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In physically motivated models of quantum spacetime, a Uð1Þ gauge theory turns into a Uð∞Þ gauge
theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic
interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in
mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein
condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered
so far, however, seem too faint to be detectable at present.
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I. INTRODUCTION

One of the main difficulties of present-day physics is the
lack of observation of quantum aspects of gravity. Quantum
gravity has to be searched without a guide from nature; the
observed universe must be explained as carrying traces of
quantum gravitational phenomena in the only “laboratory”
suitable to those effects, i.e., the universe itself a few
instants after the big bang.
Looking forward to see those traces in the cosmic

gravitational wave background (for the analysis of quantum
linearized perturbations, see the pioneering work [1] and
also [2]), one can ask whether an expected consequence of
quantum gravity, the quantum nature of spacetime at the
Planck scale, might leave observable traces.
Indeed, quantum spacetime (QST) [3] would explain

some aspects, such as the horizon problem [4], that is
usually explained by inflation, without having to make that
hypothesis. However, are there effects that only QSTwould
explain?
Free classical electromagnetism on quantum spacetime

would be no longer free: the electromagnetic field and
potential F, A, would fulfill

∂μFμν − i½Aμ; Fμν� ¼ 0;

where the commutator would not vanish due to the
quantum nature of spacetime.
This fact was noticed [5] at the very beginning of

searches on quantum spacetime. Its first consequence
was also noticed: plane waves would still be solutions,

but their superpositions would, in general, not be—they
would lose energy in favor of mysterious massive modes
(see also [6]).
A naive computation showed, by that mechanism, that a

monochromatic wave train passing through a partially
reflecting mirror should lose, in favor of those ghost
modes, a fraction of its energy—a very small fraction,
unfortunately, of the order of one part in 10−130 [5]. This
looked too small to be worth a more accurate computation.
However, QST should reveal itself, as discussed here

below, causing an electromagnetic interaction of neutral
fields. This was noticed at the beginning as well, but looked
to have even less promises of visible consequences (see,
however, [7]).
Recent years, however, have brought increasing evidence

of the role of dark matter, and the possibility of collapse of
huge dark-matter binary systems; near the collapse, could
those systems emit a sizable amount of electromagnetic
radiation, and thus show a signature of the quantum nature
of spacetime at the Planck scale?
In this paper we discuss this problem, and show that a

primitive, semiclassical evaluation of that emission gives
again a very small result: the fraction of the mass of such a
system converted into electromagnetic radiation per unit
time by the mechanism envisaged here would be less than
10−89 s−1; this is nothing comparable to the few percents of
the total mass converted into gravitational-wave radiation
in the recently observed merges of binary black holes,
GW150914 and GW151226, which inspire the numerical
input of our calculation.
Our discussion proceeds as follows. In Sec. II, after

having recalled the main terminology, notations, and results
for the model of QST that we use, we discuss the action of
the gauge group of QSTon a neutral scalar field, and derive
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the interaction of the latter with the electromagnetic field
by the covariant derivative prescription. Moreover, we
show that such interaction can be described in terms of
a magnetic moment associated to the scalar neutral field.
Then, in Sec. III, we evaluate the electromagnetic energy
emitted in a state describing the precession of a stellar
member of a collapsing binary system; that energy is then
computed, once the magnetic moment is evaluated, accord-
ing to classical electrodynamics. We also comment on
another manifestation of that magnetic moment, which at
first glance potentially gives rise to more visible effects, as
they would be only quadratic in the Planck length (but hard
to be detected anyway, see comments below): the electro-
magnetic (in addition to the gravitational) deviations of
charged particles by a massive stellar object of dark matter
interposed between us and a distant source. In the case of
the previously used data, however, we find a contribution to
the angular deviation of the order of 10−34.

II. THE MAGNETIC MOMENT OF A NEUTRAL
SCALAR FIELD INDUCED BY QUANTUM

SPACETIME

The model of QST adopted here is suggested by the
principle of gravitational stability against localization of
events [3,8]. This principle implies spacetime uncertainty
relations

Δq0 ·
X3
j¼1

Δqj ≳ 1;
X

1≤j<k≤3
ΔqjΔqk ≳ 1 ð2:1Þ

for the coordinates qμ of an event, which must be
implemented by spacetime commutation relations

½qμ; qν� ¼ iλ2PQμν; ð2:2Þ

where λP is the Planck length and where Qμν satisfies
appropriate quantum conditions.
The simplest solution is given by

½qμ; Qνλ� ¼ 0; ð2:3Þ

QμνQμν ¼ 0; ð2:4Þ

ðð1=2Þ½q0;…; q3�Þ2 ¼ I; ð2:5Þ

where

½q0;…; q3�≡ det

0
BB@

q0 � � � q3

..

. . .
. ..

.

q0 � � � q3

1
CCA

≡ εμνλρqμqνqλqρ

¼ −ð1=2ÞQμνð�QÞμν ð2:6Þ

[notice that QμνQμν is a scalar and Qμνð�QÞμν is a pseudo-
scalar, hence we square it in the quantum conditions].
Called for brevity the basic model of quantum spacetime,

this model implements exactly the spacetime uncertainty
relations and is fully Poincaré covariant.
The noncommutative C� algebra E of quantum spacetime

can be associated to the above relations by a procedure
[5,8] that applies to more general cases.
Assuming that the qλ, Qμν are self-adjoint operators and

that the Qμν commute strongly with one another and with
the qλ, the relations above can be seen as a bundle of
Lie algebra relations based on the joint spectrum of theQμν.
Regular representations are described by representations

of the group C� algebra of the unique simply connected
Lie group associated to the corresponding Lie algebra, with
the condition that I is not an independent generator but is
represented by the unit operator. They obey the Weyl
relations

eihμq
μ
eikνq

ν ¼ e−
i
2
hμQμνkνeiðhþkÞμqμ ; h; k ∈ R4: ð2:7Þ

The C� algebra of quantum spacetime is the C� algebra
of a continuous field of group C� algebras based on the
spectrum of a commutative C� algebra.
In our case, that spectrum—the joint spectrum of the

Qμν—is the manifold Σ of the real-valued antisymmetric
2-tensors fulfilling the same relations as the Qμν do: a
homogeneous space of the proper orthochronous Lorentz
group, identified with the coset space of SLð2;CÞ mod the
subgroup of diagonal matrices. Each of those tensors can be
taken to its rest frame, where the electric and magnetic parts
e, m are parallel or antiparallel unit vectors, by a boost, and
go back with the inverse boost, specified by a third vector,
orthogonal to those unit vectors; thus Σ can be viewed
as the tangent bundle to two copies of the unit sphere in
three-space—its base Σ1.
Irreducible representations at a point of Σ1 identify with

Schrödinger’sp, q in two degrees of freedom. The fibers are,
therefore, the C� algebras of the Heisenberg relations in two
degrees of freedom—the algebra of all compact operators on
a fixed infinite dimensional separable Hilbert space.
The continuous field can be shown to be trivial. Thus, the

C� algebra E of quantum spacetime is identified with the
tensor product of the continuous functions vanishing at
infinity on Σ and the algebra of compact operators.
The mathematical generalization of points are pure

states. Optimally localized states minimize

ΣμðΔωqμÞ2;

where the minimum is 2, reached by states concentrated on
Σ1, at each point coinciding (if optimally localized at the
origin) with the ground state of the harmonic oscillator. Such
states are the proper quantum version of points; the classical
limit of quantum spacetime is then the product ofMinkowski
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space and Σ1. Thus, extra dimensions, described by the
doubled two-sphere, are predicted by quantum spacetime.
Optimally localized states are central in the definition of the
quantumWick product, which removes the UV divergences
in the Gell-Mann–Low expansion of the S matrix for
polynomial interactions on QST [9].
The mentioned minimum (of the order of the squared

Planck length in generic units) for the sum of the four
squared uncertainties in the coordinates of an event is the
first manifestation of a broader fact: the minimum
Euclidean distance between two independent events in
quantum spacetime is of the order of the Planck length in all
reference frames. More generally, for each geometric
operator, e.g., distance, area, three volume, or four volume,
the sum of the squares of all spacetime components is, in
each reference frame, at least of the order of the appropriate
power of the Planck length [10].
These are mathematical results on the quantum geometry

of quantumMinkowski space. But dynamics, already at the
level of a semiclassical treatment of gravity, strongly
suggests that the minimal distance between two indepen-
dent events ought to have a dynamical meaning, diverging
when a singularity is approached [4]. This fact allows for a
possible solution of the horizon problem [4], and will play a
role in our discussion in the final section.
Our first task is now to formulate and analyze gauge

theories on the model of quantum spacetime just described.
On ordinary classical spacetime, the gauge group of
electromagnetism is the group of (regular) functions from
Minkowski spacetime R4 to Uð1Þ, which can be regarded
as (a subgroup of) the group of unitaries of the algebra
CbðR4Þ ¼ MðC0ðR4ÞÞ. Going to quantum spacetime, this
should be naturally replaced by G ¼ UðMðEÞÞ, the unitaries
of the multipliers of the quantum spacetime algebra E. It is
therefore a rather interesting possibility that the gauge
group of electromagnetism could also act nontrivially on a
real scalar field φðqÞ on QST, as

φðqÞ → UφðqÞU�; U ∈ G: ð2:8Þ

Of course, on commutative spacetime the above action is
instead trivial, because U and φ commute.
In order to find a Lagrangian invariant under the above

action, we should introduce a covariant derivativeDμ, i.e., a
derivation on E such that, under the action of G,

DμφðqÞ → UDμφðqÞU�:

This is accomplished by defining

DμφðqÞ ≔ ∂μφðqÞ − ie½AμðqÞ;φðqÞ�; ð2:9Þ

where e is the electron charge (see below for a discussion of
this choice) which describes the coupling with the gauge
field, ∂μ is the derivation on E defined by

∂μφðqÞ ¼
∂
∂aμ φðqþ a1Þja¼0;

and Aμ is the electromagnetic potential on QST, on which G
is assumed to act as

AμðqÞ → UAμðqÞU� þ ie−1U∂μU�; ð2:10Þ

which reduces to the ordinary gauge transformation on
commutative spacetime by writing U ¼ eiΛ. This also
explains the choice of e in (2.9) and (2.10) as the coupling
constant between the electromagnetic potential and the
neutral field φ. In fact, Aμ will also interact with the
electron field ψ , which transforms as ψðqÞ → UψðqÞ, and,
therefore, the choiceDμψðqÞ ¼ ∂μψðqÞ − ieAμðqÞψðqÞ for
its covariant derivative gives the correct interaction. A
potential problem in this respect is represented by the fact
that it seems difficult to write the interaction, on quantum
spacetime, of Aμ with a field of charge different from 0, �e
(like the quark fields). For a discussion in the framework of
formal �-products and the Seiberg-Witten map, see [7,11].
The fact that (2.9) actually gives the correct definition of

covariant derivative for the gauge transformation (2.8),
(2.10) is easily verified: the transformed DμφðqÞ reads in
fact

∂μðUφðqÞU�Þ − ie½UAμðgÞU�; UφðqÞU��
þ ½U∂μU�; UφðqÞU��

¼ UDμφðqÞU� þ ∂μUφðqÞU� þ UφðqÞ∂μU�

þ ½U∂μU�; UφðqÞU��
¼ UDμφðqÞU�;

where the last equation follows from the fact that

½U∂μU�; UφðqÞU�� ¼ −∂μUφðqÞU� −UφðqÞ∂μU�;

which is checked using U�U ¼ 1 ¼ UU� and the fact
that this identity, together with the Leibniz rule for ∂μ,
implies U∂μU� ¼ −ð∂μUÞU�.
We obtain therefore the following Lagrangian covariant

under gauge transformations (which therefore gives rise to
an invariant action):

L ¼ 1

2
ημνDμφðqÞDνφðqÞ −

1

2
m2φðqÞ2:

Then, expanding the covariant derivatives, interaction terms
between the neutral scalar field and the electromagnetic
potential are given by
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LI ¼ −
ie
2
f½AμðqÞ;φðqÞ�; ∂μφðqÞg

−
e2

2
½AμðqÞ;φðqÞ�½AμðqÞ;φðqÞ�; ð2:11Þ

with curly brackets denoting the anticommutator. We note
that on classical spacetimeLI vanishes, as it should, sinceAμ

and φ commute.1

Therefore, we will understand LI as defined through the
noncommutative product in E. This has the drawback that it
will depend explicitly on the center.
If we neglect, as customary, the quadratic term in Aμ (the

weak-field approximation) we obtain, for the interaction
part of the action,

SI ¼ −
ie
2

Z
d4qf½AμðqÞ;φðqÞ�; ∂μφðqÞg

¼ −ie
Z

d4qAμðqÞ½φðqÞ; ∂μφðqÞ�;

where the cyclicity of
R
d4q was used. We obtain therefore

the interaction of Aμ with a current jμðqÞ ¼ −ie½φðqÞ;
∂μφðqÞ�, and the classical Euler-Lagrange equations for Aμ

take the form

∂μFμν − ie½Aμ; Fμν� ¼ −jν;

with the field strength defined by Fμν ¼ ∂μAν − ∂νAμ −
ie½Aμ; Aν� and transforming as Fμν → UFμνU�.
In order to understand the physical meaning of this

interaction, we now assume A0ðqÞ ¼ 0, AhðqÞ ¼ 1
2
εhjk

Bjqk, the potential corresponding to an external constant
magnetic fieldB in the classical spacetime limit (λP → 0);we
again neglect in (2.11) the quadratic term in Aμ, thus
obtaining

LI ¼ −
ie
4
εhjkBjf½qk;φðqÞ�; ∂hφðqÞg

¼ e
2
εjkhBjQkμf∂μφðqÞ; ∂hφðqÞg; ð2:12Þ

where in the second equation we used the identity
½qν; fðqÞ� ¼ iQνμ∂μfðqÞ.
The above term then corresponds to the energy of a total

magnetic moment M with components, in generic units,

Mj ¼ ðe=2Þλ2P
Z
q0¼t

d3q

�
1

2
ðf∂lφ;∂lφgδjk− f∂jφ;∂kφgÞmk

− εjkhf∂0φ;∂hφgek
�
; j¼ 1;2;3; ð2:13Þ

where ek ≔ Q0k and mk ≔ 1
2
εkhlQhl are, respectively, the

electric and magnetic components of the antisymmetric
2-tensor Qμν. In the next section we will give some
numerical estimates on the electromagnetic radiation and
on the perturbations of the motion of charged particles
associated to such a magnetic moment in suitable astro-
physical situations.

III. SOME POTENTIALLY OBSERVABLE
CONSEQUENCES

Defining, as usual, the free scalar field on QST as [3]

φðqÞ ¼
Z
R3

dkffiffiffiffiffiffiffiffiffiffi
ωðkÞp ½aðkÞ ⊗ e−ikq þ aðkÞ� ⊗ eikq�;

and specializing to a point in the spectrum of the Qs where
e ¼ m, a computation yields the following expression for
the total magnetic moment (2.13):

MðtÞ ¼ eλ2P
2

Z
R3

dk
ωðkÞ

× f½að−kÞaðkÞe−2iωðkÞt þ aðkÞ�að−kÞ�e2iωðkÞt�
× cosðωðkÞe · kÞk2e⊥
þ 2aðkÞ�aðkÞ½2ωðkÞk ∧ eþ k2e⊥�g;

with e⊥ ¼ e − ðk · eÞk=k2 the component of e orthogonal to
k. Therefore the effective magnetic moment of a particle
with sharp momentum k is given by

μe;k ¼ eλ2P

�
2k ∧ eþ k2

ωðkÞ e
⊥
�
: ð3:1Þ

Of course, detectable effects, if any, of the above
interaction can be obtained in situations which give rise
to a very large magnetic moment. To this end, it is natural to
consider a compact “star” of φ particles in rapid rotation
around a very massive companion, akin to a binary pulsar
or black hole. Neglecting the rotation of this star around its
axis, a rough estimate of the associated magnetic moment
MS can be obtained by treating such an object as composed
by classical particles in uniform rotation with a given
angular frequency ω, and by associating to such particles
the magnetic moment obtained from (3.1).
More in detail, we choose a reference system in which

the orbit lies on the ðx; yÞ plane, and we indicate by ðθ;ϕÞ
the spherical coordinates of e with respect to this system.
Moreover, recalling that for the binary black hole giving
rise to the event GW150914 the angular frequency just
before the merger was ω ≅ 471 s−1 and the radius of the

1Note that LI would vanish also on quantum spacetime if the
products appearing were interpreted as quantum Wick products
[9], as EðnÞðf1ðq1Þ…fnðqnÞÞ is independent from the ordering of
the factors, and the tensor factors in AμðqÞ and φðqÞ acting on
Fock space would commute again. But the quantum Wick
product would violate not only Lorentz invariance, but also
gauge invariance; hence, it could not be applied in the present
context without first elaborating some radical modifications.
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orbit was R ≅ 350 km [12], so that the speed in natural
units (ℏ ¼ c ¼ 1) was β ¼ ωR ≅ 0.6, we may also assume
that the motion of the particles is nonrelativistic and
approximate ωðkÞ ≅ m in (3.1). We then obtain

MSðtÞ ¼ eλ2PM

8<
:2Rω

0
B@

cosωt cos θ

sinωt cos θ

− cosðωt − ϕÞ sin θ

1
CA

þ R2ω2

2
64
0
B@

sin θðcosϕ − sinωt sinðωt − ϕÞÞ
sin θðsinϕþ cosωt sinðωt − ϕÞÞ

cos θ

1
CA

þ 1

5

�
r
R

�
2

0
B@

sin θ cosϕ

sin θ sinϕ

2 cos θ

1
CA
3
75
9=
;; ð3:2Þ

with M the mass of the object and r its radius. In the
particular case in which e is normal to the orbital plane,MS
then precedes around it with the same angular frequency ω
of the object motion.
In the general case, MSðtÞ can be written as sum of a

constant moment, which of course does not give rise to
emission of electromagnetic radiation, and of a time-
dependent moment of the formX

i

Mi cosðωit − ψ iÞ;

with ωi ¼ ω, 2ω and where ψ i are suitable phases. It is then
an exercise in classical electromagnetism (extending, e.g.,
the discussion in Sec. 9.3 of [13]) to verify that the
time-averaged (classical) electromagnetic energy radiated
(on classical spacetime) per unit time by this variable
magnetic moment is given, in natural units, by

dE
dt

¼ 2

9

X
ωi¼ωj

ω4
i ðMi ·MjÞ cosðψ i − ψ jÞ

¼ 2

9
e2λ4PM

2R2ω6

�
1þ sin2θ þ 1

2
ω2R2sin2θ

�
: ð3:3Þ

Therefore, averaging over the unknown direction of e, we
get

dE
dt

¼ 8π

27
e2λ4PM

2R2ω6ð5þ ω2R2Þ
≃ e2λ4PM

2R2ω6

≃ e2
�
τP
T

�
6
�
R
λP

�
2

M2; ð3:4Þ

where in the second equation we neglected numerical
constants of order 1, and took into account that typically
ωR≃ 10−1 or smaller. Taking then E ≃M ≃ Nm, where N
is of the order of the number of particles in an object of the
size of the sun and density of liquid water (i.e., roughly
1056), m≃ 1 GeV, the rotation period T ¼ 10−2 s and

R ¼ 103 km (comparable to the GW150914 parameters),
and recalling that the Planck time τP ≃ 10−44 s, we get that
the fraction of energy radiated by the body per unit time is

1

E
dE
dt

≃ 10−89 s−1;

and it is therefore negligible.
To make this sizable, T should be of Planckian order,

which would probably mean that our object collapsed into a
black hole and no radiation is visible—and, in any case, the
above Minkowskian picture would not apply.
This computation is certainly too primitive, but it

suggests that the fraction of the total mass emitted as
electromagnetic radiation can be expected to be negligible,
and by far nothing comparable with the fraction of a few
percents emitted as gravitational waves in the binary black
hole collapse GW150914.
Could a more cautious approach reverse this conclusion?

The question is legitimate, since a heuristic argument,
whose qualitative consequences are confirmed by a more
cautious analysis [4], suggests that near singularities the
effective Planck length might diverge as λPg

−1=2
00 . This

might well introduce a metric-dependent factor in our
formula for the electromagnetic radiation caused by the
magnetic moment of neutral matter, making it considerably
larger in the last instants before the collapse into a black
hole; heuristically this is

dE
dt

¼ 1

g200
e2λ4PM

2R2ω6;

where g00 is the time-time component of the background
metric.
This qualitative conclusion is supported by the results in

[4], which mean in particular that in a flat Friedmann-
Robertson-Walker (FRW) background (which is spherically
symmetricwith respect to every point), withmetric, in spatial
spherical coordinates, ds2 ¼ −dt2 þ aðtÞ2½dr2 þ r2dS2�,
the size of a localization region centered around an event
at cosmological time t, measured by the radial coordinate r,
must be at least of order λPað0Þ=aðtÞ, t ¼ 0 being the time of
the present epoch.
The situation that we have in mind, namely, that of a

neutral object rotating in thegravitational field of a collapsing
one, is of course better described by a Schwarzschild metric
than by a FRW one. We note that the metric of a collapsing
homogenous sphere of dust is given by the Oppenheimer-
Snyder solution [14,15], which is a Schwarzschild metric
outside the sphere, matched with a closed FRW metric

ds2 ¼ −dt2 þ aðtÞ2ðdχ2 þ sin2χdΩ2Þ ð3:5Þ

inside it. The scale factor aðtÞ in the above metric can be
expressed parametrically through the conformal time η,
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aðtðηÞÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
0

2GM0

s
ð1þ cos ηÞ; ð3:6Þ

tðηÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
0

2GM0

s
ðηþ sin ηÞ; ð3:7Þ

with M0 > 0 the Arnowitt-Deser-Misner mass of the
collapsing sphere and R0 ≥ 2GM0 its initial areal radius.
The conformal time at which the sphere is completely
inside its Schwarzschild radius is given by η0 ¼
cos−1ð4GM0=R0 − 1Þ.
The continuous match between the exterior

Schwarzschild metric and the interior FRW one and the
results of [4] recalled above seem therefore to justify the
ansatz of replacing λP in (3.4) by λPað0Þ=aðtÞ. Indeed, such
an expression for the effective Planck length converges to
the usual value λP in the limit M0 → 0 in which the FRW
metric becomes Minkowski, as one can easily verify by
eliminating the conformal time η from (3.6), (3.7). Then,
the above formula for the radiation of a precessing neutral
object would become

dE
dt

¼ e2
�
λPað0Þ
aðtÞ

�
4

M2R2ω6: ð3:8Þ

This energy has to be emitted, of course, at the cost of the
kinetic energy of the rotating object due to spin, precession,
and orbital rotation, as well as of its potential energy,
causing a faster inspiraling. For simplicity, we will consider
here only the orbital kinetic term, and then

d
dt

�
1

2
MR2ω2

�
¼ −

dE
dt

; ð3:9Þ

which entails that the total radiated energy can be
estimated as

E ¼ 1

2
MR2½ω2

0 − ωðtcollapseÞ2�; ð3:10Þ

where the integration cannot be extended beyond the hiding
of our object within the event horizon of the other. Indeed,
according to our formulas, the radiated power would
diverge near the singularity, but it would remain trapped
and would not be visible from outside.
According to (3.10), the total radiated energy can be

sizable only if ωðtcollapseÞ ≪ ω0. In order to check if this is
the case in typical situations, we solve (3.9), which, by
inserting (3.8), becomes

_ω ¼ −e2ðλPað0ÞÞ4M
ω5

aðtÞ4 ;

which can be integrated by separation of variables. To this
end, we note that, by (3.7), dt=dη ¼ a, and therefore

Z
tcollapse

−∞
aðtÞ−4dt ¼

Z
η0

0

dη
aðtðηÞÞ3

¼ 8

�
2GM0

R3
0

�
3=2

Z
η0

0

dη
ð1þ cos ηÞ3 :

Defining then, for η ∈ ½0; πÞ,

FðηÞ ≔
Z

η

0

dx
ð1þ cos xÞ3 ¼

sin ηð6 cos ηþ cosð2ηÞ þ 8Þ
15ð1þ cos ηÞ3 ;

we obtain, neglecting numerical constants of order 1,

ωðtcollapseÞ2 ¼
�
1

ω4
0

þ e2λ4PM

�
R3
0

2GM0

�
1=2

Fðη0Þ
�−1=2

;

ð3:11Þ

which is smaller than ω2
0, as it should be.

One can then observe that for M0 → 0 one has
η0 ¼ cos−1ð4GM0=R0 − 1Þ ∼ π −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8GM0=R0

p
, and there-

fore Fðη0Þ ∼ 8
5
ðR0=8GM0Þ5=2, so that

ωðtcollapseÞ2 ∼
G3=2M3=2

0

eλ2PMR2
0

would actually be very small with respect to ω2
0, making the

total radiated energy (3.10) non-negligible. (Note that for
ordinary matter the collapse would stop much before that
the matter itself is hidden inside the horizon, due to the
nonvanishing pressure.)
Moreover, this effect might disappear if one takes

properly into account the redshift of the radiation emitted
near to the horizon. This could probably be done by using
the general relativistic version of the radiated power by a
magnetic dipole instead of (3.3).
Conversely, for finite values of M0, one can expand

(3.11) due to the smallness of λ4P, and obtain for the total
radiated energy

E ≃ e2λ4PM
2R2ω6

0

�
R3
0

2GM0

�
1=2

Fðη0Þ:

Thus we see that for 2GM0=R0 ¼ 1; Fðη0Þ vanishes, as it
should, since the collapse takes place at the beginning. If
instead 2GM0=R0 is smaller than 1 but of that order, then
Fðη0Þ is also of the same order; e.g., if 2GM0=R0 ¼ 1=2
then Fðη0Þ ¼ 7=15. Moreover, if we take as before M0 ≃
M ≃ 1056 GeV ¼ 1037MP ≃ E0 and we recall that for
ℏ ¼ c ¼ 1 we have G ¼ M−2

P , we deduce R0 ¼ 4GM0≃
1037M−1

P ≃ 10−1 km, so that, assuming again R≃
103 km≃ 1041M−1

P and T ≃ 10−2 s≃ 1042τP, we get
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E ≃ e2λ4PM
2R2R0ω

6
0 ≃ e2λ4PMR2R0ω

6
0E0

≃ 10−96E0 ≃ 10−40 GeV:

Note that using the same figures and multiplying the
fraction of the total energy emitted as electromagnetic
interaction per second, as given by the previous more brutal
computation, Eq. (3.4), by the collapse time tcollapse ¼
tðη0Þ ¼ 1ffiffi

2
p ðπ

2
− 1ÞR0 ≃ 1037τP ≃ 10−7 μs, we get an esti-

mate of exactly the same order of magnitude.
Thus, as noticed earlier in this discussion, the fraction

of the mass converted into electromagnetic radiation is
negligible, unless the period T is at the Planck scale, which
would probably mean that collapse took place and the
emitted radiation is not visible to distant observers. As
already mentioned, however, a more realistic estimate
ought to treat the electromagnetic emission relativistically.
Another possibility, both more and less favorable, could

be offered by a compact spinning concentrate of dark
matter interposed to some distant source; spin and con-
centration apart, these objects exist and are revealed to us
by gravitational lensing, which results from the gravita-
tional deflection of photons that has been known exper-
imentally for a century.
If the source emits also charged particles, say electrons,

sufficiently energetic to reach us within a reasonable delay
after the γ rays, their deflection ought to be modified by the
magnetic field caused by the moment of our stellar object,
due to quantum spacetime; this is a sort of QST–Northern
Lights phenomenon. One might hope that this is a more
favorable situation with respect to the one considered above
because, while the energy emitted is proportional to the
fourth power of the Planck length, the deviation we are
mentioning now would be only quadratic in λP.
Nevertheless, a rough estimate of the deviation angle θ of

an electron by a compact object of mass M and radius R
spinning at angular velocity ω gives, using (3.2),

θ ≅
MS

mγR2
≅
eλ2PMω

mγR
;

with m the electron mass and γ ¼ ð1 − v2Þ−1=2. Choosing,
as above,M ≃ 1056 GeV, R≃ 10−1 km, and ω ¼ 102 s−1,
the deviation would be only θ ≅ 10−34 for electrons of
energy 1 TeV, which would reach us with a delay, with
respect to photons, of a few hours if the source is 109 light
years distant. The delay for protons of 103 TeV (still
considered to be lower than the GKW limit) would be
the same, but the deviation would be 103 times smaller. Of
course, the deviation would be more important for softer
electrons, which, however, would reach the Earth when
nobody is there any longer.
Moreover, a less favorable aspect is that electrons are

considerably influenced by the much stronger galactic
magnetic field; a precise knowledge of this would be

needed, together with a nearly exact location in the sky
of the sources of electromagnetic radiation and of electrons,
as well as a clear recognition of the coincidence of their
origin.

IV. CONCLUDING REMARKS

Our discussion was based on the choice (2.9) of the
covariant derivative, with e denoting the electron charge.
This choice seems to be dictated by gauge invariance in a
theory which includes the electromagnetic interactions of
the electron, taking into account the noncommutativity
of G ¼ UðMðEÞÞ, the group of unitaries in the multipliers of
the algebra of quantum spacetime E. On an E bimodule,
only the left (respectively, right) action of U (respectively,
U�), or the trivial action, are allowed.
This poses a problem for the Standard Model (excluding

quark fields). This problem has been noticed and discussed
by several authors (see, e.g., [7,11]), and it deserves further
discussion to see whether in our context the choice made in
(2.9) is really the only choice.
According to our preceding discussion, so far there

seems to be no indication of visible effects of the quantum
nature of spacetime at the Planck scale, except for its role in
solving the horizon problem [4] and justifying from first
principles some of the assumptions made in the inflationary
scenario.
The effects considered in this paper are so tiny that it

would be instructive to compare them with those due to
the graviton-mediated dark matter–photon interaction.
Furthermore, the electromagnetic radiation emitted by a
collapsing binary system due to the mechanism proposed
here ought to be compared with the Hawking radiation.
The QST-induced electromagnetic interactions of dark

matter might be detectable in more exotic hypothetic
astrophysical objects, like self-gravitating Bose-Einstein
condensates of dark matter consisting of neutral scalar
particles. The stability of such objects, with a solar mass
and a radius of a few dozen kilometers, has been recently
investigated in both the isotropic and rotating cases; the
possible formation of vortices has also been considered
(cf., e.g., [16]). Smaller objects of this nature were
excluded from Ref. [16] by the nonrelativistic approxi-
mation used there, but might well be relevant to manifest
sizable QST-electromagnetic effects, possibly also in the
form of electromagnetic vortex-vortex interactions; this
might potentially change the dynamics of these hypo-
thetical objects. These points will be dealt with in
subsequent studies.
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