent 

reproducibility of the concrete definition serves a more important role. Until WMH can be 

directly measured, or we have a sufficiently large and diverse sample to remove the 

subjectiveness of the classic description of WMH, reproducible methods are favorable to 

manual delineation. 

5.2 CARDIOVASCULAR CONTRIBUTION TO WHITE AND GRAY MATTER 
CHANGES 

The findings of Study III confirm the previous evidences of the effect of CHD on regional 

cortical thickness [Almeida et al., 2008; Koschack and Irle, 2005]. Other cardiovascular 

comorbidities such as hypertension have also been reported to be associated with smaller 

GM volume and cortical thickness [Beauchet et al., 2013]. 

When grouping based on presence or absence of CHD and hypertension, only the group 

that had both CHD and hypertension had different GM volume and cortical thickness 

changes compared to the reference group of people without CHD or hypertension. This 

finding together with the fact that the association between CHD and GM measures 

remained significant after adjusting for blood pressure (data shown in paper III in the 

Appendix II), indicates that the effect of CHD on the structural brain changes is in part 

independent of hypertension. 

The data presented in Study III did not show any significant association with or difference 

in the WMH volume in groups with and without CHD and hypertension. Although the idea 

of the effect of cardiovascular diseases on WMH volume seems plausible, other studies 

specially those focusing on early signs of changes, have also failed to observe such an 

effect [Maillard et al., 2012]. We believe that failing to observe such an effect in early 

stages is rooted in the fact that the total WMH volume is too crude a measure to be able to 

capture disease-related changes. Study IV, where the WMH were measured per tract and 

showed significant disease related changes, supports the idea that the WMH needs to be 

measured while taking their location into account. 

5.3 WHITE AND GRAY MATTER CHANGES IN COGNITIVE IMPAIRMENT 

Study IV shows that the crude burden of WMH is higher in subjects with MCI compared to 

CTL and SCI. CTL subjects had the least load and SCI subjects had non-significantly 

higher levels of damage, while MCI subjects showed significantly higher levels of tract 

damage (Figure 10). Although the way we measured WMH damage was different, these 
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results validate previous findings [Appelros et al., 2005; Debette et al., 2007; Dufouil et al., 

2009; Jokinen et al., 2009]. 

The main finding of this thesis is that the relation between the damage due to WMH and 

atrophy in the anatomically connected GM region is strongest in the subjects with SCI 

when compared to both CTL and MCI subjects. Similarly, when grouping the subjects into 

groups with different cognitive speed, based on the AQT test and regardless of their 

diagnosis, there was little variation in GM that can be explained by tract-based WMH in 

subjects with high cognitive performance (i.e. fast AQT) and for subjects with high 

cognitive impairment (i.e. very slow AQT). The explained variation was however highest in 

subjects with subtle cognitive impairment. Both these patterns of explained variance point 

to the fact that the effect of tract-based WMH on the GM atrophy in the connecting region 

is highest in the early stage of cognitive impairment in subjects that are between the pre-

clinical and the SCI phase of the disease. 

The small variance in GM volume change explained by the tract-based WMH in subjects 

who are still cognitively normal can be due to subtle changes in the GM at the very early 

stages (Figure 13). GM changes are known to have larger variation in cognitively impaired 

subjects (MCI and SCI) [Jack et al., 2013]. This can certify why the explained variation is 

high in SCI subjects as well as in subjects with medium AQT results. The low explained 

variance in GM atrophy by the tract-based WMH in connecting tracts should be either (a) 

due to small changes in the damage (i.e. plateau effect) or (b) due to the lack of association 

between them. Since the association is very strong for SCI subjects and subjects with 

medium AQT results it seems less likely that the lack of association is the reason and thus 

the plateau effect is the most likely explanation. 

The low relation between GM atrophy and tract-based WMH in MCI subjects and subjects 

with slow AQT results is the most significant result of the thesis. It suggests the amount of 

atrophy explained by tract damage may reach a plateau. An explanation could be that the 

damage in the white matter precedes the GM atrophy (Figure 13-A). Previous 

neuroimaging studies [Iadecola, 2004; Iturria-Medina et al., 2016; Zlokovic, 2011] and 

epidemiological studies that show WMH or its risk factor can predict cognitive decline 

down the road [Vermeer et al., 2003] may support this hypothesis. Another explanation 

could be that, the presence of coexistent pathology in MCI subjects could cloud the relation 

between local GM atrophy and tract-based WMH [van Westen et al., 2016]. This could 
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mean that the development of WM tract damage is not independent and secondary to GM 

atrophy and just contributes to the clinical manifestation of the disease (Figure 13-B). 

In reality, both interpretations are probably correct to some extent. The first interpretation is 

more plausible for subjects who are more susceptible to WM damage, namely those with 

high cardiovascular burden. For these subjects, the WM pathology injures axons and axonal 

injury subsequently triggers the nerve cell death which manifests as the GM degeneration 

(i.e. Wallerian-like degeneration). The second interpretation is reasonable for subjects with 

more AD-like pathology. For these subjects WMH plays an additive role and amplifies the 

clinical manifestation of pathologies. We cannot however prove or disprove this 

explanation with the present data; both hypotheses can be tested when reproducing the 

above results in Aβ positive and negative subgroups with and without cardiovascular risk 

factors. Although temporal precedence or statistical causation of GM and WM change can 

be estimated using advanced statistical models, using longitudinal data is the ultimate way 

to test these two hypotheses. 

 

Figure 13 Possible interpretations of the high fraction of variance in gray matter atrophy explained by tract-

based WMH observed in subject with subtle cognitive impairment. (A) Tract-based WMH might proceed GM 

atrophy (B) Tract-based WMH only amplify the clinical manifestation. 
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6 CONCLUSION 

The main aims of this thesis were (1) to develop and validate an automatic method for the 

segmentation of WMH that can be employed in different research settings and (2) to 

investigate the role of WMH in early stages of cognitive impairment. 

In Study I and Study II, we developed a fast and flexible automatic WMH segmentation 

method, capable of using different MRI input sequences. We proposed a new statistical 

definition for the WMH to remove any implicit or explicit need for manually delineated 

WMH as reference and showed the resulting segmentation has high reproducibility and 

accuracy. The method is implemented as an open-source software available at 

https://github.com/Damangir/Cascade. 

Study III investigated the relation between CHD and hypertension and cortical thickness, 

GM volume and WMH. Associations between CHD, cortical thickness and GM volume 

were strongest in people with both CHD and hypertension in midlife. No association was 

found between CHD and WML volumes which was probably due to measuring WMH as 

absolute volume which is too crude a measure. Our further investigation in Study IV 

showed that the role of WMH is more pronounced when its burden is measured on a per 

tract basis. The tract-based WMH was higher in subjects with more cognitive impairment 

even early in the disease. CTL had the least damage and SCI subjects had non-significantly 

higher levels of tract damage, while MCI subjects showed significantly higher levels of 

tract damage. Tract-based WMH also explained more variation in the volume of GM 

connected through the tract in SCI subjects compared to both CTL and MCI subjects which 

suggests that WMH plays a more important role in the early stages of cognitive impairment. 

In conclusion, our results showed that WMH is not a mere incidental finding and is instead 

an important aspect of the disease development. The spatial patterns of WMH and in 

particular tract-based WMH have a potential of being used as biomarkers in the future. 
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7 FUTURE WORK 

The methods developed in the thesis for measuring WMH allowed the detailed analysis of 

WMH and the tracts affected by them. Given more time in the future, the methods should 

evolve to mature software to be usable even by a larger community. 

Moreover, the presence of WMH per se can undermine current image processing 

algorithms. Although the effect of WMH is minimized in the developed methods, different 

parts of the methods need to be validated independently in the presence of WMH. In 

particular, one needs to measure the effect of WMH on: 

• Registration, inhomogeneity correction and brain tissue segmentation in Study I and 
Study II 

• Registration and GM parcellation in Study III and Study VI 

The results presented in Study VI also urge the investigation of the same effect in a 

longitudinal study. The effect of cardiovascular risk factors and AD pathology biomarkers 

such as Aβ, measured in CSF and through PET amyloid imaging, needs to be studied as 

well. Given those data one may be able distinguish subjects in whom WM damage precedes 

the GM changes from those in which WM damage follows the GM change. 

Moreover, having known the results presented in Study VI, one might apply the same 

method to the data in Study III to study whether detailed measurements of WMH can have 

an association with CHD and hypertension. 

Finally, in order for other researchers to be able to build upon the current knowledge and 

experience, material and methods should be as openly available as possible. To this end, all 

developed methods in this thesis are made public in the hope that all researchers realize that 

they will indeed gain more by making their materials openly accessible. 
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10 APPENDIX 1: EXTERNAL SOFTWARES 

10.1 FREESURFER SOFTWARE SUITE 

FreeSurfer is an open-source software package by the Laboratory for Computational 

Neuroimaging at the Athinoula A. Martinos Center for Biomedical Imaging for analyzing 

structural and functional neuroimaging data. 

We used FreeSurfer for analyzing structural MRI. The process starts with pre-processing 

including motion correction, brain tissue extraction, registration to the Talairach space, 

segmentation of the subcortical WM and deep GM volumetric structures, intensity 

normalization. Next the GM/WM boundary is created as a 3D mesh followed by 

topological matching of the boundaries before deforming the boundaries to match the 

highest intensity gradient and form the cortical model. After the cortical models are 

complete, the model surface is inflated and then registered to a spherical atlas. Then cortical 

parcellation is performed to segment gyral and sulcal structures, from which cortical 

thickness is measured as the closest distance from the GM/WM boundary to the GM/CSF 

boundary at each vertex on the meshed surface. Since a high-resolution mesh reconstruction 

is performed, the cortical thickness measures are not restricted to the voxel resolution of the 

original image and thus are capable of detecting subtle group differences. Detail description 

as well as access to the software suite is available at https://surfer.nmr.mgh.harvard.edu/. 

10.2 CIVET PIPELINE 

CIVET is a web-based tool developed at the McConnell Brain Imaging Centre of the 

Montreal Neurological Institute, McGill University. It is an image processing pipeline for 

fully automated cortical measurements, morphometric and volumetric analyses of MRI 

images of human brain. 

CIVET starts by an affine transformation of the MR images from native to the MNI 

standard space. The registered images are then corrected for inhomogeneity before 

extracting brain from them. A non-linear transformation is then computed from the subject 

to the MNI standard space. Then CIVET continues by classifying the brain tissue into WM, 

GM, and CSF. Thereafter the brain is divided into two hemispheres before proceeding to 

surface extraction. 

White matter surface is modeled as the boundary between cortical GM and subcortical WM 

using a mesh of 40,962 vertices and 81,920 faces. The GM surface is then calculated by 

expanding outwards from the WM surface toward the CSF. The surfaces are then 
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transformed into the MNI standard surface template in order to allow group comparisons. 

The cortical thickness is then calculated as the distance between the WM and GM surfaces 

in the original native space. Detailed description and the web-platform itself is available at 

http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET. 
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