
Elliptic Curve Cryptography using
Computational Intelligence

Tim Ribaric

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

c©Tim Ribaric, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/84680954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Public-key cryptography is a fundamental component of modern electronic com-

munication that can be constructed with many different mathematical processes.

Presently, cryptosystems based on elliptic curves are becoming popular due to strong

cryptographic strength per small key size. At the heart of these schemes is the com-

plexity of the elliptic curve discrete logarithm problem (ECDLP).

Pollard’s Rho algorithm is a well known method for solving the ECDLP and

thereby breaking ciphers based on elliptic curves for reasonably small key sizes (up

to approximately 100 bits in length). It has the same time complexity as other

known methods but is advantageous due to smaller memory requirements. This

study considers how to speed up the Rho process by modifying a key component: the

iterating function, which is the part of the algorithm responsible for determining what

point is considered next when looking for the solution to the ECDLP. It is replaced

with an alternative that is found through an evolutionary process. This alternative

consistently and significantly decreases the number of iterations required by Pollard’s

Rho Algorithm to successfully find the sought after solution.



“ -How long do you want these messages to remain secret?[...]

+I want them to remain secret for as long as men are capable of

evil”

- Cryptonomicon



Contents

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem Description 5

2.1 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Elliptic Curve Discrete Logarithm Problem (ECDLP) . . . . . 12

2.2.2 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . 13

2.3 Pollard’s Rho Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Pollard’s Original Rho Algorithm . . . . . . . . . . . . . . . . 14

2.3.2 Pollard’s Rho Algorithm for Elliptic Curves . . . . . . . . . . 15

2.3.3 Numeric Pollard’s Rho Example . . . . . . . . . . . . . . . . . 17

3 Literature Review 19

3.1 Research on Pollard’s Rho Algorithm . . . . . . . . . . . . . . . . . . 19

3.1.1 General Improvements to the Rho Algorithm . . . . . . . . . . 19

3.1.2 Improvements to the Pollard Rho Algorithm applied to the

ECDLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Cryptographic Investigations using CI techniques . . . . . . . . . . . 22

3.2.1 Classic Ciphers with CI . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Stream and Block Ciphers with CI . . . . . . . . . . . . . . . 23

3.2.3 Cryptology with CI . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Elliptic Curves Cryptosystems with CI . . . . . . . . . . . . . 25

3.3 The intersection of Pollard Rho and CI techniques . . . . . . . . . . . 25

4 Representation and Experiment Design 26

4.1 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 26



4.1.1 Expression Tree Nodes . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 A Complete Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Results and Discussion 34

5.1 Curves Examined and Multiple Runs . . . . . . . . . . . . . . . . . . 34

5.2 Comparison of Original Rho Algorithm against Evolved Counterpart 36

5.3 Comparison of Evolved Iterating Function Against r + q Mixed Walks 39

5.4 Comparison of Evolved Iterating Function against Artificial Neural

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Runtime of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Observable Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion and Future Work 43

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Constructing the attack in other ways . . . . . . . . . . . . . . 44

6.2.2 Refinements to the Genetic Programming Construction . . . . 45

Bibliography 50

Appendices 51

A Best Evolved Rho Iterations 51

B Fitness Plot of Most Improved Rho Score 53

C Best Performing Evolved Hash Functions 55



List of Tables

2.1 Iterations performed for numeric Pollard Rho Example . . . . . . . . 18

4.1 Runtime Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Test Point Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Fields Examined 5 Digits in Length . . . . . . . . . . . . . . . . . . . 34

5.2 Fields Examined 6 Digits in Length . . . . . . . . . . . . . . . . . . . 35

5.3 Fields Examined 7 Digits in Length . . . . . . . . . . . . . . . . . . . 35

5.4 Fields Examined 8 Digits in Length . . . . . . . . . . . . . . . . . . . 35

5.5 Field Size of Examined Curves expressed in bits . . . . . . . . . . . . 36

5.6 L-Scores of Different Partition Functions . . . . . . . . . . . . . . . . 40

5.7 ANN Laskari et al accuracy with different curve sizes . . . . . . . . . 41

5.8 Field Size of Examined Curves Expressed in Bits . . . . . . . . . . . 41

A.1 Run details for best found evolved solution for F406807 . . . . . . . . . 52



List of Figures

2.1 Communication from Alice to Bob . . . . . . . . . . . . . . . . . . . 5

2.2 Communication from Alice to Bob, intercepted by Eve . . . . . . . . 6

2.3 Communication from Alice to Bob, encrypted with a public key cryp-

tosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Communication from Alice to Bob, encrypted with public key cryp-

tosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Example elliptic curve y2 = x3 − 4x+ 4 . . . . . . . . . . . . . . . . . 10

2.6 P and Q are both at the origin . . . . . . . . . . . . . . . . . . . . . . 10

2.7 P and Q share the same x-coordinate . . . . . . . . . . . . . . . . . . 10

2.8 Line connecting P and Q does not intersect the curve at a third point 11

2.9 Line connecting P and Q intersects the curve . . . . . . . . . . . . . . 11

2.10 Pollard Rho collision visualized . . . . . . . . . . . . . . . . . . . . . 14

4.1 Example of Evolved Expression Tree . . . . . . . . . . . . . . . . . . 28

5.1 Number of Iterations Required for the 10 Curves with 5 Digits . . . . 36

5.2 Number of Iterations Required for the 10 Curves with 6 Digits . . . . 37

5.3 Number of Iterations Required for the 10 Curves with 7 Digits . . . . 37

5.4 Number of Iterations Required for the 10 Curves with 8 Digits . . . . 38

B.1 Fitness plot of F406807 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Chapter 1

Introduction

1.1 Problem Description

Cryptography is a vital component of modern communication. All Internet com-

merce and countless other daily interactions are only possible due to a reliance and

trust in cryptography. In the most basic formulation cryptography is the process of

taking a message (often referred to as plaintext) and passing it through a process

called encryption that turns this message into something known as ciphertext. The

defining characteristic of this ciphertext is that it obfuscates the original message into

seemingly random values and thus masks it. This ciphertext can then be sent to an

intended recipient without worry that any interloper will intercept it and read the

original message. Once this transmission is complete a converse process called decryp-

tion takes this ciphertext and computes the original plaintext message by performing

essentially the inverse of the encryption process. The reliability of a cryptographic

system is often measured by looking at how hard it is to retrieve the original plaintext

message from the ciphertext if the interloper has knowledge of what system is being

used and a copy of the ciphertext. An accessible introduction to the dynamics of

cryptography that explains these concepts is presented in [13].

A brief sketch of the classic Caesar Cipher [34] demonstrates this encryption and

decryption process. In the Caesar Cipher the letter of the message is replaced with

the letter 3 positions farther along in the alphabet. For example A is replaced with

D, B is replaced with E, etc. Using this encryption scheme we can produce the cipher

text VHFUHWV. If the interloper gleams this cipher text they are faced with the

task of reconstituting the plaintext message. If the interloper knows the details of the

Caesar Cipher and knows that this ciphertext was created using that method then

calculating the original message is trivial. The inverse operation is applied, namely

1



CHAPTER 1. INTRODUCTION 2

shifting the letters back three positions in the alphabet and without much work the

mystery is solved and lo and behold SECRETS is revealed as the plaintext message.

We can make things a bit more difficult for the interloper by changing the offset

we use when we replace the characters. This value, that changes the composition

of the encryption, is called the key to the system and varying it produces slightly

more resilient results. Varying the key will ultimately create difficulty and create

an involved process for the illicit decryption. With the Caesar Cipher the interloper

would have to try shifting the characters of the ciphertext by different amounts until

the calculated plaintext makes sense. However, by trying all 25 possible offsets it

would not take long to arrive at the plaintext. This idea is known as Kerckhoffs’

principle [24], which states that the strength of the system must rely on the strength

of the key and not on keeping details about the system obscure. Or in other words the

cryptosystem is only as strong as the amount of computation it takes to reconstitute

the key.

More sophisticated cryptographic systems follow these same principles but instead

rely on stronger methods of encryption and more complex keys. It is even possible

to construct a cryptographic system in such a way that both the ciphertext and a

portion of the key can be communicated to the intended recipient in an insecure

channel. This type of system, known as asynchronous public key cryptography, also

removes the need of communicating the key to the end recipient, a process that very

well may be impossible if there is no absolutely trusted way for the key to reach its

intended target.

Asynchronous public key cryptography was first seen in work by Diffie and Hell-

man [5]. This was followed shortly afterwards by the Rivest, Shamir, and Adlemen

(RSA) [30] method which is still actively used in present day internet communica-

tion. The basis of these schemes is that an asynchronous key is created that has two

components: a private key and a public key. A message is passed between two parties

in such a way that private keys never need to be communicated. It is possible to

encrypt a message using the sender’s private and public key and just the receiver’s

public key. Conversely to decrypt a message knowledge of the public keys of both

parties and the private key of the receiver is all that is needed. Further, these public

key systems are created in such a way that it is computationally difficult to derive the

private key from just knowledge of the public key. In the RSA method for example,

this computational difficulty is based on the factorization of large numbers that are

the product of primes.

However, as computation power increases larger and larger keys are required in



CHAPTER 1. INTRODUCTION 3

order to stay ahead of computational attacks. This is due to the fact that security

relies on the computational difficulty of obtaining the private key and exhaustive

and semi-exhaustive methods can be run faster to determine the private key. The

race is to create a system that is resistant to these methods, this often accomplished

by created cryptosystems with increasingly longer key sizes. With RSA this means

finding larger prime numbers to serve as components of the key. To answer this need

elliptic curve cryptography has been proposed. With elliptic curve cryptography a

key can be lengthened to increase the security of the system at a higher ratio then

with RSA. The computational difficulty here is based on the elliptic curve discrete

logarithm problem (ECDLP). With a sufficiently large elliptic curve the end result is

an exponential search for the values that constitute the private key. Elliptic curves

are favoured due to the fact that they provide more entropy per bit used then the

RSA method, thus allowing for a larger degree of security with the same memory size.

The underlying mathematics of elliptic curves also allows the calculation used in the

encryption process to be performed in comparatively less computation time.

A well known method of solving the ECDLP exists for small keys sizes and it is

called the Pollard Rho Algorithm [27]. Named after its inventor, the algorithm is a

clever iteration through points on the elliptic curve, or any algebraic group in fact,

in attempts to find the solution to the intractable value of the ECDLP. It has the

best known time and space complexity of any algorithm that can be used to find the

ECDLP. Since first proposed in 1975 there has been a well developed body of research

that has attempted to find efficiencies in this process. To date these efficiencies have

mostly been realized with the application of algebraic techniques.

In stark contrast to the developed literature this study instead attempts to apply a

computational intelligence (CI) technique to the Pollard Rho Algorithm in an attempt

to improve its efficiency. In particular the application of genetic programming is

conducted against the iterating function of the Rho algorithm. Roughly speaking the

iterating function is a key component of the algorithm that determines what section

of the elliptic curve is investigated next when attempting to find the solution to the

ECDLP. Genetic programming is well suited for this task as it can directly represent

the mathematical expression at the heart of the iterating function, unlike for example

a genetic algorithm, that would require modelling to find a suitable representation to

construct the iterating function.

The application of CI techniques to cryptographic domains is sparse. Most pub-

lished research focuses on the clever application of genetic algorithms to cryptographic

systems, and also seen within these results is a heavy focus on traditional ciphers,



CHAPTER 1. INTRODUCTION 4

such as the Caesar Cipher, without much investigation into modern day cryptosys-

tems. Additionally it is very difficult to find a description of a successful application

of a genetic programming methodology to a cryptographic study. What also makes

this current study unique is that it attempts to find a speed-up for a method that

has a proven near 100% success rate.

1.2 Organization of Thesis

This thesis is presented as follows. Chapter 2 outlines the necessary background

information that describes public key cryptography, elliptic curve mathematics, and

how the Pollard Rho Algorithm works. Chapter 3 describes the research that has been

conducted on the Rho Algorithm, and also includes an examination of computational

intelligence techniques that have been used in cryptographic studies. Next Chapter 4

describes the basis of genetic programming and describes the mechanics of this study.

After this is Chapter 5, which presents the data accumulated and the results gleaned.

Finally, Chapter 6 presents concluding remarks and possible next steps.



Chapter 2

Problem Description

A description of the key components utilized in this study are presented in this chap-

ter. In particular, the idea of public key cryptography based on elliptic curves is

developed. Next, a well known method of solving the Elliptic Curve Discrete Loga-

rithm Problem (ECDLP) problem is presented, namely the Pollard Rho algorithm.

This algorithm sees its inception as a general discrete logarithm problem algorithm

but is able to solve the elliptic curve variant without much modification.

2.1 Public Key Cryptography

Figure 2.1 is the first step in a simplified introduction to the dynamics of public key

cryptography. Here two parties Alice and Bob are attempting to communicate with

one another via an insecure channel.

In Figure 2.2 a third party, Eve, discovers this communication and interposes

herself in the insecure channel. At this point Eve can simply retain a copy of the

message being transmitted to Bob or more nefariously she can change the message as

she intercepts it. Protecting the content and the authenticity of the message being

passed between Alice and Bob is the function of cryptography.

Alice

Bob

Figure 2.1: Communication from Alice to Bob

5



CHAPTER 2. PROBLEM DESCRIPTION 6

Alice

Eve

Bob

Figure 2.2: Communication from Alice to Bob, intercepted by Eve

With public key cryptography a message is encrypted and decrypted using some-

thing that is referred to as a composite key. This composite key is comprised of a

public part and a private part, which is the inverse of the public part. It is essential

that it is computationally very difficult or infeasible to determine the private key from

the public key. To encrypt a message Alice must obtain a copy of Bob’s public key.

She combines it along with her message and her private key to create ciphertext and

sends it in the insecure channel.

Once Bob receives the ciphertext he uses his own private key and Alice’s public

key to decrypt it back into the original message. A very important consequence of

this transaction thus far is that there are two particular side-effects caused during

the encryption process. First only Bob will be able to decrypt the message since it

was encoded with Bob’s public key and Alice’s private key. Secondarily Bob can rest

assured it is indeed Alice that is sending him the message because he can verify her

identity by recreating a hashed value that was created using her composite key.

Due to the construction of the cryptosystem the public keys can be communicated

between Alice and Bob without any need for secrecy. Conversely, the private key never

needs to be communicated ensuring that its secrecy can be kept. Figure 2.3 shows

the process of the public keys being communicated between the two parties in the

insecure channel and Alice encrypting her message M into ciphertext C and sending

it to Bob. Bob receives this message and then uses his own private key to decrypt the

message. Although not pictured, it is easy to envision the complementary process of

Bob sending a communication to Alice. In this case Bob simply combines his message,

his private key, and Alice’s public key before sending it off.

Figure 2.4 shows what happens if Eve intercepts the ciphertext. The message

would be unintelligible to her. If she were to alter the message before passing it along

to Bob, Bob would know immediately that it was tampered with since it would not

decrypt in a meaningful way. She can even intercept the public keys of Alice and



CHAPTER 2. PROBLEM DESCRIPTION 7

Alice A Public

C = M · B Public

M = C · B Private

B Private

BobB Public

Figure 2.3: Communication from Alice to Bob, encrypted with a public key cryp-
tosystem



CHAPTER 2. PROBLEM DESCRIPTION 8

Alice A Public

C = M · B Public

Eve

M = C · B Private

B Private

BobB Public

Figure 2.4: Communication from Alice to Bob, encrypted with public key cryptosys-
tem



CHAPTER 2. PROBLEM DESCRIPTION 9

Bob, because they are communicated quite readily between the parties, but knowing

that would not aid her in decrypting the ciphertext.

This process is greatly superior to a what is referred to as a symmetric key scheme.

In a symmetric key scheme there is only one standalone key that must be communi-

cated secretly ahead of time from Alice to Bob. If Alice and Bob can only commu-

nicate via the insecure channel there is no way to safely pass this key without Eve

possibly getting a hold of it. If a key is reused in a symmetric key scheme and is

compromised it has the potential for ruining not just Alice and Bob’s communication

but also Alice and Carl’s communication. Public key systems are more robust and do

not suffer from these drawbacks. In fact the private part of a key never needs to be

communicated to anyone, ensuring a high level of security. The most common and

popular form of public key cryptography is the previously mentioned RSA method

mentioned in Chapter 1. Recall that with RSA the reliability of the system is built on

the complexity of factoring numbers that are the product of large prime numbers. In

this thesis another popular method is examined, which is one that is based on elliptic

curves.

2.2 Elliptic Curves

An elliptic curve E is defined as the set of solutions (x, y), where a, b ∈ Z, to Equation

2.1.

y2 = x3 + ax+ b (2.1)

When plotted on a Cartesian plane the curve resembles the example curve in

Figure 2.5.

The curve is symmetric about the x-axis. Due to this symmetry many properties

arise. For instance any line connecting two distinct points P and Q on the curve will

have at most one other intersection point. In all cases the first step is to draw a line

between the two points. In total there are four different scenarios:

P and Q are both at the origin: A tangent is drawn to the origin and is said

to extend to infinity, illustrated in Figure 2.6.

P and Q share the same x-coordinate: A line is drawn between the two

points and it is said to extend to infinity, illustrated in Figure 2.7.

Line connecting P and Q does not intersect the curve at a third point:

In this case as well the line is said to extend to infinity, illustrated in Figure 2.8.



CHAPTER 2. PROBLEM DESCRIPTION 10

−2 0 2 4

−5

0

5

Figure 2.5: Example elliptic curve y2 = x3 − 4x+ 4

−2 0 2 4

−5

0

5

P
•

Figure 2.6: P and Q are both at the origin

−2 0 2 4

−5

0

5

P

Q

•
•

Figure 2.7: P and Q share the same x-coordinate



CHAPTER 2. PROBLEM DESCRIPTION 11

−2 0 2 4

−5

0

5

P

Q

•
•

Figure 2.8: Line connecting P and Q does not intersect the curve at a third point

−2 0 2 4

−5

0

5

P

Q
−R

R
•

•
•

•

Figure 2.9: Line connecting P and Q intersects the curve

Line connecting P and Q intersects the curve: Here the addition is calcu-

lated using the chord and tangent method. If P,Q are points on E and P 6= Q (i.e.

not any of the previously defined scenarios) then one simply draws a line between P

and Q and it will intersect the curve at a fourth point −R, which is reflected on the

x-axis to produce R. This is demonstrated in Figure 2.9.

It is possible to define this addition operation explicitly. If P = (x1, y1) and

Q = (x2, y2) are points on E neither of which is O (the point at infinity, described

shortly) then P +Q = (x3, y3) where:

x3 = λ2 − x1 − x2, and

y3 = λ(x1 − x3)− y1

If P = Q then



CHAPTER 2. PROBLEM DESCRIPTION 12

λ =
3x21 + a

2y1
(2.2)

If P 6= Q then

λ =
y2 − y1
x2 − x1

(2.3)

It is possible to define a multiplication operation over points as well. In fact

this operation can be seen as multiple applications of point arithmetic defined above,

for example 2P = P + P . This operation is often referred to as point doubling

when the scalar value is 2, while in all other cases this operation is referred to as

point multiplication. Another operation, point negation, is easy to calculate. If P =

(P.x, P.y) then −P is defined as (P.x,−P.y), or simply stated, the point is reflected

about the x-axis.

It is possible to restrict an elliptic curve E to a field. In this case we are only

interested in solutions to Equation 2.1 with Z values. When using elliptic curves

for cryptographic reasons it is beneficial to define this field Fn over n, where n is a

large prime number. We introduce an identity element O called the point at infinity.

This element satisfies P + O = P for every P . What this means is that adding

any two points on the curve will always result in a point on the curve (as seen with

point addition above) or the point at infinity. With this identity element and the

previously defined operations of point addition and point negation we are left with a

finite Abelian group.

2.2.1 Elliptic Curve Discrete Logarithm Problem (ECDLP)

The preceding description can be formulated succinctly using algebraic theory as

follows. Let E be an Elliptic Curve defined over a field represented by Fn, where n

is a large prime. Let P ∈ E be a point of prime order q. Here prime order refers

to the number of applications of the field addition operator that when applied to

P eventually iterates through a series of intermediate values and then returns to P

once again. This is true because there is a finite number of elements in the field and

eventually any iteration will become cyclic. We also choose q to be a prime number

so that this iteration sequence is unique. Next let 〈P 〉 be the prime order subgroup

of E generated by P . If Q ∈ 〈P 〉 then Q = kP for some scalar k where 0 ≤ k ≤ q.

The problem is then finding k given P , Q, and the parameters of curve E.

Finding this value, known as the Elliptic Curve Discrete Logarithm Problem



CHAPTER 2. PROBLEM DESCRIPTION 13

(ECDLP), can be thought of as the elliptic curve variant to the more common log-

arithm problem. For example with y = nx, it is easy to calculate y given n and x.

However, when given y and n it is difficult to calculate x. Most logarithm operations

result in solutions that are R values. However, when calculating the logarithm over a

finite Abelian group, as in the case of the ECDLP, the solution is always a member

of the field, or in other words it is composed of an x and a y coordinate that are both

integers. Calculating a logarithm in a field or group is often referred to as the dis-

crete logarithm problem (DLP). The most familiar example of the DLP can be seen

in the integers mod p, where p is a prime number. Numerically, an example could be

33 mod 31 = y, and y can be easily calculated as 2. However, when we set out to

calculate x mod 31 = 2 we need to perform a more difficult calculation to determine

the value of x. When using Z there are infinitely many solutions, but when we restrict

the calculation to a field, and in particular a large one, it is computationally difficult

to arrive at this value with anything short of an exhaustive approach.

2.2.2 Elliptic Curve Cryptography

The use of Elliptic Curve Cryptography was first proposed independently by Koblitz

[15] and Miller [23]. These works presented a way of constructing a public key cryp-

tosystem using elliptic curves. Not just any curve E could be used however. It was

important to have it defined over a very large field, so that it would be resistant to

brute force attacks. Secondly the values of a and b in Equation 2.1 must be chosen

so that 4a3 + 27b2 6= 0. If this requirement is not met then the resulting curve will be

unsuitable for cryptographic use [9].

We represent two points P and Q on a suitable elliptic curve E with the follow-

ing notation: P = (P.x, P.y) and Q = (Q.x,Q.y), where each point has x and y

coordinates. Let k represent some scalar that respects the conditions described in

the previous section, that is to say, it lies within the prime subgroup generated by

P . Then our public key cryptosystem is based on the following equality: Q = kP ,

where Q can be used to represent the public key of the system and P is the private

key. It is known to be computationally difficult to determine the value of k if only

kP is provided. This computation of the ECDLP provides the complexity that the

cryptosystem is built upon. For example we can use a suitable method to encode

our message M with Q and P . This is then transmitted to the other party and by

performing the inverse of the encoding with the value of k it will then be possible to

retrieve the original message. For a general history and development of elliptic curve



CHAPTER 2. PROBLEM DESCRIPTION 14

cryptographic systems [8] provides a worthy summary.

2.3 Pollard’s Rho Algorithm

2.3.1 Pollard’s Original Rho Algorithm

Pollard’s Rho Algorithm is a well understood process that is highly flexible due to

the fact that it can be applied to any discrete logarithm problem. It derives its name

from the ‘shape’ of the sequence of field elements that it examines. Figure 2.10 is a

graphical representation of this. Since the underlying field is finite, iterating through

all of the points in attempting to find the collision between the two selected field

items will eventually lead to a collision and then cycle forever. The ‘tail’ of the shape

represents the iterating points leading up to the collision where the ‘circular’ shape

represents the cycle of field items that will become periodic. There is a smallest index

t for which Xt = Xt+s for some s ≥ 1 and then Xi = Xi−s for all i ≥ t+ s.

Figure 2.10: Pollard Rho collision visualized

The original method, proposed by Pollard [27], was used to find the prime roots of

a composite number, and was constructed in such a way that it could be coded into

a programmable calculator. Soon after a slightly revised method was proposed by

Pollard [28] that was meant to compute the index of any integer to a given primitive

root of a prime p. The construction of the algorithm was general enough that it could

be modified to solve any discrete logarithm problem. A strong additional benefit of

the Rho algorithm is that it has the best run-time of any known method for solving the



CHAPTER 2. PROBLEM DESCRIPTION 15

discrete logarithm problem. Similarly the memory requirements are also negligible,

making it very appealing to use.

2.3.2 Pollard’s Rho Algorithm for Elliptic Curves

With the Rho process we seek to find the value of k by determining two equations

involving points in the field that equal one another when multiplied by different scalar

values. Algorithm 1, adapted from [9], articulates this process. We are attempting

to find the solution to:

c
′
P + d

′
Q = c

′′
P + d

′′
Q (2.4)

More precisely, we attempt to find the scalar values of c′, c′′, d′, and d′′. Once

these values are known we can find the value of k by using a field inversion operation

and evaluating the following, where n is a large prime:

k = (c
′ − c′′)(d′′ − d′

)−1 mod n (2.5)



CHAPTER 2. PROBLEM DESCRIPTION 16

Algorithm 1 Pollard’s Rho Algorithm for Elliptic Curves [9]

Input: P ∈ E(Fq) of prime order n, Q ∈ 〈P 〉
Input: Partition function EvoH : 〈P 〉 → {1, 2, ..., L}
1: for j from 1 to L do

2: Select aj, bj ∈R [0, n− 1]

3: Compute Rj = ajP + bjQ

4: end for

5: Select c′, d′ ∈R [0, n− 1]

6: Compute X ′ = c′P + d′Q

7: X ′′ ← X ′, c′′ ← c′, d′′ ← d′

8: repeat

9: j = EvoH(X ′)

10: X ′ ← X ′ +Rj

11: c′ ← c′ + aj mod n

12: d′ ← d′ + bj mod n

13: for i from 1 to 2 do

14: j = EvoH(X ′′)

15: X ′′ ← X ′′ +Rj

16: c′′ ← c′′ + aj mod n

17: d′′ ← d′′ + bj mod n

18: end for

19: until X ′ = X ′′

20: if d′ = d′′ then

21: return False

22: else

23: k = (c′ − c′′)(d′′ − d′)−1 mod n
24: return k

25: end if

The inputs supplied to the algorithm are two points P , Q. The point Q is ex-

pressed as kP , some scalar multiple of point P . The value of k is the solution to the

ECDLP and thus finding this value would compromise the cryptosystem.

We require a hash function that will allow us to map any random point to a value

between 0 and L− 1, where L is the number of sections into which the curve will be

divided while we are searching for the value of k. Pollard’s original formulation of the

Rho algorithm used 3 sections. In most constructions of the Rho algorithm the hash



CHAPTER 2. PROBLEM DESCRIPTION 17

function is simply implemented with (P.x) mod L. The purpose of the current study

is to instead use genetic programming to determine a more effective hash function

EvoH. This study fixed the value of L, i.e. the number of sections, at 32. This value

was selected as it is a common choice for implementations of the Rho Algorithm [9].

The algorithm begins by filling a random buffer R of L values in the range 1 to

L. These values are pairwise multiplied with L random points in the curve. Next

the value of c′ is set to n/4 using integer division and similarly d′ is set to 3n/4 by

integer division. X ′ is calculated. For the first iteration c
′′

is set to the same value

as c
′

and d
′′

is set to the same value as d
′
. The Rho algorithm then proceeds by

calculating two different sequences of points; this process is more commonly known

as Floyd’s cycle detecting algorithm [22]. When these two sequences yield the same

point (line 19), the process then attempts to find the value of k (line 23). What is

worth noting is that the EvoH hash function guides the choice of what intermediate

point is considered next.

The current study examines whether making the hash function distribute values

more randomly will reduce the runtime of the Rho Algorithm, i.e. whether it will

find the value of k in fewer iterations. Specifically, an evolved genetic program will

be used to replace the original hash function.

The parameters selected by the algorithm are aj, bj, c
′, and d′. The first two of

these parameters are randomly selected series of values in the range of 0 to n− 1, as

found in line 2 of Algorithm 1, while as previously described c′ and d
′

are assigned

using the previously described methodology of fixing c′ one quarter into the interval,

and d′ three quarters into the range of 0 to n− 1. Because of how these parameters

are assigned, when looking at the same values of P and Q, subsequent runs of the

algorithm differ only if the values of aj and bj are varied. Those two series are the

only independent variables in the Rho algorithm.

2.3.3 Numeric Pollard’s Rho Example

To demonstrate the ECDLP variant of the Rho algorithm consider the following

elliptic curve:

y2 = x3 + 48x+ 70 (2.6)

defined over the field F653 with field size n = 683 and setting P = (191, 422) and

Q = (422, 235). The goal then is to find the value of k in Q = kP . As previously

described L = 32, c
′
= 170 and d

′
= 512. We pass these values to Algorithm 1 which



CHAPTER 2. PROBLEM DESCRIPTION 18

will eventually get to line 6 and will start computing the two cycles. The iterations

and intermediate values calculated by the Rho algorithm are presented in Table 2.1.

Iteration c
′

d
′

X
′

c
′′

d
′′

X
′′

- 170 512 x=203, y=290 170 512 x=203 ,y=290
1 218 213 x=55, y=395 377 531 x=71, y=247
2 377 531 x=71, y=247 678 211 x=230, y=251
3 164 473 x=360, y=156 429 87 x=393 ,y=485
4 678 211 x=230, y=251 377 331 x=55 ,y=395
5 173 255 x=180 ,y=421 323 591 x=360, y=156
6 429 87 x=393, y=485 332 373 x=180, y=421
7 329 630 x=203, y=290 488 65 x=203, y=290

Table 2.1: Iterations performed for numeric Pollard Rho Example

At iteration 7 we see that the two cycles have found the same value in that we

have X
′

= X
′′
. This gives us the following equality:

329P + 630Q = 488P + 65Q (2.7)

We then find the value k as in line 23:

k = (329− 488) · (630− 65)−1 mod 653 = 317 (2.8)

This presented problem is a trivial construction only meant to demonstrate the

dynamics of the Rho algorithm. No actual cryptographic cipher would be based on

such a small elliptic curve.



Chapter 3

Literature Review

Since the introduction of Pollard’s Rho algorithm in the 1970s there has been a sub-

stantive body of research looking into the method. The main goal of these endeavours

has been to find efficiencies in the process through a better application of the mathe-

matics of the discrete logarithm problems to which they have been applied. The first

half of this chapter presents progress to date.

Conversely the literature that looks at the intersection of computational intelli-

gence (CI) and cryptographic study is less robust. There is a clear lack of break-

throughs discovered. Presented here in the second half of this chapter is a look at

progress made in this area.

3.1 Research on Pollard’s Rho Algorithm

3.1.1 General Improvements to the Rho Algorithm

The single refinement that resulted in the best reduction of expected runtime of the

algorithm has been the introduction of the parallel Pollard Rho [37]. This process is

divided into two parts: a server component and a client component. The pseudocode

of the client process is presented in Algorithm 2. Each client process first begins with

a random seed and, similar to the serial formulation of the Rho, attempts to find the

scalar multipliers of two different sets of values but instead of attempting to find k

in Q = kP it is trying to uncover what are known as distinguished points. In the

case of the ECDLP formulation of the problem a distinguished point is a coordinate

with an easy-to-test-for property that only occurs in a small percentage of the points

considered [37]. A common distinguished point test is determining if the first t bits

of the binary representation of the x-coordinate of the point are all zero [12]. This

19



CHAPTER 3. LITERATURE REVIEW 20

can be done with a single or operation and thus is easy to test for. The next random

point in the parallel client process is found similarly to the serial Rho, an iterating

function of some design is applied to the randomly generated point.

Algorithm 2 Parallel Pollard Rho Client Process

Generate random point R0 = [a0]P + [b0]Q with random seed s
Compute next value with iterating function Ri+1 = f(Ri)
When a distinguished point Rd is found send s and Rd to Server.
Continue

Once a client process identifies a distinguished point it sends this value along with

the initial random seed to the server process, outlined in Algorithm 3. In our case

the client is sending a stream of Rd and s values.

The server process listens for these incoming tuples from all of the clients and

when it receives two Rd values that are identical and have different initial values it

attempts to determine the value of k. In our case again the server is attempting to

calculate the scalar values of: ad, bd, cd, and dd. Once these values are found a field

inversion operation is performed to find the final value for k, the multiplier in front

of point P . The parallel formulation of the Rho Algorithm has a speed up factor of

M, where M is the number of processors running the client process.

Algorithm 3 Parallel Pollard Rho Server Process

Look for collisions amongst the incoming s and Rd.
Use s to obtain:
Rd = [ad]P + [bd]Q and Rd = [cd]P + [dd]Q
Compute solution: Q = cd−ad

dd−bd
P

Studies have been performed that look at components of the generalized Pollard

Rho algorithm in attempts at finding efficiencies in their construction. The iterat-

ing function used in the Rho algorithm has been evaluated in [35] and [36]. These

studies looked at constructing a much more complicated iterating function than the

3 partition method first postulated by Pollard. Two categories of iteration function

replacements, or walks, were introduced: r additive walks and r + q mixed walks.

In short the r component of the walk represents the application of an adding group

operation, whereas the q component represents the application of a doubling group

operation. Through empirical testing it was determined that an r additive walk of

16 yielded a speed up of at least 1.25 when compared to the original Pollard formu-

lation. In the case of the r + q walks parameter choices of r ≥ 16 and q/r ≈ 1/4



CHAPTER 3. LITERATURE REVIEW 21

yielded a closer to random performance and therefore better demonstrated runtime

over Pollard’s original iterating function.

Alongside the dynamics of the actual Pollard Rho algorithm a study has been

published that looks at the effects of computing the Rho on the same group subse-

quent times. In [17] results were presented that showed that if attempting to solve

L instances of the Rho in the same group it is possible to do better then L subse-

quent independent runs of the Rho Algorithm if re-use of all previously calculated

distinguished points is possible. This process allows all L instances to be solved con-

secutively but since all distinguished points are retained the storage requirements are

much higher than is needed for each run.

3.1.2 Improvements to the Pollard Rho Algorithm applied

to the ECDLP

While a field of research has been developed that looks at the general dynamics of

the Rho algorithm there is a further body of literature that looks specifically at the

application of the Pollard Rho in the context of solving the ECDLP. This is most

likely due to the fact that elliptic curves are set to be at the forefront of industrial ap-

plications and therefore provide the most interesting landscape of applicable problem

spaces.

A prolific research team, Wang & Zhang, has produced a series of work looking at

this idea of making the Pollard Rho work faster for the ECDLP. In [43] a new iterating

function is proposed that uses point halving as the mechanism to decrease runtime.

Point halving is constructed as the inverse operation of point doubling: instead of

calculating 2P = P + P the intent is to find P half way through an interval if it is

known that Q = 2P . It was shown that there is some computational savings of using

this in place of the usual iterating function. In fact in a certain set of standardized

curves used in industry a saving in calculation of about 15% is achieved.

In the next work published [40] an efficiency is found that exploits the idea that

a p-th power of an element in the ECDLP is a cyclic shift of the normal basis rep-

resentation where p is the characteristic of the underlying field. What this means is

that it was possible to achieve a speed up factor of
√
m for the field Fpm when using

this cyclic shift in place of the usual iterating function.

An efficiency based on treating elliptic curve points as equivalence classes is pre-

sented in [38]. Here a negation map is created that puts curve points in the equivalence

classes {±P}. While this method creates a reduction in runtime of the Rho by almost



CHAPTER 3. LITERATURE REVIEW 22

a factor of
√

2 it is possible that the algorithm will get caught in certain loops when

iterating through points. The study presents methods of detecting these cycles and

constructing methods for escaping from them.

The frequently used Floyd’s cycle detecting algorithm is investigated in [39]. Here

a new method which retains a cache of points seen is implemented. After N points

have been calculated by the iterating function the lowest value seen is retained in the

cache. Then after every subsequent N iterations the lowest value is again retained and

compared against this cache. When the same value is seen it is possible to determine

the collision. The article speculates that a careful choice of N will enable this method

to perform well. Through empirical testing it was shown that it is possible to decrease

the run time by approximately 1%.

The last work produced by this research team is seen in [41]. Here the iterating

function is the focus of the study. In this case an efficiency is created by recognizing

that in point arithmetic obtaining P −Q requires minimal calculations when P +Q

is known. If both of these sets of values are retained when a distinguished point is

encountered this generally speaking allows for a reduction of the space searched by

a factor of 4, with a penalty of an additional 2 field multiplication operations and 1

field squaring operation at each iterating step.

Finally worthy of note, it has been shown that certain poor choices for the under-

lying ECDLP problem can result in a Rho Algorithm that trivially runs faster. In

[42] it was demonstrated that by taking automorphisms of curves over GF (2m) with

coefficients in GF (2) the Rho can be sped up by a factor of
√

2m by making clever

use of automorphisms of the curve. These curves, referred to as anomalous binary

curves, therefore need to be explicitly avoided when attempting to create an elliptic

curve cryptosystem.

3.2 Cryptographic Investigations using CI tech-

niques

Many survey articles have been published that summarize the current literature. In

particular [29] and [19] are comprehensive histories of cryptographic and cryptanalysis

studies involving computational intelligence (CI) techniques worth consulting. Useful

to note is that works often focus on the application of genetic algorithms (GA) as

opposed to other computational intelligence techniques. A discussion of CI techniques

and methodologies is presented shortly in Chapter 4 and the core components of these



CHAPTER 3. LITERATURE REVIEW 23

systems are elaborated there.

3.2.1 Classic Ciphers with CI

A focus seen in the literature is a concentration on using computational intelligence

techniques in attempts to break classical ciphers. These traditional ciphers are essen-

tially text randomization processes such as transposition, substitution, and columnar

substitution, among others. A specific example is the Caesar Cipher first presented

in Chapter 1.

Most of these traditional methods are only useful as teaching tools of crypto-

graphic principles and are not often seen in industry or in current research because

they are easily broken using known brute-force methods. However, the first few treat-

ments of using a genetic algorithm for ciphers appear in [32] and [21]. In these works

substitution ciphers are attacked with clever application of genetic algorithms. No-

table in these studies is the relatively poor performance of the GA, which acts as a

disincentive for further analysis of the problem.

Traditional ciphers are also the subject of [4]. In this work actual implementations

of 12 different methods presented in previous literature are empirically tested. It was

found that only 3 of these produced any successful result and only when used against

trivial key lengths.

3.2.2 Stream and Block Ciphers with CI

In addition to endeavours looking at classical text based ciphers there have been

some forays into analysis of stream and block based cryptosystems. These types of

ciphers are more contemporary and often operate on data once it is in its binary

representation. These ciphers perform a prescribed encryption operation on either

a continuously filling buffer, as in the case of the stream cipher, or by breaking the

data up into smaller word or byte sized sections, as with block ciphers.

In [2] a genetic algorithm was used to determine and attack weak keys in a block

based substitution permutation network. Here a weak key means one that allows

for an easy solution to the cryptosystem. Results showed that the GA was able to

determine a subset of those weak keys using small input text.

Tiny Encryption Algorithm (TEA) is the subject of a different study found in [20].

Here a combination of GA and a harmony search is presented. The presented system

attempts to determine the key used over a one round application of TEA using known

plaintext and corresponding ciphertext. Results showed the combined evolutionary



CHAPTER 3. LITERATURE REVIEW 24

scheme was able to determine degenerate keys without much work, but more difficult

key choices were not possible to decipher.

The RC4 stream cipher is examined in [6]. Here, as seen in most other studies, a

GA is used to find the permutation stored in the state register which lies as the heart

of the cipher. The study showed that by creating a GA with a slow adaptive mutation

process it was possible to find a solution for every permutation choice. The study

also provided an approximate upper bound for runtime of the algorithm required to

be reasonably sure that a solution will be found. This presented value was 2121.5

generations of evolution.

3.2.3 Cryptology with CI

Perhaps most common when looking at cryptographic studies is the idea of subverting

a cipher by finding a vulnerability in its construction or devising the secret key through

an unintended method, but there is a vein of research that looks at just the opposite.

In this case research is performed that attempts to strengthen cryptographic protocols

or to devise new systems altogether. There is a presence in the literature devoted to

the application of CI techniques to solve these problems.

A method of devising good parameter sets for elliptic curve systems is presented

in [33]. Here a GA is presented with the aim of finding the best choice for the

values a and b in the basic equation of an elliptic curve y2 = x3 + ax + b (first

articulated in Equation 2.1 in Chapter 2). This GA is put to work after the prime

for the underlying field is chosen. The reported results indicate that the GA was

mostly successful but in some circumstances returns elliptic curves with parameter

sets unsuitable for cryptographic use.

An attempt to encrypt a stream of data using a GA inspired mechanism is pre-

sented in [18]. Here an encryption scheme is presented that uses a random data

generation sequence that is then manipulated through a crossover operator. The

result is a seemingly random sequence of data that is obfuscated. The decryption

process then is the opposite operation, the same random sequence is started and fed

into the inverse crossover operation thereby regenerating the original stream data. A

similar study presented in [11] attempts to create a public key cryptographic system

around a pseudorandom number generator that has been manipulated by a genetic

algorithm. In [10] another cryptosystem constructed with computational intelligence

methodologies is presented. In this study a genetic algorithm was used to manipulate

parameters that were given to an artificial neural network that created a pseudo-



CHAPTER 3. LITERATURE REVIEW 25

random number generator. The application of the genetic algorithm created a more

robust system as it removed anomalies that could otherwise be detected by watching

the output of the pseudorandom number generator.

Finally, a survey paper [25] presents the landscape in current research in the

application of evolutionary processes to cryptographic domains. What is curiously

absent in this work, and the other work investigated in this literature review, is the

application of a genetic programming scheme to a cryptographic domain.

3.2.4 Elliptic Curves Cryptosystems with CI

While previously mentioned as a survey article, original research is also presented

in [19]. Many different studies are presented in this work but the most pertinent

to the current investigation is an experiment that considers the use of an artificial

neural network to find the least significant bit of an ECDLP solution. Finding this

value leads to a reduction in the computation time required to calculate the rest of

the solution. Field sizes of 14, 20, and 32 bits were investigated. This evolutionary

inspired technique managed to identify the correct solution after training at an average

rate of 57%. A control based on random search was used in the study as comparison

and it found the correct solution at an average rate of 65%.

3.3 The intersection of Pollard Rho and CI tech-

niques

The method used in the current study is to employ genetic programming to reduce

the number of iterations required of the Pollard Rho Algorithm that effectively has

a success rate of 100%. This is ensured due to the construction of the ECDLP as

stipulated in Chapter 2 and as described in [9]. To the best of the author’s knowledge

there has been no similar attempted study.



Chapter 4

Representation and Experiment

Design

With the adequate background information presented it is now possible to construct

the main experiment at the heart of this study.

4.1 Genetic Programming

Genetic Programming is a metaheuristic popularized by Koza [16] which mimics nat-

ural evolution. The goal of this study is to evolve a highly fit expression tree to rep-

resent the iterating hash function by first creating an initial population of randomly

generated expression trees based on simple components referred to as terminal nodes

and internal nodes and then evolving this population through successive generations

with the goal of finding the most fit final expression tree. Fitness is determined via the

application of a fitness function that will assign a numerical score to each expression

tree considered. With each generation this new population is created by probabilis-

tically applying reproduction and mutation and performing a selection process that

picks the most fit individuals to survive to the next generation.

In this scheme reproduction is performed by a single point cross over technique.

Two expression trees selected via probabilistic methods randomly pick a node. The

two trees are split at this node and swap the resulting sub trees. Mutation is per-

formed by probabilistically selecting an expression tree and probabilistically regen-

erating a simple sub-tree at a random node. Selection is performed by tournament

selection. This study was conducted using an evolutionary algorithm software mod-

elling package called Distributed Evolutionary Algorithms in Python (DEAP) [7].

26



CHAPTER 4. REPRESENTATION AND EXPERIMENT DESIGN 27

4.1.1 Expression Tree Nodes

The goal of this study is to evolve a highly fit genetic program expression tree to

represent the iterating hash function for the Pollard Rho Algorithm first introduced

in Chapter 2. These expression trees are comprised of two components: terminal

nodes and internal nodes. Expression trees can be constructed as binary trees or

may be written out as nested prefix expressions. When these trees are parsed they

become mathematical expressions that, in this study, will be used in place of the

standard hash function.

Terminal Nodes

Uncommonly, when compared to other genetic programming studies, the complete set

of terminals utilized was simply one operator: P.y. This represents the Y coordinate

of the point currently being considered by the hash function.

During the course of this study many different formulations of terminal nodes

were considered that provided less successful results. It was determined that using

just the y-coordinate produced better reductions in runtime, as opposed to schemes

that used the x -coordinate on its own or in combination with the y-coordinate. It

stands to reason that this might be the case because the y-coordinate moves along

the curve more quickly and covers a greater range as opposed to the x -coordinate,

which is symmetric about the x -axis and could possibly confuse the iterating function

due to this duplication of values. In a similar vein the introduction of trigonometric

functions and random number generators into the GP expression did not decrease

runtimes of the Rho algorithm. Empirical testing also determined that the inclusion

of a protected modulus operator did not aid in decreasing Rho iterations.

Internal Nodes

The set of internal nodes used by this study are commonly used, and are articulated

in the following list:

• operator.sum Integer sum of two operands

• operator.sub Integer difference of two operands

• operator.mul Integer product of two operands

• operator.neg Negation of a single operand



CHAPTER 4. REPRESENTATION AND EXPERIMENT DESIGN 28

Empirical testing showed that this set of operators was expressive enough to create

and evolve a diverse population of expression trees. The syntax of these internal

nodes are a direct result of the Python programming language used for modelling in

the DEAP software. Figure 4.1 shows an example expression tree formed during the

course of a run.

operator.sub(operator.neg(P.y),

operator.mul(operator.mul(P.y, P.y),

operator.add(P.y, P.y)))

Figure 4.1: Example of Evolved Expression Tree

4.1.2 Algorithm

The genetic programming algorithm utilized in this study is based on Chapter 7 of

[1] and is presented in Algorithm 4.

Algorithm 4 Evolutionary Algorithm

Input: NumGen, PopSize, pc, pm
Output: a, the best individual found during evolution
1: t← 0
2: P (t)← initialize(PopSize)
3: F (t)← evaluate(P (t), PopSize)
4: while t ≤ NumGen do
5: P

′
(t)← crossover(P (t), pc)

6: P
′′
(t)← mutate(P

′
(t), pm)

7: F (t)← evaluate(P
′′
(t), PopSize)

8: P (t+ 1)← select(P
′′
(t), F (t), PopSize)

9: t← t+ 1
10: end while
11: a← individual from P (t) with best Fitness
12: return a

There are four inputs to the algorithm. NumGen represents the number of gener-

ations for which the evolution will be performed. PopSize represents the population

size, or the number of individual candidate expression trees seen in each generation.

Finally there is pc which is the probability of crossover, and pm is the probability of

mutation.

To begin a time counter t is initialized. Next the population is initialized and

assigned to P (t). In the initialization, a collection of randomly generated expression



CHAPTER 4. REPRESENTATION AND EXPERIMENT DESIGN 29

trees are created using the terminal and internal nodes. This initial population is

devised with a method known as half and half up to 2 levels deep [26]. Here half and

half represents an even distribution of trees generated using the grow and full methods

of random tree generation. With the grow method trees are randomly created by

selecting both internal and terminal nodes until maximum depth is reached, after

which only terminal nodes are selected. With the full method trees are generated

in such a way that internal nodes are selected randomly until maximum depth is

achieved, at that point only terminal nodes are further selected. This initialization

method is a very common approach as it provides a well distributed set of candidate

expression trees.

Additionally a maximum tree size of 17 is enforced during the evolutionary process.

This value, popularized by Koza [16], is a common choice for this parameter. This

is implemented as a method to control bloat. Bloat is characterized as unwieldy

growth of the expression tree to a point that doesn’t improve the performance of the

expression. Without a hard limit on tree size the evolution could produce rather large

expressions that simply grow in size but do not improve fitness.

Next fitness is evaluated (line 3) across all members of the population. The method

of determining fitness is explained extensively in the following section. Line 4 is the

start of the main loop of the algorithm. In line 5 the population P
′
(t) is created by

applying the crossover operator probabilistically against the threshold of pc. With

crossover two expression trees each randomly select a node and exchange the two

subtrees that are rooted at that random node. In line 6 a probabilistically chosen

number of individuals in the population, this time with the threshold of pm, are

mutated. Mutation, again a random process, selects some node of the individual

being considered and swaps it with a new randomly generated sub-tree; post mutation

this population becomes P
′′
(t). In line 7 the entire newly created population has its

fitness re-evaluated.

In line 8 the population for the next generation is created using a selection method.

In this study the selection method is known as tournament selection. Here a prede-

fined number of individuals are compared to one another and the one with the best

fitness is retained. At the end of the loop the generation counter is incremented and

if still less than the NumGen the process repeats itself. Finally after the evolution is

exhausted we pick the best fit individual a from the final population.

The values of the parameters just described are enumerated in Table 4.1. This

constructed set of runtime parameters was determined through extensive empirical

testing. Most values selected for runtime parameters are standard fare. For example a



CHAPTER 4. REPRESENTATION AND EXPERIMENT DESIGN 30

Parameter Value
Population Size 1000

Generations 100
Max Depth of Program Trees 17

Probability of Crossover 0.9
Probability of Mutation 0.1

Tournament Selection Size 5

Table 4.1: Runtime Parameters

crossover probability of 90% and mutation probability of 10% are usually the baseline

choices in the standard construction of a genetic programming study. Other variations

of these two values were experimented with, however, there was no clear consistent

improvement discovered in doing so. Perhaps what is worth noting is the higher

then usual choice of a tournament selection size of 5. The baseline value is often 3,

however, when that was implemented in this study it was found that the evolution did

not progress with a consistent generation over generation improvement. The necessity

of choosing 5 as the selection size might be a consequence of having a fitness function

that is not active enough for the genetic program. Fitness is treated exhaustively

in the following section. Another parameter worth noting is number of generations.

The selected value of 100 is again high when compared to the baseline choice. This

might also be a consequence of compensating for a relatively flat fitness function.

4.2 Fitness Function

The fitness function is an integral part of the genetic programming process. The

rationale for the choice of function here is to randomize the values produced by the

EvoH hash function. The supposition is that if it is adequately random the next

points considered by the Rho process will be well distributed through the curve and

result in a lower number of iterations to find the value of k. Since each curve is unique,

as well as the choices of P and Q, the iterating function used for each Rho process

should be created in a way that maximizes randomness for the choices of parameters.

Randomness in the distribution of hash values was assessed by passing a collection

of test points of the elliptic curve in consideration through the evolved hash function

and analyzing the sequence of resultant values. Each individual was therefore eval-

uated on a sequence of values in the range 1 to L that was the same length as the

number of test points used. The number of test points used to evaluate fitness varies

and was assigned based on the number of digits in the the field size of the curve.



CHAPTER 4. REPRESENTATION AND EXPERIMENT DESIGN 31

Number of Digits in Field Size Number of Test Points
5 32
6 64
7 128
8 256

Table 4.2: Test Point Sizes

The quantities of test points chosen were determined through empirical testing and

are summarized in Table 4.2. Admittedly selecting intervals based on the number

of digits in the field creates a rather wide distribution. Some fine tuning and closer

examination might reveal a method of determining the perfect number of test points

to use. In this study a sweep from low to high was conducted, and as soon as a

quantity of test points started to perform well it was selected as the representative of

the interval.

Many different fitness functions were attempted during the construction of this

study, not all however, were successful. A preliminary examination looked at unique

values produced by the test point sequence. Here the fitness function tried to ensure

that each value from 1 to L was represented with an equal number of sequence mem-

bers. This fitness formulation did not result in lower iteration numbers. Similarly

the most common methods of calculating averages were combined as a fitness mea-

sure. This included taking the mean, median and mode of the test point sequence.

These average seeking fitness functions also failed to reduce the number of Rho it-

erations. Another class of fitness function considered was entropy based. Entropy

here measures the average amount of information contained in the sequence versus

the amount of values it produces and is based on Shannon’s work [31]. As with pre-

viously described classes of fitness functions these failed to produce a reduction in

Rho iterations. Lastly, attempts to create a many-objective fitness function based

on combining multiple average calculation methods failed to produce positive results.

No assignment of weights could be devised that provided a consistent meaningful

reduction in iterations taken.

It stands to reason that a more thorough calculation of fitness might have been

attempted. It could be easy to envision a formulation where the Rho algorithm itself

is run to completion or for a certain number of iterations with each candidate as

a method of assessing fitness. The immediate drawback of such a scheme is that

computation time would be prohibitive. As will be presented in Chapter 5, a single

run of the Rho algorithm with an evolved iteration function easily takes a few days



CHAPTER 4. REPRESENTATION AND EXPERIMENT DESIGN 32

to complete. Additionally running it for a certain number of iterations is also non-

instructive. There are no intermediate indicators that an iterating function is doing

better then a different one: only the total number of iterations performed by the Rho

can be quantified, and that value can only be captured upon completion.

The fitness function used in this study was inspired by Knuth’s work on perfect

distribution of hash values produced by hash functions that approximate the golden

ratio [14]. Equations 4.1 and 4.2 show the two calculations comprising the fitness

function.

TPS =
t∑

n=1

EvoH(TestPoint[n])(mod (L+ 1)) ∗ φ (4.1)

fitness =
TPS

t
+ penalty (4.2)

Here we seek to minimize the fitness value. A sequence of test-points, t in length,

from the curve under consideration are randomly selected and added to an array called

R, which is calculated in line 3 of Algorithm 1. Each test point has the candidate

EvoH function applied to it. This creates a sequence of integers in the range 1 to

L. As described previously L is the number of sections the curve is split into, and in

this study fixed to the value 32. This range is maintained by applying a mod L + 1

operation to every point after it has been computed in EvoH. This is necessary to

ensure that only a valid section number is selected by the hash function. Each value

in this sequence is then multiplied by φ and summed across all test points resulting

in the value Test Point Score (TPS) found in Equation 4.1. This value, TPS, is

then divided by the number of test points used and a penalty is applied, as shown in

Equation 4.2.

A penalty is applied to the score if a candidate function does not supply enough

distinct values when used against the complete collection of test points. This thresh-

old was set to 53% of L and was determined via empirical testing. This penalty

discourages candidate functions that return all the same value thereby trivially cre-

ating a better fitness.

4.3 A Complete Run

Having now developed the requisite components of the genetic programming con-

struction, a picture of a complete run can be presented. Each run in this study is

comprised of two components: a genetic programming evolution to find a candidate

hash function, and a run of the Rho algorithm to solve the ECDLP using this evolved



CHAPTER 4. REPRESENTATION AND EXPERIMENT DESIGN 33

hash function. This experimental run is compared against a control run of the Rho

algorithm using the original formulation of the iterating function, using the same

initial seed value as the evolved process. A comparison of the number of iterations of

the original formulation is compared against the number of iterations performed by

the evolved hash function.



Chapter 5

Results and Discussion

The most direct way to assess the benefit of the evolved hash function over the original

hash function is to compare the number of iterations it takes to solve for the same

ECDLP for the same curves. The following is an analysis and presentation of the

data collected by this study.

5.1 Curves Examined and Multiple Runs

The dataset is comprised of 40 different curves of varying field sizes, chiefly arranged

by the number of digits in the field size. This field size ranges from 5 to 8 digits.

The actual fields that the curves are based on can be found, ordered from smallest

to largest, in Tables 5.1, 5.2, 5.3, and 5.4. The rough equivalents for bits needed for

the binary representation of the field are summarized in Table 5.5.

Curve Field
1 15349
2 17027
3 18917
4 19913
5 20731
6 29009
7 31319
8 37117
9 42937
10 59743

Table 5.1: Fields Examined 5 Digits in Length

34



CHAPTER 5. RESULTS AND DISCUSSION 35

Curve Field
1 117811
2 128813
3 167593
4 175687
5 303679
6 389527
7 406807
8 521393
9 783533
10 965267

Table 5.2: Fields Examined 6 Digits in Length

Curve Field
1 1009807
2 1142569
3 1196999
4 1288657
5 2297411
6 3370739
7 5569079
8 5689007
9 8764919
10 9032839

Table 5.3: Fields Examined 7 Digits in Length

Curve Field
1 10184123
2 16077749
3 18224243
4 29151791
5 34641751
6 39667153
7 47102819
8 47871209
9 55921661
10 90050687

Table 5.4: Fields Examined 8 Digits in Length



CHAPTER 5. RESULTS AND DISCUSSION 36

Number of Digits in Field Binary Representation Equivalent
5 approximately up to 16 bits
6 approximately 17–20 bits
7 approximately 20–24 bits
8 approximately 24–27 bits

Table 5.5: Field Size of Examined Curves expressed in bits

Figure 5.1: Number of Iterations Required for the 10 Curves with 5 Digits

5.2 Comparison of Original Rho Algorithm against

Evolved Counterpart

The results of these comparison between the original Rho Algorithm and the evolved

Rho Algorithm are presented in Figures 5.1, 5.2, 5.3, and 5.4 respectively. For the ten

curves presented in each graph the mean score of the original Rho algorithm based on

30 runs is charted, along with the mean score of 30 runs of the evolved Rho algorithm

using the same seed. The curves are arranged from smallest to largest. A confidence

interval of 95% is also indicated.

The Rho algorithm using the evolved function clearly results in a lower number

of iterations needed to find the solution to the ECDLP versus the original Rho Al-

gorithm. This is observed in all of the 40 the curves examined. The evolved process



CHAPTER 5. RESULTS AND DISCUSSION 37

Figure 5.2: Number of Iterations Required for the 10 Curves with 6 Digits

Figure 5.3: Number of Iterations Required for the 10 Curves with 7 Digits



CHAPTER 5. RESULTS AND DISCUSSION 38

Figure 5.4: Number of Iterations Required for the 10 Curves with 8 Digits

consistently turns in significantly fewer overall iterations of the Rho algorithm to find

k although in some cases the confidence interval is larger than for the original process.

Of all 40 curves the one that performed the best with an evolved iterating function

was based on F406807. In this case the reduction in required number of iterations was

48% when compared to the number of iterations required by the original formulation.

This is seen in the large dip in the curve labelled 7 in Figure 5.2. What is interesting

to note, however, is that the range of the confidence interval at 95% certainty of

the original Rho algorithm is smaller than for the evolved Rho algorithm, which is a

difference of 8%. This is an interesting trend that manifests in many other curves as

well. It would appear that the evolved Rho produces a bulk reduction in iterations

but within a large range of values. The numeric scores tabulated for this particular

curve, a plot of the fitness change during evolution, and the evolved expression trees

from this curve are presented as Appendices A, B, and C.



CHAPTER 5. RESULTS AND DISCUSSION 39

5.3 Comparison of Evolved Iterating Function Against

r + q Mixed Walks

As previously mentioned, this study is applying a novel application of genetic pro-

gramming to the Pollard Rho Algorithm. This uniqueness has resulted in observa-

tions that are difficult to compare against previously published research. The closest

comparator in the literature is provided by Teske [36] who investigated the iterating

function of the Rho algorithm and attempted to replace it with what was termed

an r + q mixed walk. In short the r parameter represents the quantity of adding

operations and the q parameter represents the quantity of doubling operations in the

iterating function. The addition operation can be thought of as equivalent to the L

parameter of the current study, or the amount of subdivisions into which the curve is

separated. The doubling operation is akin to the point doubling operation previously

described in Chapter 2. With an r + q mixed walk the iterating function would

choose a section r and then apply the doubling operator q times to arrive at the

selected point. Empirical testing determined that r = 16 and q = 2 provided the

best improvement over the original Pollard iterating function.

Teske’s work did not count iterations performed by the Pollard Rho Algorithm to

compare different iterating function methodologies against one another but assigned

an L-score to each methodology. This was calculated by averaging out a large number

of ECDLP solutions found using different iterating function methodologies. The

calculation of the L-score is presented in Equation 5.1. The value n is the number

of elliptic curve points found in the field of the ECDLP and is the same n presented

in Algorithm 1 found in Chapter 2. A lower L-score indicates finding the solution to

the underlying ECDLP in fewer iterations of the Rho algorithm then a methodology

with a higher L-score.

L :=
number of iterations until a match is found√

n
(5.1)

The L-score of the best consistently performing r + q mixed walk is transcribed

directly from [36] in the first row of Table 5.6 with the label Teske. To provide a direct

comparison the average L-score of all curves investigated with EvoH from Table 5.1

have been calculated and presented with the label EvoH with 5 digit long fields in

the following row. Additionally the L-scores of all the curves from Table 5.2 using

EvoH are averaged together and are presented in the row labeled EvoH with 6 digit

long fields. This is repeated in the last two rows with the curves from Tables 5.3 and



CHAPTER 5. RESULTS AND DISCUSSION 40

Methodology L-Score
Teske 1.427

EvoH with 5 digit long fields 1.063
EvoH with 6 digit long fields 1.100
EvoH with 7 digit long fields 1.156
EvoH with 8 digit long fields 1.204

Table 5.6: L-Scores of Different Partition Functions

5.4 with appropriately defined labels.

Teske conducted experiments on curves in the range of [107, 108]. The curves with

fields 8 digits in length, those found in Table 5.4, provide the closest comparison

to this range. We see that when comparing the two methodologies using curves of

similar size EvoH performs better (1.204 versus 1.427). This difference means that

EvoH takes approximately 16% fewer iterations. Another trend that is demonstrated

in Table 5.6 however, is that as the amount of numbers in the field size increases the

L-Score increases as well. When moving from 5 digits to 6 digits the L-score increases

approximately 4%. From 6 to 7 digits in length there is an approximate 5% increase.

Finally with 7 to 8 digits in length this increase is approximately 4%. This trend

would seem to demonstrate that EvoH might eventually no longer outperform r + q

mixed walks at a much larger field size.

5.4 Comparison of Evolved Iterating Function against

Artificial Neural Network

Similarly, as previously mentioned in Chapter 3 an attempt to use computational

techniques to find the solution to the ECDLP was presented in [19]. In this study an

Artificial Neural Network (ANN) was trained to find the least significant digit in an

ECDLP. Knowing this value drastically reduces the amount of computation required

to find the full solution to the problem. A summary of results found is presented

in Table 5.7. Here best accuracy refers to amount of curves the methodology was

able to find the solution for in each curves size, based on bit length. A control group

used in the study that simply used a random search to find the solution obtained an

accuracy of 65%. Once averaged across all instances of bit size and ANN used by the

study a total accuracy of 57% was calculated. Clearly since this method fails to find

the correct solution in all cases, something which EvoH is guaranteed to do, it is not

a reliable method to solve the ECDLP.



CHAPTER 5. RESULTS AND DISCUSSION 41

Bit Size of Curve Best Accuracy
14 61.11%
20 59.52%
32 63.16%

Table 5.7: ANN Laskari et al accuracy with different curve sizes

Methodology Bit Size of Curves
EvoH 5 digits long up to 16
EvoH 6 digits long 17 – 20
EvoH 7 digits long 20 – 24
EvoH 8 digits long 24 – 27
r + q Teske 24 – 29
Laskari et al 14, 20, 32

Table 5.8: Field Size of Examined Curves Expressed in Bits

5.5 Runtime of Experiments

A single experiment for a curve of field size 5 digits (or up to approximately 16 bits)

involving a complete evolution of 100 generations and a corresponding Rho algorithm

generally completed within a few minutes running on a mid-power i5 desktop com-

puter. Curves of field size 6 digits (or approximately 17–20 bits) required a few hours

to complete. Curves of field size 7 digits (or approximately 20–24 bits) required days

of runtime for a single experiment to complete. Finally, curves of field size 8 digits (or

approximately 24–27 bits) completed in about double the amount of time required

for those of 7 digits. A comparison of the bit sizes of all three of the methodologies

examined is presented in Table 5.8.

These values can also be compared to the Certicom challenge curves [3]. First

presented in 2004 the Certicom company introduced a series of ECDLP problems

and offered a bounty to researchers who could solve them. This ostensibly was to

increase awareness and adoption of elliptic curve cryptosystems. An introductory

exercise presented in the white paper proposed that while utilizing a cluster of 3000

computers an expected runtime for a 79 bit curve would be a few hours, an expected

runtime of a few days for an 89 bit curve, and an expected runtime of a few weeks for

a 97 bit curve. Researchers have found solutions to all three of these exercise curves

and to date only one solution for the Level 1 curves proposed by Certicom has been

found. This involved solving a 109 bit curve using a cluster of 2600 computers that

ran for 17 months. The method used to find the solution was a modified version of

the parallel Rho algorithm.



CHAPTER 5. RESULTS AND DISCUSSION 42

5.6 Observable Results

An important fact worth noting is that the solution to the ECDLP being investigated

was found 100% of the time. This perfect success rate was achieved across all 40

curves for each of the 30 runs performed. Considering all 40 curves and all 30 runs,

the evolved Rho algorithm required approximately 71% of the number of iterations

compared to the original Rho algorithm. Compare these results to those from [19]

which investigated curves of similar size (14, 20 and 32 bits), yet only managed to

find the correct solution on average 57% of the time.

The curves investigated in this experiment are not of the same calibre as those

found in industrial applications. The fields that were chosen for this study were

used to determine if an evolved iterating hash function decreased runtime of the Rho

algorithm. At the current time, choosing larger curves would not allow an adequate

number of runs to be completed for each experiment in a reasonable time. With

this understanding, however, this initial study provides significant hope that with

further study computational intelligence techniques will prove to be a viable option

for cryptanalysis of ciphers based on elliptic curves.



Chapter 6

Conclusion and Future Work

This study presents an initial analysis of how to improve Pollard’s Rho Algorithm

using computational intelligence techniques. It is shown that replacing the default

iterating function with an evolved genetic programming expression reliably causes a

reduction in the number of iterations needed to find the solution to the ECDLP.

6.1 Contributions

Observed results indicate that there is a strong correspondence between an evolved,

randomly distributed, iterating hash function and a reduction in the number of iter-

ations performed by the Rho algorithm. In this case, “randomly distributed” means

that the iterating function is evolved to distribute a collection of randomly chosen

test points from the elliptic curve in question through out all of the sections into

which the curve is subdivided as the Rho algorithm progresses. This is the param-

eter known as L in Algorithm 1 first presented in Chapter 2. These results were

obtained by using a common application of genetic programming parameters. The

unique characteristic of this study is the fitness function applied to the problem. This

fitness function attempted to favour candidate functions that increased the random-

ness of the distribution of these test points and to penalize candidate functions that

provided the same value through a constant as opposed to an expression. It also

penalized candidate functions that could not produce enough unique values when all

test points were considered. As described in Chapter 4 if the values produced by the

evolved iterating hash function did not at least produce a rate of 53% unique values

in the sequence it prematurely converged to a trivially good fitness score and cease

evolving in a meaningful way.

It is promising to note that this conclusion was borne out across all runs, and

43



CHAPTER 6. CONCLUSION AND FUTURE WORK 44

across all curves. That is to say in 100% of all test cases investigated, the evolved

expression tree yielded a lower average number of iterations compared to the original

formulation of the process proposed by Pollard in [27]. This included the progression

from small field sizes to larger field sizes. This observed reduction was not insignificant

and points to promising future studies that could exploit this phenomenon for an even

greater reduction in Rho algorithm runtime by a further analysis of the application

of a genetic programming technique to the iterating function.

6.2 Future Work

6.2.1 Constructing the attack in other ways

This evolutionary process could easily be extended to the Parallel Pollard Rho without

much need for adaptation. As seen in Algorithm 2 in Chapter 3, a form of iterating

function is needed by each client component. There is no reason why this could

not be substituted with an evolved iteration function as outlined in the methodology

presented in this study. What might also provide interesting results is to re-envision

the application of the evolutionary process in the parallel formulation. For example,

with a sufficiently sophisticated genetic algorithm it might be possible to evolve a

better definition of “distinguished point”. Further it might be possible to combine

these two criteria in a mult-objective fitness function that attempts to investigate if

the application of both of these factors results in an even further reduction in runtime.

As it stands now the presented process only investigated whether an evolved hash

function performs better then the original formulation of the iterating function. If

the initial purpose of investigation is to simply find the solution to the ECDLP many

short-cuts and different configurations of the process could be investigated. For exam-

ple there has been some analysis (e.g. [37] and [9]) that has calculated the expected

number of iterations that one can expect when running the Pollard Rho algorithm

against a particular curve. If one were to cross this threshold with a particular ex-

pression tree, then it might be beneficial to stop the process, add the used expression

tree to a black list, and re-evolve a new unique expression tree and start again. If the

fitness score is carefully observed and recorded this additional evolutionary process

might by conducted in such a way that it continues to be evolved until it passes the

fitness score of the initial expression tree. It might also be possible to evolve successive

well distributed hash functions in attempt to determine if a common characteristic is

seen in all of them, thereby providing some insight into the structure of the chosen



CHAPTER 6. CONCLUSION AND FUTURE WORK 45

curve, or in fact the dynamics of iterating through members of a group.

6.2.2 Refinements to the Genetic Programming Construc-

tion

This study applied a very common configuration of the genetic programming process

to a novel domain. There might be some value in investigating this construction to

see if it is possible to change some of these default configurations. For example the

set of terminal and internal nodes might be modified to be more specific to elliptic

curve algebra. The addition of a point doubling operator to the internal node set for

instance might allow the evolved hash function to perform even better then the set of

basic mathematical operators. The inclusion of a point multiplication operator with

an integer constant might work even better than simply a point doubling operator.

This study also did not look at varying the L parameter, and so it might be feasible

to include this value as part of the evolutionary construction. For example, a multi-

objective construction could be envisioned that attempts to find not only a random

distribution of points but also an effective number of sections into which the points

are to be distributed. It might also be worth investigating the best maximum tree

size of the expression trees for different curves. For smaller curves, it is possible that

decreasing the maximum tree size will improve results by better controlling bloat.

Meanwhile, increasing the maximum tree size may allow the process to scale to larger

curve sizes.

Another avenue of research that might prove useful is to study the application of

a different fitness function. The prevailing sentiment relies on the assumption that a

highly distributed iterating function will operate more randomly, thus requiring fewer

iterations. A fitness function could be proposed that calculates this randomness in

different methods than the one investigated here. For example by creating a weighted

sum of a mean and median calculation. Or it might be possible to devise a fitness

function that is based on the entropy created by the evolved iteration function. Lastly

a topic of further investigation might be the selection process of the test points. Here a

random sample of points was collected and a fixed number was enforced across a large

set of possibilities. It might be beneficial to sample these points more consistently

across the contours of the curve. Additionally it might be possible to arrive at a

better number of test points to utilize based on the number of points in the curve.



Bibliography

[1] Thomas Back, David B. Fogel, and Zbigniew Michalewicz, editors. Basic Algo-

rithms and Operators. IOP Publishing Ltd., Bristol, UK, 1st edition, 1999.

[2] J.A. Brown, S. Houghten, and B. Ombuki-Berman. Genetic algorithm crypt-

analysis of a substitution permutation network. In Computational Intelligence

in Cyber Security, 2009. CICS ’09. IEEE Symposium on, pages 115–121, March

2009.

[3] Ceritcom. Certicom ecc challenge. http://www.certicom.com/images/pdfs/challenge-

2009.pdf, 2009.

[4] Bethany Delman. Genetic Algorithms in Cryptology. M.Sc., Rochester Institute

of Technology, Rochester, New York, 2004.

[5] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, November 1976.

[6] Benjamin Ferriman and Charlie Obimbo. Solving for the rc4 stream cipher state

register using a genetic algorithm. International Journal of Advanced Computer

Science and Applications, 5(5):216–223, 2014.

[7] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.

Journal of Machine Learning Research, 13:2171–2175, Jul 2012.

[8] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge

University Press, New York, NY, USA, 1st edition, 2012.

[9] Darrel R. Hankerson, Scott A. Vanstone, and A. J. Menezes. Guide to elliptic

curve cryptography. New York : Springer, 2004.

46



BIBLIOGRAPHY 47

[10] S. Jhajharia, S. Mishra, and S. Bali. Public key cryptography using neural

networks and genetic algorithms. In 2013 Sixth International Conference on

Contemporary Computing (IC3), pages 137–142, Aug 2013.

[11] Rajat Jhingran, Vikas Thada, and Shivali Dhaka. Article: A study on cryptog-

raphy using genetic algorithm. International Journal of Computer Applications,

118(20):10–14, May 2015.

[12] Ju-Sung Kang and Okyeon Yi. On distinguished points method to implement a

parallel collision search attack on ecdlp. In FGIT-SecTech/DRBC, volume 122 of

Communications in Computer and Information Science, pages 39–46. Springer,

2010.

[13] Philip N. Klein. A Cryptography Primer: Secrets and Promises. Cambridge

University Press, 2014.

[14] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.)

Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood

City, CA, USA, 1998.

[15] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,

48(177):203–209, January 1987.

[16] John R. Koza. Genetic programming : on the programming of computers by

means of natural selection. Complex adaptive systems. Cambridge, Mass. MIT

Press, 1992. A Bradford book.

[17] Fabian Kuhn and René Struik. Random Walks Revisited: Extensions of Pol-

lard’s Rho Algorithm for Computing Multiple Discrete Logarithms, pages 212–

229. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[18] Anil Kumar and M. K. Ghose. Overview of information security using ge-

netic algorithm and chaos. Information Security Journal: A Global Perspective,

18(6):306–315, 2009.

[19] E. C. Laskari, G. C. Meletiou, Y. C. Stamatiou, and M. N. Vrahatis. Cryptogra-

phy and Cryptanalysis Through Computational Intelligence. In Nadia Nedjah,

Ajith Abraham, and Luiza de Macedo Mourelle, editors, Computational Intelli-

gence in Information Assurance and Security, number 57 in Studies in Compu-

tational Intelligence, pages 1–49. Springer Berlin Heidelberg, 2007.



BIBLIOGRAPHY 48

[20] Eddie Yee-Tak Ma and Charlie Obimbo. An evolutionary computation attack

on one-round tea. Procedia Computer Science, 6:171–176, 2011.

[21] Robert A. J. Matthews. The use of genetic algorithms in cryptanalysis. Cryp-

tologia, 17(2):187–201, 1993.

[22] A. J. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptog-

raphy. CRC Press Series on Discrete Mathematics and its Applications. CRC

Press, Boca Raton, FL, 1997.

[23] Victor S Miller. Use of Elliptic Curves in Cryptography. In Lecture Notes in

Computer Sciences; 218 on Advances in cryptologyCRYPTO 85, pages 417–426,

New York, NY, USA, 1986. Springer-Verlag New York, Inc.

[24] Fabien A. P. Petitcolas. Kerckhoffs’ Principle, pages 675–675. Springer US,

Boston, MA, 2011.

[25] S. Picek and M. Golub. On evolutionary computation methods in cryptography.

In 2011 Proceedings of the 34th International Convention MIPRO, pages 1496–

1501, May 2011.

[26] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide

to Genetic Programming. Lulu Enterprises, UK Ltd, 2008.

[27] J. Pollard. A monte carlo method for factorization. BIT Numerical Mathematics,

15(3):331–334, September 1975.

[28] J. M. Pollard. Monte Carlo Methods for Index Computation mod p. Mathematics

of Computation, 32(143):918–924, July 1978.

[29] Ram Ratan. Applications of genetic algorithms in cryptology. In Proceedings

of the Third International Conference on Soft Computing for Problem Solving,

pages 821–831. Springer, 2014.

[30] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, February

1978.

[31] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, July 1948.



BIBLIOGRAPHY 49

[32] Richard Spillman, Mark Janssen, Bob Nelson, and Martin Kepner. Use of a

genetic algorithm in the cryptanalysis of simple substitution ciphers. Cryptologia,

17(1):31–44, January 1993.

[33] V. S. Shankar Sriram, Rahul Ramadas, Rashmi Sahay, and G. Sahoo. Optimizing

elliptic curve domain parameters using genetic algorithms. International Journal

of Secure Digital Information Age, 1(2), 2009.

[34] Suetonius. The Lives of the Twelve Caesars.

[35] Edlyn Teske. Speeding up Pollard’s rho method for computing discrete loga-

rithms. In Joe P. Buhler, editor, Algorithmic Number Theory, number 1423 in

Lecture Notes in Computer Science, pages 541–554. Springer Berlin Heidelberg,

1998.

[36] Edlyn Teske. On Random Walks for Pollard’s Rho Method. Mathematics of

Computation, 70(234):809–825, April 2001.

[37] Paul van Oorschot and Michael J. Wiener. Parallel Collision Search with Crypt-

analytic Applications. Journal of Cryptology, 12(1):1–28, January 1999.

[38] Ping Wang and Fangguo Zhang. Computing elliptic curve discrete logarithms

with the negation map. Information Sciences, 195:277–286, July 2012.

[39] Ping Wang and Fangguo Zhang. An Efficient Collision Detection Method for

Computing Discrete Logarithms with Pollard’s Rho. Journal of Applied Mathe-

matics, pages 1–15, January 2012.

[40] Ping Wang and Fangguo Zhang. Improved pollard rho method for comput-

ing discrete logarithms over finite extension fields. J. Comput. Appl. Math.,

236(17):4336–4343, November 2012.

[41] Ping Wang and Fangguo Zhang. Improving the parallelized pollard rho method

for computing elliptic curve discrete logarithms. In Proceedings of the 2013

Fourth International Conference on Emerging Intelligent Data and Web Tech-

nologies, EIDWT ’13, pages 285–291, Washington, DC, USA, 2013. IEEE Com-

puter Society.

[42] Michael J. Wiener and Robert J. Zuccherato. Faster Attacks on Elliptic Curve

Cryptosystems, pages 190–200. Springer Berlin Heidelberg, Berlin, Heidelberg,

1999.



BIBLIOGRAPHY 50

[43] Fangguo Zhang and Ping Wang. Speeding up elliptic curve discrete logarithm

computations with point halving. Designs, Codes and Cryptography, 67(2):197–

208, May 2013.



Appendix A

Best Evolved Rho Iterations

The data presented here is the Rho algorithm iteration counts used to solve the

ECDLP problem over F406807 using the original formulation and the evolved for-

mulation. This curve showed the highest reduction of iterations between the two

formulations of all the curves investigated in the course of this study.

51



APPENDIX A. BEST EVOLVED RHO ITERATIONS 52

Run Original Rho Iterations Evolved Iterations
1 765 674
2 792 901
3 809 641
4 820 395
5 840 252
6 928 840
7 960 741
8 960 611
9 984 572
10 1030 92
11 1041 132
12 1048 928
13 1074 791
14 1077 366
15 1092 404
16 1130 402
17 1222 371
18 1424 669
19 1516 346
20 1564 219
21 1675 880
22 1892 931
23 2272 40
24 785 585
25 872 169
26 935 747
27 1044 392
28 1119 466
29 1305 696
30 2073 319

Table A.1: Run details for best found evolved solution for F406807



Appendix B

Fitness Plot of Most Improved

Rho Score

This is the fitness plot of the evolution that produced the greatest reduction in number

of iterations for the Pollard Rho Algorithm in the curves investigated in this study.

This shows values averaged over 30 courses of evolution for the curve defined over

F406807.

53



APPENDIX B. FITNESS PLOT OF MOST IMPROVED RHO SCORE 54

Figure B.1: Fitness plot of F406807



Appendix C

Best Performing Evolved Hash

Functions

The following is the complete set of expression trees that were evolved for F406807.

Run 1

operator.neg(operator.neg(P.y))

Run 2

operator.sub(operator.add(P.y, P.y), operator.neg(P.y)

Run 3

operator.add(operator.add(operator.mul(operator.neg(P.y),

operator.mul(P.y, operator.neg(P.y))),

operator.mul(P.y, operator.mul(

operator.mul(operator.neg(P.y),

operator.mul(P.y, operator.mul(operator.neg(P.y),

operator.mul(operator.mul(P.y, operator.mul(P.y, P.y)),

operator.add(operator.add(operator.neg(P.y), P.y),

operator.neg(P.y)))))),

operator.add(operator.add(operator.neg(P.y), P.y), P.y)))),

operator.add(P.y, operator.add(operator.add(P.y, P.y),

operator.sub(P.y, operator.mul(operator.neg(P.y),

operator.mul(P.y, P.y))))))

Run 4

55



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 56

operator.neg(operator.sub(

operator.mul(operator.mul(

operator.add(operator.mul(operator.add(

operator.add(P.y, P.y), P.y),

operator.sub(operator.mul(operator.add(P.y, P.y),

operator.add(P.y, P.y)), P.y)), P.y),

operator.sub(operator.mul(operator.add(P.y, P.y), P.y), P.y)),

operator.add(P.y, P.y)),

operator.sub(operator.mul(operator.add(P.y,

operator.mul(P.y, P.y)), P.y), P.y)))

Run 5

operator.sub(operator.sub(operator.sub(P.y,

operator.mul(operator.sub(operator.neg(

operator.mul(operator.mul(operator.sub(P.y,

operator.mul(operator.sub(P.y,

operator.mul(operator.sub(P.y, P.y),

operator.add(P.y, P.y))),

operator.add(P.y, P.y))), P.y),

operator.add(P.y, P.y))), P.y),

operator.add(P.y, operator.sub(P.y,

operator.mul(operator.sub(P.y, P.y), P.y))))), P.y),

operator.neg(operator.sub(P.y,

operator.mul(operator.mul(operator.mul(

operator.sub(P.y, operator.mul(P.y,

operator.add(P.y, operator.add(P.y, P.y)))),

operator.add(P.y, operator.mul(P.y, P.y))),

operator.add(P.y, P.y)), operator.add(P.y, operator.add(P.y, P.y))))))

Run 6

operator.sub(operator.sub(operator.sub(

operator.sub(operator.mul(operator.sub(

operator.sub(operator.add(operator.neg(

operator.sub(operator.neg(P.y),

operator.add(P.y, P.y))), P.y), P.y), P.y),

operator.mul(operator.sub(operator.sub(



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 57

operator.sub(P.y, P.y), P.y), P.y),

operator.sub(P.y, operator.add(operator.sub(

operator.sub(P.y, P.y), P.y), operator.mul(P.y,

operator.sub(P.y, operator.add(operator.sub(P.y, P.y),

operator.mul(P.y, P.y)))))))), P.y), operator.add(P.y, P.y)), P.y), P.y)

Run 7

operator.sub(P.y, operator.neg(operator.mul(

operator.add(operator.neg(operator.mul(P.y, P.y)), P.y),

operator.add(P.y, operator.add(P.y, operator.add(

operator.mul(operator.sub(P.y, operator.mul(

operator.mul(P.y, P.y), P.y)), operator.mul(

operator.sub(operator.neg(P.y), operator.add(P.y, P.y)),

operator.add(operator.neg(operator.mul(P.y, P.y)), P.y))), P.y))))))

Run 8

operator.sub(operator.neg(operator.neg(P.y)),

operator.mul(operator.sub(operator.mul(P.y, P.y),

operator.sub(operator.mul(operator.sub(

operator.mul(P.y, P.y), P.y),

operator.neg(operator.neg(P.y))), P.y)),

operator.mul(operator.sub(operator.mul(P.y, P.y), P.y),

operator.neg(operator.sub(operator.mul(P.y, P.y), P.y)))))

Run 9

operator.add(operator.mul(operator.mul(P.y, P.y),

operator.add(P.y, operator.add(operator.mul(

operator.mul(operator.add(operator.mul(P.y,

operator.sub(operator.add(operator.mul(operator.mul(P.y,

operator.mul(P.y, operator.mul(operator.sub(P.y, P.y),

operator.neg(P.y)))), operator.mul(P.y, P.y)),

operator.add(operator.mul(operator.mul(operator.mul(P.y, P.y),

operator.sub(operator.add(P.y, P.y), operator.sub(P.y, P.y))),

operator.add(P.y, P.y)), P.y)), operator.add(P.y, P.y))),

operator.add(operator.mul(operator.mul(P.y, P.y), P.y), P.y)),

operator.mul(P.y, operator.add(operator.add(



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 58

operator.sub(operator.sub(P.y, operator.neg(

operator.mul(P.y, P.y))), P.y), P.y), P.y))),

operator.mul(operator.mul(P.y, P.y),

operator.add(P.y, operator.mul(operator.mul(operator.mul(

operator.mul(P.y, P.y), P.y), operator.add(

operator.mul(P.y, operator.mul(P.y, P.y)),

operator.add(P.y, P.y))), P.y)))),

operator.add(operator.mul(P.y,

operator.add(P.y, P.y)), P.y)))), P.y)),

operator.sub(P.y, operator.neg(operator.mul(P.y, P.y))))

Run 10

operator.sub(operator.mul(operator.sub(operator.add(

P.y, operator.sub(P.y, operator.neg(P.y))), P.y),

operator.mul(operator.sub(P.y, operator.neg(

operator.mul(operator.sub(P.y, operator.sub(

operator.mul(operator.sub(P.y, P.y),

operator.sub(P.y, P.y)), P.y)), operator.add(P.y,

operator.add(operator.neg(operator.mul(P.y,

operator.sub(P.y, P.y))), P.y))))),

operator.add(operator.add(P.y, P.y), P.y))),

operator.add(operator.add(P.y, P.y), P.y))

Run 11

operator.add(operator.mul(operator.add(operator.mul(

operator.mul(operator.add(P.y, P.y),

operator.add(P.y, P.y)), operator.mul(P.y, P.y)), P.y),

operator.add(P.y, operator.add(operator.mul(

operator.neg(operator.mul(P.y, operator.neg(P.y))),

operator.mul(operator.mul(operator.add(operator.mul(

operator.neg(operator.neg(operator.neg(P.y))), P.y), P.y),

operator.add(P.y, P.y)), operator.mul(P.y, P.y))), P.y))), P.y)

Run 12

operator.add(operator.mul(operator.mul(operator.neg(P.y),

operator.mul(P.y, operator.add(P.y, operator.mul(



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 59

operator.add(P.y, P.y), operator.mul(operator.add(P.y, P.y),

operator.neg(operator.add(P.y, P.y))))))),

operator.mul(operator.neg(operator.mul(

operator.neg(P.y), operator.mul(P.y,

operator.mul(operator.mul(operator.neg(P.y),

operator.mul(P.y, operator.add(P.y, operator.mul(

operator.add(P.y, P.y), operator.mul(operator.add(

operator.add(P.y, operator.mul(operator.add(P.y,

operator.neg(P.y)), operator.mul(P.y, P.y))), P.y),

operator.neg(operator.add(P.y, P.y))))))),

operator.mul(operator.neg(operator.mul(operator.neg(P.y),

operator.mul(P.y, operator.add(P.y,

operator.add(P.y, P.y))))), P.y))))), P.y)), operator.add(P.y, P.y))

Run 13

operator.sub(P.y, operator.mul(operator.mul(operator.add(

operator.mul(operator.mul(operator.mul(operator.add(

operator.mul(operator.mul(P.y, P.y), P.y), P.y),

operator.add(operator.add(P.y, operator.mul(

operator.mul(P.y, P.y), P.y)),

operator.neg(P.y))), P.y), P.y), operator.neg(P.y)),

operator.add(operator.mul(operator.mul(P.y,

operator.add(operator.mul(operator.neg(P.y), P.y),

operator.neg(P.y))), operator.add(P.y, P.y)),

operator.neg(P.y))), operator.add(P.y, P.y)))

Run 14

operator.neg(operator.add(operator.add(operator.mul(P.y,

operator.add(operator.mul(operator.add(P.y,

operator.add(P.y, P.y)), P.y),

operator.mul(operator.add(P.y, P.y),

operator.add(P.y, P.y)))), P.y), P.y))

Run 15

operator.sub(operator.add(operator.mul(P.y, P.y),

operator.mul(operator.sub(operator.add(P.y, P.y),



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 60

operator.mul(P.y, operator.sub(operator.neg(P.y),

operator.add(P.y, P.y)))), P.y)), P.y)

Run 16

operator.sub(operator.add(P.y, operator.add(

operator.mul(operator.add(P.y, operator.add(

operator.mul(operator.add(operator.add(

operator.add(operator.mul(operator.add(P.y,

operator.sub(P.y, P.y)), P.y), P.y),

operator.neg(P.y)), operator.mul(

operator.add(P.y, P.y), P.y)), operator.sub(P.y,

operator.add(operator.add(operator.mul(

operator.add(P.y, operator.sub(P.y, P.y)), P.y), P.y),

operator.neg(P.y)))), P.y)), operator.sub(

operator.add(operator.mul(operator.add(P.y, P.y),

operator.sub(P.y, operator.add(operator.add(

operator.mul(operator.add(P.y, P.y), P.y), P.y), P.y))), P.y), P.y)), P.y)),

operator.neg(P.y))

Run 17

operator.add(operator.add(operator.add(P.y, P.y),

operator.sub(operator.add(P.y, P.y), P.y)),

operator.mul(operator.mul(operator.add(P.y, P.y),

operator.add(operator.add(operator.add(

operator.add(operator.mul(operator.add(P.y, P.y),

operator.add(operator.add(operator.add(P.y, P.y),

operator.add(P.y, P.y)), P.y)), operator.mul(P.y, P.y)), P.y),

operator.add(P.y, P.y)), P.y)), operator.sub(P.y, operator.neg(P.y))))

Run 18

operator.add(operator.neg(operator.neg(operator.mul(

operator.neg(P.y), operator.mul(P.y, P.y)))),

operator.add(operator.neg(operator.mul(P.y, P.y)),

operator.mul(operator.neg(P.y), operator.mul(P.y,

operator.neg(operator.mul(operator.neg(P.y),

operator.neg(operator.neg(operator.neg(operator.mul(

operator.neg(P.y), operator.mul(P.y, P.y)))))))))))



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 61

Run 19

operator.add(P.y, operator.sub(operator.add(operator.mul(

operator.add(operator.mul(operator.mul(operator.add(

operator.mul(P.y, operator.mul(operator.mul(P.y,

operator.add(P.y, P.y)), operator.add(

operator.add(P.y, P.y), P.y))), P.y), operator.mul(

operator.mul(P.y, P.y), P.y)), operator.mul(P.y,

operator.add(P.y, P.y))), operator.mul(operator.mul(P.y,

operator.add(operator.mul(operator.neg(operator.neg(P.y)),

operator.add(P.y, P.y)), operator.neg(P.y))),

operator.add(operator.mul(P.y, operator.add(P.y, P.y)), P.y))),

operator.mul(P.y, P.y)), operator.add(operator.mul(

operator.sub(operator.add(P.y, operator.mul(operator.neg(P.y),

operator.add(P.y, P.y))), P.y), operator.sub(P.y, P.y)), P.y)),

operator.sub(P.y, P.y)))

Run 20

operator.neg(P.y)

Run 21

operator.sub(operator.neg(operator.add(operator.add(P.y, P.y), P.y)),

operator.mul(operator.add(operator.add(P.y, P.y), P.y),

operator.add(P.y, operator.add(operator.mul(

operator.add(P.y, P.y), operator.add(operator.mul(

operator.add(operator.mul(

operator.add(P.y, P.y), P.y), P.y), P.y), P.y)), P.y))))

Run 22

operator.add(operator.add(P.y, P.y), P.y)

Run 23

operator.add(operator.sub(P.y, operator.sub(P.y, operator.mul(

operator.sub(operator.sub(P.y, operator.mul(

operator.sub(P.y, operator.sub(operator.add(P.y,

operator.mul(P.y, P.y)), P.y)), operator.sub(P.y,

operator.sub(P.y, operator.mul(operator.sub(



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 62

operator.sub(P.y, operator.mul(P.y, operator.mul(

operator.sub(operator.add(P.y, P.y),

operator.mul(P.y, P.y)), P.y))), operator.sub(P.y,

operator.mul(operator.sub(P.y, operator.sub(

operator.add(P.y, P.y), operator.mul(P.y, P.y))), P.y))), P.y))))),

operator.sub(operator.add(operator.sub(P.y, operator.mul(

operator.sub(P.y, P.y), operator.sub(P.y, P.y))), P.y),

operator.mul(P.y, P.y))), P.y))), P.y)

Run 24

operator.sub(operator.neg(P.y), operator.add(operator.mul(

operator.sub(operator.sub(operator.mul(

operator.neg(P.y), operator.mul(P.y, operator.mul(

operator.neg(P.y), operator.mul(P.y, P.y)))), P.y),

operator.mul(operator.mul(operator.neg(operator.neg(

operator.neg(P.y))), operator.mul(P.y, P.y)),

operator.mul(operator.sub(operator.sub(operator.neg(P.y), P.y),

operator.mul(operator.mul(operator.neg(P.y),

operator.mul(P.y, P.y)), P.y)), P.y))), P.y), P.y))

Run 25

operator.add(P.y, operator.add(operator.add(P.y,

operator.add(operator.add(operator.add(P.y, P.y),

operator.add(P.y, operator.add(P.y, P.y))),

operator.add(P.y, operator.add(operator.sub(P.y, P.y),

operator.neg(operator.neg(P.y)))))), operator.mul(operator.add(operator.add(

operator.add(operator.mul(operator.sub(P.y,

operator.add(P.y, P.y)), operator.neg(operator.mul(

operator.add(operator.add(P.y, P.y), P.y), operator.sub(

operator.neg(operator.neg(P.y)), operator.mul(

operator.sub(P.y, operator.add(P.y, P.y)),

operator.neg(operator.mul(operator.add(

operator.add(P.y, P.y), P.y), operator.sub(

operator.neg(operator.neg(P.y)), operator.neg(

operator.add(P.y, P.y)))))))))), P.y), P.y), P.y),

operator.sub(P.y, operator.add(P.y, operator.add(P.y,



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 63

operator.add(operator.add(operator.add(P.y, P.y),

operator.add(P.y, P.y)), P.y)))))))

Run 26

operator.neg(P.y)

Run 27

operator.neg(P.y)

Run 28

operator.neg(operator.sub(operator.sub(P.y, operator.add(

operator.add(operator.add(P.y, operator.mul(operator.add(

operator.mul(operator.add(P.y, operator.sub(P.y,

operator.add(P.y, P.y))), operator.add(P.y, P.y)), P.y),

operator.mul(P.y, P.y))), P.y), operator.mul(

operator.add(P.y, operator.sub(P.y, operator.add(P.y,

operator.mul(operator.add(P.y, P.y), operator.add(P.y, P.y))))),

operator.add(P.y, P.y)))), operator.add(P.y,

operator.mul(operator.add(operator.add(P.y,

operator.mul(operator.add(operator.mul(operator.add(P.y,

operator.sub(P.y, operator.add(P.y, P.y))), operator.add(P.y,

operator.add(operator.add(operator.sub(P.y, P.y), operator.neg(

operator.add(P.y, operator.mul(operator.add(P.y, P.y),

operator.add(operator.add(P.y, P.y),

operator.add(P.y, P.y)))))), P.y))), P.y),

operator.mul(P.y, P.y))), P.y), operator.add(P.y, P.y)))))

Run 29

operator.sub(operator.neg(operator.mul(operator.sub(

operator.mul(P.y, operator.add(P.y, P.y)), P.y),

operator.add(operator.mul(P.y, P.y), operator.add(P.y, P.y)))),

operator.mul(operator.sub(operator.mul(P.y, operator.mul(P.y, P.y)), P.y), P.y))

Run 30

operator.add(operator.mul(operator.neg(operator.mul(

operator.neg(operator.add(P.y, operator.mul(



APPENDIX C. BEST PERFORMING EVOLVED HASH FUNCTIONS 64

operator.neg(P.y), operator.add(operator.mul(

operator.neg(operator.neg(operator.add(P.y,

operator.mul(P.y, P.y)))), operator.add(P.y,

operator.mul(operator.mul(operator.neg(operator.mul(

operator.mul(P.y, operator.neg(operator.mul(P.y, P.y))), P.y)),

operator.add(P.y, operator.add(operator.neg(P.y),

operator.add(P.y, P.y)))), operator.sub(operator.neg(P.y),

operator.neg(operator.mul(P.y, operator.neg(P.y))))))),

operator.mul(operator.mul(P.y, P.y), operator.add(P.y, P.y)))))),

operator.add(P.y, P.y))), operator.add(P.y,

operator.mul(operator.neg(P.y), operator.mul(operator.neg(P.y),

operator.add(P.y, operator.add(P.y, operator.mul(P.y,

operator.add(P.y, P.y)))))))), operator.mul(P.y,

operator.add(operator.neg(P.y), operator.mul(operator.neg(

operator.add(operator.mul(P.y, P.y), operator.add(P.y,

operator.mul(operator.mul(operator.neg(operator.mul(P.y,

operator.sub(P.y, P.y))), operator.add(operator.mul(

operator.mul(operator.neg(operator.add(P.y, P.y)), P.y),

operator.add(operator.neg(P.y), operator.mul(

operator.neg(P.y), P.y))), operator.mul(P.y,

operator.add(P.y, P.y)))), operator.sub(operator.neg(

operator.neg(P.y)), operator.sub(P.y, P.y)))))), P.y))))


