
Why Creating Web Page Objects Manually If It Can
Be Done Automatically?

Andrea Stocco1, Maurizio Leotta1, Filippo Ricca1, Paolo Tonella2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

andrea.stocco@dibris.unige.it, maurizio.leotta@unige.it, filippo.ricca@unige.it, tonella@fbk.eu

Abstract—Page Object is a design pattern aimed at making
web test scripts more readable, robust and maintainable. Unfor-
tunately, the effort to manually create the page objects needed
for a web application may be substantial and existing tools do
not help web developers in such task.

In this paper we present APOGEN, a tool for the automatic
generation of page objects for web applications. Our tool automat-
ically derives a testing model by reverse-engineering the target
web application and uses a combination of dynamic and static
analysis to generate Java page objects for the popular Selenium
WebDriver framework. Our preliminary evaluation shows that
it is possible to use around 3/4 of the automatic page object
methods as they are, while the remaining 1/4 need only minor
modifications.

Keywords—Web Testing, Testware Evolution, Page Object.

I. INTRODUCTION

Developing large web applications is a challenge for any
company. In today’s fast moving environment, the effort to adapt
a software system running on the web to requirement changes
is continuos. This poses serious issues in the maintenance
and testing of web systems, demanding for increased levels of
automation. For these reasons, test automation tools have become
popular in the industry during the last 10 years and across a
great variety of testing tasks such as regression, system or GUI
testing. Automated tests can be run fast and frequently, making
them quite cost-effective for web software with a medium to
long expected maintenance and evolution life.

Despite their wide adoption, test automation techniques
bring the problem of maintaining test scripts during software
evolution – an issue well-known by practitioners. While there
are interesting research contributions that try to address the
testware evolution problem [1], [3], [6], [10], [12], we are far
from a consolidated solution.

Among the practical solutions to cope with the maintenance
of test scripts, the adoption of software engineering best practices,
such as design patterns, is receiving substantial attention.
Particularly famous in web testing is the Page Object design
pattern, which aims at improving the test suite maintainability by
reducing the duplication of code across test cases. A Page Object
is a class that represents the web page elements as a series
of objects and that encapsulates the functionalities of the web
page in methods. The use of the Page Object pattern reduces
the coupling between web pages and test cases, promoting
reusability, readability and maintainability of the latter. A recent
work has empirically shown the benefits associated with the
adoption of the Page Object pattern in the maintenance of web
test suites in an industrial environment [4].

Implementation of page objects is usually done either:
(i) manually, or (ii) semi-automatically with the support of
tools which are still very limited, as described in the paper.

In this paper we consider the problem of the automatic
generation of page objects for web applications. This problem is
challenging and no automatic and effective solution exists. Our
approach aims at automatically reverse engineering a testing
model, through a combination of dynamic and static analysis of
the application under test (AUT). The application is reverse-
engineered to expose its internal structure and functionalities, in
order to gather useful information, that is used to generate the
source code for the page objects. Our approach is implemented
in a Java open-source prototype tool, APOGEN (Automatic
Page Objects Generator). To our knowledge, there are research
contributions using reverse engineering techniques for testing
and analysis purposes [2], [7], [9], [11], but none of them
specifically address the problem of the automatic representation
of a web application into page objects, so as to improve the
modularity and reusability of a test suite.

We compared a set of page objects automatically generated
by APOGEN with the ones manually created by a human tester for
the PHP AddressBook application in the context of a previous
work [5]. Preliminary results indicate that our approach is
viable, pretty accurate and potentially saving precious time
otherwise required for manual page object creation: 75% of the
functionalities of the automatic page objects needs no correction,
i.e., they are ready for use, while the remaining 25% needs
minor modifications.

The paper is organised as follows: Section II provides
some background on the Page Object design pattern and the
tools available to help developers in the page objects creation.
Section III describes our approach and the tool APOGEN.
Section IV presents the initial experimental results that evaluate
the effectiveness of APOGEN, as well as its limitations and the
future work we plan to carry out on the tool. Conclusions are
drawn in Section V.

II. BACKGROUND

This section introduces the Page Object design pattern and
explains why its adoption in test suites for web applications
brings considerable advantages. In addition, we briefly classify
the tools available on the market to assist testers in the
implementation of the Page Object pattern in the test code,
together with their limitations.
Specification vs Implementation. Without the adoption of any
design pattern, automated test scripts may result in test code
that is difficult to maintain and evolve. One of the main reasons
is the duplication of code among the test cases. When the

Username

Password

Submit

Login

Register

Reset

Register

Reset

Web Element Action

Navigation

Fig. 1. Login page of PHP AddressBook and associated WebElements and
Functionalities (i.e., Actions and Navigations)

same functionality must be necessarily invoked within multiple
test cases (e.g., login), this results in some code fragment
being scattered across test cases. Such code fragments include
implementation details (e.g., sendKeys(username, “admin”)) that
are therefore duplicated instead of being shared and reused.
Indeed, there is an important distinction between the specification
of what to test versus the implementation of how to test it: the
lack of a proper abstraction for recurring functionalities makes
the two notions collide.

Let us consider the running example in Fig. 1, displaying
the index page of the PHP AddressBook web application1. A
test specification might be: “When the user enters the correct
username and password and clicks the login button, she/he is
logged in and can see the personal home page”. This describes
a scenario – a specification of what the test should do. However,
the test implementation has to deal with entities like: the
username field is named “username”, the password field is
named “password”, the login button is found via the CSS
“#loginForm > input::nth-child(3)”. If the developer changes the
layout of the login page, the specification does not change (users
still need to provide credentials and click the login button),
whereas the implementation almost certainly needs the tester
intervention to correct all test cases affected by the change.

Separating test specification from test implementation makes
tests more robust and maintainable. For instance, if the login
functionality changes, testers would like to modify only a single,
reused code fragment, instead of changing every single test that
requires the user to login.
Page Object and Page Factory. The test specification can be
separated from its implementation by using the Page Object
design pattern. With its introduction, all the implementation
details are moved into the page objects, a bridge between web
pages and test cases, with the latter only containing the test
logics. Page Objects serve as an interface of the web application:
they represent the GUIs as a series of object-oriented classes
that encapsulate the features offered by each page into methods.

For instance, for the web page of Fig. 1 we can identify
the Web Elements, i.e., the GUI entities on which a user can
interact, and the Actions associated to them, i.e., the behaviours
triggered after that an event has occurred on a web element
(e.g., click on the Register link performs a navigation and brings
the user to the registration page). In Fig. 2 (a), we can see
how these information are represented in a sample Page Object
implemented upon the Selenium WebDriver framework2: each
GUI element is represented as a WebElement class instance,
properly named and annotated with a @FindBy annotation
containing the locator, i.e. the specification of how to identify

1http://sourceforge.net/projects/php-addressbook/
2http://docs.seleniumhq.org/projects/webdriver/

public class Index {
 private WebDriver driver;
 @FindBy(xpath = "/html[1]/body[1]/div[1]/div[4]/a[1]")
 private WebElement register;
 @FindBy(xpath = "/html[1]/body[1]/div[1]/div[4]/a[2]")
 private WebElement reset;
 @FindBy(css = "#LoginForm > input:nth-child(2)")
 private WebElement user;
 @FindBy(css = "#LoginForm > input:nth-child(5)”)
 private WebElement pass;
 @FindBy(css = "#LoginForm > input:nth-child(7)")
 private WebElement accesso;
 public Index(WebDriver driver) {
 this.driver = driver;
 PageFactory.initElements(driver, this);
 }
 public UserAdd goToRegister() {
 register.click();
 return new Register(driver);
 }
 public EmailPassword goToReset() {
 reset.click();
 return new Reset(driver);
 }
 public void loginForm(String args0, String args1) {
 user.sendKeys(args0);
 pass.sendKeys(args1);
 accesso.click();
 }
}

public class YourPageObjectName {

 private WebDriver driver;

 @FindBy(xpath = “//*[@id=“LoginForm”]/input[1]“)
 public WebElement username;

 @FindBy(xpath = “//*[@id=“LoginForm”]/input[2]“)
 public WebElement password;

 @FindBy(xpath = “//*[@type=“submit
 and @value=“Accesso”]”)

 public WebElement accesso;
}

public class Page {

 @FindBy(how=How.XPATH, using= “name(\”username\”)“)
 public WebElement emailTextBox;

 @FindBy(how=How.XPATH, using= “name(\”password\”)“)
 public WebElement passwordTexBox;

 @FindBy(how=How.XPATH, using= “name(\”Accesso\”)“)
 public WebElement loginButton;
}

(b)

(c)

(a)

Fig. 2. Comparison between a Page Object generated by APOGEN and those of
OHMAP and SWD Page Recorder for the login page in Fig. 1

such web element in the GUI3. The class constructor makes use
of the Page Factory design pattern, which instantiates the page
object and pre-populates its fields based on the annotations. At
last, the page object wraps the entire login form in a method
providing the login functionality and offers two navigation
methods for the Register and Reset links.
Existing Page Object Creation Tools. Currently there exist
some open source frameworks to assist the tester during the
creation of page objects. These tools mostly wrap the HTML
content of the page and offer an aided creation of the associated
source code. The most important ones are:
– OHMAP4: an online website allowing users to copy HTML

code portions in a text area. The tool generates a simple
Java class containing a WebElement instance for each input
field encountered by the internal server-side static analyser.
The variable names are taken from HTML attributes and the
locators are XPaths similar to the ones generated by FirePath5,
a popular tool for the automatic generation of simple XPath
expressions for elements inside web pages.

– SWD Page Recorder6: allows users to launch a web application
and to inspect the GUI with a click&record feature: after
every click on the interface, a drop-down menu is shown for
the manual insertion of the web element variable name, while
a relative XPath locator is produced. Code export is available
for several languages (Java, C#, Python, Ruby and Perl).

– WTF PageObject Utility Chrome Extension7: assists the tester
in the creation of the page objects (limited to web elements),
by generating locators of kind: id, name, CSS, XPath. The
output code is in Python.

Beyond the described tools, there are other open source
projects, mostly abandoned or targeting only specific architec-
tures like .NET8 or Ruby9. Despite these tools provide useful
features, most of the effort is still put on testers. These tools
suffer several limitations, in particular: (i) only one page at a
time is taken into account, without considering any notion of

3http://docs.seleniumhq.org/docs/02_selenium_ide.jsp#locating-elements
4http://ohmap.virtuetech.de/
5https://addons.mozilla.org/en-US/firefox/addon/firepath/
6https://github.com/dzharii/swd-recorder
7https://github.com/wiredrive/wtframework/wiki/WTF-PageObject-Utility-Chrome-Extension
8https://github.com/patrickherrmann/Bumblebee
9https://github.com/cheezy/page-object

dynamism or web application structure; (ii) only a subset of
web elements that can be used by a test is taken into account;
(iii) the generated code are basic class skeletons, while the key
characteristic of the page objects is to expose the web application
functionalities in methods. This is completely missing in all
the tools we analysed so far. We believe that it is possible to
move the automation by far beyond the creation of a class
skeleton containing web elements, using the knowledge present
in the application itself. In Fig. 2 we report a comparison
between the page objects generated by APOGEN (a) and those
generated by tools OHMAP (b) and SWD Recorder (c). From
the figure it is evident how the approaches implemented in (b)
and (c) lack from several features (specifically, web elements
for Register and Reset links are missing, as well as methods for
any functionality). The page objects generated with APOGEN
reflect the graph structure of the AUT and are enriched with the
following features: (i) WebElement instances for each “clickable”
element (i.e., an element on which it is possible to perform an
action, e.g., links, buttons, input fields); (ii) methods to navigate
the aforementioned graph structure; (iii) methods to fill and
submit the forms. A sample page object of this kind is that in
Fig. 2 (a).

Our approach aims to overcome the limitations of the
existing frameworks, offering a more complete page object
generation tool, so as to reduce substantially the testers’ manual
development effort.

III. APPROACH
This section describes the design and architecture of

APOGEN, the tool implementing our approach. For the interested
reader, a demo video and the source code can be found at:
http://sepl.dibris.unige.it/2015-APO.php.

Crawler Static
Analyser

Code
Generator

APOGEN
(Automatic Page Objects Generator)

Page Objects
for web app

web app

Fig. 3. High Level Architecture of APOGEN

APOGEN consists of three main modules (see Fig. 3): a
Crawler, a Static Analyser, and a Code Generator. The input
of APOGEN is any web application, together with the login
credentials if necessary, while the output is a set of Java files,
representing a code abstraction of the web application, organised
using the Page Object and Page Factory design patterns, as
supported by the Selenium WebDriver framework.
Crawler. In the first step we retrieve a high level representation
of the AUT to generate a state-based model of the dynamic DOM
(Document Object Model). For this we use a web crawler, i.e., a
software that is able to browse a web application and download
its pages. In particular, we used CRAWLJAX, a state of the art
open source Java tool for automatically crawling and testing
a JavaScript-based web application [8]. We chose CRAWLJAX
because it automatically creates a state-based graph considering
the dynamic DOM states and the event-based transitions between
them. We seeded the crawler with proper inputs, such as the URL
of the AUT and specific configurations necessary to perform
an exploration of the application (in detail, we set no limits
on the crawling depth, runtime, and number of states, albeit
CRAWLJAX has an internal heuristics to determine whether
the crawl is over). Moreover, CRAWLJAX may need the AUT

login credentials to access the application and crawl the states
accessible to authenticated users only.
Static Analyser. When the crawling is over, CRAWLJAX returns
several outputs: the state-based graph of the web app and
information about each visited dynamic state, i.e., the URL, the
list of “clickable” elements, the DOM, a screenshot image of
the web page, the list of links to other states. These information
are parsed by the Static Analyser of APOGEN to create the
testing model of the web application. In detail, for each state:
1) The URL is parsed and trimmed to get a meaningful class
name for the page object class. In case of multiple occurrences
(e.g., dynamic pages sharing the same URL, but conceptually
in different states) an integer counter is added;
2) The web elements on which the crawler fired an event are
inserted as WebElement instances in the page object class. For
each of them, a meaningful variable name is retrieved by parsing
the textual information and the attributes of the corresponding
HTML tags. XPath or CSS locators are used to localise the web
elements;
3) The links to other states obtained from the state-based graph
are saved in the model;
4) The DOM of the state is saved and analysed to acquire
information on forms. In particular, for each form APOGEN
collects a series of data to be used for the methods generation:
(i) a meaningful name is obtained by parsing and trimming the
id, name and value attributes of the <form> HTML tag. This
will be part of the methods’ names produced in the following
code generation phase; (ii) the list of HTML elements contained
into the <form> tag, together with their associated locators, are
saved as WebElement instances.
Code Generator. The last step is to transform the model
produced by the Static Analyser into comprehensive Page Objects
code for the Selenium framework. For each state in the model,
the Code Generator module performs the following steps:
1) creates a Java class with the name obtained from the Static
Analyser (first step), a standard package name (po) and the
necessary Selenium imports.
2) creates a WebElement instance for each web element. For
all of them, a @FindBy annotation, specifying the locator, is
associated to the WebElement.
3) creates a default constructor with a Selenium WebDriver
variable to control the browser. The constructor resorts on the
PageFactory pattern to initialise all the web elements.
4) creates a navigational method for each link from the current
state towards other page objects. The return type is the target
page object.
5) creates a method for each submit button contained in each
form. In particular we distinguish two cases: whether the form
has (i) one submit button, or (ii) multiple submit buttons. In the
former case, Code Generator creates a method for populating
and submitting the form and its components (see page object
of Fig. 2 (a)). In the latter case, the form has been used as a
container for multiple web elements corresponding to different
functionalities and Code Generator creates multiple methods
to be later refined manually with the correct specification (an
example is in Fig. 4).

IV. PRELIMINARY EVALUATION

This section describes the experimental procedure and the
results obtained in a preliminary study we performed for
evaluating APOGEN.

Subject Application. In the experiment we used PHP Address
Book (ver. 8.2.5) – a PHP/MySQL-based address and phone
book, contact manager, and organiser. The application is
composed of about 30 kLOC and has been designed to be
platform and browser independent. A test suite for the subject
application was developed by a junior tester in the context
of our previous work [5]. The test suite is written in Java; it
follows the Page Object and Page Factory design patterns, and
it is used as oracle against which we compare the results of
APOGEN. The test suite is composed of 28 test cases and 7
page objects; it accounts for 1472 LOCs (1078 for the test cases
and 394 for the page objects).
Research Questions. Our empirical study aims at answering
the following research question:
RQ: What is the percentage of generated methods that are
(1) equivalent, (2) to be modified, or (3) missing w.r.t. the ones
available in the manual POs?
We want to understand whether automatically generated methods
can be used directly, after minor modifications, or are missing.
Experimental Procedure. First, we ran APOGEN on the subject
application. Second, we compared the methods of generated page
objects with those of the manual test suite. We excluded from
this analysis the getters methods – those retrieving meaningful
textual information from the web page and potentially useful
when defining the assertions of the test cases – since are not
generated by the current, preliminary version of APOGEN. In
detail, for each page object of the manual test suite, we manually
inspected all methods (getters excluded): (i) classifying the kind
of functionality as navigational or action; (ii) determining
whether the method has a semantically equivalent counterpart in
the automatic page objects (we tag such methods as Equivalent);
(iii) determining whether the method has a counterpart in the
automatic page objects that needs minor modifications (we
tag such methods as To Modify); (iv) determining any missing
methods (we tag such methods as Missing).
Experimental Results. Table I shows the data collected to
answer RQ. It reports the page object methods used by the
manually created test suite (first column), with the indication of
the page object where it has been found both in the manual
(second column) and in the automatic test suite (third column).
Moreover, the table reports (fourth column) whether each method
is a navigational method (e.g., a link towards a new page of
the application) or an action method (e.g., to login into the
application or to create a new address book entry). Finally,
the last three columns indicate if each method was tagged as
Equivalent, To Modify, or Missing.

Based on these data, we can notice that the test cases of
the original test suite covered 16 functionalities of the subject
application, for which corresponding methods have been created
in four manual page objects. While the page objects of APOGEN
are eight, they cover pretty well all the methods of the manual
test suite. The different number of page objects is explained
by the fact that page object generation is performed from the
Crawler output. CRAWLJAX marks a page as a new dynamic
state based on an internal heuristics – in short, it performs a
DOM comparison after a preprocessing step in which all style,
useless and dynamic elements are removed, leaving only the
main structure. CRAWLJAX performs a state split only when
it gathers evidence that the source and target states are two
different entities. For instance, the index page of the subject
application contains a login form, as visible in Fig. 1, while the

Methods of the manual page objects Manual Automatic Kind Eq TM M
Navigate to a new Address Book ABPage Index1 NAV X
Navigate to the Groups Page ABPage Index1 NAV X
Navigate to the Birthdays Page ABPage Index1 NAV X
Navigate to the Home Page ABPage Index1 NAV X
Navigate to the Print View ABPage Index1 NAV X
Navigate to the Print Phones View ABPage Index1 NAV X
Create a new Address Book EditPage Edit ACT X
Select and Remove an Address Book EditPage Edit1 ACT X
Login into the application IndexPage Index ACT X
Assign a user to a Group IndexPage Index1 ACT X
Search into the Address Book IndexPage Index ACT X
Go to a new group GroupPage Group NAV X
Add a new group GroupPage Group1 ACT X
Go to edit group GroupPage Group NAV X
Edit a group information GroupPage Group3 ACT X
Select and Remove a group GroupPage Group2 ACT X

Total 4 8 – 12 4 0
Coverage – 0.75 0.25 0.00

TABLE I. Coverage (Eq = Equivalent; TM = To Modify; M = Missing)

home page is drastically different (not shown on this paper),
since it displays the main content of the application. CRAWLJAX
splits these two pages into two different states, while the manual
tester decided to merge these two states and to incorporate the
login method in the IndexPage page object.

In total there are 8 Navigational and 8 Action methods.
We can notice how the methods marked as Equivalent are
12 out of 16 (i.e., 75%), while 4 out of 16 (i.e., 25%) need
minor modifications. An example of such modification is shown
in Fig. 4: only adding a parameter and a statement to the
automatically generated method was required to align it with
that of the manual implementation (in this case, to specify which
web element identifies the correct checkbox from a list, so as
to remove the right entry). No methods are missing.

public Group2 goToGroup2() {
 a_DeleteGroup.click();
 return new Group2(driver);
}

public Group2 goToGroup2(WebElement who) {
 who.click();
 a_DeleteGroup.click();
 return new Group2(driver);
}

Fig. 4. Element removal from a group requires an additional, initial click on
the web element to be removed

Looking at the equivalent methods by method type, we
have: 7 out of 8 Navigational methods (i.e., 87.5%) and
5 out of 8 Action methods (i.e., 62.5%). Thus, the first
prototype of APOGEN is able to precisely recover almost entirely
the navigations between the page objects and a remarkable
percentage of the actions; the remaining methods require minimal
corrections. To answer RQ, in our case study:

75% of the generated methods are equivalent to those of
the manual page objects, while 25% need to be refined
and none is missing.

Page Objects Comparison. Table II show how the methods of
the manual page objects are covered by the automatic page
objects. We can notice that for the ABPage page object, all 6
methods are covered by those of Index1 (in this case APOGEN’s
strategy mimics exactly that of a human tester). About the others:
methods of IndexPage are distributed over Index and Index1,
EditPage’s over those of Edit and Edit1, while GroupPage’s can
be retrieved in the 4 automatic page objects Group, Group1,
Group2, and Group3.

The results of Table II offer a clue for a possible, simple
merging strategy: clustering the Page Objects sharing the same
name (e.g., if we merge the methods contained in Edit and Edit1
in only one PO, we obtain a PO similar to IndexPage), to get
closer to those that are defined by a human tester. Of course,

Page Object Index Index1 Edit Edit1 Group Group1 Group2 Group3
ABPage (6) – 6 – – – – – –
IndexPage (3) 1 2 – – – – – –
EditPage (2) – – 1 1 – – – –
GroupPage (5) – – – – 2 1 1 1

TABLE II. Page Object Comparison

there must be a balance between big page objects containing the
majority of the functionalities and small page objects targeting
only a few narrow features.
Estimated Development Effort Reduction. The manual test
suite has a total of 1472 LOCs: 1078 LOCs for the test cases
and 394 LOCs for the page objects, of which 335 are equivalent
to those generated by APOGEN, 8 are to modify, 51 are for
getters. By proportion over the LOCs, we infer that the effort
reduction due to APOGEN would be about 85% (335:394=x:100)
if we consider the development of page objects only, and roughly
23% (335:1472=x:100) for the entire test suite development. The
LOCs are correlated with the development time but not directly
proportional, hence, this rough estimate gives an approximate
idea of the benefits potentially coming from the adoption of
APOGEN.
Limitations and Future Work. Several issues are related to
crawling the application: APOGEN relies on the performance of
CRAWLJAX, which is overall a valid choice, but it is affected
by the problems typical of any research tool. In particular, if
CRAWLJAX fails at exploring the states space of the application,
page objects are not created for those pages the crawler is
not able to reach. Another limitation of our prototype comes
from the static analysis performed to build the testing model.
Although the combination of dynamic and static analysis has
revealed to be effective in our case study, it may be not so
effective if the DOM of the application has attributes with
unintelligible names or has too few attributes on which the page
object elements can be built and named (e.g., for naming the
web elements variables, attribute names are fundamental). In
our future work we intend to face this issue by studying the
performance of our tool with more applications. A further idea
could be to offer testers the possibility to interact with the tool
before triggering the code generation so as to intervene in all
the cases in which APOGEN fails to retrieve meaningful names.

In our future work, we will also investigate the afore-
mentioned page objects merging strategy, to see whether it
can improve the page objects understandability. Moreover,
we intend to augment the page objects with a set of getter
methods retrieving meaningful textual information from the web
application by the dynamic identification of changing pieces of
information in a web page. This would improve the completeness
of the page objects and would provide support for the writing
of test case assertions.

We plan to address the limitation of the methods that still
need to be manually modified by recognising interaction patterns
during the dynamic analysis, so that we might be able to
automatically add the missing parameters and statements.
Threats to Validity of the Study. One threat to the validity
of our study is associated with the approach used to compare
manual and automatic page objects. To reduce this threat, we
adopted the systematic procedure described in Sec. IV. The
chosen application and the test suite considered in this study may
have affected the results for the RQ; the percentages, as reported
in Table I, may vary when different applications and different
test suites are considered. Finally, concerning the generalisation
of the results, we selected a real open source web application

and a test suite already used in another scientific work, which
makes the context realistic, even though further studies with
additional applications are necessary to confirm and corroborate
the obtained results.

V. CONCLUSIONS
Web test cases are usually decoupled from the implemen-

tation details by means of the Page Object design pattern.
However, the manual effort to create the needed page objects
can be remarkable. We have proposed a novel approach to
automatically generate page objects for a web application and
we have implemented it in a tool named APOGEN. A preliminary
study in which we compared the generated page objects with
the ones created manually by a human tester shows that 75%
of the page object methods can be directly used by the tester
for the development of a test suite, while the remaining 25%
need only minor additions.

Although APOGEN is still a research prototype, the approach
it implements is highly promising. In our future work, we intend
to: (i) extend APOGEN with support for the definition of test
case assertions, (ii) increase its level of automation, targeting
all the cases that currently require manual intervention, and
(iii) expand the empirical evaluation to a larger number of web
applications.

REFERENCES

[1] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web application
test repair. In Proc. of the 1st International Workshop on End-to-End
Test Script Engineering, ETSE 2011, pages 24–29. ACM, 2011.

[2] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana. Reverse engineering
web applications: The WARE approach. Journal of Software Maintenance
and Evolution, 16(1-2):71–101, Jan. 2004.

[3] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-directed
test scripts. In Proc. of the 31st International Conference on Software
Engineering, ICSE 2009, pages 408–418. IEEE, 2009.

[4] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving test suites
maintainability with the page object pattern: an industrial case study. In
Proc. of the 6th International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2013, pages 108–113. IEEE, 2013.

[5] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-
based web locators: An empirical study. In Proc. of 14th International
Conference on Web Engineering (ICWE 2014), volume 8541 of LNCS,
pages 322–340. Springer, 2014.

[6] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Reducing web test cases
aging by means of robust XPath locators. In Proc. of 25th International
Symposium on Software Reliability Engineering Workshops, ISSREW
2014, pages 449–454. IEEE, 2014.

[7] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax web
applications. In Proc. of the 1st International Conference on Software
Testing, Verification, and Validation, ICST 2008, pages 121–130. IEEE,
2008.

[8] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[9] C. Sacramento and A. Paiva. Web application model generation
through reverse engineering and UI pattern inferring. In Proc. of
the 9th International Conference on the Quality of Information and
Communications Technology, QUATIC 2014. IEEE, 2014.

[10] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram,
D. D. Nagaraj, and S. Sathishkumar. Efficient and change-resilient test
automation: An industrial case study. In Proc. of the 35th International
Conference on Software Engineering, ICSE 2013, pages 1002–1011.
IEEE, 2013.

[11] P. Tonella, F. Ricca, and A. Marchetto. Recent advances in web testing.
Advances in Computers, 93:1–51, 2014.

[12] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra. Robust
test automation using contextual clues. In Proc. of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014, pages 304–314.
ACM, 2014.

