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ABSTRACT
In this review, we summarize recent results in the study of
the thermo-electric transport properties of holographic models
exhibiting mechanism of momentum dissipation. These models
are of particular interests if applied to understand the transport
mechanisms of strongly coupled condensed matter systems
such as the high-temperature superconductors. After a brief
introduction inwhichwepoint out thediscrepanciesbetween the
experimentally measured transport properties of these materials
and the prediction of the weakly coupled theory of Fermi Liquid,
we will review the basic aspects of AdS/CFT correspondence
and how gravitational models could help in understanding
the peculiar properties of strongly coupled condensed matter
systems.
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1. Introduction

Thephysics of the last century has beendominated by the studyofweakly coupled
systems. The effective field theories which usually describe these systems can be
understood in terms of weakly interacting particles. Regarding condensedmatter
systems, one of themilestones in this respect is the so-called Landau Fermi liquid
model (see e.g. [1]), which describes the vast majority of metals and insulators
existing in nature.
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The basic assumption fromwhich the phenomenological Landau theory starts
is that the qualitative picture for non-interacting Fermi gas in fact persists
for a generic interacting fermionic system, also when the interactions between
fermions are strong. Specifically, the basic Landau’s starting assumptions are:

• There exists a Fermi surface which characterizes the ground state of a
generic interacting fermionic system. In momentum space, this surface lies
at
k⃗ = k⃗F , where k⃗F is called the Fermi momentum.

• The low energy excitations around the Fermi surface are weakly interacting
particles, called quasi-particles, despite the (possibly strong) interactions
between the fundamental fermions. The quasi-particles are characterized
by the same charge and statistics of the underlying fundamental fermions.

The assumptions above imply that, near the Fermi surface, the retarded
Green’s function has the form (!(ω, k) is the self-energy):

GR(ω, k⃗) = 1
ω − ϵk + !(ω, k)

≃ Z
ω − vF(k − kF) + iγk(ω)

, (1)

where Z < 1 is the quasi-particle weight, which measures the strength of the
interaction between quasi-particles, vF is the Fermi velocity and γk(ω) is the
damping rate which is proportional to the imaginary part of the self-energy. Near
the Fermi surface the self-energymust have the following frequency dependence:

ℜ!(ω, kF) ∼ ω, ℑ!(ω, kF) ∼ ω2, (2)

so in the low-energy limit the quasiparticles are well-defined quasistationary
excitations. The concept of quasi-particle is extremely powerful, and makes it
possible to develop a general low energy theory, independently of the precise
microscopic details of the system.

Despite the great success of the Landau Fermi liquid theory in describing
condensed matter systems, in the 80s physicists start to realize that not all the
existing materials can be described by this theory. The discovery of metals with
no Fermi surface or no well-defined quasi-particles forced scientists to wonder
if the strong interactions between the fundamental degrees of freedom of these
systems could nullify the basic Fermi liquid phenomenological assumptions.

Probably, the most famous example of this kind of materials is that of High-
Tc superconductors (HTc) [2]. Whereas ‘ordinary’ or metallic superconductors
usually have transition temperatures Tc below 30K (which is the maximum
critical temperature predicted by BCS theory, see [3]), HTc have been observed
with transition temperatures as high as 138K. Moreover, in these peculiar ma-
terials both the transport properties of the non-superconducting phase and the
superconducting pairing mechanism differ significantly from those predicted by
the Fermi liquid and BCS theory.1
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Figure 1. Left: Typical phase diagram of a High-Tc superconductor as a function of temperature
and hole doping (density of carriers). Right: Phase diagram of a system in presence of a Quantum
Critical Point.
Notes: The dashed lines mark a qualitative change in the physical properties of the system, even though a proper
phase transition occurs only at zero temperature.

The phase diagram of a typical HTc (see Figure 1) is rather complicated and
characterized by many different phases (see e.g. [4] for a review). The most
surprising of these phases is for sure the strange metal phase, which is the region
of the phase diagram on the top of the point in which the superconductive
transition temperature is the highest (optimal doping point). This phase is
characterized by an extremely stable linear in temperature resistivity, which
seems to be insensitive to almost every scale of the system (such as Debye
temperature, etc.). This abruptly deviates from theFermi liquid prediction,which
implies a T2 scaling for the resistivity due to collisions between electrons in case
of clean metals below the Debye temperature.

One of the first successful theoretical attempt to justify this exotic behaviorwas
that of the Marginal Fermi Liquid (MFL) developed by Varma and collaborators
(see [5] and references therein). We outlined before that such systems cannot be
described by well-defined low-energy quasi-particles and do not have a Fermi
surface. Then, the MFL is a theory that yields a Fermi surface in the weakest pos-
sible sense of the definition but otherwise does not make the same predictions as
Fermi liquid theory. The basic assumption of the MFL is to take into account for
unknown phenomenological polarization processes which modify the behavior
of the self-energy (2) so that:

!MFL(ω, k) ∼ ω log
ω

ωc
− iω, (3)

where ωc is an high energy cut-off. A self-energy of this kind means that the
Fermi surface still exists but is marginally defined, namely the quasi-particle
weight Z vanishes logarithmically at the fermi surface. Moreover an imaginary
part of! linear inωmeans that quasi-particles are not anymore stable. This phe-
nomenologically inspired self-energy is compatible with a linear in temperature
resistivity even though, in order to take into account for other exotic transport
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properties of the strange metals, such as the Hall angle, other phenomenological
inputs have to be included (see e.g. [5]).

Although a tremendous effort has beenmade to understand the strangemetals
better and beyond the phenomenology of the MFL, a complete theory which
describes all the features of these systems is still lacking.

In recent times the idea that the phenomenon of Quantum Criticality could
be the responsible of the Fermi liquid break down in the strange metals has
assumed growing importance. This is the critical universal behavior that occurs
in the vicinity of a Quantum Phase transition (see [6] for a review). A quantum
phase transition is defined as a transition which occurs at zero temperature,
due to the variation of some control parameter, such as a chemical potential or
pressure. Such aphase transition cannot be generatedby the competitionbetween
energy and entropy, like its finite-temperature counterpart, since classically the
entropy has to vanish due to the third law of thermodynamics. Instead, it is
originated by the competition between different terms in the Hamiltonian that
describes the system. Now, the relevant aspect is that, if this phase transition
is second order, the absence of a scale at the critical point means that the
quantum field theory describing this point must be a scale-invariant field theory,
having inmind that in the relativistic case, up to some subtleties, scale-invariance
implies conformal invariance. The particular aspect of a quantum critical theory
compared to a classical critical theory is that if onemoves away from the quantum
critical point by heating up the system, he lands in a Conformal field theory at
finite temperature, whose dynamic is still controlled by the T = 0 conformal
symmetry. Then, the only difference is that all dimension-full quantities are now
expressed in terms of the only scale T .

Due to conformal invariance, it is possible to show that the transport coeffi-
cients, and the relaxation time to local equilibrium can be expressed by means
of the fundamental quantities of nature and the temperature using dimensional
analysis. This is in contradiction with Boltzmann theory of transport in Fermi
liquid, which states that the transport coefficients are proportional to the mean
free scattering time between quasi-particles. Rather, as conjectured in [6], at
the quantum critical point the system behaves like a perfect fluid in which the
relaxation time is as short as possible, and is determined universally by the
absolute temperature by means of the indetermination principle. Away from
the quantum critical point, the dissipation rate is much larger and in general it
satisfies the inequality

τ ≥ !
kBT

C, (4)

where C is a dimensionless constant of order unity which could depend on
the details of the systems. The transport coefficients are affected by this scaling
argument as well, and we will come back to this point later in Section 6.

Comparing the typical Quantum Critical point phase diagram with that of
the cuprates in Figure 1, it is very tempting to assume that the optimal doping
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region at T = 0 is associated with a quantum phase transition. Although the idea
that the physics underlying the strange metal behavior is a finite-temperature
conformal field theory is fascinating, the details are not so simple. In particular
scale-invariance is only observed in terms of energy–temperature scaling. In
spatial directions, ARPES experiments [7] suggest that a distinct Fermi surface
still exists. However, the idea that one can capture the basic ingredients of the
physics of the strangemetals by studying some sort of deformed strongly coupled
conformal field theory has became one of the leading direction of research in this
field.

From the theoretical point of view, there exist very few tools which allow
us to analyze the properties of these complicated theories. However, in the last
decade new techniques developed in the context of string theory have acquired
greater and greater relevance in the study of strongly coupled systems. These
techniques include the so-called AdS/CFT (holographic) correspondence [8],
and the main goal of this review is to analyze what can be said on the thermo-
electric transport properties of strongly coupled materials, such as the HTc, by
means of holographic techniques.

2. Gauge-gravity duality

In this sectionwe introduce the gauge/gravity duality using simple intuitive ideas.
The AdS-CFT correspondence, where AdS stands for Anti de Sitter, and CFT
for Conformal Field Theory, was originally formulated in the context of String
Theory [8,9]. Excellent reviews on the role played by the gauge/gravity duality in
condensedmatter are [10–13].While for CFTwe refer the reader to the standard
reference [14], we spend a few words on AdS (see [15] for details).

AdSd+1 is the maximally symmetric metric space in d + 1 dimension with
negative curvature, where maximally symmetric means that it admits the max-
imum number of independent killing vectors. A convenient parametrization of
the AdSd+1 metric is the Poincaré one:

ds2 = L2

z2
(dz2 + ηµνdxµdxν), (5)

where ηµν is the diagonal flat metric with Minkoskian signature (1, d − 1), L is
a constant parameter called AdS radius, and the d+ 1 coordinates are (t, xi, z).
In what follows the greek indices run other the boundary coordinates {t, xi}. In
its weakest form, the so-called bottom-up formulation, the AdS/CFT duality can
be expressed in the following way:

d + 1-dimensional classical gravity theories on AdSd+1 vacuum are equiv-
alent to the large N (degrees of freedom per site) limit of strongly coupled
d-dimensional CFTs in flat space.

There are three issues which we have to clarify in order to understand the
previous statement, namely:
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• Why conformal field theories?
• How can we match the degrees of freedom of a d + 1-dimensional theory
with those of a d-dimensional one?

• Why the dual CFTs in the large N limit are strongly coupled?

The answer to the first question is very simple if one has in mind the basic
properties of CFTs and AdS spaces. In fact, the isometry group SO(2, d) of
AdSd+1 is exactly the symmetry group of a d dimensional CFT (see e.g. [16]).
Then, if there is some region of AdS in which a quantum field theory lives, it is
natural to assume that it has to be invariant under the same symmetry of AdSd+1.

To get intuition on the second issue, we need the help of the holographic
principle [17]. This principle states that a theory of gravity in d + 1 space time
dimensions, in a local region of space has a number of degrees of freedom which
scales like that of a quantum field theory in the boundary of that region.

To understand this basic principle we need to use the celebrated Bekenstein–
Hawking area law [18,19] for the entropy of a black hole. According to [18,19],
in fact, black holes are thermodynamical object and have an entropy which is
proportional to the area A of their horizon, namely:

SBH = A
4Gd+1

, (6)

where Gd+1 is the Newton’s constant in Planck units. Now, since we are con-
sidering a black hole, its entropy has to be the maximal entropy of anything
else in the same volume. Consequently, each region of space has a maximum
entropy scaling with the area of the boundary and not with the enclosed volume,
as one may think. This is much smaller than the entropy of a local quantum field
theory in the same space, which would have a number of states N ∼ eV , and the
maximum entropy S ∼ logN would have been proportional to the volume V.
The maximum entropy in a region of space can instead be related to the number
of degrees of freedom Nd of a local quantum field theory living in d dimensions.

The AdS/CFT correspondence is a particular realization of this principle,
where the gravity theory lives in an AdSd+1 vacuum, and its degrees of freedom
are encoded on the conformal boundary. To clarify this point, let us compute the
area of the conformal boundary of AdSd+1. Using the metric (5) embedded in a
hyper-surface of constant radius z and time t, we obtain:

A =
∫

z→0
dd−1x√gd−1 =

∫

z→0
dd−1x

Ld−1

zd−1 , (7)

where gd−1 is the determinant of the embedded metric, and we have taken the
limit z → 0 since this is the locus where the conformal boundary is located.
The integral (7) suffers from divergences coming both from the z → 0 limit and
from the dd−1x integration measure, and need to be regularized. In order to do
this, we will perform the integral (7) up to a small value z = ϵ and we enclose
the space in a closed space volume Vd−1, namely:
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A = Ld−1

ϵd−1Vd−1. (8)

The maximum entropy in the bulk of AdSd+1 is, introducing the Planck scale
length lp,

NAdS ∼ A
4Gd+1

∼ Ld−1

ϵd−1
Vd−1

ld−1
p

. (9)

The dual quantum field theory in d dimensions is also UV and IR divergent
and needs to be regularized in the same way, by introducing a box of volume
Vd−1 , and a short distance cut-off ϵ. The total number of degrees of freedom
Nd of a quantum field theory in d dimensions is given by the number of spatial
cells Vd−1/ϵ

d−1 times the number of degrees of freedom per lattice site N .
As an example, a quantum field theory with matrix fields φab in the adjoint
representation of the symmetry groupU(N) has a number of degrees of freedom
per point equal to N2. Thus

Nd ∼ Vd−1N2

ϵd−1 . (10)

Finally, we have estimated the relation between the bulk gravitational degrees of
freedom and those of the dual CFT and, using the holographic principle we have
understood why the CFT lives in one less dimension. However, the estimation
(10) allows us also to understand the first part of the third issue, namely why the
number of degrees of freedom per site in the dual CFT has to be large. This is
related to the fact that we are considering classical gravity. In order to do this, it
is necessary that the typical excitation length of the gravity theory is much larger
than the Planck’s length lp. In fact considering AdS, its typical length scale is
given by its radius L, then, matching the relations (9) and (10) , we obtain:

Ld−1

ld−1
p

∼ N2 ≫ 1, (11)

which proves the assertion.
We need now only to understand the last part of the third issue, namely why

the CFT is strongly coupled. This is related to the problem of giving physical
interpretation of the extra radial gravitational coordinate z at the dual level. The
cut-off R of this coordinates can be identified with the UV cut-off of the dual
quantum field theory. Then we can already argue that the radial coordinate has
to be related to the renormalization group flow in some way. It is tempting to
identify this extra scale dimension with the radial dimension on the gravity side.
In order to understand how this is possible, let us recall that the AdSd+1 metric
can be cast, using the transformation z = L2

r , in the following form:

ds2 = r2

L2
ηµνdxµdxν + L2

r2
dr2, (12)
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Figure 2. Connection between the radial coordinates in AdS and the renormalization group flow
in the dual quantum field theory.

where the conformal boundary is now located at r → ∞. This parametrization
makes clear that the AdSd+1 geometry can be viewed as a family of copies of
Minkowski spaces parametrized by the radial coordinate r, whose size is seen
to shrink when r decreases from the conformal boundary r → ∞ to the AdS
horizon at r → 0. This clarifies the UV/IR connection between gravity and the
dual field theory and explains why the field theory living on the boundary is
strongly coupled. In fact, from the view point of the gravity theory, physics near
the conformal boundary r → ∞ is the large volume physics, i.e. IR physics. Near
the horizon r = 0 is instead the short distance UV physics. In contrast, from the
view point of the quantum field theory, physics at large r corresponds to short
distance UV physics and vice versa (see Figure 2).

We have given arguments to justify, at least at the conceptual level, the duality
between a strongly coupled conformal field theory in the large N limit and
a classical gravitational theory in one more space–time dimension. Since the
gravitational theory is classical in principle, using the duality we can easily
compute observables in the strongly coupled CFT. To do this, however, we need
a prescription to relate observables of the gravitational theory to observables in
the dual strongly coupled field theory. In particular, the fundamental objects of
CFTs are the primary fields. Then in order to compute observables in the CFT
we need a prescription to relate the fields in the gravity sector to the primary
fields of the CFT. Let us consider a conformal field theory Lagrangian LCFT. It
can be perturbed by adding arbitrary functions, namely sources hA(x) of local
operators OA(x):

LCFT → LCFT +
∑

A
hA(x)OA(x), (13)

This is a UV perturbation because it is a perturbation of the bare Lagrangian
by local operators. According to the general connection between the radial AdS
coordinate and the renormalization group, it corresponds to a perturbation near
the boundary r → ∞ in AdS space. Thus the perturbation by a source h(x)
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of the CFT will be encoded in the boundary condition on the bulk fields. Take
now the source and extend it to the bulk side h(x) → h(xµ, r) with the extra
coordinate r being the radial dimension of AdSd+1 (see the metric (12)). Fields
in the boundary will be denoted with coordinates x, and bulk fields will be
dependent on the coordinates (xµ, r). Suppose h(xµ, r) to be the solution of the
equations of motion in the bulk with boundary condition

lim
r→∞ r−ᾱh(xµ, r) = h(x), (14)

where rᾱ is the leading r-dependent behaviur of the field at r → ∞,2 and another
suitable boundary condition at the horizon to fix h(xµ, r) uniquely. As a result we
have a one to one map between bulk fields and boundary fields [9,20]. In fact, to
each local operatorO(x) corresponds a source h(x), which is the boundary value
in AdS of a bulk field h(xµ, z). In order to deduce which field should be related
to a given operator, symmetries come in help, because there is no completely
general recipe. As a rule of the thumb, since internal symmetries of field in the
gravitational sector are preserved in the dual field theory, in general, we can say
that the spin of the bulk fields correspond to the spin of the dual operators in
the boundary field theory. To make a quantitative example, let us analyze how
a very fundamental quantity of a quantum field theory, the stress–energy tensor
Tµν , is encoded in the dual gravitational sector using the previous prescription.
In particular, the source of Tµν should be a tensor gµν . To have a gauge invariant
coupling ∫

ddxTµν(x)gµν(x), (15)

gµν(x) should be the boundary value of a gauge field corresponding to the local
translational invariance. The field we are talking about is of course the metric
tensor gab(xµ, r) with boundary value

lim
r→∞ gab(xµ, r) = gµν(x), (16)

where the latin indeces indicate the bulk coordinates. The right-hand side of
the previous equation is to be intended as the embedding of the bulk metric
on the hyper-surface r = const. The previous example allows us to make an
important observation. In fact, we have just explained that the metric tensor
gµν , which encodes local diffeomorphisms invariance in the gravitational bulk,
sources the stress–energy tensor Tµν of the dual field theory, which is a global
conserved current (∂µTµν = 0) due to the global translational and rotational
invariance of the dual field theory. In this sense we can affirm that, on the
gravity side, the global symmetries arise as large gauge transformations, namely
there is a correspondence between global symmetries in the gauge theory and
gauge symmetries in the dual gravity theory. This connection between fields
and operators allows us to express the duality as an equality between partition
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functions. Namely, the proposal of Gubser, Klebanov, Polyakov and Witten
(GKPW) [9,20], which, as everything in this framework is still a conjecture,
affirms that the partition function of the CFT, ZCFT[{h(x)}], is equal to the
partition function of the dual gravitational theory ZAdS[{h(xµ, z)}]:

ZCFT[{h(x)}] = ZAdS[{h(xµ, r)}], (17)

where {h(x)} is the collection of all the sources associated to each local operator
in the field theory side, and {h(xµ, r)} is the collection of the bulk fields. However,
we do not have a very useful idea of what is the right hand side of this equation,
except in the large N limits, where this gravity theory becomes classical. In these
limits we can do the path integral by a saddle point approximation, and the
statement of the duality (17) becomes

ZCFT[{h(x)}] = ei SAdSd+1 [{h(xµ,r)}]
∣∣∣
r→∞ , (18)

where SAdSd+1[{h(xµ, r)}]
∣∣
r→∞ is the classical gravitational action evaluated on

a solution of the equations of motion. Finally, we are able to formulate the first
operative rule of the AdS/CFT correspondence, namely:

The gauge/gravity duality is a duality between partition functions which relate
the partition function of a CFT in d dimension to the on-shell action of a
gravitational theory in AdSd+1, namely:

ZCFT[{h(x)}] ↔ ei SAdSd+1 [{h(xµ,r)}]
∣∣∣
r→∞ .

The operators of the CFT are related to the fields in the bulk according to the
following prescription:

field in AdSd+1 ↔ local operators of CFTd
spin of the gravitational fields ↔ spin of the local CFT operators.
The sources for the operators are encoded in the boundary behavior of the fields
in the gravitational side.

3. Temperature and chemical potential

Having set the basic principles of the AdS/CFT correspondence, we now need to
discuss its applications to real world systems. Restricting to possible condensed
matter applications, it is mandatory to face the problem of howwe can introduce
the concept of temperature and chemical potential in the holographic framework
previously discussed.

Specifically we need a way to introduce the concept of temperature in gravity,
and a natural object which comes to mind is the black hole. According to [19]
in fact, we know that black holes are thermal objects which posses their own
temperature and that respect the thermodynamic laws. It turns out (see e.g. [10]
for details) that the gravity dual of an asymptotic anti-de Sitter black hole inherits
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all the thermodynamical properties of the bulk black hole. To be more specific,
themost simple asymptotically AdS black hole solution is theAdS-Schwarzschild
solution of Einstein equations, given by the metric

ds2 = L2

z2

(
−f (z)dt2 + dz2

f (z)
+ dxidxi

)
, f (z) = 1 − zd

zdh
. (19)

At z = zh, gtt vanishes, and it can be proven that this is a real black hole horizon.
The temperature of the black hole is exactly the temperature of the dual field
theory, which is given by:

T = d
4πzh

. (20)

In the same spirit, the entropy of the dual field theory is exactly the entropy of
the black hole (19), which can be computed by means of the area law introduced
in (8), namely:

S = S
Vd−1

= Ld−1

4Gd+1zd−1
h

, (21)

where Gd+1 is the d + 1-dimensional Newton constant and Vd−1 is the d − 1-
dimensional spatial volume of the dual field theory.

Having defined the temperature and the entropy, all the other thermodynam-
ical quantities follow from basic thermodynamic relations. In this way we can
express the thermodynamics of the dual field theory in terms of the horizon
radius and the other parameters of the classical gravitational bulk theory.

Since most of the condensed matter typical setups are at finite charge density,
we need also to understand what is the gravity dual of a theory at finite chemical
potential, namely we want to find the gravitational analogous of a system with
a U(1) conserved symmetry. The solution to this issue allows us to clarify an
important aspect of gauge/gravity duality, namely the correspondence between
local and global symmetries.We have seen in the previous Section that the global
conformal symmetry in the dual strongly coupled theory corresponds to the local
diffeomorphism invariance in the bulk gravitational theory. This observation
suggests the general correspondence:

Local gauge symmetries in the gravitational theory corresponds to global
symmetries in the dual field theory.

To describe the physics of the global U(1) symmetry we should therefore
add a Maxwell field to our bulk space–time. The minimal bulk action is thus
Einstein–Maxwell theory. The Einstein’s equations of motion are:

Rab − 1
2
gabR − d(d − 1)

2L2
gab = −

κ2
d+1
2q2

Tab, (22)

where Tab is the stress–energy tensor Tab = 1
4gabFcdF

cd − FacFcb and κd+1 and q
are the gravitational and Maxwell coupling constants. The equations of motion



420 A. AMORETTI ET AL.

for the electromagnetic field strength F ≡ ∂[aAb] are ∇aFab = 0, where ∇a is the
usual covariant derivative.

Let us clarify what we need to obtain in the holographic framework. Ourmain
purpose is to study a strongly coupled field theory at finite density and finite tem-
perature. Regarding the finite temperature, we have learned that this is achieved
by studying a black hole solution of the gravitational theory. Concerning the
finite density issue, we have just learned that the gauge field in the gravitational
side sources a conserved current density Ja in the dual field theory. If we want a
finite density ρ we need to switch on the gauge field in the bulk so that the time
component of Jµ, ⟨Jt⟩ = ρ, has a non-zero expectation value. But, according
to the standard holographic dictionary, the value of the field at the conformal
boundary acts as the sources for the dual operator. Putting all together, and
keeping in mind that at the dual level the source of the charge density ρ is the
chemical potential µ, in order to find the gravitational dual of a finite charge
density system we need to impose:

lim
z→0

At = µ. (23)

This is the first basic condition. The second one is that we want to recover scale-
invariance at energy scales much greater than the chemical potential µ, namely
we want the space–time to be asymptotically AdS.

We are now ready to find the gravity dual of a field theory at finite density and
temperature. The transport properties and their relations with thermodynamics
will be treated carefully in the next section after introducing disorder in our field
theory.

4. Momentum dissipation in holography

In real materials, translational invariance is broken by the presence of a lattice
and by various types of impurities. In order to simulate this situation in the
holographic context various methods have been proposed. The first method
[21–23] considers a small number of charged degrees of freedom in a bath of
neutral degrees of freedom which can absorb momentum. The second method
introduces the lattice as an infrared irrelevant operator [24], a spatially peri-
odic bulk background solution [25] or a relevant scalar operator coupled with
impurities [26].

An alternative to these approaches is to break the diffeomorphism invariance
in the bulk introducing a mass for the graviton, in such a way that the dual
boundary field theory has momentum dissipation. These models [27] have been
studied as a possible modification of general relativity and go under the name
of massive gravity. In what follows, for its simplicity, we will describe with some
details the last approach.3
Specifically, we are interested in analyzing the holographic transport properties
of a planar system, and consequently we need to consider the 3+ 1-dimensional
massive gravity action, which is given by:
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S =
∫

d4x
√

−g

[
1
2κ2

4

(
R + 6

L2
+ β

(
[K]2 − [K2]

))
− 1

4q2
FabFab

]

, (24)

where β is an arbitrary parameter having the dimension of a mass squared and
the small square brackets denote a trace operation. There is also a boundary term,
that we do not specify here, which is necessary in order to have a well-defined
variational problem. The matrix (K2)ab is defined in terms of the dynamical
metric gab and a fiducial fixed metric fab in the following way

(
K2)a

b ≡ gacfcb, K ≡
(√

K2
)a
b
. (25)

The fixed metric fab is the responsible of the breaking of diffeomorphisms
invariance. As in [31], we consider the following form for fab:

fab = diag(0, 0, 1, 1), (26)

which corresponds to break diffeomorphisms in the (x, y) plane, but not in the
(z, t) plane. At the dual level this means that the theory has conserved energy but
no conserved momentum.

4.1. The dyonic solution: external magnetic field

At this point we need to include in our analysis an additional ingredient. Specif-
ically, we want to discuss the effects due to the presence of an external magnetic
field B orthogonal to the plane xy, with particular interest on its consequences on
the thermo-electric transport coefficients in the holographic system at non-zero
chemical potential µ. To include the constant magnetic field B we adopt the
following ansatz for the background metric gµν and the gauge field Aµ

ds2 = L2

z2

[
−f (z)dt2 + dx2 + dy2 + 1

f (z)
dz2

]
,

A = φ(z) dt + B x dy.
(27)

Substituting this ansatz within the equations of motion derived from (24), we
obtain the following black-brane solution

φ(z) = µ − q2ρz = µ

(
1 − z

zh

)
, ρ ≡ µ

q2zh
,

f (z) = 1 − z3

z3h
+ β

(
z2 − z3

zh

)
− z3

zh

(
1 − z

zh

)
κ2 (

B2z2h + µ2)

2L2q2
,

(28)

where we have denoted with zh the horizon location defined by the vanishing
of the emblackening factor, namely f (zh) = 0. The definition of ρ is actually
substantiated by the explicit analysis of the thermodynamics that we perform in
Section 4.1.1.
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4.1.1. Thermodynamics
As discussed in the previous section, the black brane solution (28) corresponds to
a planar dyonic black hole having both electric and magnetic charges. From the
boundary theory standpoint, B represents a magnetic field perpendicular to the
spatial manifold xy which enters the boundary thermodynamical quantities; as
usual in gauge/gravity, these are derived from the bulk on-shell action. The
temperature T and the entropy density S are the easiest thermodynamical
quantities to compute since they are determined from the horizon data, namely

T = − f ′(zh)
4π

= −κ2
4z

2
h
(
B2z2h + µ2) − 2L2q2

(
βz2h + 3

)

8πL2q2zh
, S = 2πL2

κ2
4 z

2
h

. (29)

In order to compute the energy density E , the pressure P, the charge density ρ

and the magnetization M, we need to evaluate explicitly the Landau potential
/ which, according to the holographic dictionary, is identified with the on-shell
bulk action. Once the Landau potential is known, the other thermodynamical
quantities follow easily by means of standard thermodynamical relations. We
explicitly obtain

P = −/

V
= −3B2zh

4q2
+ L2

2κ2
4 z

3
h

− βL2

2κ2
4 zh

+ µ2

4q2zh
, (30)

E = −P + ST + µρ = B2zh
2q2

+ L2

κ2
4 z

3
h

+ βL2

κ2
4 zh

+ µ2

2q2zh
, (31)

ρ = ∂E
∂µ

= µ

q2zh
, M = −∂E

∂B
= −Bzh

q2
. (32)

4.2. Relation betweenmassive gravity andmomentumdissipation
mechanisms

In the previous Section, we have analyzed the basic properties of the background
black-brane solution in the presence of a mass term for the graviton. We need
now to understand how amass potential for the graviton is related tomomentum
dissipation in the dual strongly coupled field theory.

The basic idea illustrated in [31] is that the massive gravity potential breaks
the diffeomorphism invariance in the bulk. Since we have learned in the previous
part that diffeomorphism invariance in the bulk is related to the conservation
of the stress–energy tensor in the dual field theory, a gravitational theory with a
mass potential would correspond to a dual theory where

∂µTµν ̸= 0. (33)

Specifically, since considering the fiducial metric (26) corresponds to breaking
the diffeomorphism invariance along the x and y directions one would expect
that the model we are considering corresponds to a theory in which momentum
is not conserved in some way.
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A more precise statement was provided in [32] where, by analyzing the poles
of the correlation functions in the hydrodynamic limit (namely at sufficiently
low momentum dissipation rate τ−1, where momentum is an almost conserved
quantity), it was realized that massive gravity is the dual gravitational realization
of a system inwhich the conservation law for the stress–energy tensor ismodified
as follows:

∂tTtt = 0, ∂tTti = −τ−1Tti, (34)

where τ−1 is the momentum dissipation rate. At order O(β) the scattering rate
is expressed in terms of the thermodynamical quantities (30) and of the graviton
mass β in the following way4:

τ−1 = − Sβ

2π(E + P)
. (35)

A further evidence of the analogy between massive gravity and momentum
dissipation was provided in [37], where it was proven that the holographic lattice
[25] gives an effective mass term for the graviton.

As a final comment it is important to note that the explicit form of the
scattering rate (35) constrains the possible values of the mass parameter β . In
particular, since τ−1 has to be positive, β must assume negative values.

5. Thermo-electric transport coefficients

We are now ready to analyze the transport properties of the holographic model
previously described. Restricting to linear response theory, in the presence of an
external magnetic field the transport coefficients relate the charge density J⃗ and
the heat current Q⃗ to the external electric field E⃗ and thermal gradient ∇⃗T in the
following way (see e.g. [38]):

(
J⃗
Q⃗

)
=

(
σ̂ α̂T
α̂T ˆ̄κT

)(
E⃗

−∇⃗T/T

)
, (36)

where the electric conductivity σ̂ respects the following condition:

σij = σxxδij + σxyϵij, ϵij = −ϵji, (37)

and there are analogous relations for the thermo-electric conductivity α̂ and the
thermal conductivity ˆ̄κ .

The DC transport coefficients can be expressed in terms of the Kubo formulæ
in the following way [39]:

σij = lim
ω→0

lim
k→0

1
iω

(
GR
JiJj(ω, k) − GR

JiJj(0, k)
)
, (38)

αij = lim
ω→0

lim
k→0

1
iωT

(
GR
QiJj(ω, k) − GR

QiJj(0, k)
)
, (39)
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κ̄ij = lim
ω→0

lim
k→0

1
iωT

(
GR
QiQj(ω, k) − GR

QiQj(0, k)
)
, (40)

where the functions GR represent the retarded Green functions of the charge
current Jµ and the energy momentum tensor Tµν . To compute the previous
quantities in a strongly coupled field theory using standard QFT techniques is in
general extremely difficult. Fortunately, holography provides us with a relatively
simple method to compute them. The details of the computation in the case
of the massive gravity model previously described are rather technical and go
beyond the purposes of this review. We refer the interested reader to [40–46] for
a detailed analysis. The final outcome is:

σxx = E + P
τ

ρ2 + σQ
(
B2σQ + E+P

τ

)

B2ρ2 +
(
B2σQ + E+P

τ

)2 , σxy = ρB
ρ2 + σQ

(
B2σQ + 2 E+P

τ

)

B2ρ2 +
(
B2σQ + E+P

τ

)2 , (41)

αxx = ρ S
E + P

τ

1

B2ρ2 +
(
B2σQ + E+P

τ

)2 , αxy = SB
ρ2 + σQ

(
B2σQ + E+P

τ

)

B2ρ2 +
(
B2σQ + E+P

τ

)2 , (42)

κ̄xx =
S2T

(
B2σQ + E+P

τ

)

B2ρ2 +
(
B2σQ + E+P

τ

)2 , κ̄xy = Bρ S2T

B2ρ2 +
(
B2σQ + E+P

τ

)2 , (43)

where σQ is a characteristic (quantum critical) conductivity at zero charge
density, E , P, ρ and S are the thermodynamical quantities defined in Section
4.1.1 and τ is the dissipation time defined in (35).

6. Holographic inspired phenomenology

The holographic result obtained in the previous Section is potentially amenable
of direct experimental confirmation for an isotropic strongly coupled system
in two spatial dimensions. At the phenomenological level it is easy to see that
the six transport coefficients (41)–(43) depend only on four parameters: two
thermodynamical variable S and ρ and two dynamical parameters σQ and τ

E+P .
Consequently, if the holographic picture is generically valid in a two dimensional
strongly correlated material, just four phenomenological entries are needed to
fully determine the transport properties of the system. This theoretical result is
demanding for an experimental testing.

One of the major problems in performing this kind of measurements in
interesting strongly coupled materials, such as the HTc, is that typically certain
transport coefficients are dominated by the effects of phonons, while we are
interested in extracting just the electrons response. This is actually not the case
for the electric conductivity, where the phonons are typically suppressed. In this
case we get some phenomenological insight using the holographic result (41).
It was noted in [47], indeed, that holography naturally solves the puzzle of the
linear in temperature behavior of the resistivity and the concomitant T2 scaling
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of the Hall angle in the strange metal phase of the cuprates (see e.g. [4]). In fact,
expanding σxx and σxy at low magnetic field, the electric conductivity follows an
inverse Matthiessen’s rule, namely

σxx = σQ + σD, with σD = ρ2τ

E + P
, (44)

while the Hall angle tan θH does not depend on σQ

tan θH = σxy

σxx
∼ B

ρ
σD. (45)

Assuming that near the quantum critical region σQ is greater that the Drude
contribution σD, and imposing that σQ ∼ 1/T and σD ∼ 1/T2, we find the
following scaling for the resistivity and the Hall angle:

ρxx ∼ T , tan θH ∼ 1
T2 , (46)

which are precisely the same scalings experimentally measured in the cuprates
[4]. Another reasonable assumption is that the charge density ρ is temperature
independent, a condition that can be easily achieved in standard experimental
setups. In order to determine the fourth parameter, a promising quantity to
be measured is the hall thermal conductivity κ̄xy , which, being a transverse
transport coefficient is almost unaffected by phonons. However, this quantity
is very difficult to measure and currently there are very few measurements for
the cuprates [48,49]. As noted in [44] (see also [50–52]), imposing the scaling
measured in [48,49] in the holographic theoretical prediction (43) leads to
nontrivial agreement for some of the other transport coefficients of the cuprates,
such as themagneto-resistance and theHall Lorentz ratio [4], even though amore
precise experimental characterization of the whole set of transport coefficients
is needed in order to be conclusive on the agreement between holographic
prediction and the scaling behavior of these quantities in the cuprates.

7. Conclusions and outlook

In this review, we have outlined some possible applications of AdS/CFT tech-
niques to the analysis of strongly coupled condensedmatter systems. Specifically,
we have focused our attention on holographic models exhibiting mechanisms of
momentum dissipation concentrating on their thermo-electric transport prop-
erties. The most relevant result is that holography seems to insist that just
four phenomenological entries are needed in order to fully determine the six
independent transport coefficients in a strongly correlated plasma. In the last
Section we have shown how, just imposing reasonable scaling behavior for some
thermodynamical quantities, holography incorporates the nontrivial scalings for
the resistivity, and the Hall angle measured in the HTc. However, more work
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has to be done both in the theoretical and in the experimental direction. From
the theoretical point of view, it is still an open question to find a stable black
hole solution that naturally includes all the scalings of the cuprates (see e.g. [43]).
From the experimental point of view, a more careful analysis of the thermal
transport coefficients in the strange metal phase of the HTc is needed in order
to make sensible comparisons with the holographic theoretical predictions. This
actually set the basements of an extremely intriguing scenario where, probably
for the first time, string theorists could work side-by-side with condensedmatter
experimentalists!

Notes

1. See [3] for a theoretical review on BCS and [4] and references therein for a review on
transport properties in HTc.

2. The specific value of ᾱ depends both on the kind of fields under consideration and on
the dimensionality of the spacetime.

3. See also [28–30] for further developments and discussions about holographic con-
densed matter applications of massive gravity.

4. For a more precise definition of the momentum dissipation rate see [33–36].
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