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Abstract. This paper presents the numerical modelling of a cycloidal propeller in free-

running conditions together with its possible applications. The model calibration is carried out 

by comparing simulation results with experimental data of an existing cycloidal unit. The 

achieved results support the main strength of the proposed simulation approach: propeller 

fluid dynamics is not calculated, avoiding demanding computations that would not allow an 

effective simulation of the whole propulsion plant. As a case study, the cycloidal propulsors 

model is used for the thruster allocation assessment of the Dynamic Positioning (DP) system 

of a surface vessel, originally equipped with traditional propellers. Then, the steady-state 

performance analysis of the DP system is carried out in terms of a comparison between the 

two distinct propulsion configurations. 
 

 

1 INTRODUCTION 

Cycloidal propellers are able to provide thrust by rotating and additionally oscillating 

blades. They are classified into three main types: true cycloidal (e.g. Kirstem Boeing 

Propeller), epicycloidal (e.g. Voith Schneider Propeller) and trochoidal propellers (e.g. Whale 

Tail Wheel Propeller). The different types of cycloidal propellers are defined by their 

eccentricity value 𝑒, i.e. the ratio between the distance of the steering center from the 

propeller axis, and the radius of the orbit which defines the position of the blade axes. 

According to this definition [1], an epicycloidal propeller has 𝑒 < 1, a true cycloidal propeller 

is characterized by 𝑒 = 1 and a throcoidal propeller has 𝑒 > 1. 
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The numerical modelling described in the present study is referred to epicycloidal 

propulsors. The propeller thrust and torque modelling is based on the kinematical aspects of 

the blades motion, taking into account suitable correction factors in order to properly consider 

“dissipative” phenomena such as: interference between blades, the shielding induced by the 

half of the rotor which receives the incoming flow, and the slight reduction of the reverse 

thrust. The calibration of the simulator is carried out by comparing simulation results with 

experimental ones, pertinent to an existing cycloidal unit. The main strength of the proposed 

simulation approach is from not having to calculate the propeller fluid dynamics, avoiding 

demanding computations that would not allow an effective simulation of the whole propulsion 

plant. CFD codes are usually useful for the blade design and then they are mainly used by 

manufacturers (e.g. a RANS equation code has been used by Voith Schneider to represent the 

behavior of their epicycloidal propellers [2]), while for other applications simplified 

approaches can be often more suitable, because able to represent the overall performance of 

the propeller starting from a very few input data and with a reduced computation time. Similar 

performance prediction methods are commonly used   for traditional marine propellers (e.g. 

systematic propeller series) and waterjets [3]. On the contrary, in the case of cycloidal 

propellers, manufacturers do not publicly share their performance maps for confidential 

reasons, and then simplified simulation approaches are more difficult to be developed. The 

present simulation method is based on a mixture of theoretical and empirical considerations, 

as already proposed, although in a very different way, by Taniguchi [4]. In the latter, the total 

thrust and torque of the propeller are evaluated by integrating the lift and drag forces acting 

on each blade section and a correction factor is introduced to consider non-uniformity of 

induced velocity over the blade length. 

As an application of the proposed method, the authors discuss different thrust allocation 

logics of a dynamic positioning (DP) system for a surface vessel, equipped with two cycloidal 

propellers and a single bow thruster. The examined ship is the same for which a DP system, 

characterized by a conventional twin-screw propulsion, was already developed and installed 

on board [5]. 

 

1 CYCLOIDAL PROPELLER KINEMATICS 

2.1 Kinematical model 

In this section, the kinematical model describing the motion of each blade of the cycloidal 

propeller is presented. For simplicity, a two dimensional plane model is adopted, where two 

distinguished reference frames are introduced: the first one (𝑂, 𝑏1, 𝑏2, 𝑏3) is fixed to the hull 

and it has its origin 𝑂 at the center of the rotor, the unit vector 𝑏1 points towards the bow, the 

unit vector 𝑏2 points towards starboard and the unit vector 𝑏3 = 𝑏1 ∧ 𝑏2 points downwards; 

the second one (𝑂, 𝑒1, 𝑒2, 𝑒3) rotates clockwise about the vertical axis passing through 𝑂 and 

parallel to 𝑏3 = 𝑒3, by an angle 𝛽𝜖[0,2𝜋] which determines (the perpendicular of) the steering 

force direction. The angle 𝛽 is then related to the rudder pitch of the cycloidal propeller. The 

steering center 𝐶 lies on the straight line passing through 𝑂 and parallel to 𝑒2. The linear 

transformation between the bases {𝑏𝑖} and {𝑒𝑖} is expressed as 
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{

𝑒1   = cos 𝛽 𝑏1 + sin𝛽 𝑏2      

𝑒2  =  − sin 𝛽 𝑏1 + cos𝛽 𝑏2
𝑒3 = 𝑏3                                     

 (1) 

During the revolution motion, the projection 𝑃 of the blade shaft on the plane 〈𝑂, 𝑏1, 𝑏2〉 
describes a circumference having center 𝑂 and radius 𝑅 coinciding with the rotor radius. In 

Cartesian coordinates associated with the frame (𝑂, 𝑏1, 𝑏2, 𝑏3), such a circumference is 

parameterized by 

𝑃(𝜃) ∶  {
 𝑥 = 𝑅 cos 𝜃
 𝑦 = 𝑅 sin 𝜃
𝑧 = 0         

 (2) 

where 𝜃 denotes the angle (function of time) describing the revolution motion of the blade. In 

the vector basis {𝑏𝑖} , the unit vector 𝑡 tangent to the circular path of 𝑃 has components of the 

form 

𝑡(𝜃) =  { 
𝑡1 = −𝑠𝑖𝑛𝜃
𝑡2 = +𝑐𝑜𝑠𝜃
𝑡3 = 0          

 (3) 

Introducing the vector 

(𝐶 − 𝑂) = 𝑠𝑒2 = − 𝑠 sin 𝛽  𝑏1 + 𝑠 cos 𝛽 𝑏2       𝑠 ∈ [0, 0.8𝑅] (4) 

the vector joining the steering centre 𝐶 with the point 𝑃 can be expressed as 

(𝑃 − 𝐶) = (𝑅 cos 𝜃  + 𝑠 sin 𝛽)𝑏1 + (𝑅 sin 𝜃 − 𝑠 cos 𝛽 )𝑏2 (5) 

The variable 𝑠 is usually called driving pitch and it controls thrust magnitude. The unit 

vector orthogonal to (𝑃 − 𝐶) and belonging to the plane 〈𝑂, 𝑏1, 𝑏2〉 identifies with the unit 

vector of the blade chord and it is given by 

(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
=  
(−𝑅 sin 𝜃 + 𝑠 cos 𝛽)𝑏1 + (𝑅 cos 𝜃 + 𝑠 sin 𝛽)𝑏2

√(−𝑅 sin 𝜃 + 𝑠 cos 𝛽)2 + (𝑅 cos 𝜃 + 𝑠 sin 𝛽)2
 (6) 

The pivoting motion of the blade around its shaft can be characterized by the angle 𝛼 

(function of time) between the unit vectors 𝑡 and 
(𝑃−𝐶)⊥

|(𝑃−𝐶)⊥|
. Due to the relation 

𝑐𝑜𝑠𝛼 =
(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑡 =  

𝑅 + 𝑠 sin(𝛽 − 𝜃)

√(−𝑅 sin 𝜃 + 𝑠 cos 𝛽)2 + (𝑅 cos 𝜃 + 𝑠 sin 𝛽)2
 (7) 

where the dot denotes the usual scalar product between vectors, the pivoting angle 𝛼 can be 

defined as 
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𝛼 =

{
 
 

 
 cos−1 (

(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑡)        if cos(𝜃 − 𝛽) ≥ 0

−cos−1 (
(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑡)                  otherwise

  (8) 

choosing anticlockwise the positive direction of rotation around the blade shaft. The above 

outlined kinematical model can be summarized by Figure 1. 

 

Figure 1: Kinematics of the blade 

Supposing now that the vessel is moving, let 𝑣𝑂 = 𝑢̂𝑏1 + 𝑣𝑏2 be the velocity of 𝑂 (w.r.t. 

the Earth-fixed frame) expressed in the hull-fixed basis. Denoting by 𝑣𝑃
′ = −𝑅𝜃̇ 𝑠𝑖𝑛 𝜃 𝑏1 +

𝑅𝜃̇ 𝑐𝑜𝑠 𝜃 𝑏2 the velocity of the point 𝑃 w.r.t. the body-fixed frame, the velocity of P w.r.t. the 

Earth-fixed frame is given by 

𝑣𝑃 = 𝑣𝑃
′ + 𝑣𝑂̂ + 𝜔 ˄(𝑃 − 𝑂) = [𝑢̂ − 𝑅(𝜃̇ + 𝑟) sin 𝜃]𝑏1 + [𝑣 + 𝑅(𝜃̇ + 𝑟) cos 𝜃]𝑏2 (9) 

where 𝜔 = 𝑟𝑏3 is the angular velocity of the vessel. The velocity of the incoming flow 

experienced at 𝑃 by a blade-fixed observer is, then −𝑣𝑃; its unit vector 𝑡̂ is expressed as 

𝑡̂ = −
𝑣𝑃

|𝑣𝑃|
= −

[𝑢̂ − 𝑅(𝜃̇ + 𝑟) sin 𝜃]𝑏1 + [𝑣 + 𝑅(𝜃̇ + 𝑟) cos 𝜃]𝑏2

√[𝑢̂ − 𝑅(𝜃̇ + 𝑟) sin 𝜃]
2
+ [𝑣 + 𝑅(𝜃̇ + 𝑟) cos 𝜃]

2
 (10) 

Making use of the unit vector 𝑡̂, it is possible to characterize the attack angle of the 

incident flow as 

𝛼̂ = 𝜋 − cos−1 [ 
(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑡̂] (11) 

according to Figure 2. 
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Figure 2: Angle of attack 

2.2 Hydrodynamic forces 

In this section, making use of some simplifying assumptions, a suitable model for 

evaluating the hydrodynamic forces generated by each blade is presented. It is supposed that 

the velocity of the incident flow be the same over the entire surface of the blade and coincide 

with  −𝑣𝑃. Under such a condition, the lift and drag produced by each blade can be expressed 

as 

𝐿 = 𝑐𝐿
1

2
𝜌𝑤𝐴|𝑣𝑃|

2
𝑛̂ 𝐷 = 𝑐𝐷

1

2
𝜌𝑤𝐴|𝑣𝑃|

2
𝑡̂ (12) 

where 𝑐𝐿 is the lift coefficient, 𝑐𝐷 is the drag coefficient, 𝜌𝑤 is sea water density, 𝐴 is the 

blade lateral area, |𝑣𝑃| is the incoming flow speed, 𝑡̂  is the unit vector of the lift force (unit 

vector of the incoming flow at 𝑃), and 𝑛̂ is the unit vector of the drag force (perpendicular 

to 𝑡̂). 
In order to determine the unit vector 𝑛̂, the following procedure is adopted in which two 

main scenarios are distinguished: 

- the attack angle 𝛼̂ belongs to the interval ]0,
𝜋

2
[, namely the incoming flow hits the blade 

from the front. In such a circumstance, the unit vector 𝑛̂ is determined according to the 

requirements: 

𝑛̂ =

{
 
 

 
 𝑏3 ∧ 𝑡̂                   when  𝑡̂ ∧  

(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑏3 > 0 

−𝑏3 ∧ 𝑡̂                when  𝑡̂ ∧  
(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑏3 < 0 

 (13) 

- 𝛼̂𝜖 ]
𝜋

2
, 𝜋[, the incoming flow hits the blade from the back. In this case, 𝑛̂ is singled out by 

the requests: 

𝑛̂ =

{
 
 

 
 −𝑏3 ∧ 𝑡̂                   when  𝑡̂ ∧  

(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑏3 > 0 

𝑏3 ∧ 𝑡̂                       when  𝑡̂ ⋀  
(𝑃 − 𝐶)⊥

|(𝑃 − 𝐶)⊥|
∙ 𝑏3 < 0 

 (14) 

As remaining particular cases, if 𝛼̂ = 0 or 𝛼̂ = 𝜋 there is no lift while if 𝛼̂ =
𝜋

2
 then 𝑛̂ = 𝑡̂. 

The above described procedure allows to determine the lift and drag provided by each single 
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blade. The resultant hydrodynamic force generated by the cycloidal propeller can be 

computed as the sum of all contributions by each blade. 

2.3 Torque acting on the rotor 

The calculation of the torque acting on the rotor deserves a specific discussion. In order to 

accomplish this task, the Newton-Euler moment equation for each single blade has to be 

considered. Developed in the hull-fixed reference frame and with respect to the point 𝑂, the 

Newton-Euler moments equation for each blade can be expressed as 

𝑀𝑂
𝐸 +𝑀𝑂

𝐻 +𝑀𝑂
𝐺 +𝑀𝑂

𝑅 +𝑀𝑂
𝐼 = 𝐼𝐺(𝜔̇) + 𝜔 ∧ 𝐼𝐺(𝜔) + 𝑚(𝐺 − 𝑂) ∧ 𝑎𝐺 (15) 

where 𝑀𝑂
𝐸, 𝑀𝑂

𝐺, 𝑀𝑂
𝐻, 𝑀𝑂

𝑅, and 𝑀𝑂
𝐼  are the engine, hydrodynamic, weight force, reactive force, 

and inertial force torques w.r.t. 𝑂, respectively; 𝐼𝐺  is the inertia tensor w.r.t. the center gravity 

𝐺 of the blade; 𝜔 is the blade angular velocity w.r.t. the hull-fixed frame; 𝑎𝐺 is the 

acceleration of 𝐺 w.r.t. the hull-fixed frame; and 𝑚 is the blade mass. 

Knowing the revolution velocity of the rotor and the position of the steering center as well 

as the velocity of the incoming flow, the consequent motion of the blade is known from 

kinematics; at the same time, the knowledge of the hydrodynamic forces allows the evaluation 

of their moment. Neglecting the rolling friction around the rotation axis, the (scalar value of) 

engine torque amounts to the projection 

𝑀𝑂
𝐸 = −𝑀𝑂

𝐻 ∙ 𝑏3 −𝑀𝑂
𝐼 ∙ 𝑏3 + 𝐼𝐺(𝜔̇) ∙ 𝑏3 +𝑚(𝐺 − 𝑂) ∧ 𝑎𝐺 ∙ 𝑏3 (16) 

Once again, by adding all the contributions by each blade, the total engine torque can be 

obtained. 

 

3 NUMERICAL MODELLING AND VALIDATION 

 The kinematical model has been used to develop a Matlab-Simulink simulator for 

cycloidal propellers. In this section, the main features and the validation of such simulator are 

presented. 

3.1 Simplifying assumptions 

In order to simplify the simulation platform, some hypotheses have been assumed: 

- the propeller is considered in free-running conditions (no hull interference), as in open 

water, invested from an incoming flow; 

- the problem is supposed to be stationary; 

- the model is 2D; 

- the contributions of each single blade are separately calculated and then summed. The 

interference among the blades is taken into account by means of correction factors. 

3.2 Input data 

The Simulink model needs input data, given from Matlab file. These data are: the geometry 

of the propeller (length, chord and orbit diameter of the blade – see Table 1); the sea water 



Marco Altosole, Silvia Donnarumma, Valentina Spagnolo and Stefano Vignolo 

7 

 

characteristics (viscosity and density); the 𝐶𝐿 and 𝐶𝐷 coefficients of the blade (obtained by a 

previous CFD calculation [6]); the rotor speed and maximum pitch available; the steering 

pitch angle (0° in forward direction, 180° in astern condition) and the driving pitch (expressed 

as a percentage of the radius of the orbit of the blades). 

Table 1: Propeller geometric parameters. 

N. of blades 5 

Diameter (m) 3.2 

Blade length (m) 2.65 

Blade Chord (m) 0.7744 

Max tip thickness 0.242 

3.3 Simulation 

The simulator allows to generate the curves of the coefficients 𝐾𝑆 and 𝐾𝐷, respectively 

defined by 

Thrust 

Coefficient 
𝐾𝑆 =

𝑇

1
2𝜌𝑤𝐷𝐿𝑢

2
 (17.a) 

Torque 

Coefficient 
𝐾𝐷 =

4𝑀

𝜌𝑤𝐷2𝐿𝑢2
 (17.b) 

and depending on the advance coefficient 

𝝀 =
𝑽𝑨
𝝅𝒏𝑫

 
(17.c) 

where 𝑇 is the total thrust, 𝑀 is the total torque acting on the rotor , 𝐿 is the blade height, and 

𝑢 = 𝜋𝑛𝐷 is the  revolution speed of the blades. 

The whole model consists of a set of identical subsystems, each of them representing the 

behaviour of a single blade. Making use of Eqs. (12) and (15), the components of total thrust 

and torque are calculated in the basis {𝑏𝑖}. According to Eqs. (17.a) and (17.b), it is then 

possible to evaluate the coefficients 𝐾𝑆 and 𝐾𝐷. The simulation of coefficient 𝐾𝑆 and 𝐾𝐷 has 

been performed in the pitch range from 40% to 80%, with steps of 10%. In particular, Figure 

3 shows the comparison between literature data (pertinent to a real existing cycloidal 

propeller, characterized by the same geometry) and the simulation of the coefficients 𝐾𝑆 and 

𝐾𝐷 without any corrections for a pitch of 80%. 
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Figure 3: Thrust and torque coefficients of the cycloidal thruster. 

3.4 Model validation 

The differences shown in Figure 3 are mainly due to the stated simplifying assumptions 

about the interactions among the blades. In order to minimize these differences, two 

correction factors have been introduced, taking two main phenomena into account: the 

shielding of the blades that are in the half circumference not directly exposed to the incoming 

flow and the interference of a blade with the other. The calibration of such correction factors  

has been carried out by comparing simulation results with the performance data of the 

existing propeller. The comparison is shown in Figure 4. 

Once  the curves of 𝐾𝑆 and 𝐾𝐷 have been obtained, the total thrust for an advance 

coefficient of 0.4 and different thrust directions has been analysed. The numerical modelling 

showed  a slight reduction of thrust magnitude for the reverse thrust. In order to consider this 

further  phenomenon, another correction factor has been introduced, according to the existing 

propeller performance. The results are illustrated in Figure 5. 
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Figure 4: Thrust and torque coefficients of the cycloidal thruster. 

 

 

Figure 5: Thrust and torque coefficients of the cycloidal thruster. 
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Summarizing, the three considered corrections  are: 

- “Shielding correction”, referring to the shielding of the blades that are in the half 

circumference not directly exposed to the incoming flow: in the model, the correction 

factor, depending on driving pitch values, reduces the velocity of the incoming water 

flow. 

- “Interference correction”: the interference among the blades is modelled by reducing the 

attack angle of the incoming flow in respect to the chord of the blade section; the 

correction depends on   and pitch values. 

- “Reverse thrust correction”, representing the reduction of the reverse thrust. 

 

The correction factors, empirically estimated for a particular propeller, are represented in 

terms of percentage reductions. In the case of cycloidal propellers with a different number of 

blades, the same correction values can be considered for an overall estimation of the propeller 

performance, achieving good results [7]; obviously, for a more reliable simulation, the 

correction factors have to be calibrated again for each particular application. 

As it has been already mentioned, the main strength of the proposed simulation approach 

comes from not having to calculate the propeller fluid dynamics, avoiding demanding 

computations that would not allow an effective simulation of the whole propulsion plant. 

As an application, the numerical model has been used for the performance evaluation of a 

DP system of a surface vessel equipped with two cycloidal propellers at the stern and a single  

bow thruster. The examined ship is the same for which a DP system, characterized by a 

conventional twin-screw propulsion, was already developed by the automation provider 

Seastema S.p.A. in cooperation with University of Genoa [5]. 

 

4 DYNAMIC POSITIONING APPLICATION 

The first step in the assessment  of the  performance of a given dynamic positioning system 

is the evaluation of the static capabilities of the vessel. In order to accomplish this task, 

dynamic positioning polar plots are a useful tool. In the following, the DP polar plots for the  

vessel considered in our study are presented, taking two different allocation logics into 

account. Finally, comparisons with the DP capability of the real ship (equipped with a 

standard propulsion configuration) are reported. 

4.1 Environmental disturbances 

The analysis is performed in static conditions and involves the balancing of the forces and 

moments generated by environmental disturbances (selected from the world wide sea state 

table). Environmental disturbances are described as the sum of forces and moments due to 

wind, current and wave respectively. Forces and moments are expressed making use of  the 

well-known resistance form, depending on non-dimensional coefficients 𝐶𝑋(𝛾𝑟), 𝐶𝑌(𝛾𝑟), and 

𝐶𝑁(𝛾𝑟), related respectively to the longitudinal force, the lateral force and the moment. 𝛾𝑟 is 

the relative angle between the disturbance incoming direction and the vessel heading  In order 

to consider the occurring worst  condition, all environmental disturbances are supposed to be 

aligned in the same incoming direction, thus 𝛾𝑟 is the same for current, wind and waves. The 
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current and the wind speeds are assumed constant and wave drift forces are modelled as 

proportional to the square of the significant height 𝐻𝑠 [5]. Collecting all the (b-basis) 

components of the force and moment in a unique 3-dimensional array 𝜏, we have  

𝝉𝐄 = 𝝉𝐜𝐮𝐫𝐫𝐞𝐧𝐭(𝜸𝒓) + 𝝉𝐰𝐚𝐯𝐞𝐬(𝜸𝒓, 𝑯𝒔) + 𝝉𝐰𝐢𝐧𝐝(𝜸𝒓, 𝒗𝑮) 
(18) 

4.2 Thrust allocation logic 

In order to assess the DP capability of the propulsion configuration with cycloidal 

propellers, two allocation logics have been  developed and compared . with the one 

implemented on the real vessel, equipped with two traditional propellers and rudders. Details 

of the original allocation can be found in [5]. 

The first allocation logic is based on a constrained minimum  problem . The idea is to 

minimize a cost function of seven variables  𝑥 = [𝑇𝑝𝑡, 𝑇𝑠𝑏 , 𝑇𝑏𝑜𝑤, 𝑋𝑝𝑡, 𝑌𝑝𝑡, 𝑋𝑠𝑏 , 𝑌𝑠𝑏] ∈ ℝ
7, 

subject to some suitable constraints. In particular, defining by 𝑇𝑝𝑡 and 𝑇𝑠𝑏 respectively   the 

portside and starboard cycloidal propeller thrusts, 𝑇𝑏𝑜𝑤 the thrust of the bow thruster, 

(𝑋𝑝𝑡, 𝑌𝑝𝑡) and (𝑋𝑠𝑏, 𝑌𝑠𝑏) the components of the portside and starboard thrust forces, the 

constrained minimum problem is formulated as 

min
𝑥
𝑓(𝑥)     with       ℎ𝑖(𝑥) = 0     and      𝑔𝑗(𝑥) > 0 (19) 

where  

𝑓(𝑥) = (
𝑇𝑝𝑡

𝑇𝑚𝑎𝑥
𝑡𝑜𝑡 )

2

+ (
𝑇𝑠𝑏
𝑇𝑚𝑎𝑥
𝑡𝑜𝑡 )

2

+ (
𝑇𝑏𝑜𝑤
𝑇𝑚𝑎𝑥
𝑡𝑜𝑡 )

2

 (20) 

is the cost function to be minimized, and  

{
 
 
 

 
 
 
ℎ1(𝑥) = 𝑋𝑒𝑛𝑣 − 𝑋𝑝𝑡 − 𝑋𝑠𝑏                         

ℎ2(𝑥) = 𝑌𝑒𝑛𝑣 − 𝑌𝑝𝑡 − 𝑌𝑠𝑏 − 𝑇𝑏𝑜𝑤            

ℎ3(𝑥) = 𝑁𝑒𝑛𝑣 − 𝑥𝑏𝑜𝑤  𝑇𝑏𝑜𝑤 − 𝑥𝑝𝑡 𝑌𝑝𝑡 +

                         + 𝑦𝑝𝑡 𝑋𝑝𝑡 − 𝑥𝑠𝑏  𝑌𝑠𝑏 + 𝑦𝑠𝑏 𝑋𝑠𝑏

ℎ4(𝑥) = 𝑇𝑝𝑡
2 − 𝑋𝑝𝑡

2 − 𝑌𝑝𝑡
2

ℎ5(𝑥) = 𝑇𝑠𝑏
2 − 𝑋𝑠𝑏

2 − 𝑌𝑠𝑏
2
                            

 (21) 

are the constraints to be satisfied. In Eq. (21) {𝑋𝑒𝑛𝑣, 𝑌𝑒𝑛𝑣, 𝑁𝑒𝑛𝑣} are the components of the 

force and the moment due to environmental disturbances, (𝑥𝑝𝑡, 𝑦𝑝𝑡) and (𝑥𝑠𝑏, 𝑦𝑠𝑏) are the 

coordinates of the propellers thrust centres and 𝑥𝑏𝑜𝑤 is the longitudinal coordinate of the bow 

thruster. Moreover, we have  

𝑔1(𝑥) = 𝑥(2)       , 𝑔2(𝑥) = 𝑥(3) (22) 

Eq. (19) requires that the sum of the squared desired thrusts  is minimum. Eq.(21) details 

the constraints: the first three represent the static equilibrium between the environmental 

disturbances and the delivered force and moment; the last two correlate the portside and 
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starboard thrust force with their longitudinal and lateral components. Finally, Eq. (22) ensures 

that the modulus of the two aft  thrusts is positive. 

 The second allocation algorithm is based on the  idea that one cycloidal propeller is 

designed to compensate the environmental resultant force, while the other one together with 

the bow thruster, is devoted to compensate the moment. This  allocation configuration is 

supposed to be more stable when  environmental disturbances are relatively small and 

constant in time. In this case, the force and moment balance is uniquely determined in an 

algebraic way, whenever the thruster devoted to the force compensation is chosen. The choice 

of such a thruster relies on the requirement that  the moment generated by the thruster itself 

has opposite sign with respect to  the disturbances one. More explicitly, we have 

           𝑇𝑖 = √𝑋𝑒𝑛𝑣
2 + 𝑌𝑒𝑛𝑣

2     ,     𝛿𝑖 = tan
−1
𝑌𝑒𝑛𝑣
𝑋𝑒𝑛𝑣

𝑇𝑏𝑜𝑤 = −𝑇𝑗                                          

       𝑇𝑗 =
𝑥𝑖 𝑇𝑖 sin 𝛿𝑖   − 𝑦𝑖𝑇𝑖 cos 𝛿𝑖 + 𝑁𝑒𝑛𝑣

𝑥𝑗 − 𝑥𝑏𝑜𝑤

   (23) 

where 𝑖 = 𝑝𝑡 and 𝑗 = 𝑠𝑏 when  |𝑁𝑝𝑡 − 𝑁𝑒𝑛𝑣| > |𝑁𝑠𝑏 − 𝑁𝑒𝑛𝑣|  and 𝑖 = 𝑠𝑏 and 𝑗 = 𝑝𝑡 

otherwise; 𝑁𝑝𝑡 is the moment generated by the propeller if portside is the one compensating 

the force and  viceversa for 𝑁𝑠𝑏. 

The criterion adopted to choose the thrust devoted to compensate the disturbances force is 

based on computing, for both the possible choices, the moment generated by the thruster and 

adding it to the environmental one. Such resulting moments are compared and the thruster 

generating  the minimum moment  is the one chosen for the environmental force 

compensation. 

4.3 Results 

The station keeping capability of a dynamically positioned vessel is often  presented by 

means of  polar plots, which illustrate the steady-state performance of the vessel under certain 

environmental conditions. A capability plot shows the maximum weather conditions in which 

the vessel can maintain its position and heading, obeying upon  a certain thrust allocation 

logic. DP capability plots are drawn assuming that the all environmental disturbances come 

from the same direction. In this case study, the vessel is supposed to operate in Mediterranean 

Sea with a significant wave height 𝐻𝑠 of 2.5 𝑚 and a constant current speed 𝑣𝐺  of 1𝑘𝑛. 

Instead, the wind speed keeps increasing until the vessel is able to sustain the wind load, 

namely until the resultant environmental forces and moments are balanced by the maximum 

available thrust. Assuming that the aligned environmental disturbances rotate  around the 

vessel (anticlockwise starting from zero which corresponds to stern), in Figure 6 the 

intersection of the curve with the radius of the circumference indicates the maximum wind 

speed at which the vessel can maintain its position and heading. For reasons of readability of 

the plot, a saturation was added when the maximum wind speed was higher than 60kn. 

Moreover, higher wind conditions involves sea disturbances that cannot be studied in the 

static case. 
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As it can be seen in Figure 6, maximum values of wind speed can be reached  for 

disturbances coming from bow directions, while we have lower values for beam and stern 

directions. That is due to the larger areas exposed to the environmental loads. Regarding the 

differences due to the distinct propulsion configurations, numerical results show that the 

conventional  propulsion layout is able to ensure only a limited DP capability (the yellow 

line), while great improvements could come from the adoption of cycloidal propellers in the 

propulsion system. Concerning the different allocation logics adopted for cycloidal propellers, 

it is evident that the optimization of  the thrust (the red line) gives the best  results, though this 

is mainly true for bow and quartering sea states, while for stern sea states the two allocation 

logics seem to give closer results. 

 

 
 

Figure 6: DP capability polar plots for different thrust allocation logics. 

 

8 CONCLUSIONS 

A simulation model for ship cycloidal propellers has been presented. The simulator has 

been calibrated  by comparing simulation data with experimental ones. The mathematical and 

numerical modelling of the free running behaviour of cycloidal propellers, in different 

operating conditions, is described without using a proper - but also demanding - fluid 

dynamics computation (CFD method is only used for the evaluation of the lift and drag 

coefficients of the single blade). 
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The core of the model is represented by the kinematical description and by the empirical 

correction factors that can be used for a preliminary performance estimation of several 

cycloidal propulsion units, characterized by different lengths and number of blades.  

In this light, the performance analysis of the DP application shown in this study can 

represent a possible proper application of the developed propulsion model. In particular, a 

comparison  between a traditional propulsion system and the cycloidal one has been carried 

out in terms of DP capability plots. Further considerations, in terms of comparison, could be 

made also in case of different cycloidal units, by changing blades area and number. 

The present work aims to be the first step towards the implementation of a numerical 

model for the dynamical simulation of the manoeuvrability, at both low and high velocities, of 

vessels equipped with cycloidal propellers.  
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