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ABSTRACT 

Presently, the assessment of the operational safety of ships and offshore structures is 
typically addressed within a statistical framework, both at design stage and for the 
specification of operational limits. Recently, however, the availability of new remote 
sensing technologies is paving the way for complementary approaches based on 
deterministic predictions of sea waves and ship motions. In this respect, the marine 
wave radar is considered as the key asset for the deterministic prediction of wave 
elevation. Indeed, the possibility of measuring the sea surface, almost instantaneously 
and for large areas, can be used to forecast the wave elevation at the location of the 
operating units. Eventually, the coupling of deterministic wave forecast with suitable 
ship motion models opens the possibility for giving anticipated prediction and guidance. 
The application of this emerging approach can be beneficial to those short-time offshore 
operations requiring sea wave or ship motions to be forecast in the time horizon of tens 
of seconds to minutes. This envisages the possibility of development of finely tuned 
early warning, hazard control and support decision systems. One of the main aspects of 
this chain of models, which is oftentimes overlooked, is the importance of providing the 
forecast with a consistent assessment of the prediction error. Moreover, the additional 
sources of uncertainty coming from the wave measurement and from the inversion of 
the wave radar images are also seldom accounted for.  
 
In this thesis, the whole chain of models, that from the wave radar measurement leads to 
the ship motion prediction, is investigated. The first step is the proposal of a novel 
technique for the inversion of wave radar images that can consistently account for those 
regions of the sea surface that cannot be uniformly illuminated because of the 
shadowing effect. The adoption of a linear least square fitting approach, provided with a 
regularization technique, allows the proposed inversion method the needed flexibility to 
address the shadowed regions as missing data. Afterwards, the assessment of the error 
associated with deterministic wave predictions is addressed. A novel semi-analytical 
procedure is proposed which allows estimating the ensemble variance of prediction 
error, in a simple and flexible way, naturally embedding the characteristics of the linear 
fitting and propagation procedures. The approach also allows the inclusion, in the 
estimation of prediction error, of the effect of measurement error coming from the radar 
inversion techniques. The same technique for the estimation of wave elevation 
prediction error is then extended to linear ship motions, using linear transfer functions. 
In fact, the developed framework can deal with any linear transformation of the wave 
elevation, resulting in the definition of a sound measure of the prediction error of linear 
responses. The method can be used to provide deterministic predictions with confidence 
intervals, as well as for a consistent setup of the whole forecasting chain.  
 
The developed models are then tested for a set of application examples considering both 
linear and nonlinear wave fields. In this latter respect, a high order spectral method has 
been implemented to provide more realistic wave elevation fields. Example applications 
regarding linear ship motions have also been carried out. The proposed inversion 
procedure has shown interesting results for synthetic radar images generated from both 
linear and moderately nonlinear wave fields. However, further investigations are needed 
to reduce the high computational cost required for the inversion. The proposed approach 
for wave and ship motion prediction error, instead, can represent a convenient novel 
sound method for the consistent setup of deterministic prediction procedures, 
remaining, however, limited to those scenarios where nonlinearities play a minor role.
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SOMMARIO 

Attualmente, la valutazione della sicurezza delle navi e delle strutture offshore è affrontata dal 
punto di vista statistico, sia in fase di progettazione che per la specifica dei limiti operativi. 
Recentemente, tuttavia, la disponibilità di nuove tecnologie di remote sensing sta aprendo la 
strada ad approcci complementari, basati sulla previsione deterministica delle onde e dei moti 
nave. A tal proposito, il wave radar è considerato lo strumento chiave per la previsione 
deterministica d’onda. Esso, infatti, permettendo la misura delle onde, in maniera quasi 
istantanea e per grandi aree, può essere utilizzato per prevedere l'elevazione onda in 
corrispondenza delle posizioni di interesse per le unità in operazione. L’eventuale 
accoppiamento di tali previsioni d’onda con adeguati modelli di moti nave, può permettere, 
infine, di fornire previsioni dei moti e supporto operativo. In particolare, questo nuovo 
approccio può risultare particolarmente utile a quelle operazioni offshore, di breve durata, che 
richiedono la conoscenza anticipata del moto ondoso o dei moti nave, con un orizzonte 
temporale che va dalle decine di secondi ai minuti. Esso, inoltre, apre alla possibilità di sviluppo 
di sistemi integrati di allerta rapida, controllo del rischio e di supporto decisionale. Uno degli 
aspetti principali di questa catena di modelli, che viene spesso trascurato, è l'importanza di 
associare alle previsioni deterministiche una valutazione coerente dell’errore previsionale, 
eventualmente includendo in questa stima, anche ulteriori fonti di incertezza legate agli errori di 
misura delle onde e ai modelli di inversione delle immagini radar, aspetto, quest’ultimo, che è 
considerato ancor più di rado.  
 
In questa tesi, si è analizzata l'intera catena di modelli che partendo dalla misurazione radar 
delle onde porta alla previsione dei moti nave. Il primo passo è stato sviluppare una nuova 
tecnica per l'inversione delle immagini radar che possa prendere in considerazione, in modo 
consistente, quelle regioni della superficie del mare che, a causa dell'effetto di shadowing, non 
sono illuminate. L’utilizzo di un approccio lineare ai minimi quadrati, associato ad una tecnica 
di regolarizzazione, fornisce al metodo proposto la flessibilità necessaria per gestire le regioni in 
shadowing come missing data. Successivamente si è affrontato il problema della valutazione 
dell’errore associato alle previsioni d'onda deterministiche. A tal proposito, si è sviluppata una 
nuova procedura semi-analitica, semplice e flessibile, per stimare il valore atteso della varianza 
dell’errore di previsione. La procedura prende in considerazione, fin da principio, le 
caratteristiche del fitting e della propagazione lineare delle onde. Questo approccio permette 
anche di includere agevolmente, nella stima dell’errore di previsione, l'effetto dell’errore di 
misura proveniente dalle tecniche di inversione delle immagini radar. La stessa tecnica per la 
stima di errore di previsione d’onda è stata poi estesa al calcolo dei moti nave lineari grazie 
all’utilizzo delle funzioni di trasferimento lineari. Infatti, il metodo sviluppato permette di 
considerare una qualunque trasformazione lineare dell’elevazione d'onda, associando, alle 
relative risposte lineari, una misura consistente dell'errore di previsione. Quindi, il metodo 
sviluppato, può essere utilizzato con due diverse finalità: può essere impiegato per associare alle 
previsioni deterministiche i relativi intervalli di confidenza , ma anche, e più in generale, per 
progettare, dal punto di vista quantitativo, tutta la catena di previsione deterministica. 
 
I modelli sviluppati nell’ambito di questa tesi sono stati poi testati per una serie di applicazioni 
di esempio, definite in modo da considerare sia onde lineari che onde nonlineari. A tal fine, e 
quindi per poter generare treni d’onda più realistici, si è provveduto a sviluppare un metodo 
spettrale di alto ordine. A questi test si sono aggiunti anche test di esempio per i moti nave. La 
procedura proposta per l’inversione delle immagini radar ha permesso di ottenere risultati 
interessanti sia nel caso di inversione di immagini radar per onde lineari che nel caso di onde 
moderatamente nonlineari. Tuttavia, ulteriori approfondimenti sono necessari al fine di 
abbattere l'elevato costo computazionale della procedura di inversione proposta. Per quanto 
riguarda l'approccio proposto per la stima dell’errore associato alla previsione d’onda e dei moti 
nave, esso può rappresentare sicuramente un metodo innovativo e consistente per la messa a 
punto delle procedure di previsione. Si sottolinea, tuttavia, come il suo utilizzo sia da intendersi 
limitato alle situazioni in cui gli aspetti nonlineari del problema siano trascurabili.
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1 INTRODUCTION 

1.1 Deterministic wave and ship motion forecasting 
The assessment of the behaviour of a ship or an offshore structure, especially when 
facing adverse weather conditions in open sea, is a fundamental aspect in the design of 
ships and offshore units and in the planning and execution of offshore activities. The 
most important objective is to guarantee the safety of such operations, concerning both 
human safety and the safety and integrity of the structure. On the other hand, the 
possibility of extending and optimizing the performances of offshore units is 
economically relevant for the industry. The assessment of ship motions historically was, 
and still is, mainly addressed from a statistical point of view. Ship motions, considered 
as forced by environmental excitations and especially by the waves, can indeed be 
modelled relating the ship responses to the statistical properties of the sea environment. 
This allows tackling the problem of defining the ship safety and operability 
requirements in a probabilistic framework, providing for a solid ground for the design 
of such offshore units. Moreover, this allows to define, accounting for the sea spectrum 
main characteristics, the allowable limits which the operability of the ship is bound to. 
In the planning of medium/long term offshore activities, the forecasting of the sea state 
characteristics is a well-established practice. However, this usually results in a coarse 
grained criterion that establishes, for the given time interval of the wave forecasting, 
whether it is possible to operate or whether it is better to stay in a controlled and safer 
condition. 
 
In this respect, the advances in the remote wave sensing technologies are giving new 
opportunities for the setup of complementary approaches to the classical 
statistical/spectral ones, and based on a real time assessment of the operational danger 
through deterministic ship motion forecasting. The whole idea underlying the 
deterministic ship motion forecasting procedure can briefly summarised in the 
workflow reported in Figure 1.1. First, the sea surface is assumed to be measured at a 
suitable distance from the ship from an appropriate sensor, typically a wave radar. Then, 
wave elevation measurements are used to initialize a wave prediction model that from 
the far field information can reconstruct the wave elevation in correspondence to the 
position of the structure or any other needed location. This information are eventually 
coupled with a ship motions model in order to forecast the behaviour of a ship in the 
near feature, the typical time horizon is in the order of minute. It is clear that delicate 
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and/or short time operations, like for example rescue missions, loading/unloading 
operations, airborne vehicle recovery or any operation for which a correct ship motion 
prediction is of crucial importance, will possibly benefit for this kind of approach. 
Indeed, this little glimpse of predicted future certainly will allow for a finer tuning of 
offshore operation, a sensible delay for warning of safety shutdown procedures, with 
consequent reduction of downtime, and possibly, also, for the automatization of certain 
operations at sea. 
 

 
Figure 1.1: Schematic representation of the deterministic ship motion forecasting workflow. 

 
In fact, there is an increasing interest on the topic of deterministic predictions that has 
led to extensive investigations on the feasibility of this technology and to a 
multiplication of proposals for its implementation (see for example Alford et al. [3], 
Clauss et al [30], Kusters et al. [75], Naaijen et al. [101]). In the majority of the studies, 
the wave radar has been assumed as the central asset for the measurement of the sea 
surface, as indicated in Figure 1.1. Indeed, marine wave radars are capable of scanning, 
almost instantaneously, large areas of the sea surface by a combination of a radial range 
of kilometres and an azimuthal sweeping period of the order of the seconds. Moreover, 
the installation of this technology will results particularly cost-effective in case non-
coherent wave radars are concerned, since they are most of the times already present on 
ships for anti-collision and ranging purposes. The acquired time series of backscattered 
radar images must undergo an inversion process, before being actually available for the 
wave prediction step. This is related to how the wave radar actually works. In fact, the 
wave radar senses the presence of the wave field as a modulation in the received 
backscatter signal from the wavy sea surface. In essence, the main backscattering 
phenomena are the tilt modulation, that accounts for the titling of the backscattering 
surface facet as the longer gravity waves pass by, and the showing effect, accounting for 
the fact that the wave radar is prevented from uniformly illuminating the whole sea 
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surface, especially at low grazing angles, because of the presence of wave peaks (Nieto 
Borge et al. [105]). Several technique have been proposed for the deterministic 
reconstruction of the wave elevation field starting from radar images (Dankert and 
Rosenthal [35]; Naaijen and Wijaya [104]; Nieto Borge et al. [105]; Serafino et al. 
[129]). In this respect, it has to be noted that the majority of the proposed inversion 
techniques only partially account for the shadowing effect, by adopting a-posteriori 
correction procedures, simplifying or even completely neglecting the problem. 
Moreover, the measurement error, inevitably affecting the measurement and the 
inversion processes, is seldom characterized and its effect on the subsequent forecasting 
chain is, most of the times, disregarded. 
 
The next step in the forecasting chain is the deterministic wave prediction through a 
phase-resolved approach, see Figure 1.1. The most widespread approach for this step is 
based on the use of linear wave propagation models. Indeed, linear models are 
considered accurate enough to reproduce the main features of the wave field and, due to 
the limited computational cost, they are particularly suitable for real time applications 
(Hilmer and Thornhill [68]). Different aspects of the implementation of linear wave 
prediction model have been investigated, for example, by Belmont et al. [9][10], 
Blondel-Couprie and Naaijen [17], Connell et al. [33], Naaijen and Blondel-Couprie 
[97]. Nonetheless, there are different proposals to account also for the nonlinear 
evolution of the wave field, as investigated for example by Alford et al. [3], Blondel-
Couprie et al. [14][15], Wu [159], Clauss et al. [29] and Yoon et al. [166]. In any case, 
all the deterministic wave prediction techniques, being them only an approximation of 
the underlying true wave field, will inevitably be affected by a prediction error. 
Therefore, the need of providing, beforehand, for an assessment of the space/time 
region where the wave prediction can be considered as reliable, becomes a central 
problem in deterministic forecasting. Presently, there are two main criteria which are 
used to assess the quality of a determinist prediction: the Predictability Region and the 
Predictability Indicator (Wu [159]; Naaijen et al. [102]). Both these techniques are 
based on semi-empirical assumptions about the modelling of the prediction error. The 
main idea is that the group velocity of the measured wave components (an assumption 
which has been questioned by Abusedra and Belmont [1]) can be used for the 
identification of where the prediction is possible or not, as in the case of the 
Predictability Region, or what is the expected quality of the prediction, as in the case of 
the Predictability Indicator. However, neither of these two techniques, although widely 
used for the setup of forecasting procedures, can provide for a consistent statistical 
measure of the expected prediction error that can eventually be used to supplement the 
deterministically predicted wave elevation with a suitable confidence interval. More 
importantly, the additional source of uncertainties due to the measurement error is 
oftentimes overlooked and none of the presently available techniques directly accounts 
for it.  
 
The prediction of the ship motions is the last step in the forecasting chain, see Figure 
1.1. The most straightforward way to link the wave elevation prediction with the ship 
motions is by assuming the possibility of using an approach based on transfer functions, 
typical of the linear seakeeping framework (Naaijen and Huijsmans [99]; Naaijen et al. 
[101]; Kosleck [74]).  In addition, also linear/nonlinear hybrid time domain models 
have been proposed (Alford et al. [3]; Connell et al. [33]), and some interesting results 
for the calculation of the low frequency second order motions have also been reported 
(Naaijen and Huijsmans [100]). In detail, the experimental tests, carried out by Naaijen 
and Huijsmans [99], are particularly interesting because they highlight how the 
prediction error for the linear ship motion cannot be directly linked to, and qualitatively 



 Chap. 1: INTRODUCTION 

24 

represented by, the wave elevation prediction error. This is mainly related to the wave-
structure interaction. Nonetheless, the assumption of a perfect matching, in terms of 
performance, of the deterministic wave elevation prediction and of the ship motion 
deterministic prediction is very common. Although this could represent a reasonable 
working hypothesis, it may results to be too general and possibly inaccurate. In 
addition, presently, no clear indication about the expected magnitude of the motion 
prediction error can be provided, making therefore impossible the assessment of the 
degree of accuracy of the forecasted motion. Eventually, as for the deterministic wave 
prediction, the measurement error is generally not accounted for. Therefore, a 
systematic characterization of the impact, on the motion prediction, of the uncertainties 
embedded in the first step of the forecasting chain is missing in existing techniques. 

1.2 Objectives and outline of the work 
It is apparent that the deterministic forecasting of ship motions is a complex procedural 
task that requires different models to work together: the radar inversion model, the wave 
propagation model and the ship motion model. Each of these models uses, as input, the 
output coming from the previous ones. This chain of input-output relations propagates 
the possible sources of error across the whole forecasting chain. For this reason, a 
methodology for the assessment of the prediction error capable of treating different 
error sources in a consistent way becomes of central importance. This thesis aims in this 
direction, trying to investigate and develop alternative techniques to contribute to the 
solution of some of the identified limitations of presently available models and 
providing for a more general and consistent treatment of the prediction error. 
 
The first objective has been the development of a novel radar inversion technique and 
the characterisation of the associated reconstruction error. The critical point, that has 
been spotted, concerns the treatment of the shadowing effect. The main idea to 
overcome this problem is to cope directly with the shadowing effect by a redefinition of 
the inversion problem as a missing data problem. By means of a linearized radar model, 
the radar images can be fitted only considering those regions that are not affected by 
shadowing. The resulting linear inversion problem has been setup as a least squares 
problem with the addition of a regularization technique. The resulting technique is 
referred to as Least SQuares with Regularization method (LSQR). Eventually, the 
reconstruction error, due to the inversion, has been investigated defining the main 
statistical quantities relevant to the following modelling steps. 
 
Secondly, the lack of consistent tools for the assessment of the prediction error has led 
to the definition of a novel approach for the estimation of prediction error, the Linear 
Estimator of the Prediction Error (LEPrE) method. The deterministic prediction 
problem has been redefined in a probabilistic framework that allows to account directly 
for the expected error associated to any linear propagation procedure of the wave fields. 
At the same time, the developed approach allows to account for the measurement error 
coming from the reconstruction process. The LEPrE method has been developed as 
semi-analytical tool to quantify the ensemble variance of the prediction error. The new 
methodology not only allows to quantitatively assess the performance of a linear 
prediction but it can also be used to redefine the concept of predictability region on a 
more solid ground. 
 
Finally, the LEPrE method has been extended to the assessment of the linear motion 
prediction error. The resulting method allows to consistently account for the error 
introduced by the wave prediction model, as well as for the error coming from the radar 
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inversion process. The result is a new methodology that could provide an important tool 
for the design of deterministic motion prediction procedures having at disposal a 
probabilistically consistent measure of the prediction error.  
 
The need to benchmark the developed linear methodologies with more realistic 
nonlinear wave fields has required the implementation of a High-Order Spectral (HOS) 
method. The developed HOS has been implemented on the basis of the state-of-the-art. 
In order to provide information which might be useful for further studies, some special 
care has been dedicated to the analysis and description of initialization and stability 
issues for the generation of nonlinear wave fields. 
 
This thesis is organized as follows. In chapter §2, the main aspects of the 
implementation of the HOS code are presented. The overall theory and the numerical 
implementation of the tool are reported. Some tests, considered as relevant for the 
verification of the software, are eventually carried out. Finally, some results about the 
generation of nonlinear wave fields are presented. 
 
In chapter §3, the developed LSQR inversion technique is presented. First, the 
linearized model of the wave radar is derived. Then, the LSQR inversion technique is 
described by reporting how the model has been set-up and by providing a detailed 
discussion about the implementation of the regularization technique. Examples of 
detailed characterizations of the reconstruction error are provided, by the LSQR 
inversion of synthetic radar images generated for both linear and nonlinear wave fields. 
 
In chapter §4, the LEPrE methodology is presented. The main assumptions about the 
definition, in a probabilistic framework, of the wave prediction problem are discussed. 
The LEPrE formulation for the calculation of the ensemble variance of the prediction 
error is derived. Eventually, some example applications are presented, considering 
linear long crested and short crested sea conditions. The inclusion in the model of the 
measurement error is also considered, by providing some example of assessment of the 
wave prediction error, accounting for simplified models of radar inversion error, both in 
case of linear long crested and short crested seas, as well as in case of nonlinear long 
crested sea conditions. 
 
In chapter §5, the LEPrE methodology is extended to the estimation of the motions 
prediction error. The way the linear motion transfer functions are included in the 
method is presented, as well as the formulation of the motion prediction error taking 
into account the wave measurement error. Some examples of motion prediction are 
reported considering two different ships: a FPSO considered as stationary (zero-speed) 
and a Containership advancing in the seaway. A discussion is provided on how the 
wave-structure interaction affects the prediction error of the ship motion. In addition, 
some technological and practical considerations, based on the developed LEPrE for 
motion are drawn through some example applications. 
 
Eventually, in chapter §6, some concluding remarks about the presented methods and 
some proposals for further investigations are provided. 
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2 WATER WAVE MODELLING 

In this chapter, the water wave problem is presented in the framework of the potential 
flow theory with particular focus on the introduction of the High Order Spectral (HOS) 
method. The main analytical and numerical aspects of the method are presented and 
discussed. A series of specific notes are provided throughout the chapter regarding 
details of the implementation of the HOS method in the code developed starting from 
the reported theory. Some test case and the application of the HOS method to the 
generation of long crested nonlinear wave field are reported. 

2.1 Introduction 
In the framework of deterministic sea wave prediction method (DSWP) a key role is 
played by the water wave models. The linear wave model is still the most wide used 
because of the limited computational burden and capability of modelling the main wave 
field characteristics, especially in consideration of the limited time and space horizon 
required by a typical DSWP application (Hilmer and Thornhill [69]). The linearity 
assumption, by allowing a straightforward implementation of the Fast Fourier 
Transform (FFT) makes this model suitable for real time application. Besides this, the 
coupling of linear DSWP procedures with water wave measurement still represent the 
starting point for many wave forecasting techniques (Blondel-Couprie and Naaijen [17]; 
Naaijen and Blondel-Couprie [97]; Connell et al. [33]). Weakly nonlinear second order 
or adjusted second order models, the latter corrected to account for the third order 
dispersion relation, have also been investigated for an application to the DSWP problem 
(Blondel-Couprie [14]). Nonetheless, in the recent years, increasing interest is rising 
about employing nonlinear phase-resolved models for the DSWP application. Among 
others, the High-Order Spectral method (HOS) and the Dirichlet Newman Operator 
Methods (DNO) have been widely investigated for their direct application to the 
deterministic wave forecasting (Blondel-Couprie et al. [15]; Blondel-Couprie et al. [16]; 
Wu et al. [160]; Xiao et. al. [163]; Aragh and Nwogu [5]). These two nonlinear models 
are mode-coupling methods and they share interesting computational characteristics 
because of the adoption of a pseudo-spectral approach, the computational cost is 
proportional of the spatial discretization, order ( log )O N N . They can also conveniently 
deal with broad-band and multidirectional wave fields. The DNO and HOS methods 
have strong commonalities in how the nonlinear wave problem is solved. The main 
point is the definition of system of evolution equations for the wave elevation and the 
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free surface velocity potential based on the formalism introduced by Zakharov [169]. 
Then, the two methods differ in the way the associated Dirichlet boundary value 
problem is imposed. However, the HOS and DNO methods are in general difficult to 
associate with only a wave measurement because of the need of the simultaneous 
initialization of the nonlinear wave elevation and the velocity potential. For example, 
device like the wave radars, although being capable of imaging instantaneously a large 
areas of the sea surface, are hardly compatible with the nonlinear initialization required 
of the HOS method. In this respect, different techniques have been developed in order to 
match the initial condition for the HOS or DNO models with the wave data 
measurements. This implies optimization or data assimilation techniques on the initial 
wave elevation and free surface velocity potential (Blondel-Couprie et al. [14]; Wu 
[159]; Yoon et al. [166]; Hassanaliaragh [67]). Nevertheless, the HOS method is still 
considered an accurate tool for the simulation of the water wave fields. In particular it 
has been used for the investigation about the statistical quantities of nonlinear sea states 
and for the study of the nature of rouge waves (Ducrozet et al. [44]; Fedele et al. [46]; 
Tanaka [138]; Toffoli et al. [140]; Toffoli et al. [141]; Xiao, [161]; Xiao et al. [162]). 
Recently, HOS method has been used to determine the probability occurrence of a rogue 
wave within the Hurricane Joacquin and its probability of meeting with the El Faro ship 
during the 2015 accident which caused the ship sink and the loss of the crew (Fedele et 
al. [47]). In these cases, indeed, the statistical analysis is of interest and then, the exact 
initialization of the HOS, necessary for an accurate match of the real initial condition, is 
less relevant. Therefore, the model can be simply initialized through condition deriving 
by low order methods, typical linear and based on wave spectra data. In this respect, the 
adoption of the HOS method is particularly convenient for the generation of nonlinear 
wave fields because of its flexibility in accounting for the wave nonlinearities and the 
good computational performances. Because of the above considerations, the HOS 
method is herein studied and developed as a tool to generate nonlinear and complex sea 
states.  
 
This chapter is organized to give a global description of the water wave problem; main 
focus is given on the numerical aspects associated with the implementation of the HOS 
method. First, the theory of the water wave problem is outlined, introducing the main 
topics relevant to the discussion. Then, the analytical bases of the HOS method are 
presented. The Zakharov [169] equations are introduced and the Dirichlet boundary 
value problem is defined following the works of Dommermuth and Yue [41] and West 
et al. [151]. Different approaches for the calculation of the nonlinear terms are 
explained along with the definition of the spectral basis. Afterwards, numerical aspects 
of the HOS implementation are discussed. The pseudo-spectral approach and aliasing 
removal techniques are presented with details about the implementation in the 
developed code. The time integration scheme is explained with the choice of the time 
step associated for the linearized problem. Then, the high frequency spurious terms 
which typically arise in HOS simulations are described, defining the filtering strategies 
to overcome the issue. Some aspects of the initialization of the HOS are presented with 
particular attention to the definition of the adjustment scheme for the initialization from 
linear wave models. The HOS is then tested following the main results available in 
literature. The accuracy of the method in reproducing the velocity field of Stokes wave 
is reported and a simulation of evolution of a Stokes wave train perturbed by side band 
instabilities is carried out. Finally, an application of the HOS method is presented, 
where a set of long crested sea states is generated with the HOS and the main emerging 
nonlinear features are discussed. 
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2.2  Water wave problem 
The main aim of this section is to present the water wave problem in the framework of 
the potential flow theory.  
 
Let us consider a fluid domain V , bounded by the surface FS B LV S S S∂ ∩ ∩= where 

FSS is the free surface, BS  the bottom surface and LS  the lateral surface bounding the 
domain, (see Figure 2.1). The spatial coordinates are defined as ( , , )x y z , where the 
vectors ( ), ,x y ze e e  define a Cartesian reference frame with the origin placed on the 
mean free surface, 0FSS . 

 
Figure 2.1: Schematic representation of the fluid domain. 

 
The water is assumed as an incompressible and inviscid fluid in a constant gravitational 
field zgρ= −F e  (for example Johnson [70]) with density, ρ , constant in the whole 
domain V  and g  gravity acceleration. The velocity field, ( , , , ) [ , , ]Tx y z t u v w= =u u , 
satisfies the mass and momentum conservation equations: 
 

 0∇⋅ =u  mass conservation (2.1) 

 
1( ) zp g

t ρ
∂

+ ⋅∇ = − ∇ −
∂
u u u e  momentum conservation (2.2) 

 
where ( , , , )p p x y z t=  is the pressure field. 
 
The further assumption of irrotational flow, i.e. ∇× =u 0 , enables the definition of the 
velocity potential the velocity potential as ( , , , )x y z tφ =∇ u  on each point of the fluid 
domain V  . Furthermore, the mass conservation equation can be rewritten in the form 
of the Laplace equation for the velocity potential: 
 

 2 0x zx yy zφ φ φ φ∇ + + ==  (2.3) 
 
and the momentum equation can be written in the form of the Bernoulli unsteady 
equation: 
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21 ( )

2t
pgz C tφ φ
ρ

+ ∇ + + =  (2.4) 

 
where ( )C t  is the Bernoulli constant, depending only on time. Some attention has to be 
paid in accounting for the Bernoulli constant depending on the particular problem set-
up. In general, the Bernoulli constant is either absorbed by the time derivative of the 
potential, e.g. by defining 

0
( )

t
C t dtφ φ′ = + ∫ , or by a suitable definition of a reference 

pressure or water level (in the case the fluid at infinity is considered at rest (Johnson, 
[70]). The associated boundary value problem is completed by proper conditions at the 
boundaries of the domain. In particular for the water wave problem, the “free surface” 
approximation is introduced to reproduce the dynamic evolution of the air-water 
interface. With free surface we mean a geometrical surface described through a 
continuous function ( , , )x tz yη=  in space and time, over which external pressure still 
persists. The Bernoulli equation, calculated on the free surface, takes the following 
form: 
 

 
21 on S

2t FS
pgzφ φ
ρ

+ ∇ + = −  (2.5) 

 
where the pressure ( , , )p p x y t=  is the external pressure acting on the wave surface. In 
case the coupling between the external pressure and the wave dynamics can be 
neglected a usual assumption is to consider the pressure as constant and equal to the 
mean air pressure as ap P const= = . Moreover if the external pressure is set to zero, 

0aP = , equation (2.5) is rewritten as: 
 

 21 0 on S
2t FSgzφ φ+ ∇ + =  (2.6) 

 
Along the free surface the fluid is assumed to have only tangential motion, which leads 
to the kinematic condition: 
 

 on Sx y z Ft x Syη φ η φ η φ+ =+  (2.7) 
 
In the case of a flat bottom, located at z D= − , the no cross-flow condition is ensured 
by: 
 

 0  on Sz Bφ =  (2.8) 
 
Alternatively in the case of a deep water problem, the condition (2.8) becomes: 
 

 0  z zφ → → −∞  (2.9) 
 
Finally, the nonlinear wave field is defined in terms of the solution of Laplace problem 
with the associated set of boundary conditions, as: 
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 2 0,φ∇ =  
( , )

( ( , ))
D z t

z t
η
η

− < <
−∞ < <

x
x

 (2.10) 

 t x zyx yη φ η φ η φ+ =+  on ( , )z tη= x  (2.11) 

 2

2
01

t gφ φ η∇ + =+  on ( , )z tη= x  (2.12) 

 0(0 )z zφ φ= →  for ( )z D z− → −∞=  (2.13) 

 
The boundary conditions at the lateral surface LS  are intentionally omitted in the 
definition since these conditions are often associated with the particular problem taken 
into account. In particular, for wave propagation problems, the boundary conditions to 
be applied on LS  results in the definition of a suitable radiation condition (Johnson [70]; 
Stoker [135]; Mei [90]). For open water wave problems, the velocity potential and the 
wave elevation are usually assumed to be periodic in the horizontal domain. With 
reference to Figure 2.1, this means: 
 

 

( , , , ) ( , , , )
( , , , ) ( , , , )

( , , ) ( , , )
( , , ) ( , , )

x

y

x

y

x y z t x L y z t
x y z t x y L z t

x y t x L y t
x y t x y L t

φ φ
φ φ

η η
η η

= +
= +

= +
= +

 (2.14) 

 

2.3 Linear wave modelling 
Assuming the wave elevation η  and the potential φ  to be small quantities of the order 

( )   with 1  the water wave problem can be linearized as follows: 
 

 2 0φ∇ =  
0

( ( , ))
D z

z tη
− < <
−∞ < < x

 (2.15) 

 ztη φ=  on 0z =  (2.16) 

 t gφ η= −  on 0z =  (2.17) 

 0(0 )z zφ φ= →  for ( )z D z− → −∞=  (2.18) 

 
where the free surface boundary conditions has been linearized and written with respect 
to the reference level 0z = . Only the linear terms are kept in the model, higher order 
terms are dropped. Assuming the periodicity in time of η  and φ ,  and exploiting the 
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lateral boundary condition of (2.14) , a progressive wave solution of the linearized 
problem can be found as (Mei [90]):  
 

 

( )

( )

( )

cos
cosh( ) sin finite depth

cosh( )

exp( )sin deep water

( , )
( )( , , )

( , , )

t

t

t

x t A x
Ag z Dx z t x

Agx z t z x

h κ w
κf κ w

ϑ

w κ

f κ κ w

ϑ

w
ϑ

+

+
+

−

+

= −

=

= −

 (2.19) 

 
where κ  is the wave number 2 / Lκ π= , ω  is the wave frequency 2 / Tω π=  and T  is 
the wave period. The linear dispersion relation for finite depth is 2 ( ) tanh( )g Dω κ κ κ=
and for deep water is 2 ( ) gω κ κ= . A more general solution of the linear problem can be 
built by linear superposition of multiple monochromatic wave components defined 
according to (2.19) and propagating in possibly different directions. In the deep case it 
reads as: 
 

 
( )

( )

1

1

cos

si

( , )

( , , ) exp n( )

N

n n n n
n
N

n
n n n n

n n

t A

A gz t

t

t

ϑη ω

φ κ ω
ω

ϑ

=

=

= ⋅ −

= ⋅

+

− +

∑

∑

κ x

κ

x

x x
 (2.20) 

 
Where, now, [ , ]T

x yk k=k  is the wave number vector with /2x xk Lπ=  and /2y yk Lπ=   

identifying the direction of wave propagation and 2 2
x yk kk = = +k  is the wave 

number. 
 

2.4 High-Order Spectral method 

2.4.1 Analytical model 
The HOS method is based on the reformulation of the free surface boundary conditions 
(2.11) and (2.12) as function of the velocity potential calculated at the free surface This 
allows to derive a set of evolution equations of the water wave field. Following, 
Zakharov [169] the potential at the free surface , sφ  is defined as: 
 

 ( )( , ) , ( , ),s t z t tφ φ η≡ =x x x  (2.21) 
 
The time derivative and the spatial derivative of the free surface velocity potential can 
then be calculated by applying the chain rule as: 
 

 

, ( , , ) ( , , )

, ( , , ) (

( )

( )

(

, , )

, ( , , ) ( , , ))

s
t t z t
s

x x z

y y y

x
s

z

t t t
t t t
t t t

φ φ η φ η η

φ φ η φ η η

φ φ η φ η η

+=

=

+=

+

x x x
x x x
x x x

 (2.22) 

 
Finally, the dynamic and kinematic dree surface boundary conditions by substituting 
equation (2.22), in the boundary condition (2.11) and (2.12) become: 
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 ( )1s
t Wη η φ η η+= −∇ ⋅∇ ∇+ ⋅∇x x xx  (2.23) 

 ( ) 21 1 1
22

s s s
t g Wφ η φ φ η η= − − ∇ ⋅∇ ∇+ + ⋅∇x x x x  (2.24) 

 

where ,
x y

 ∂ ∂
∇ =  ∂ ∂ 

x  is the gradient with respect to the horizontal coordinates only, 

( , )x y=x  , and W  is the vertical velocity at the free surface defined as: 
 

 
,( )z t

W
z η

φ

=

=
∂
∂

x

 (2.25) 

 
In principle, equations (2.23) and (2.24) allow to follow the time evolution of the free 
surface quantities, η  and sφ , starting from a suitable initial condition 

( , 0), ( , 0)s t tφ η= =x x , once the vertical velocity at the free surface, W , is known. 
Moreover, the velocity potential ,( ), z tφ x  and, consequently, the vertical velocity on the 
free surface, W , has to comply with the original Laplace problem presented in equation 
(2.10) up to the free surface. In this respect, Dommermuth and Yue [41] and West et al. 
[151], developed the core procedure of the HOS method allowing to calculate the 
vertical velocity, W , starting form η  and sφ  at each time instant. First, the free surface 
elevation, η , and velocity potential, φ , are considered to be of leading order ( )  , 
where 1�  is a small parameter that can be identified as the wave steepness. Then the 
velocity potential is expanded in a perturbation series in   up to the order M  as: 
 

 ( )

1
( , , ) ( , , )

M
m

m
x z t x z tφ φ

=

=∑  (2.26) 

 
where ( )( )m mφ = � . The free surface potential is then calculated by means of an 

analytical continuation of the velocity potential, φ , from 0z =  up to the free surface. 
The formal Taylor expansion can be then written as: 
 

 
0

(
!

,0, )( , )
l l

s
l

l

t
l z

t η φφ
=

∞ ∂
∂

=∑ xx  (2.27) 

 
Considering now the perturbation expansion of the potential, (2.26), and consistently 
keeping the terms of the potential up to the given M-th order, sφ  is written as: 
 

 
(

1 0

) ( ,0, )( )
!

,
M M l mm

l
l

m

l
s tt

l z
η φφ

−

= =

=
∂

∂∑ ∑ xx  (2.28) 

 
Rearranging the terms, and grouping with respect to the same order of perturbation, the 
following system of conditions on the perturbation term of the potential can be derived: 
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(1) (1)

(2) (2) (1)

( )1
( ) ( )

1

( ,0, )
( ,0, )

...

( ,0, )
!

s

z

l l m lm
m m

l
l

t f
t

t
z

f
l

f
ff

f ηf

η ff
−−

=

= = −

∂

= =

= = −
∂∑

x
x

x

 (2.29) 

 
The perturbation terms of the potential are then associated with the Laplace problem 
with a new Dirichlet condition on 0z = defined by (2.29): 
 

 

2 ( )

( ) ( )

( )

0 0
0

0

m

m m

m
z

z
zf
z

f

f

f

= <∇

→

= =

→ −∞

 (2.30) 

 
The recursive solution of problem (2.30) allows then to calculate W  at the free surface 
as function of η  and sφ  at each time instant. A typical way for solving the recursive 
Dirichlet problem (2.30) is to resort to the mode-coupling technique. It consists in 
expressing the potential at the different orders as functions of the spatial spectral basis 
already solving the Laplace problem and accounting for all the boundary conditions 
(comprised the possible lateral boundary condition) with the exception of the condition 
at 0z = . The structure of equation (2.30) is a smart way of projecting the information 
coming from the free surface potential on the undisturbed free surface. It allows to solve 
the Dirichlet problem for the different order of perturbation of the potential but now 
considering a simplified domain with the boundary condition applied at 0z = .  
Eventually a consisted velocity field is derived allowing to calculate, by analytical 
continuation, the vertical velocity at the free surface. 
 
From this point on, the methods proposed by Dommermuth and Yue [41] and West et 
al. [151] differs regarding the calculation of the vertical velocity at the free surface and 
in its inclusion in the equations (2.23) and (2.24). For Dommermuth and Yue [41] the 
vertical velocity is calculated simply as: 
 

 
1 0

1 ( )

1

( ,0, )
!

l l mM

m l
l

M m t
z

W
l
η φ− +

+
= =

∂
∂

=∑ ∑ x  (2.31) 

 
and the evolution equations of the wave field remains the ones introduced in (2.23) and 
(2.24). West et al. [151], instead, proposed to expand the vertical velocity at the free 
surface in a perturbation expansion on the parameter   as: 
 

 ( )

1

M

m

mW W
=

=∑  (2.32) 

 
where each perturbation term of the vertical velocity is calculated as: 
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(1) (1)

1 ( )1
( )

1
0

...

!

z

l l m lm
m

l
l

W

l z
W

φ

η φ+ −−

+
=

∂
=

∂

=

∑

 
(2.33) 

 
Moreover West et al. [151] introduced the following terms related to the vertical 
velocity that allows to consistently account for different perturbation orders: 
 

 
( )

( )

2

1

( ) ( )

M
m

M

m n

m
M

m

n M

W W

W W W
=

+ ≤

=

=

∑

∑
 (2.34) 

 
Now, in order to consistently take into account the vertical velocity contributions to 
equation (2.23) and (2.24) up to the M-th order of perturbation, West et al. [151] 
proposed the following reformulation of the terms related to the vertical velocity: 
 

 
( )( ) ( )

( )( ) ( ) ( ) ( )

2 2
2

2 22 2 2

2

1

1

M M

M M

W W W

W W W

η η

η η

−

−

+ ∇ → + ∇

+ ∇ → + ∇

x x

x x

 (2.35) 

 
This second formulation more consistently accounts for the perturbation expansion 
terms (West et al. [151]) and it has been found to perform better in long term 
simulations (Clamond et al. [28]). For this reason, hereinafter, the West et al. [151] 
formulation will be adopted. 

2.4.2 Spectral basis 
The velocity potential is expanded as a spectral basis series as: 
 

 
1

( , , ) (ˆ ( ) , ) for z 0
n

n nz t ztff
=

∞

Ψ= ≤∑x x  (2.36) 

 
where ˆ ( )n tφ  are the spectral coefficient of the expansion depending, at most, on time. 
 
The nΨ  are harmonic function, satisfying the Laplace problem, and compatible with the 
boundary condition at the bottom and  the periodic boundary condition, (2.30) and 
(2.14). A suitable choice of this function, for the deep water and finite depth cases, is: 
 

 

( ) ( )
( )( )
( ) ( )

( , ) exp deep water

cosh
( , ) exp finite depth

c

e

o h

p

s

xn n n

n
n n

n

z

z

z i

z h
i

h

κ

κ
κ

Ψ ⋅

+
Ψ ⋅

=

=

x

x

κ x

κ x
 (2.37) 

 
where , ,[ , ]T

n x n y nk k=k  is the wave number vector, nκ = κ  is the wave number and i  is 
the imaginary unit.  
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The spatial partial derivatives of the velocity potential can now be calculated, by 
derivation of the spatial basis only, as: 
 

 

( )

( )

,
1 1

1 1
,

( , ) ( , )

( , ) (

ˆ( ) ( )

ˆ( ) , )( )

n n
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ll ln
n n y n nl
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t t ikz z
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t t ik
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z
y

φ φ φ

φ φ φ

∞ ∞

=

∞ ∞

= =

=

∂ Ψ∂
Ψ

∂ ∂

∂ Ψ∂

= =

= Ψ
∂

=
∂

∑ ∑

∑ ∑

x x

x x  
(2.38) 

 
The partial derivatives in the z  directions can be calculated as: 
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κ x

κ x

κ x

 (2.39) 

 

2.4.3 HOS numerical implementation 
The numerical implementation of the HOS as a pseudo-spectral method comes directly 
from the representation of the wave elevation and velocity potential in terms of Fourier 
basis. The first step is to accept a truncation error allowing the representation of the 
quantities, η  and sφ  , as a truncated Fourier series up to a given order N (Canuto et al. 
[26]). This allows collocating η  and sφ  on a spatial grid by the Fourier interpolation 
technique. In this case Discrete Fourier Transform (DFT) of the two signals is 
considered as:  
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⋅ ⋅       

  
⋅ ⋅     

=


=



∑ ∑

∑ ∑
 (2.40) 

 
The DFT formalism requires the wave number grid and the spatial grid to be linked. 
The collocation points are defined on an evenly spaced grid of x yN N N=  points with x  
coordinates discretized as 0i x dx i x= + , with /x xdx L N= , and with y  coordinates 
discretized as 0j y dy j y= + , with /y ydy L N= . The discretized wave number vectors 

are defined as ,
2 2

x n x x
x x

k n n
L N dx
π π

= =  with [ / 2,..., / 2 1]x x xn N N∈ −−  and 
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,
2 2

yy m y
yy

k n n
L N dy
π π

= =  with [ / 2,..., / 2 1]yy yn N N∈ −−  (where xN  and yN  are herein 

assumed to be even numbers for simplicity). The resulting system of equations (2.23), 
(2.24) can then be reformulated in terms of evolution equations of the DFT coefficients 
as: 
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 (2.41) 

 
where ( ), ˆˆ sη φ  indicates the linear terms and ( ), ˆˆ sη φ  indicates the nonlinear terms 

in equation (2.23) and (2.24) and can be formally defined as: 
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 (2.42) 

 
All the spatial derivatives involved in the calculation of the right-hand side of equation 
(2.23), (2.24) and (2.29) are then calculated, exploiting the Fourier formulation of the 
velocity potential and the free surface elevation (2.40), in the domain of the discretized 
wave numbers. The actual implementation of the discrete spectral derivatives follows 
equations (2.38) and (2.39).  
 

2.4.3.1 Nonlinear terms calculations and anti-aliasing techniques 

A key aspect in the implementation of the HOS method is the Fast Fourier Transform 
(FFT) algorithm. From a numerical point of view, the DFT of a signal is nothing but an 
orthogonal transformation in the domain of the complex numbers and by the use of FFT 
algorithm the DFT can be evaluated with a computational scaling of the order 

( log )O N N  (Canuto et al. [26]). This, among other benefits, allows a fast computation 
of the spatial derivatives. Another important application of the FFT algorithm is 
represented by the collocation method to calculate the nonlinear terms of PDE and 
named, as pseudo-spectral method, after Orszag [110]. As a matter of fact, the 
convolution terms generated by the products of two quantities, if calculated directly in 
the spectral domain, would require a computational cost of 2( )O N , where N  is the 
number of spectral components considered. Nonetheless, by collocating the terms of the 
product on a discretized grid of N  points , for example by a Fourier interpolation in the 
physical domain, the product between these two signals can be calculated as simple 
multiplication, of cost N , plus 3 FFT for the transformation between the Fourier 
domain and  the physical domain, with cost of ( log )O N N . However, in calculating the 
product between two signals or, more generally, the M-th power of a signal, special care 
must be given to obtain a final nonlinear term with a spectral content consistent with the 
needed frequency bandwidth. In fact, depending on the relative bandwidth of the 
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original signals, calculating the nonlinear term can give frequency content beyond the 
Nyquist limit, / 2Nyqn N= , imposed by the spatial discretization. This eventually leads 
to a misinterpretation, aliasing, of the frequency content of the nonlinear term that 
results to be not consistent with the required frequency discretization (Canuto et al. 
[26]). There are different techniques to overcome this issue, in order to obtain “aliasing 
free products”: the truncation technique, the padding technique and the phase shift 
technique (Canuto et al. [26]). The padding technique consists in collocating, by Fourier 
interpolation, the original signals, with, say, N  Fourier frequencies, on a finer grid 
with, N N> , discretised points by padding the signal, in the frequency domain, with 
N N−  zero components. After the calculation of the nonlinear terms is carried out on 
the finer N  points spatial grid, the results are transformed back in the Fourier space 
keeping only the needed N  Fourier components by truncation. It is possible to prove 
that, to have an effective aliasing removal for a simple product, it is sufficient to 
collocate the signals on a grid of 3 / 2N N=  points (Canuto et al. [26]). In the case a 
nonlinear term of order M (M products) is required, the collocation has to be performed 
on ( 1) / 2N M N= + points grid (Ducrozet [42]). 
 
In the present implementation of the HOS code, considering a spectral representation of 
the wave elevation and the velocity potential on a spectral with x yN N N=  frequencies, 
in order to carry out a aliasing free calculation of the M order nonlinear terms, the 
collocation grid has to account for a number of points equal to (Ducrozet [42]; Ma 
[84]): 
 

 
1 1;

2 2yx x x y y
M MN N N NpN pN+ +

= = = =   (2.43) 

 
For an easy implementation, the padding coefficient p has been defined as 

(( 1) / 2)p ceil M= +  resulting in the padding coefficients reported in Table 2.1. 
 

Table 2.1: Table of padding coefficient used in the full padding technique. 

p M=2 M=3 M=4 M=5 

1theory
2

M + 
 
 

 3/2 2 5/2 3 

present 2 2 3 3 

 
As a final remark, the collocation procedure associated with the padding techniques 
requires to carry out the FFT transform on an increased spectral domain of 

( )1 / 2N M N= +  frequencies resulting in an increased computational cost that, now, is 
of order ( log )O N N  . This detrimental effect on the computational performances can be 
mitigated by decomposing the calculation of the M-th order products in series of lower 
order product, for example M-1 simple products, and applying for each of these 
products a collocation accounting only for 3 / 2N N=  points. This technique can be 
referred to as partial padding, in contrast with the full padding technique which 
consistently accounts for the M-th order products. Although the partial padding 
technique results in better computational performances, this is in general obtained at the 
expenses of the accuracy in the calculation of the nonlinear terms. In Decrouzet [42] 
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and Blondel-Couprie [14] a comparison of the two padding techniques is discussed in 
terms of both computational cost and accuracy. In the present HOS implementation only 
the full padding technique is considered. 
 

2.4.3.2 Time integration 

The time integration of the evolution equations in (2.41) is carried out by means of an 
explicit 4th order multistep Runge Kutta scheme (RK4). The RK4 method produces an 
approximation of the time derivatives to update the solution at the required time step 
with four function evaluations. Let us consider the system of ODE, ( )( ),t t=y f y  where 

N∈y y  , the vectorial function f  is  a general nonlinear function 
( )( ), : ( , )N Nt t →f y y y y and 0y  is a suitable initial condition 0 0( )t t= =y y . The RK4 

scheme associated with the discretization of this ODE produces the following scheme: 
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=

 = + + 
 
 = + + 
 

= + +

y y K K K K

K f y

K f y K

K f y K

K f y K

 (2.44) 

 
where dt  is the discrete time step and the value of the solution at the nth time step is 
defined as 0( )n t ndt= +y y .  
 
Following Colicchio and Landrini [32], a step forward in the analysis can be undertaken 
in recognising that the system of equation (2.41), in the simplified case of a single 
Fourier term, can be written in the following form as: 
 

 
ˆ ˆ0

ˆ0ˆ
n nn

nn
g

η ηκ
φφ

    
  = → =  
       −

y Ay




  (2.45) 

 
Now the matrix A  has two complex eigenvalues 1,2 ngiλ κ= ±  and it can be 
diagonalized as = -1A P DP  where P  is the eigenvector matrix and 1 2( , )diag λ λ=D  is 
the diagonal eigenvalues matrix. By substituting equation (2.45) in (2.44) the following 
is obtained: 
 
 
 
 
 
 
 
 



 Chap. 2: WATER WAVE MODELLING 

40 

 

( ) ( ) ( )
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2
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2 3 41 2 3 4
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dt
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dt dtdt

dt dt dt dt+

 + 
 
  + +    
   + + +      

 = + + + + 
 

K = Ay

K = A y Ay

K = A y A y Ay

K = A y A y A y Ay

y I A A A A y

 (2.46) 

 
Noting that ( ) ( )1 1 1...n n− − −= =A P DP P DP P D P the final equation of (2.46) can be 
written in the decoupled form as: 
 

 
( ) ( ) ( )2

4

1

2 3
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1 1 11
2 6 24

1 1 11
2 6 24

n n
i i i i i i

n n
i i i i i i i

x dt dt dt dt x

x Zz xz z z

λ λ λ λ+  = + 
 
 = + =

+ + +

+ + +
 

 (2.47) 

 
The absolute stability region of the RK4 method applied to the linear problem (2.45) is 
defined by region of the complex plane for which 1iZ ≤ . In case the linearized water 
wave problem of equation (2.45) is considered, the largest eigenvalues have absolute 

value max Nyqgλ κ=  with 
22

Nyq dx dy
π πκ

  =   


+
  

. The complex solution for 1iZ =  is 

2 2idtλ = . This result in a condition on the maximum allowable time step to have a 
stable RK4 scheme, that can be written as: 
 

 
2

2 2

8 8

Nyq

dxdydt
g g dx dyκ π

≤ =
+

 (2.48) 

 
Equation (2.48) in the case of 1D application coincides with the well know result 

( )2 8dt dx
gπ

≤  (Fornberg [51]; Dommermuth and Yue [41]). However, the value given 

by (2.48) has to be considered only as a starting value in the selection of the simulation 
time step.  
 
In literature a rather usual approach is to integrate analytically the linear part of equation 
(2.41) and apply the RK4 scheme only to the remaining nonlinear terms (Tanaka [137]; 
West et al. [151]; Ducrozet [42]). Ducrozet, 2007 [42] and Tanaka [137]  have taken 
advantage of this technique reporting a sensible improvement both in the size of time 
step required in the RK4 time stepping and in the solution accuracy. Nonetheless, in the 
present implementation the code, the RK4 scheme is applied to the whole equation 
(2.41) without separating the linear part and the nonlinear part of the equations. 
 



Sect. 2.4: High-Order Spectral method 

41 

2.4.3.3 Numerical instabilities and filtering 

The perturbation expansion of the Dirichlet boundary value problem presented in (2.29) 
and (2.30) is the core of the HOS method. One of the fundamental assumptions on 
which this computation step is based, is the Taylor expansion of the free surface 
velocity potential presented in (2.27). In general, the velocity potential series expansion 
can be found to be slowly or even not convergent, especially for those cases where the 
free surface elevation presents a large spectral bandwidth and for which the short-
wave/long-wave interaction is triggered (Bruckner and West [20]). Nonetheless, 
Bruckner and West [20] showed that, even in the case of potentially divergent series 
expansion of velocity potential, the formal expansion of the derived vertical velocity 
could still give a convergent series. This is guaranteed by a formal cancellation of the 
short-wave/long-wave interaction terms provided that all the terms in the series are kept. 
However, from a numerical point of view, it is not possible to keep all the terms of the 
Taylor series. From a general perspective, i.e. beyond the HOS method, Milder [92] 
analysed how the truncation of the series affects the mode-coupling models. The major 
effect consists is a spurious high-frequency content of in the solution. Dommermuth and 
Yue [41] observed a similar effect by using numerical considerations about the HOS 
method. In order to understand the nature of the instability, let us assume the true modal 
amplitudes ( )ˆ m

nφ  of the velocity potential affected by small numerical error as 
( ) ( ) ( )ˆ 1ˆm m

n n mnφ φ δ= + . Then, comparing the true and the approximate solution by equation 
(2.30) the following error assessments is obtained:   
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= −−

∂∑ ∑ x
!  (2.49) 

 
with  nψ  coming from the modal expansion of the velocity potential as in (2.36). 

Because the spectral derivative ( ,0)l
n

lz
ψ∂
∂

x  is proportional to l
nκ , (2.49) shows that the 

numerical errors are mostly amplified at high frequency. This effect leads to the 
unphysical growth of amplitudes at the high-wave numbers resulting in a noisy solution 
and, possibly, an unstable numerical integration. The solution proposed by 
Dommermuth and Yue [41] is the use of a low pass frequency filter able to keep only 
the frequency numbers that can be considered free from numerical errors. Different 
authors consider different implementation of the low pass filter. In general, a 
widespread solution is the adoption of a simple ideal low pass filter. Another filter 
which is often used is the five point filter (Dommermuth and Yue [41]; Bateman et al. 
[7]). In the present implementation of the code the following ideal low pass filter has 
been used: 
 

 
1

( , )  with 0 1
0

n

max

n

max

G

κ n
κ

κ n n
κ n
κ

 ≤ ≤ ≤
 >


 (2.50) 

 
with maxκ  the maximum wave number considered in the simulation. 
For the selection of the cut-off parameter ν , Guyenne and Nicholls [62], for instance, 
suggests a value of 0.8. However, the cut-off value has to be considered as dependent on 
the simulation characteristics, the reference steepness for example, and in general, as 
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long as the experience of the author is concerned, the selection of ν  results to be a 
trade-off between accuracy and stability of the calculation.  
 
Other works (Xiao [161]; Xiao et al. [162]; Yue [168]; Wu [160]) have proposed an 
alternative approach to the high wave number filtering. Starting from the argument 
regarding the impossibility of the HOS method alone to damp out the high frequency 
number that naturally will be damped by wave breaking phenomena, they introduced an 
artificial filter for this purpose. In other words, Xiao [161] assumed a parametrized 
exponential filtering function and tuned its parameters against experimental results in 
order to give, heuristically, the same kind of energetic damping induced by the wave 
breaking. Since this kind of filtering is particularly effective for complex sea state with 
high steepness (it is adopted also by other authors, for example Xu and Guyenne [164]) 
the herein developed code has been provided with this kind of filtering function, which 
is defined as : 
 

 
2

1 2
1 0

( , ) exp,G
β

κκ β β
β κ

  
 = −    

 (2.51) 

 
being 0κ  is a characteristic wave number of the spectrum, for example the peak wave 
number, and where following Xiao [161], the parameters 1 2,β β  takes the values in the 
intervals 1 7 8β = ÷ , 2 20 35β = ÷ . 
 
In the developed code the ideal filter presented in (2.50) is always preferred. The 
application of this filter is done following Ducrozet [42] for which  the optimal solution 
is to apply the filtering at each time step of the numerical integration both on the wave 
elevation and free surface potential, and at their time derivatives in the evolution 
equation.  

2.4.3.4 Operation count of the Dirichlet problem 

Dommermuth and Yue [41] shown that the computational cost of a HOS method, per 
each time step, should be ( log )O MN N , with N the total number of Fourier modes and 
M the order of perturbation. The same result is reported also by Mei et al. [91], for an 
equation equivalent to (2.28). Other authors, like Schäffer [122] and Ducrozet [42], 
agreed in finding that the main computational cost of the HOS method is associated to 
the Dirichlet iterative problem (2.29) and that the expected computational cost is of 
order 2( log )O M N N . The computational burden is associated with the calculation of 
the nonlinear term of equation (2.29), with the FFT algorithm the most time consuming 
step. In the following, a schematic review of the implemented code is presented in order 
to count for the number of application of the FFT/IFFT algorithm. The analysed part of 
the code is the implementation of the Dirichlet problem in (2.29). In terms of 
input/output the related routine can be summarised as a single function that, starting 
from the Fourier components of the free surface elevation and the free surface potential, 
determines the velocity potential perturbation terms, ( ) (1) ( ),...,ˆ ˆ ˆˆ, s MG G η φ φ φ= → , see 

(2.29). The function G involves the calculation of spectral derivatives in the Fourier 
space and nonlinear products in the physical space, requiring several application of 
either the FFT or the IFFT algorithm. Table 2.2 presents an assessment of the number of 
FFT/IFFT applications in the calculation of function G. The total number of FFT/IFFT 
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operation is ( )1 1
2

M M+ , which is in line with Schäffer [122] at least for the part of the 

algorithm accounting for the velocity potential perturbation terms. The computational 
effort of 2( log )O M N N  calculated in Schäffer [122] seems to be confirmed also by this 
simple assessment calculation. 
 
Table 2.2: Number of FFT and IFFT operations for the solution on the velocity potential in the Dirichlet 

problem. Data refer to the implementation developed by the author. 
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(2) (2) ( ) ( ),.. ˆ,ˆ . M Mφ φ φ φ→ →   M-1 
  

FFT/IFFT count 
1 ( 1)
2

M M +   

2.4.4 Initialization issues & strategies 
For the initialization of HOS simulation two initial conditions are needed: the initial 
condition for the wave elevation 0 0ˆ ˆ( )t tη η= =  and the initial condition for the free 

surface potential 0 0
ˆ ˆ ( )s s t tφ φ == . These two quantities, at the first time step, are used to 

calculate the nonlinear terms of the evolution equation integrated in time to find the 
solution at the new time step. As a result, the initial conditions will drive the evolution 
of the wave field and their impact on the simulation, in general, cannot be overlooked. 
In the case the HOS method is used as a phase-resolved wave prediction model, the 
correct knowledge of the initial (measured) data is a key point for a correct forecasting 
of the wave field. However, from a practical point of view, the proper reconstruction of 
the initial condition can be challenging, especially for severe sea state. In general, 
indeed, the only information available are in the form of wave spectra and, even in the 
case wave elevation measurement are available, the free surface potential remains out of 
reach. For these reasons, the wave elevation and the free surface potential are usually 
initialized with low order nonlinear models and, most of the times, the initial condition 
are just generated by linear models. However, Dommermuth [40] argued that the linear 
initialization of nonlinear HOS simulations leads to the formation of spurious effects in 
the form of high-frequency standing waves. Dommermuth [40] presented a set of n 
HOS simulations where the spurious effects eventually lead to an incorrect evolution of 
the bound waves associated with carrier free-waves. The suggested strategy to 
overcome these initialization issues consists in a temporal ramp for the nonlinear terms 
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in the evolution equations. The adjustment technique proposed by Dommermuth [40] 
can be explained resorting to equation (2.41) and (2.42) rewritten as follows: 
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 (2.52) 

 
where ( )f t  is a monotonic function going from zero to one, [: 0,1]f →  . Several 
ramping function can be envisaged, for example Wu [159] used a polynomial ramp, 
while Dommermuth [40] proposed an exponential ramp: 
 

 ( ) 1 exp
n

a

tf t
T

     = − −      
 (2.53) 

 
For sake of reference, the adjustment procedure has been tested for the simulation of a 
Stokes wave initialized with linear initial condition. Further details about the simulation 
parameters and the Stokes reference solution can be found in Dommermuth [40]. Figure 
2.2 shows the amplitude of the harmonics of the Stokes wave as function of the 
simulation time. The HOS simulation results are reported as thick lines and the 
reference solution is reported as thin lines. Figure 2.3 shows the same test of Figure 2.2 
with the application of a time ramp with parameters 08 ,  4aT T n= = , where 0T   is the 
period. The application of the time ramp shows a visible improvement in the 
reproduction of the amplitudes bound waves and a closer reproduction of the reference 
solution. 
 

 
Figure 2.2: Unadjusted Stokes wave simulation, no ramp is applied. The amplitudes of the Stokes 
harmonics are reported as function of the simulation time: HOS results thick line; reference solution 
(Dommermuth [40]) thin line. 
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Figure 2.3: Adjusted Stokes wave simulation, the time ramp of equation (2.53) is applied with parameters

08 ,  4aT T n= =  . The amplitude of the Stokes harmonics are reported as function of the simulation time: 
HOS results thick line; reference solution (Dommermuth [40]) thin line. 
 
The ramp proposed by Dommermuth [40] at the time at T=  attains the value 

1( ) 1af T
e

= −  taking longer to attains a value close enough to one. In order to improve 

this behaviour a slightly different ramp has been defined and adopted hereinafter. In the 
proposed modification, the exponential ramp time parameter aT  is substituted by the 
value ( )* 1// (1/ )aa

nT T log δ= , with 1δ   is an arbitrary small value. This correction 
guarantees that at the time at T=  the ramping function is equal to ( ) (1 )af T δ= − . The 
resulting ramp function is: 
 

 ( )( ) 1 exp
n

a

tlogf t
T

δ
     = −       

 (2.54) 

 
The use of the adjustment techniques depends on the purpose for which the HOS 
nonlinear simulations are carried out. For the generation of synthetic complex irregular 
sea states, initialized by state spectrum, this technique seems to be usually accepted 
(Decrouzet [42]; Fedele et al. [46]; Wu [159]; Xiao [161]). Decrouzet [42] tested the 
application of an adjustment ramp checking the typical nonlinear statistical features of a 
developed nonlinear wave field, obtaining results which are consistent with the theory, 
for a ramp of 10a pT T=  where pT  is the peak period. In all these investigations the ramp 
time is related to the typical wave period of the sea state, say it 0T , and the adopted 
duration of the ramp time is usually of the order ( ) 05 10aT T≈ ÷ ⋅ . On the other hand, 
when the HOS is used to reproduce a phase-resolved propagation of the wave field 
starting from wave measurements, the adjustment technique is no longer considered an 
applicable option. This is because the introduction of a ramp, in accounting for the 
nonlinear boundary conditions, can lead to discrepancies with respect to the measured 
wave data. Therefore, for this kind of simulations, a set of complex data assimilation 
tool is usually used for the reconstruction of the free surface potential and the nonlinear 
wave elevation field from the available measurement. The simulations are usually 
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matched with the measured data by means of different optimization tools and data 
assimilation techniques (Blondel-Couprie et al. [14]; Wu [159]; Yoon et al. [166]; 
Hassanaliaragh [67]). As a final remark, since in this work the HOS simulations are 
mainly used as a tool for the generation of realistic sea states, it seems to be justified to 
adopt the usual linear generation of free surface initial condition coupled with a suitable 
adjustment ramp. The ramp used in the present simulation of nonlinear wave field is the 
ramp reported in (2.53) with the correction of the time parameter described.  

2.4.5 Convergence test for vertical velocity 
In this section some results are presented about the convergence of the boundary value 
problem for the calculation of the vertical velocity. As reference solution a Stokes wave 
has been calculated with the method proposed by Rienecker and Fenton [120]. The 
Stokes wave has been calculated for a wave steepness of 0.3aκ =  and for a water depth 
of 10 wh λ=  where the 2wλ π=  is the reference wave length. The stream function has 
been expanded keeping up to 32RFN =  frequency component for which the Rienecker 
and Fenton [120] method has reached the convergence up to the machine precision. The 
test consists in prescribing η  and sφ  from the Stokes solution, and then calculating the 
vertical velocity solving the Dirichlet problem in (2.29) and (2.33). The Dirichlet 
problem has been solved for a set of perturbation orders [1, 2,3, 4,8,12,16, 20]M =  and 
for a set of spatial discretization [4,8,16,32,48,64,80,128]N = . Results are presented in 
terms of the maximum absolute relative error, calculated as:  
 

 
max( )

max( )
HOS RF

W
RF

W W
err

W
−

=  (2.55) 

 
Figure 2.4 and Figure 2.5 present the results obtained for the reconstruction of the 
vertical velocity. Increasing the perturbation order M and the number of discretization 
points N reduce the relative error until an error plateau is reached. For the higher M, i.e. 
M=20, the HOS solution diverges even if the number of the frequency components N is 
increased. This is mainly related with the numerical instabilities involving the high 
frequency numbers caused by the many perturbation terms required for the solution of 
the boundary value problem. Similar are obtained in Dommermuth and Yue [41], 
Bonnefoy [19], Skandrani et al. [132] where for Stokes wave with high steepness and 
for high values of the perturbation order the error on the vertical velocity increases. 
Decrouzet [42] suggested that the main sources of this kind of instability come from the 
spectral derivatives at high wave number and high perturbation order. In this case, the 
numerical errors introduced in the calculation of the nonlinear products is be amplified 
with M

nκ . The proposed strategy to improve the convergence is to filter out the higher 
wave harmonics in the calculation of the nonlinear terms of the boundary value 
problem. The filtering is associated with the spectral derivative operator from which the 
wave components of index 2n N>  are removed from the full padding technique for the 
calculation of the nonlinear products (Decrouzet [42]). Figure 2.6 and Figure 2.7 show 
the results obtained from the filtering of the spectral derivative. The error behaves much 
better, decreasing constantly for almost all the range of tested perturbation orders. Some 
problem can still be noticed for the calculation with the highest tested perturbation 
order.  
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Figure 2.4: Vertical velocity calculation prescribing the free surface elevation η  and the free surface 
potential sφ  from a Stokes wave solution. Results are reported as function of the perturbation order M. 
No filtering has been applied to the spectral derivative. 
 

 
Figure 2.5: Vertical velocity calculation prescribing the free surface elevation η  and the free surface 
potential sφ  from a Stokes wave solution. Results are reported as function of the number of discretization 
points N. No filtering has been applied in the calculation of the spectral derivative. 
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Figure 2.6: Vertical velocity calculation prescribing the free surface elevation η  and the free surface 
potential sφ  from a Stokes wave solution. Results are reported as function of the perturbation order M. 
An ideal filter has been applied in the calculation of the spectral derivative. 
 

 
Figure 2.7: Vertical velocity calculation prescribing the free surface elevation η  and the free surface 
potential sφ  from a Stokes wave solution. Results are reported as function of the number of discretization 
points N.  An ideal filter has been applied in the calculation of the spectral derivative. 
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2.4.6 Nonlinear wave interaction 
Following Dommermuth and Yue [41], the HOS method is tested herein for simulation 
of the evolution of a Stokes wave train perturbed by two side band instabilities. The 
main purpose is to check the performances of the HOS in accounting for the quartet 
wave interaction where a carrier wave with wave number 0κ  is perturbed by two 
collinear side band with wave numbers 0 (1 )pκ κ= ± (Phillips [113]). Depending on the 
wave steepness of the carrier wave, this condition can trigger what is known as class I 
instability, also known as Benjamin-Feir instability (Benjamin, and Feir [12]; McLean 
[87]). According to Stiassnie and Shemer [134], for a carrier wave of steepness 

0.13aκ = , the most unstable class I modes correspond to the side band parameter 
0.22p = . In Figure 2.8 the evolution of the normalized harmonics corresponding to the 

carrier wave, with wave numbers, 0 9κ =  and two side bands 0 ( [ 11]1 7,)pκ κ± ±=   is 
presented. The carrier wave 0η  and ,0sφ  have been calculated with a fifth order Stokes 
wave solution (Skjelbreia and Hendrickson [133]) and the side bands disturbances are 
defined as: 
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 (2.56) 

 
The solution has been obtained with a perturbation order 4M =  with a space 
discretization of 64N =  points. The amplitude of the harmonics has been normalized 
with respect to the carrier amplitude at the first time instant. The amplitudes of the side 
bands start to grow, showing a recurrence period 2

0 0/ ( )T aκ , which is consistent with 
the theory (Dommermuth and Yue [41]). After a few oscillations, the simulation starts 
to degrade showing noisy fluctuations of the sidebands amplitudes and a reduction of 
the recurrence period. This result is coherent with those presented by Dommermuth and 
Yue [41], Stiassnie and Shemer [134] and Skandrani et al. [132]. 
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Figure 2.8: Time histories of the normalized harmonics 9; 11; 7κ κ κ= = =  for an evolving Stokes wave. 
The Stokes wave has steepness 0.13aκ = . The space discretization accounts for 64N =  points and the 
perturbation order is 4N = . 

2.5 Generation of nonlinear irregular waves 
In the present work the HOS method has been developed as a flexible tool for the 
generation of nonlinear wave fields. The capabilities of the HOS allows to simulate, 
with an acceptable computational cost, those nonlinear features that linear or low order 
wave propagation models cannot taken into account. Depending on the severity of the 
sea state, the time evolution of the wave field simulated by HOS accounts naturally for 
the high order bound waves, the energy transfer due to wave-wave interaction and also 
for the changes of the wave kinematics due to the nonlinear dispersion relation. This 
characteristic makes the HOS a valuable tool for generating “realistic” wave fields for 
benchmarking and testing purposes. However, the initialization of the HOS in the case 
of complex sea states may need special care because of the need of resorting to lower 
order models for the generation of the initial condition.  
 
The strategy adopted herein is to employ a linear wave model to generate the initial 
condition starting from a given wave spectrum. Then, the adjustment time ramp is 
applied to smoothly introduce the wave nonlinearities, through the introduction of the 
nonlinear terms in the evolution equations (Dommermuth [40]). For the present test 
cases, the initial linear wave field is generated by a superposition of unidirectional wave 
modes with amplitudes derived from the sea spectrum as 2 ( )nA S dκ κ=  and with 
random phases ϑ  uniformly distributed in the interval [0, 2 ]π . In order to satisfy the 
periodicity of the wave field, which is required by the HOS method, the wave 
components must be related to the spatial domain assuming a finite set of wave numbers 
with discretization 2 / xd Lκ π= .  
 
In the following, a description of the nonlinear features characterising the generation of 
long crested sea spectra are reported. Figure 2.9, Figure 2.10 and Figure 2.11 present the 
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normalized spectrum ,( )S κ ω  calculated from the HOS simulations of the three 
considered unidirectional seas. The considered sea conditions are three long crested 
Bretschneider spectra (corresponding to JONSWAP spectra with overshoot parameter 

1.0γ =  ) with the same peak period 11.97pT s=  and with different significant wave 
heights [2.5, 4.5,6.5]sH m= . The total simulation time has been set to 110 pt T=  with a 
time step 0.25dt s= . The total length of the domain has been selected as 3840xL m=  
with a spatial discretization 3.25dx m= , corresponding to 1024xN =  points. The 
simulations have been carried out with a perturbation order 4M = . An adjustments 
ramp with 10a pT T= , (2.54), has been applied and the terms of the evolution equation 
have been filtered by means of an ideal filter, (2.50),above the wave number 0.8 Nyqκ κ>

, at each time step. In the numerical determination of the spectrum ,( )S κ ω  from the 
HOS wave elevation data, a tapering window, function of the time, has been applied 
before the FFT analysis, in order to reduce leakage in the wave frequency domain. The 

,( )S κ ω  spectrum for each case is reported, in logarithmic scale, and normalized with 
respect to the maximum value. The linear dispersion relation for the free wave is 
reported in the figures with red line. A third order correction to the linear dispersion 
relation has been calculated following Madsen and Fuhrman [85] based on the nominal 
wave amplitudes given as initial condition to the HOS. The corrected linear dispersion 
relation is reported as blue line. 
 
The first sea condition reported in Figure 2.9 is characterised by the lower significant 
wave height 2.5sH m=  . The spectrum ,( )S κ ω  highlights the onset of second order 
bound waves. However, the main energy is concentrated along the linear dispersions 
relation. The second order branch is more evident in the case of 4.5sH m= , Figure 
2.10, and even more in case of 6.5sH m=  in Figure 2.11. In this latter case, even the 
third order bounds waves can be clearly noted. A change in the wave kinematics as the 
significant wave height, and thus the steepness, increases is highlighted by the departure 
of the dispersion relation of the free waves from the linear dispersion relation. This is 
most noticeable in Figure 2.11. The analytical third order correction calculated 
according to Madsen and Fuhrman [85] closely matches the spectral trace of the free 
waves as obtained from HOS, with a clear departure from the linear dispersion relation. 
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Figure 2.9: ,( )S κ ω  spectrum derived from HOS simulation. The simulation has been initialized with a 
Bretschneider sea spectrum with peak period 11.97pT s=  and significant wave height 2.5sH m= . 

 

 
Figure 2.10: ,( )S κ ω  spectrum derived from HOS simulation. The simulation has been initialized with a 
Bretschneider sea spectrum with peak period 11.97pT s=  and significant wave height 4.5sH m= . 
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Figure 2.11: ,( )S κ ω  spectrum derived from HOS simulation. The simulation has been initialized with a 
Bretschneider sea spectrum with peak period 11.97pT s=  and significant wave height 6.5sH m= . 

2.6 Concluding remarks 
In this chapter, the potential water wave theory has been presented with the main 
purpose of explaining the main analytical steps relevant to the definition of the HOS 
method. The HOS method has been proven to be a valuable tool for the simulation of 
complex nonlinear sea states capable of reproducing the most prominent nonlinear 
feature of the wave field. However, there are some aspects requiring particular attention, 
both from the side of implementation and of the use. One of the main issues for the 
application of the HOS method is the initialization step. In order to avoid spurious 
modes in the simulation, the initial values of the free surface elevation and the velocity 
potential must be compliant with the nonlinear water wave boundary value problem. 
However, this kind of information is generally not available and can be reconstructed 
only from low order models. Moreover, in case the HOS solution is required to match 
with wave measured data, the lack of information on the free surface potential may need 
complex techniques of optimization or data assimilation. On the other hand, the use of 
the HOS as a tool for generation nonlinear sea states is less challenging. An example of 
the use of the HOS method in the case of unidirectional sea states has been presented, 
highlighting the capability of the method in modelling the main nonlinear features of a 
water wave field. The adopted initialization strategy is an adjustment technique that 
consists of initializing the HOS with a linear solution, smoothly introducing the wave 
nonlinearities in the evolution equation. Another potential source of difficulties turns 
out to be more related to numerical aspects in the implementation of the HOS. The core 
of the HOS method is the set-up of a Dirichlet boundary value problem in the 
perturbation terms of the velocity potential. The free surface potential is expanded in a 
Taylor series with respect to the reference water level, allowing to map the Laplace 
problem on a simpler fluid. Once the solution is found the same analytical continuation 
technique is used to derive back the vertical velocity on the free surface. The numerical 
implementation of this procedure, however, introduces in the problem numerical errors 



 Chap. 2: WATER WAVE MODELLING 

54 

that, when high order solutions are required, leads to the generation of high frequency 
disturbances. This phenomenon is in general responsible of an artificial energy packing 
at the high wave numbers and it can lead to the blow up of the solution. This kind of 
issue is generally solved by resorting to filtering techniques that allows to filter out the 
unwanted disturbances. The accuracy in reconstructing of the vertical velocity in the 
case of Stokes waves has been tested and it has been shown that the introduction of the 
filtering improves the convergence of the method. The same filtering techniques are 
adopted also to artificially induce a damping in the HOS model. In fact, the HOS 
method is incapable of dissipating energy. More generally, the simulation of highly 
nonlinear wave fields can results to be a challenging task especially in the cases 
breaking phenomena are involved. Eventually, the computational cost of the HOS 
method has been also addressed. The count of the operations required for a single time 
step has been discussed noticing how the HOS scales with the order 2( log( ))O M N N , 
where M  is the perturbation order of the solution and N  is the number of frequencies 
used in the discretization. 
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3 WAVE RADAR SIGNAL 
INVERSION 

In this chapter, the deterministic reconstruction of the sea surface from synthetically 
generated radar images is discussed. A brief review of the wave radar working principle 
is presented and the simplified radar imaging model is derived. The widespread 
Modulation Transfer Function (MTF) technique is described in order to highlight the 
main underlying semi-empirical assumptions and to stress the still challenging 
application of the MTF to the deterministic reconstruction of wave fields. An alternative 
inversion technique, based on a “Least SQuares with Regularization (LSQR)” approach 
is introduced. The proposed technique is based on the linearization of the radar imaging 
process and the linearity assumption on the wave field. A least squares problem is then 
derived and it is solved using a Tikhonov regularization technique. The notable 
characteristics of the presented LSQR approach are associated with the way the 
shadowing effect is taken into account and the flexibility of the approach in dealing 
with different sea states. Application examples are carried out for long crested linear 
and nonlinear sea conditions, and linear short crested sea conditions, paying particular 
attention to the description of the main statistical features of the reconstruction error.  

3.1 Introduction 
In recent years, the X-band wave radar has become a reference technology for costal 
monitoring and ocean surface remote sensing. The main characteristics rendering the 
wave radar such a key asset for monitoring activities relies in its capability of providing 
real time measurement and long range information about the ocean surface. Several 
studies have promoted the application of the wave radar for the measuring different 
environmental quantities, such as mean near-surface currents (Senet et al. [127]; 
Serafino et al. [130]; Young et. al. [167]), wind fields (Danker et al. [34]) and wave 
spectra and wave spectra parameters (Lund et. al. [81]; Nieto Borge et al. [105]; Nieto 
Borge and Soares [106]; Seeman et al. [126]), highlighting the potential multi-purpose 
use of these devices. Wave radar devices are also particularly interesting in the 
perspective of coupling them with wave and ship motion forecasting procedures 
intended for issuing early warnings, safety and operational indications. In this context, 
there is a growing interest in the detailed reconstruction of local wave elevation from 
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wave radar images. In fact, the real time imaging of the sea surface is a fundamental 
step for Deterministic Sea Wave Prediction (DSWP) procedures which aim at 
producing, from deterministic sea elevation measurements, corresponding deterministic 
wave elevation forecasting (e.g. Blondel-Couprie and Naaijen[17][18]; Fucile et al. 
[52][53]; Hilmer and Thornhill [68]; Naaijen and Blondel-Couprie [97]; Wu [159]). 
Such predictions can then be linked, in principle, also to deterministic ship motion 
forecasting procedures (e.g. Alford et al. [3]; Connell et al. [33]; Dannenberg et al. [36]; 
Naaijen and Huijsmans [99]). 
 
Several approaches have been proposed so far for the reconstruction of the wave 
elevation from wave radar images and, in the majority of the cases, they find a common 
starting point in the simplified framework of the tilt modulation theory of the radar 
signal for moderate sea states proposed by Wright [158] and Alpers et al. [4]. Many of 
these techniques rely on the application of the Modulation Transfer Function (MTF) to 
the radar signal in order to extract the required features of the wave field. These 
techniques can be described as a linear operator acting on the wave number domain and 
modifying the radar signal in order to get the wave elevation, or, at least, the wave 
elevation spectrum. However, some technological difficulties, mainly related to the fact 
that the radar signals measured at long range are affected by effects that are difficult to 
explain in terms of tilt modulation only, require the introduction of semi-empirical 
formulations of the MTF function based on calibration through real and/or synthetically 
generated radar images (Nieto Borge et al. [105]; Ziemer and Rosenthal [171]). This 
type of procedure has been applied to wave elevation reconstruction by Nieto Borge et 
al. [105] and it is nowadays a widespread procedure (Serafino et al. [129]), thanks also 
to its quite satisfactory performances and computational scalability. The semi-empirical 
nature of the MTF formulation has encouraged some authors in proposing alternative 
formulations of the MTF through adaptive tuning on the particular environmental 
conditions considered (Chen et al. [27]; Fucile et al. [54]; Ludeno et al. [79]). Other 
reconstruction techniques have been proposed by Dankert and Ronsenthal [35] and by 
Naaijen and Wijaya [104], which differ from the semi-empirical MTF technique, since 
they are directly based on a linearized version of the tilt model.  
 
An important source of the nonlinear radar signal modulation, that represents a 
challenge for the correct analysis of wave radar images, is the shadowing effect. The 
geometrical/optical interpretation of this phenomenon can be explained as the tendency 
of the wave peaks to hide the nearby wave field preventing, thus, the wave radar from 
uniformly illuminating the sea surface. From a practical point of view, the shadowing 
effect creates regions on the sea surface from which the wave radar antenna receives 
back no or too few information. As shown by Senet et al. [127], a prominent side-effect 
of the presence of shadowing is the creation of artefacts in the Fourier spectrum of radar 
signals. Due to the inherent difficulties in correctly/explicitly accounting for the 
shadowing effect, in many works this effect is accounted for by means of simplifying 
assumptions (Dankert and Rosenthal [35]; Wei et al. [150]), or a-posteriori cured 
(Naaijen and Wijaya [104]).  
 
Another aspect of radar image analysis, which is seldom addressed with a systematic 
approach, is the statistical characterization of the error inherent to the inversion process. 
Knowing the main features of reconstruction error can indeed be beneficial for the 
selection among alternative inversion techniques. Furthermore, the knowledge of the 
statistical characteristics of the inversion error (which represent wave measurement 
error when using a wave radar) can be used in DSWP procedures in order to provide a 
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deterministic forecasting of the wave elevation associated with confidence bounds 
accounting for the characteristics of the inversion procedure (Fucile et al. [52]).  
 
Considering the reported background, there seems, therefore, to be space for exploring 
alternative inversion approaches which are capable of coping, particularly, with the 
presence of shadowing, without introducing semi-empirical tuning/corrections as in the 
case of MTF, giving due attention to the analysis of statistical characteristics of wave 
reconstruction error. To this end, herein a novel inversion method is proposed, with the 
purpose of suggesting a possible solution to some of the issues affecting the prevailing 
techniques. The approach proposed herein setups the inversion process as a least 
squares problem based on available radar data, looking for a regularized solution of the 
wave elevation field in terms of wave amplitudes of a set of specified harmonic 
components. The core assumptions of the proposed technique, referred to as “Least 
SQuares with Regularization (LSQR)”, are the exploitation of a linearized version of the 
radar tilt model and the assumption that the underlying wave field is linear. The 
shadowing effect is dealt with by considering the shadowed region as missing 
information in the wave radar images. Accordingly, the reconstruction is carried out 
retaining only those data, above a certain threshold of backscattered intensity, that can 
be considered to be unaffected by shadowing. The inversion is based on the Tikhonov 
regularization technique with an automatic choice of the regularization parameter 
through the L-Curve method (Hansen [64]; Vogel [147]), and the solution of the 
inversion problem is herein implemented through a SVD decomposition. The 
performances of the LSQR reconstruction are analysed by detailed analyses of wave 
reconstruction error, using synthetically generated wave radar images and Monte Carlo 
generation of wave fields for different sea conditions.  
 
The chapter is organized as follows. Firstly, the optical tilt model and the shadowing 
effect are discussed in order to give a detailed insight of the radar imaging mechanism 
and to define the wave radar model used for the generation of synthetic radar images. 
Then, the linearization of the tilt model is presented, stressing the commonalties and 
differences between the derivation presented herein and the linearized model proposed 
by Naaijen and Wijaya [104]. Then a brief review of the MTF inversion technique is 
reported in order to highlights the main aspects of the method. The discussion has the 
aim to provide an insight on the inversion issues relevant to the proposal of an 
alternative inversion technique. Secondly, the core of the least squares inversion 
procedure is described, with particular attention to the derivation of the regularized 
solution. In this respect, some aspects of the Tikhonov regularization, relevant to the 
subsequent description of the selection approach for the regularization parameter, are 
examined. The overall setup of the linear inversion procedure is presented and possible 
alternative choices about the model setup are also discussed. Two example applications 
are then reported, considering long crested and short crested seas. Details are firstly 
given regarding the way Monte Carlo synthetic radar signals have been generated, and 
regarding the main statistical quantities employed in the analysis of the inversion error. 
In the long crested sea example application, the LSQR performances are discussed 
focusing, firstly, on a detailed statistical characterization of the reconstruction error for a 
specific sea state. Then, an extensive systematic analysis for a large set of different sea 
conditions is performed in order to assess the LSQR capability of dealing with radar 
images generated from different sea states. Moreover, for one sea condition, the LSQR 
has been tested in the case of nonlinear wave fields in order to assess which kind of 
effect the linearity condition underlying the LSQR model has on the reconstruction 
performances on more realistic nonlinear seas. In the second example application, 
LSQR reconstruction performances are analysed for a short crested sea scenario, 
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discussing also potential shortcoming of the LSQR technique and proposing some idea 
for reducing of the computational effort. 
 

3.2 Wave radar imaging model 
The modulation of the scattered radar signal received back by the radar antenna is what 
makes the sea surface elevation visible to the wave radar. Namely, the presence of the 
sea wave is sensed as a modulation of the radar cross section (RCS) (i.e. the ratio 
between the transmitted signal power and the received signal power). In the range from 
low to moderate grazing angles, the Bragg scattering phenomenon is considered to be 
the prominent mechanism of the radar signal backscattering from the sea surface (Plant 
and Keller [117]; Wetzel [154]; Wright [157]). In this range, the Bragg scattering 
phenomenon takes place as a resonant interaction of the electromagnetic waves caused 
by the presence of the small scale gravity-capillary wave ripples with wavelength 
satisfying the Bragg scattering condition (Wright [157]). The presence of an underlying 
wave field of longer waves beneath the wind ripples is sensed by the wave radar as a 
deviation of the mean RCS from what is expected to be the backscattered footprint of a 
planar rough surface. The modulation of the RCS due to longer waves is explained by 
means of the composite surface model or two scale model (Alpers et al. [4]; Kanevsky 
[72]; Valenzuela [145]; Wright [158]) where the rough facet causing Bragg scattering 
are considered to be tilted away by the long gravity wave passing by. This phenomenon 
is referred to as “Tilt Modulation”. The composite surface model developed, among 
others, by Alpers et al. [4] and by Valeunzela [145], is considered to be an adequate 
model, at least in the range of moderate incident angles from 20 to 70 deg (Alpers et al. 
[4]), to account for the tilt modulation of the RCS, whereas, for extreme values of the 
grazing angle, other backscattering phenomena should be taken into account.  
 
The model used herein for the simulation of wave radar is the geometrical model 
presented in Nieto Borge et al. [105] based on the work by Alpers et al. [4]. This model 
is considered to be a simplification of the actual wave radar physics, and, as a result, it 
cannot capture in details the whole complexity of the phenomenon (Lyzenga et al. [83]; 
Plant [114]; Voronovich [148]; Wetzel [153]). Nevertheless, the geometrical model is 
used as the theoretical basis for many semi-empirical techniques (Nieto Borge et al. 
[105]; Naaijen and Wijaya [104]; Serafino et al. [129]) to simulate the wave radar RCS 
modulation starting from synthetic sea elevation data. In the geometrical model, the tilt 
modulation of the RCS, tiltσ , is modelled as proportional to the cosine of the local angle 
of incidence Θ , that is the angle between the optical ray coming from the radar antenna, 
the vector u , and the local normal to the wave facet, vector n  (see Figure 3.1). 
Following Nieto Borge et al. [105], hereinafter, the tilt modulation is considered to be 
the most prominent source of the modulation of the radar signal and it is modelled as:  
 

 cos( )tilts ⋅
⋅

Θ= =
u n
u n

  (3.1) 
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Figure 3.1: Representation of quantities involved the geometrical tilt model. 

 
For very low grazing angles the radar backscattered signal is often interpreted by 
resorting, in addition, to another important modulation model: the shadowing effect 
(Wetzel [154]). Shadowing is intended as the phenomenon for which low or no 
backscattered signal is received from certain regions of the illuminated radar range. 
Similarly to tilt modulation, also the occurrence of shadowing phenomenon is, in 
reality, associated with complex electromagnetic phenomena (Barrick, 1995 [6]; Plant 
and Farquharson [116]; Wetzel [152][153]). Nevertheless, in the framework of the 
optical radar model used herein, the phenomenon is simplified using a geometrical 
approach. From purely geometrical consideration, the wavy surface of the sea may not 
be uniformly illuminated by wave radar because of the presence, especially at very low 
grazing angles, of wave peaks that, occasionally illuminated by the radar, prevent the 
nearby wave facets from being visible, see Figure 3.2 (which will be later referred to 
also when discussing the linearized version of the tilt model). According to Nieto Borge 
et al. [105], the shadowing modulation is herein modelled as a purely geometrical effect 
as if the radar antenna were not actually receiving any signal from the shadowed parts 
of sea surface. The RCS model defined by equation (3.1) is then extended with the 
introduction of the shadowing effect as follows: 
 

 
 if the wave facet is illuminated 

0  if the wave facet is in shadowing
tilts

⋅
 ⋅= 



u n
u n

  (3.2) 

 
Figure 3.3 presents an example simulated (synthetic) radar image for a short-created sea 
based on the modelling (3.2): the shadowing is represented as missing data, with 
shadowed facet coloured in white. From a practical point of view, the shadowed regions 
in radar images could be determined as regions associated with a backscattered signal 
below a certain threshold level, intended to represent a background noise level. 
 
Despite the simplification introduced by the geometrical model, from a practical point 
of view it provides a satisfactory description of some peculiar features of the wave radar 
imaging. In particular, Seemann and Ziemer [125], Seemann et al. [126] and Senet et al. 
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[127] have shown how the geometrical shadowing model can explain the artefacts and 
noise patterns observed in the spectral analysis of radar signals. 
 

 
Figure 3.2: Main quantities involved in the linearized tilt model, with representation of geometrical 
shadowing effect. 
 

 
Figure 3.3: Simulated radar image: tilt modulation and shadowing mask. Shadowing is represented as 
missing data, with shadowed facets in white. 
 
Due to the presence of spurious effects created by shadowing, many radar image 
inversion procedures introduce a band pass filter that allows isolating the energy 
contribution associated with gravity waves from other sources of noise and artefact. The 
band pass filters are usually centred along the linear wave dispersion relation linking 
wave frequency and wave number, and although the actual formulation of the filter may 
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vary from work to work, its application is a widespread procedure (Dankert and 
Rosenthal [35]; Nieto Borge et al. [105]; Nieto Borge and Soares [106]; Seemann et al. 
[126]; Serafino et al. [129]). Due to the inherent difficulties in the inversion of the radar 
images by explicitly accounting for the nonlinear effects of shadowing, in many works 
these effects are either neglected (Dankert and Rosenthal [35]), simplified (Wei et al. 
[150]), mitigated by data assimilation procedures (Wijaya et al. [156]), or just averaged 
(Naaijen and Wijaya [104]). In all mentioned techniques, however, data affected by 
shadowing are retained in the sample of radar data which undergo further processing. 
 
Herein, instead, an alternative approach which is meant to explicitly deal, in the 
inversion process, with shadowing effects, is proposed. The main assumption is that the 
wave radar is able to give enough information to identify the shadowed regions in each 
available wave radar image. From a practical point of view, this could be carried out by 
setting a certain threshold to the minimum allowable RCS, see equation (3.2). The 
shadowed regions are treated as missing data and then excluded from the radar imaging 
inversion technique. In other words, the inversion step is carried out only on the 
illuminated portion of the radar imaging. Despite data from regions in shadowing are 
not used in the inversion process, the information retrieved from the inversion process 
can be used to reconstruct the wave field on the whole region of interest, comprising the 
regions originally in shadowing. 
 
Finally, it is worth of noticing that, in general, the radar signal is available as a 
normalized measure (Nieto Borge et al. [105]). Therefore, a rescaling of the radar signal 
is eventually needed to retrieve the correct sea surface reconstruction. This kind of radar 
signal calibration (or, simply, radar calibration) can be described by means of a 
proportional scaling and an additional bias (Nieto Borge et al. [108]). These rescaling 
constants can be calculated, for instance, on the basis of the Signal to Noise Ratio 
(SNR) technique introduced by Nieto Borge et al. [108]. Although the radar calibration 
can represent a problem by itself (Naaijen and Wijaya [104]; Nieto Borge et al. [105]; 
Nieto Borge et al. [108]), in what follows, it is assumed that the radar signal is properly 
rescaled, i.e. the radar is properly calibrated. 

3.3 MTF inversion technique 
The MTF inversion technique is the reference procedure for the inversion of the wave 
radar signal. For this reason, hereinafter, a brief review of the procedure is reported as 
reference for the subsequent discussion. The MTF inversion technique is based on a 
model of the modulation of the radar signal RCS in presence of sea waves, as proposed 
by Alpers et al. [4] (see also Nieto Borge et al. [105] and Ziemer and Rosenthal [171]): 
 

 ( )( - ( ) )
0 0 1 (( , , ) ( )) j tx t My de ωσσdσσ    ζ⋅= ++ = ∫ k x kk kk   (3.3) 

 
where 0σ  is the mean RCS, δσ  is its modulation, ,( )T

x yk k=k  is the wave number 

vector, and ( )ζ k  is the complex Fourier amplitude of the wave elevation. ( )M k  is, in 
general, a complex transfer function that acts as a filter on the spectral components of 
the wave elevation field. The main idea behind the MTF techniques is to invert the 
modulation operator presented in (3.3) to get the reconstructed wave field from the radar 
signal. The approach is usually carried out in the wave numbers domain and ( )M k  has 
to account for a correction of the amplitudes and phases of the radar signal. According 
to Nieto Borge [107] ( )M k  is given, formally, by the sum of different contributions, the 
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tilt modulation, the shadowing modulation and the hydrodynamic modulation. In 
general, however, deriving closed formula for ( )M k  is a challenging task. In the case 
of shipborne wave radar, this is particularly true because of the shadowing effect. In 
fact, the shadowing effect as presented in (3.2) represents a masking function dependent 
on the wave elevation. Making reference just to the optical model of shadowing, as 
depicted in Figure 3.2, it possible to note how the RCS received back from certain sea 
surface patches may depend on the presence of localized wave peaks preventing the 
illumination of the nearby regions. This effect is also associated with the generation, in 
the frequency domain, of a series of spurious replicas of the radar signal (Seemann and 
Ziemer [125]; Senet et al. [127]). The difficulties in modelling the modulation term 

( )M k  accounting for all the modulation sources, especially in the case of the 
shadowing effect, explain why the inversion problem is usually addressed as a semi-
empirical and procedural task. The MTF techniques usually involves filtering 
techniques to get rid of the undesired spurious effects induced by shadowing and then 
the application of an empirical formula to account for the ( )M k  term, as proposed by 
Nieto Borge et al. [105]. Actually, in the work by Nieto Borge et al. [105], the 
assessment of the term ( )M k  is based on the fitting of a set of wave buoy 
measurements and synthetic wave data generated for different sea states. The final 
formulation proposed by Nieto Borge et al. [105] is a function of the wave number 
defined as: 
 

 2 (( )) sHM βκ α κ=  (3.4) 
 
where α  is a scaling coefficient depending on the significant wave height  sH  and 

1.2β ≈  is derived from the fitting of data. The question then arises if the reconstruction 
of the sea surface can be improved by associating specifically tuned MTF functions to 
different sea states. In fact, some author proposed modification of the ( )M κ  terms 
based on the need to better account for different ranges of wave numbers (Chen et al., 
[27]) or to better adapt the procedure to the environmental condition they were 
considering (Ludeno et al. [79]). Moreover, to complete the inversion procedure and get 
a reconstruction of the surface elevation in the physical domain, a suitable correction of 
the phase is also needed. For the phase correction, different approaches can be found, 
such as, for instance: set it to zero and constant for all the wave components, as in the 
work of Nieto Borge et al. [105], consider it as a constant value of / 4π as done by 
Ziemer and Rosenthal [171], or the result of a fitting procedure as in Paulsen [112]. 
 
The MTF technique is usually organized as a procedural technique involving a set of 
different filtering steps in frequency domain. An example of a possible procedure for 
the derivation of tuned MTF and its application to the reconstruction of the wave fields 
can be found in Fucile et al. [54]. For sake of reference, an example wave 
frequency/wave number analysis of synthetic radar signals, derived by the application of 
models (3.1) and (3.2) to linear a long crested sea state in deep water, is presented in 
Figure 3.4. The replicas of the spectrum (Senet et al. [127]), induced by the shadowing, 
are clearly visible above the dispersion relation. The application of a band bass filter 
(BP) centred around the linear dispersion relation is, in general, one of the most crucial 
steps in the application of the MTF techniques that allows isolating the energy content 
of the radar signal relevant for the application of the empirical MTF correction. In 
addition, a high pass (HP) filter is usually applied to remove the low wave number 
modulations due to the range dependency of the radar backscattered signal (Nieto Borge 
et al. [105]; Serafino et al. [129]; Fucile et al. [54]). The cut-off wave number of the HP 
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filter and the band of the BP filter depend on the particular signal characteristics and are 
often chosen on the basis of heuristic considerations (Fucile et al. [54]). In Figure 3.4 a 
qualitative representation of the areas of application of the HP and BP filter is 
presented. 
 
In general, the signal processing procedure underlying the MTF approach inevitably 
leads to the introduction of harmonic components which do not strictly fulfil the 
dispersion relation, and this represents, therefore, a theoretical drawback of the 
approach. However Serafino et al. [129] showed that its application can still allow 
achieving satisfying results in the reconstruction.  
 
Looking, therefore, for a more physically consistent wave radar inversion technique, the 
LSQR procedure for the inversion of the radar signals has been developed, as described 
in the following. This alternative technique allows to deal in a straightforward way with 
the shadowing effect and to avoid the application of empirical corrections and filtering 
procedures as the ones used in the MTF technique. 
 

 
Figure 3.4: Example of synthetic radar signal analysed in the wave frequency/wave number domain in 
order to highlight the replicas induced by the shadowing effect. A qualitative indication of the application 
areas of the band pass filter (BP) and high pass filter (HP) is given in the figure. 

3.4 Linearized imaging model 
The inversion process described, hereinafter, is based on the linearization of the optical 
tilt model, presented in equation. The derived results are in line with those already 
provided by Naaijen and Wijaya [104]. However, since some differences are introduced 
with respect to Naaijen and Wijaya [104], and also for sake of reference, the full 
derivation is reported. 
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Figure 3.2 depicts a radial scan of the sea surface taken by a rotating wave radar 
antenna. The antenna is supposed to rotate with velocity [ / ]a rad sΩ  so that the current 
azimuth is 0( ) at tβ β +Ω= , with 0β  an arbitrary reference azimuth. A Cartesian 
reference frame O-XYZ is defined with the origin O on the mean sea level under the 
vertical of the radar antenna. The Z-axis is defined as normal to the mean surface level, 
the X-axis is parallel to an arbitrary reference scanning direction, and the Y-axis is 
defined in such way to have a right-handed reference frame (see Figure 3.2). The 
position vector of the wave radar antenna is, then, [0,0, ]T

a aZ=X . The free surface is 
defined in polar coordinates as a function of the azimuth β  and of the radial position r  
as ( , )rη η β= . For a generic point on the free surface (illuminated by the wave radar) 
the normal vector to the free surface in Cartesian coordinates is: 
 

 
1 1cos( ) sin( ), sin( ) cos( ),1][ r r

T

r rβ βη β η β η β η β= − −+ −n  (3.5) 

 
and the ray vector pointing to the antenna is  
 

 cos( ),[ ]sin( ), T
ar r Zβ β η−= − −u  (3.6) 

 
With the above definitions, equation (3.1) can then be written as: 
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(3.7) 

 
Equation (3.7) highlights a nonlinear relation ),( ,tilt r βσ η η η  between the tilt modulation, 

tiltσ , and the surface elevation ( )η  and its derivatives ( , )r βη η . Now, under the working 
hypothesis that, for each point on the free surface, 1, ,r βη η η << , it is possible to 
approximate equation (3.7)  with its linearized version as: 
 

 
,

2

, ,0 3, 0
[ ,, ]

r

T a
tilt L tilt rtilt r

r rZ
R R Rβ

βη η η
σσσ   η η η η η

=
= ∇ = −+ +    (3.8) 

 
where ,tilt Lσ  is the linearized version of the tilt model, ,0 ( 0 00, , )titi ltlt r βσσ  η η η=== =  , 
and R  is the distance of the generic point q  from the radar antenna:  
 

 2 2
aR r Z= +  (3.9) 

 
Furthermore, making reference to Figure 3.2, it is possible to rewrite ,tilt Lσ  in (3.8) in 
terms of the angle of incidence, , as: 
 

 
2

0
, 0 0si sin( )co )s ) (( ntilt L r R

s η ηΘ
Θ += Θ −  (3.10) 

 

0Θ
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Equation (3.10) is consistent with the one reported by Naaijen and Wijaya [104] except 

for the additional term 
2

0sin( )
R

ηΘ  which appears in (3.10), but not in the model by 

Naaijen and Wijaya [104]. This additional term comes from the fact that the 
linearization has herein been carried out considering explicitly the surface elevation 
contribution. Instead, Naaijen and Wijaya [104] explicitly linearized the model only 
with respect to the sea surface derivatives, and the term depending on η  was simplified 
afterwards by assuming that the surface elevation η  is small enough compared to the 
height aZ  of the radar antenna, to be neglected. From a practical point of view, the 

additional term 
2

0sin( )
R

ηΘ  is typically negligible, especially far enough from the radar 

antenna. Nevertheless, for consistency, herein the complete model (3.8)/ (3.10) is used 
as basis for the proposed inversion process described in the following section. 
 

3.5 An alternative inversion technique: Least Squares with 
Regularization (LSQR)  

3.5.1 Set-up of least squares problem with missing data based on linearized 
tilt model 
The optical model for the tilt and shadowing modulation, although being a simplified 
version of the real radar imaging process, is often assumed as a reference model for the 
generation of realistic radar signal. Indeed, it is often adopted as reference model to 
calibrate inversion techniques to be used in real applications (Nieto Borge et al. [105]; 
Serafino et al. [129]). For this reason, this work focuses on the inversion of synthetic the 
radar images generated by the optical model (3.2). The optical model, even being a 
simplification of the complex actual radar imaging process, still shows a nonlinear 
dependence of the tilt modulation from the sea surface wave elevation and its 
derivatives, both due to the tilt modulation itself, as well as due to, particularly, the 
shadowing effects. Exactly retrieving the sea surface elevation assuming the model (3.2) 
to hold, would require a difficult nonlinear inversion process. As a result, the inversion 
task has been usually tackled following two main methodologies. One methodology is 
to derive semi-empirical MTF inversion techniques (Fucile et al. [54]; Nieto Borge et al. 
[105]). The other methodology, is to derive the inversion technique by resorting to a 
linearized version of the problem (Dankert and Rosenthal [35]; Naaijen and Wijaya 
[104]). This latter is the approach followed in this chapter. In particular, the linearized 
model defined by equations (3.8)/ (3.10) will be the starting point to set up a Least 
Squares with Regularization (LSQR) inversion technique. The technique will 
hereinafter be used for the inversion of synthetically generated radar images. 
 
The key assumption in the presented LSQR approach is to assume a first-order linear 
model for the wave elevation field. This is a rather strong assumption about the wave 
elevation model and implies that the solution of the reconstruction problem is sought 
only among those satisfying the linear dispersion relation. The assumption of first-order 
linear wave field is, however, appropriate when dealing with those (low to moderate) 
sea states for which wave nonlinearities have negligible impact on the wave field 
propagation and interaction. From a computational perspective, the assumption of 
linearity of the wave field has the benefit of leading to a straightforward definition of 
the inversion process as a least squares linear inversion problem. It is also important to 
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mention that, despite the known limitations inherent in the linear wave assumption, the 
linearity of the wave field is the typical assumption in wave radar inversion techniques. 
In fact, the adoption of the already mentioned band-pass filters based on the linear 
dispersion relation, which are used to filter out the unwanted radar artefacts (a key step 
of many inversion techniques), can be considered to correspond, from a practical point 
of view, to imposing, a-priori, the wave field to be linear or to filter out nonlinear wave 
components.  
 
Therefore, under the hypothesis of linearity of the wave field, the wave elevation and its 
derivatives are written as a sum of harmonic components satisfying the linear dispersion 
relation: 
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 (3.11) 

 
where hN  is the number of the wave component considered in the model, κ  is the 
wave number, θ  is the wave propagation direction, and ( )ω ω κ=  is the wave 
frequency satisfying the linear dispersion relation. In case of fixed radar antenna, it is 

( ) tanh( )g Dω κ κ κ=  where D  is the water depth and g  is the gravitational 
acceleration. In case the radar antenna is supposed to be moving, an appropriate change 
of reference system should be taken into account. If the radar antenna moves with 
constant speed, this change of reference system leads to the classical Doppler correction 
which modifies the wave frequency ω  to the corresponding encounter frequency. 
Herein, however, the radar antenna will always be considered as fixed.  
 
The linear inversion problem can be defined, by combining equations (3.8) and (3.11), 
as a linear system with 2 hN  unknowns and with known data as: 
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 (3.12) 

 
The unknowns in the problem are the hN  pairs of  coefficients (amplitudes), 
describing the wave elevation: 
 
 

M

,n na b
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The known term b  of the system is obtained starting from the wave radar signal ,tilt mσ , 
which is assumed to be sampled on a set of, in principle arbitrary, M  points 

( , , ) 1,...,m m m mq r t m Mβ =  in time and space:  
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The entries of the matrix A  are derived by combining (3.11) with the linearized model 
(3.8) as: 
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The inversion problem as stated in equation (3.12) is in a rather general form. However, 
there is some constraint inherent in wave radar technology, which reflects on the 
actually available radar samples, which has to be highlighted. First of all, the radar 
signal is supposed to be potentially available only on a set of discrete values of 
time/azimuth and radial distance from the antenna, due to the wave radar resolution in 
time/azimuth and space. However, this set of potentially available sample points is, in 
reality, not fully available, due to the masking associated with shadowing effect that 
prevents the wave radar from uniformly scanning the entire wave field (see Figure 3.2). 
Due to the combination of the rotation of the antenna and the propagation of the wave 
field, the set of the actually available (i.e. not masked by shadowing) sampling points 
along the radial direction, for a given azimuth, changes with time. Shadowing therefore 
affects the radar imaging as a loss of information and as a change in the pattern of the 
available data at every antenna rotation. Eventually, radar data cannot be considered to 
be available on a uniform grid in time/azimuth and radial direction, and the global effect 
of shadowing is to reduce the number of actually available sampling points.  
 
A direct way to overcome this problem is to allow the sampled data vector, b , to be 
populated by radial scans taken at different time instants i.e. accounting for more than a 
single antenna rotation. In line with this idea, three different strategies are considered 
herein for the selection of the wave radar data in time, to be used for the population of 

:  b
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where 0t  is the time instant at which the reconstruction is carried out, /2a aτ π= Ω is the 
antenna rotation period and Nτ  the number of rotations to be accounted for in the 
reconstruction ( Nτ  does not necessarily need to be integer). A graphical representation 
of the three considered strategies is depicted in Figure 3.5. 
 

 
Figure 3.5: Radar imaging in time and space. Graphical representation of time window strategies and 
azimuth interval selection for the population of the matrices of the linear inversion problem. 
 
At a first sight, some similarity could be found between the presented approach and the 
work of Naaijen and Wijaya [104]. However, this is not really the case. In fact, Naaijen 
and Wijaya [104] considered shadowed points as sampled points with zero radar signal, 
and a sort of averaging in time of the reconstructed amplitude spectra of the signal was 
applied to cure the shadowing effect. Instead, in the framework of the LSQR technique 
presented herein, the definition of the time interval that is considered for the 
reconstruction represents an a-priori assumption of the reconstruction strategy (which 
does not use sampled points in the shadowed regions) and not an a-posteriori correction 
of the effect of the shadowing.  
 
It should be expected, that, although the three time window strategies can be considered 
to be equally valid, they will show different performance in the reconstruction of the sea 
surface. Moreover, it is reasonable to consider the backward time window strategy to be 
the most natural choice when a real-time reconstruction of the wave field is needed. 
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By including more than a single time instant in the reconstruction process it can be 
expected the reconstruction of the sea surface to be more effective. In fact, first, the 
inversion problem is provided with enough radar data to pursue the reconstruction, 
compensating for the loss of information due to shadowing. Secondly, and more 
importantly, the inclusion of data from different time instants allows the fitting model to 
better match, on average, the time-space evolution of the wave field, while being 
constrained by the assumed dispersion relation. These arguments have proven to be 
particularly important for the reconstruction of the wave elevation resulting in better 
performances of the approach as the number of time instant included in the 
reconstruction is increased, i.e. as the time window for the collection of data is widened.  
 
Finally, in general, for a given selection of the wave model, i.e. a combination of wave 
numbers and wave propagation directions, the system of equations in (3.12) is set up, in 
practice, as an overdetermined system of equations, i.e. a system with . 

3.5.2 Tikhonov regularization 
The LSQR approach, presented so far, is a typical application of a linear discrete 
inversion problem (Vogel [147]), where the solution is sought, in principle, among the 
ones minimizing the least square of the residual, i.e.: 
 

 2
 = min( - )

NLS
∈x

x Ax b


 (3.17) 
 
where  LSx is the solution of the least squares problem and 

2
.  is the Euclidean norm, 

and from now on the index 2 hN  is replaced simply by 2 hN N= . However, looking for 
a direct least squares solution of the problem (3.12) according to (3.17) could lead to 
solution problems due to ill-conditioning of the matrix A , a situation which very often 
occurs in practice.  
 
Therefore, a regularized solution to the inversions problem (3.12)  has been sought 
instead, by using Tikhonov regularization (Vogel [147]). This leads to a changing of the 
nature of the problem to be solved, from the original (3.17) to the following one: 
 

 2
2 2

min( - )
Nλ λ

∈
+=

x
x Ax b x



 (3.18) 
 
where, now, the solution λx  is the minimizer of the quadratic functional which also 
depends on the value of the regularization parameter λ . It is worth to note that the 
problem (3.18), as defined by the equations from (3.12) to (3.15), is dimensionally 
consistent, the whole problem is in length units, and the regularization parameter turn 
out to be dimensionless. 
 
For the solution of the inversions problem (3.12), robustness and straightforward 
implementation has been preferred over performances. Therefore, among the various 
numerical direct techniques to solve the problem in (3.18) (Golub and Von Matt [59]), 
in this work a technique based on the SVD decomposition has been preferred (Hansen 
[64]). In fact, although being a computationally expensive technique, the SVD 
decomposition shows a robust behaviour for rank-deficient problems and can be 
provided with straightforward regularization procedures in the case of ill-conditioned 
matrices (Golub and Van Loan [58]; Hansen [64]; Trefethen and Bau [142]).  For sake 

2 hM N>
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of reference, the main steps to construct the regularized solution and the selection of the 
regularization parameter are presented in the following (Hansen [64]). 
 
In general a full rank matrix  can be factorized via SVD as follows: 
 

 
1

j

N
T

j

T
jjσ

=

=∑ΣA = U V u v  (3.19) 

 
where ,

1 | ... |[ ] M N
N ∈=U uu 

is the left singular vectors matrix, ,
1 | ... |[ ] N N

N ∈=V vv 
 

is the right singular vectors matrix and ,
1( ,..., )N N

Ndiag σσ ∈ =Σ 
 is a diagonal matrix 

with diagonal elements  jσ  called singular values. The last term in equation (3.19) is to 
be intended as an outer product (Hansen [64]). The regularized solution to the problem 
in (3.18) can now be written as: 
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where 

j

T
jβ = u β , †Σ  is a diagonal matrix defined as †

1( ,.. , )1/ . 1/ Ndiag σσ =Σ , ( )λΘ  

is the diagonal filter matrix defined as ( ) ( ) ( )1( ,..., )Ndiag f fλλ λ=Θ  with 

( )
2

2 2
j

j
j

f
σ

σ λ
λ =

+
 filter factors characterised by 0 1jf≤ ≤  (Hansen [64]). It is noted 

here that it is necessary only one SVD decomposition of the matrix A  to obtain λx  for 
any value of the regularization parameter λ , and this is a very useful feature, from a 
computational point of view, when λ  is not a-priori set, which, as shown later on, is the 
present case.  It is clear that for 0λ =  the classical least squares solution of problem 

(3.17) is retrieved as  
1

j
LS j

j

N

j

β
σ=

=∑x v . The residual can be defined as:  

 

 
1
(1 )j j j

N

j
fλ λ β ⊥

=

= = +− −∑r β A u rx  (3.21) 

 

where 
1

j j

N

j
β⊥

=

= −∑r β u  is the component of the residuals orthogonal to the left singular 

vectors matrix. 
 
From a practical point of view, the filter factors smooth out the smallest singular values 
contribution of the solution ( 2 2/ 0j j jfσ λ σ λ<< ≈ →⇒ ) while leaving unchanged the 
contribution of the larger singular values ( 1j jfσ λ ⇒>> ≈ ). The regularisation 
parameter λ  can be chosen via several techniques (Vogel [147]). Herein, the L-curve 
method, described in §3.5.3, is used 

3.5.3 Selection of regularization parameter: L-curve method 
Herein the L-curve approach has been selected (Hansen [64]). Although the L-curve 
approach can suffer from some issues which can lead to a non-optimal selection of the 

,M N∈A 
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regularisation parameter (Vogel [147]; Hansen [64]), it has herein been chosen for its 
robustness and straightforward implementation (Hansen [65]; Hansen and O’Leary 
[66]). According to the L-curve approach, the selection of the regularization parameter 
λ  represents a trade-off choice between minimizing the norm of the residual 

2λ −Ax b  and the norm of the solution 
2λx . From (3.19)-(3.21) the following 

quantities can be defined: 
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Hansen and O’Leary [66] have shown that, under suitable hypotheses, the parametric 
log/log curve defined as ˆ ˆ( ( ), ( ))γ η λ ρ λ=  , where ˆ ˆ( ) log( ), ( ) log( )η l η ρ l ρ= =  , is 
concave and shows an L-shaped “corner” dividing the curve in two branches: for large 
values of λ  the solution is dominated by the regularization error, i.e. the regularized 
solution may tend to be over-smoothed,  while for small values of λ  the solution is 
driven by stability issues. The optimal regularization parameter can be chosen by 
finding the value of the regularization parameter λ  corresponding to this L-shaped 
“corner”. This can be done by finding the value of λ  maximizing the curvature of the 
L-curve, ˆ ˆ( ( ), ( ))γ η λ ρ λ= . Following Hansen and O’Leary [66], the curvature is 
defined as : 
 

 ( )3/22 2

ˆ ˆ ˆ ˆ' '' '' '( )
ˆ ˆ' '

ρ η ρ ηκ λ
ρ η

−
=

+
 (3.23) 

 
where the prime symbol denotes the differentiation with respect toλ . The calculation of 

( )κ λ  can make effective use of the analytical expressions for the first and second 
derivatives of ˆ ( )ρ λ  and ˆ( )η λ  as reported by Hansen [65]. Then a simple maximization 
algorithm can be used to find the suitable value of λ . An example of L-curve and 
corresponding optimal selection of the regularization parameter is presented in Figure 
3.6 for a synthetic radar signal generated from Bretschneider spectrum with significant 
wave height 2.5sH m=   and peak period 11.97pT s= . A very convenient guide to the 
implementation of the L-curve technique has been provided by Hansen [65].  
 
The main steps for the inversion based on the regularized problem (3.18), leading to the 
sea surface reconstruction for a single time instant, can therefore be summarised as 
follows: 
 

• Model setup and population of the matrix A  and of the vector b  on the basis of 
the selected reconstruction strategy (see (3.12), (3.14) and (3.15)); 

• Calculation of the SVD decomposition of the matrix A (see (3.19)); 
• Automatic selection of the regularisation parameter by means of the L-curve 

approach, via minimization of (3.23) through a suitable algorithm, and definition 
of the filter matrix ; 

• Solution of the regularized problem (see (3.20)); 
• Reconstruction of the sea surface (see (3.11)).  

( )λΘ



 Chap. 3: WAVE RADAR SIGNAL INVERSION 

72 

 

 
Figure 3.6: L-curve and point of maximum curvature for the choice of the L-curve optimal regularization 
parameter. The L-curve plot is obtained by the inversion of a synthetic radar signal generated from a 
Bretschneider spectrum with 2.5sH m=   and 11.97p sT =  . 4Nτ =  radar images have been considered 
in the set-up of the inversion problem. 
 
The most computationally expensive step of this workflow is associated with the SVD 
decomposition. In fact, following Golub and Van Loan [58], the expected amount of 
computations associated with the calculation of the SVD on M  fitting points and hN  
selected frequencies is 3 211 2N MN+  ( 2 hN N= ). It should be noted that, in principle, it 
is possible to manage the computational effort by a different setup of the linear problem, 
for instance, reducing the number of the requested wave components (thus reducing N ) 
and/or by changing the fitting strategy (thus reducing M). However, when large full 
matrices are involved, the proposed method would likely turn out to be computationally 
prohibitive, especially if the target are real-time inversion applications. As a result, in 
such cases, the proposed approach would be of better use as an off-line reconstruction 
tool. Since the described procedure has been devised with straightforward 
implementation and robustness as main objectives, rather than targeting at this stage its 
computational effectiveness, further steps should be undertaken for a reduction of the 
computational effort. This problem will be further addressed in the example application 
in §3.6.  
 
Once the problem (3.20) is solved, and the regularized solution is obtained, 

[..., ( ), ( ),...]T
n na bλ λ λ=x , the sea surface can be reconstructed using equation (3.11) as: 
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It is worth to note that the assessment of the spectral amplitude coefficients of the free 
surface ( na , nb ) represents, in general, the starting step for most of the Deterministic 
Sea Wave Prediction (DSWP) procedures  using the DFT (see among others Naaijen 
and Blondel-Couprie [97]). However, in this work, the attention has been focused more 
on the instantaneous reconstruction of the sea surface as a function space, rather than on 
the correct derivation of its spectral amplitudes in the Fourier space. The present 
approach is therefore to be intended as a sort of physics-supported surface fitting. It 
should therefore be expected that the solution obtained from the proposed inversion 
approach may need further treatments before being consistently used in a DSWP 
procedure. 

3.5.4 Some notes on alternative setups of the inversion problem 
In general, it is possible to envisage also different arrangements of equations (3.12) to 
(3.15). For instance, the inversion problem could have been setup by using the wave 
steepness as unknowns instead of the wave amplitudes, considering, then 

[..., , ,...]T
n n n na bκ κ=x in (3.12) and modifying A  and b  accordingly. However, in 

general, the regularized solutions of the two least squares problems, would not produce 
the same solution in terms of the final reconstructed sea surface. In fact, focusing on the 
second term of equation (3.18), it is possible to see that the penalization (regularization) 
term,

2
λ x  will tend to give more weight to the high frequency waves components over 

the low frequency ones when the wave steepnesses are used as unknowns. This is 
associated with the fact that, for realistic sea states, low frequencies, i.e. long waves, 
have in general negligible wave steepness even with relatively large wave amplitudes. 
At the same time, since the very low frequency components give very little 
contributions to the residual term in (3.18) when using wave steepness as unknowns, 
this can ultimately lead to solution with unrealistically large low frequency spurious 
terms. Some tests have been carried out comparing the performances of the main 
approach described before, i.e. the alternative approaches using wave steepnesses as 
unknown, and the model based on the wave amplitudes has proven to be more 
consistent in the reconstruction of the free surface, showing less unwanted very low 
frequency artefacts. Nevertheless, also for the proposed LSQR approach based on the 
determination of wave amplitudes, it has been noted that very large wave lengths (say 

, 1000w n mλ >  for realistic wave radar characteristics) should not be included in the wave 
model considered for the inversion problem, especially in case of short crested sea 
states. 
 

3.6 Application examples of LSQR technique 
A set of application examples has been conceived in order to analyse the performances 
of the proposed LSQR approach, considering different inversion strategies, by 
providing statistical estimators for the expected reconstruction error. The tests are based 
on the idea of generating synthetic radar images from simulated wave elevation fields, 
apply to these images the proposed inversion approach, and, finally, compare the 
reconstructed wave elevation with the, known, original sea surface. 
 
To this end, a series of Monte Carlo simulations of different sea conditions have been 
generated for both long crested and short crested seas. In general, for short crested seas, 
the wave field, genη , is generated on a polar grid according to a linear model of the same 
type of the one used for the inversion (see (3.11)). Starting from a given directional 
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wave elevation spectrum ( , )S κ θ , amplitudes , ,,n gen n gena b  used for the wave simulation 
are generated as couples of independent Gaussian random variables with zero mean and 
standard deviation , , ,( , )n gen n gen n genS dkdσk  θ θ= . The directional wave spectrum 

( , )S κ θ  is defined by using a multiplicative cosine squared spreading function  as 
follows: 
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=   (3.25) 

 
where meanθ   is the main propagation direction and spreadθ   is the spreading angle. In case 
of long crested seas, amplitudes , ,,n gen n gena b   are generated as two independent random 

Gaussian variables with zero mean and standard deviation , ,( )n gen n genS dσ κ κ= . The 
number of harmonic components used in the generation was chosen to be sufficiently 
large to provide a good approximation of the continuous case, while still retaining an 
acceptable computational effort. For all simulations, about 43 10⋅  harmonics have 
been used for the generation of long crested waves, and 610  harmonics have been used 
for the generation of short crested waves. The regions of frequencies, and directions in 
case of short crested waves, used for the Monte Carlo generations guarantee that the 
actual significant wave height, intended as four times the ensemble standard deviation 
of the generated process, is 98.5% and 99.2% of the nominal significant wave height, 
for short crested and long crested seas, respectively. 
 
A series of irregular sea conditions, characterised by Bretschneider sea spectra have 
been selected for the tests, as reported in Table 3.1. The zero-crossing period zT  was 
varied from 4.5s to 12.5s, corresponding to peak (modal) periods pT  from 6.33s to 
17.60s. A nominal range of significant wave heights from 0.5m up to a maximum of 
7.5m, with steps of 1.0m, was selected for the tests. However, the actual maximum 
significant wave height for each for each period was limited in such a way that the 

nominal wave steepness, defined as 2

2

p

s
s

Hs
gT
p

=  (McTaggart and de Kat [89]), does not 

exceed 1/50=0.02. 
  

( )D θ
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Table 3.1: Sea conditions used in the analysis. Spectrum shape: Bretschneider. 

Sea 
Condition 

[ ]zT s  [ ]pT s  [ ]sH m  
1 [ ]
ss
−  Sea 

Condition 
[ ]zT s  [ ]pT s  [ ]sH m  

1 [ ]
ss
−  

SC01 4.5 6.33 0.5 125 SC14 10.5 14.78 3.5 97 
SC02 5.5 7.74 0.5 187 SC15 10.5 14.78 4.5 76 
SC03 5.5 7.74 1.5 62 SC16 10.5 14.78 5.5 62 
SC04 6.5 9.15 0.5 261 SC17 10.5 14.78 6.5 52 
SC05 6.5 9.15 1.5 87 SC18 12.5 17.60 0.5 967 
SC06 6.5 9.15 2.5 52 SC19 12.5 17.60 1.5 322 
SC07 8.5 11.97 0.5 447 SC20 12.5 17.60 2.5 193 
SC08 8.5 11.97 1.5 149 SC21 12.5 17.60 3.5 138 
SC09 8.5 11.97 2.5 89 SC22 12.5 17.60 4.5 107 
SC10 8.5 11.97 3.5 64 SC23 12.5 17.60 5.5 88 
SC11 10.5 14.78 0.5 682 SC24 12.5 17.60 6.5 74 
SC12 10.5 14.78 1.5 227 SC25 12.5 17.60 7.5 64 
SC13 10.5 14.78 2.5 136      

 
For each generated wave field, the tilt model and the optical shadowing model (see 
(3.2)), have been used in order to generate a corresponding synthetic wave radar signal, 

tiltσ  . In the case of long crested waves the, tilt model should be intended as restricted 
only to quantities in the plane of incidence. 
 
The wave radar device considered in the set of simulations has been selected to have 
characteristics similar to those adopted by Dankert and Rosenthal [35]. In particular, the 
wave radar is assumed to have a radial resolution 7.5dr m=  and an azimuthal resolution 
of 3degdβ = . It is assumed to rotate at , 40 a rpm rpm=Ω  , corresponding to a complete 
rotation of the antenna in 1.5a sτ = . According to these characteristics, the radar will 
take a radial scan of the sea surface every 0.0125adt s=  at the discrete azimuth values 

0( )m a amdt tβ β += Ω . The radar antenna is assumed to be positioned at an elevation 
above the calm water level 30aZ m= . The radar data of the free surface can then be 
organized in time/azimuth sequences of radial scans as depicted in Figure 3.5. The 
inversion approach based on (3.12) allows the selection of any arbitrary subsets of the 
radar scan data set. In this work, the radar data are selected by defining an antenna 
azimuth range,  min m maxβ β β≤ ≤  , and a time interval min m maxtt t≤ ≤  . In particular, the 
selection of time instants used for the reconstruction is linked to the windowing strategy 
adopted in the definition of the problem (3.12) as discussed in §3.5.1. 
 
The performances of the proposed inversion approach have been analysed by deriving 
statistical indicators of the quality of the reconstruction. The derivation of ensemble 
domain statistics allows analysing the global features of the inversion process, 
providing a statistical characterization of the reconstruction error. Furthermore, this 
information can eventually be fed to models for the estimation of the wave prediction 
error in DSWP procedures, as the one derived by Fucile et al. [52][53]. The main 
quantity which has been analysed is the reconstruction error, defined as: 
 

 , ,( , , ) ( , , ) ( , , )j j gen jr t r t r tλe β η β η β−=  (3.26) 
 
where ,gen jη  is the j-th realization of the sea elevation surface, i.e. the “true” wave 
elevation in the present context, and  , jλη  is the corresponding regularized solution of 
the inversion problem. The main statistical quantities used herein for the 
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characterisation of the inversion error process are the sample mean ( εµ ), the sample 
standard deviation ( εσ ) and the covariance ( ), for which corresponding estimators 
are defined as: 
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where realN  is the number of available realizations. In addition, also the Pearson’s 
correlation coefficient between the true wave elevation and the reconstructed wave 
elevation, herein indicated as , has been analysed, which is defined as: 
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where  ˆ ( , , )r t

λη
µ β   and ˆ ( , , )

gen
r tηµ β  are the estimators of the ensemble mean, while 

ˆ ( , , )r t
λη

σ β  and ˆ ( , , )
gen

r tησ β  are the estimators of the ensemble standard deviation, for 

( , , )r tλη β   and ( , , )gen r tη β  , respectively, and they are calculated similarly to (3.27). 

3.6.1 Long crested sea states 

3.6.1.1 Reconstruction error statistics 

In this section a systematic investigation of the performances of the LSQR method is 
presented in the case of long crested sea states. In the first part, the reconstruction error, 
considered as a stochastic process, is investigated in detail in the case of the reference 
sea condition SC09 (see Table 3.1). In the second part, the overall performances of the 
LSQR approach are tested for the whole set of sea conditions defined in Table 3.1. The 
shared strategy to set up the Monte Carlo simulations starts with the generation of a set 
of random wave elevation realizations. The wave elevation realizations are then 
processed, by applying the model in (3.2), in order to retrieve the corresponding 
synthetic wave radar image to be inverted. The radial derivative of the wave elevation, 
to be used in (3.2), is obtained in this case by a central difference scheme. The radar is 
assumed to be looking in the propagation direction of the long crested waves, therefore 
the derivative in the azimuth direction is zero. The spatial domain considered for the 
application of the inversion model in (3.12) is discretized into 320rN =  grid points 
within the radial interval 150r m=  to 2542.5r m=  . Each radar image is considered to 
be acquired every antenna rotation, corresponding to a time lag 1.5a sτ =  . The wave 

numbers used for the inversion are taken as 2
n

r

n
N dr
πκ =   with 1,..., / 2 1rn N= −  , 

corresponding wave length are within the range ,max ,2400 15.1w w w minm mλ λ λ≤ ≈≤=

.The  wave frequencies are calculated as n ngω κ=   (deep water assumption).  

COV

rc
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In the following, the main statistical characteristics of the reconstruction error, as 
defined in (3.26), are estimated and discussed. Particular attention is given to an 
example analysis of the error process covariance, since this is a characteristic which is 
typically not fully addressed. However, some fundamental consideration can already be 
done in advance about the expected behaviour of the main statistical features of the 
error process. Once the reconstruction strategies are defined, by selecting the frequency 
model and the strategies for the population of the problem in (3.12), it should be 
expected the error process to be independent of the particular time instant considered for 
the reconstruction. In other words, since the original wave elevation process, at least as 
considered in the simulations herein, is a stationary process, the same can be expected 
for the reconstructed sea elevation process and, consequently, for the reconstruction 
error process. Therefore, it is expected that the stationarity property of the 
reconstruction error process is reflected in the data obtained from the analysis.  
 
Figure 3.7 presents the estimators of mean and of standard deviation of the error (see 
(3.27)), normalised by using the significant wave height, as calculated in the ensemble 
domain from a total of 500 Monte Carlo simulations. The synthetic radar images have 
been generated for 600 antenna revolutions, corresponding to 900s. Results from the 
three different time window strategies discussed in §3.5.1  are compared with different 
colours. The plot presents the estimators of εµ  and εσ  as functions of the distance from 
the antenna (which is positioned at 0r m= ). The estimators obtained at different time 
instants are plotted as superimposed curves. It is possible to note that both statistical 
parameters can be considered to be stationary, since, for different time instants, the 
reconstruction error statistics are visibly clustered around a common trend, with a 
variability which can be associated with sampling uncertainty. On the other hand, the 
estimators of mean and standard deviation do not show uniformity over the space, since 
they vary with the distance from the antenna. In detail, the mean value shows a low 
frequency dependence on the distance from the antenna. Moreover, the shape of the 
mean values appears to be different for different time window strategies. Regarding the 
standard deviation of the reconstruction error, it presents different quantitative 
behaviours among the three considered time window strategies but a qualitatively 
common behaviour in the central region of the reconstruction space interval. In fact, a 
central plateau of minimal standard deviation of the error is present (this is highlighted, 
in the figure, by adding a notional reference level / 0.05sHs = ), with an increasing 
reconstruction error standard deviation towards the edges of the reconstruction space 
interval. The difference among the three time window strategies is only appreciable at 
the boundaries of the space interval, where the curves appear to be shifted. This 
behaviour is likely linked to the different window strategies that have been selected 
combined with the selected wave propagation direction. In fact, if the backward window 
strategy is selected, it should be expect to have more problems in coping with the 
information carried by the wave incoming in the space interval selected for the 
reconstruction. Conversely, if the forward window strategy is selected, the opposite 
should be expected, with difficulties in retrieving the wave elevation of outgoing waves. 
The standard deviation of the reconstruction error shows a systematic increasing trend 
away for the radar antenna, which is common to the different time widow strategies, 
together with a marked increase close to the antenna. 
 
Figure 3.8 presents the effect of long wave modes in the reconstruction error statistics. 
The mean and the standard deviation of the reconstruction error, calculated in the 
ensemble domain, are reported in the case of different wave models associated with 
different maximum reconstruction wave lengths. The results are reported, as in Figure 
3.7, as functions of the distance from the radar antenna but, for this analysis, only for a 
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single instant of time. The different reconstruction wave models are defined by 
including the Fourier modes as previously described, except that in this case the 

minimum wave number, minmin
2

r

n
N dr
πκ = , has been varied with min 1, 2,3, 4n = . This 

corresponds to excluding the wave modes with length respectively longer than 
,max [2400,1200,800,600]w w mλ λ≤ = . It is worth noting that, for the sea spectrum 

considered in this application, the wave energy contribution coming from the waves 
longer than ,max 600w mλ =  is, from a practical point of view, negligible (<0.1%). 
Introducing long wave modes in the reconstruction model leads to spurious 
dependencies of the mean of the reconstruction error on the position. Conversely, 
excluding the longer wave modes from the reconstruction model makes the mean value 
to be more uniformly close to zero. A less prominent, but still present effect affect the 
standard deviation of the reconstruction error especially near the edges of the considered 
spatial domain. As mentioned before in §3.5.4 the LSQR method has proven to be less 
accurate in reconstructing the longer wave modes with a tendency to assigning, during 
the inversion process, incorrect and overestimated wave amplitudes to the longer wave 
components. 
 

 
Figure 3.7: Normalized mean and normalized standard deviation of the reconstruction error as functions 
of the distance from the antenna (position=0m). Sea condition SC09 (see Table 3.1). Comparison among 
three different time window strategies: forward, backward, centred. Superimposed lines correspond to 
593 different time instants at which the reconstruction of the wave elevation has been calculated. Results 
are based on a total of 500 Monte Carlo simulations. 
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Figure 3.8: Normalized mean and normalized standard deviation of the reconstruction error as functions 
of the distance from the antenna (position=0m). Sea condition SC09 (see Table 3.1). Comparison among 
performance of four different reconstruction wave models considering associated with different maximum 
reconstruction wave lengths. Results are based on a total of 500 Monte Carlo simulations and are 
presented for a single time instant. 
 
Another statistical quantity which is useful for the statistical characterization of the 
reconstruction error process is the covariance matrix. The covariance matrix plays a key 
role in describing the measurement error process in the framework of the procedure 
proposed by Fucile et al. [52] for the assessment of the statistical characteristics of the 
wave elevation prediction error. An example of calculated estimator of the covariance 
matrix, based on 500 Monte Carlo simulations, is presented in Figure 3.9. The 
covariance has been estimated according to (3.27) for a set of rN  discretized space 
points and for 4tN =  time instants (the number of time instants has been limited for 
graphical purposes), using, for each reconstruction, a backward time window strategy 
based on data from the previous 8Nτ =  antenna revolutions. The entries of the 
covariance matrix reported in Figure 3.9 are defined according to the following ordering 
of indices: 
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Figure 3.9 presents a visible sub-block pattern due to the organization of the error vector 
entries. Within each sub-block, the covariance depends only the space coordinates. 
From sub-block to sub-block the time instants are varied. The sub-blocks in diagonal 
descending direction (from upper left to lower right) represent the covariance, 
depending on space coordinate, taken at constant time lags 

t th kt tt = − . In general, the 
covariance matrix in Figure 3.9 shows the expected symmetry coming from the fact that 
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, ,m n n m=C C . From the assumption about the stationarity of the reconstruction error, it is 
expected the covariance matrix to depend only on the time lag between different 
reconstruction times instants. This is verified in Figure 3.9, where it is possible to see 
that, apart from random sampling uncertainty, the covariance matrix depends only on 
the time lag considered and not on the specific reconstruction time. On the other hand, 
the covariance presents variations within each of the sub-blocks, implying the non-
uniformity in space of the error process. 
 

 
Figure 3.9: Error covariance estimator calculated for 4 time instants using 500 Monte Carlo simulations in 
case of sea condition SC09 (see Table 3.1). Position of the antenna: 0r m= . Height of the antenna above 
mean water level: 30aZ m= . The selected radar images account for 8Nτ =  time instants with a 
backward time window strategy. The colour scale is limited for presentation purposes.  
 
The stationarity of the process allows to average over the time lags in order to get a 
more compact formulation of the estimator of the error covariance matrix as depicted in 
Figure 3.10. The results obtained for the covariance of the reconstruction error, even in 
the simplified case of long crested sea states, highlight its non-uniformity in space in 
addition to the variability for different time lags. Despite the emerging complexity of 
the inversion error characterizing the LSQR approach, a complete characterization of 
the covariance matrix could be potentially exploited as input for the methodology 
developed by Fucile et al. [52], to represent the wave radar “measurement” error 
characteristics. 
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Figure 3.10: Error covariance estimator calculated for 4 time lags using 500 Monte Carlo simulations in 
the case of sea condition SC09 (see Table 3.1). Position of the antenna: 0r m= . Height of the antenna 
above mean water level: 30aZ m= . Results have been obtained through averaging over time, taking 
advantage of the stationarity of the process. The selected radar images account for 8Nτ =  time instants 
with a backward time window strategy. The colour scale is limited for presentation purposes.  
 
After the detailed analysis for the sea condition SC09 reported so far, a systematic series 
of tests has been carried out in order to assess the reconstruction performances of the 
LSQR approach for a set of long crested sea states characterized by different peak 
period and significant wave height, according to Table 3.1. For each considered 
condition, a set of 100 Monte Carlo synthetic radar images has been generated, for a 
total simulation time of 180s. The estimated normalized standard deviation of the 
reconstruction error, / SHσ  , and the Pearson’s correlation coefficient, rc , derived from 
the Monte Carlo simulations in the considered conditions are reported, as functions of 
the distance from the antenna, in Figure 3.11 and Figure 3.12, respectively. Considering 
the stationarity of the process, only the time averages are reported in the figures. Results 
have been organized by grouping, in the same plot, all sea conditions with the same 
peak period and reporting one curve for each different significant wave height. Four 
reconstruction strategies have been compared, one in each row of each figure, 
accounting for a different number of radar images used for the reconstruction. In 
particular, the inversion problem has been populated with 4,8,16,24Nτ =  radar images 
which are assumed to have been recorded before the actual reconstruction time instant, 
implementing, therefore, a backward time window strategy. 
 
From results in Figure 3.11 a common trend can be identified for all sea conditions, 
with high levels of / SHσ   at boundaries of the spatial domain and low values of 

/ SHσ   characterizing a central, almost flat, region. Results appear to be strongly 
dependent on the significant wave height SH , with worse reconstruction performance, 
for a given peak period, as SH  increases. A somewhat parallel behaviour can be noted 
for the Pearson’s correlation coefficient, rc , in Figure 3.12. In all case rc  reduces at the 
edges of the domain. In addition, rc  tend to show a systematic decreasing trend moving 
away from the radar antenna, and the magnitude of this trend strongly depends on the 
significant wave height. In particular, larger values of SH , for a given period, tend to 
lead to stronger trends and overall lower rc . The observed behaviours in Figure 3.11 
and Figure 3.12 can be associated with the fact that higher values significant wave 
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height, sH , for a given period, lead to a stronger shadowing effect of the radar signal. 
This causes an increasing amount of information to be lost in the inversion process at 
detriment of the reconstruction performance. Each plot in Figure 3.11 and Figure 3.12 
reports the ratio between the length of the time window included for a single 
reconstruction ( aNτ ττ∆ = ) and the peak period ( pT ), with this ratio increasing from top 
to bottom. Increasing the length of the time window and the corresponding number of 
time instants which are taken into account for a single reconstruction improves the 
performance of the reconstruction for all the considered conditions. However, for large 
values of / pTτ∆  a sort of saturation of the reconstruction performance is reached. 
Using a time window in the range / 1 2pTτ∆ = ÷  seems to be, for the considered cases, a 
good balance between accuracy and computational effort. This means that, for the 
considered conditions, in order to have good reconstruction performance, radar images 
recorded for at least one to two peak periods should be accounted for in the LSQR 
inversion process. Besides, the reported results indicate that including more time radar 
data in the inversion process can (partially) overcome the issues in the reconstruction of 
signals highly affected by the shadowing effect. In order to better highlight this effect, 
Figure 3.13, Figure 3.14 and Figure 3.15 show examples of reconstructed wave 
elevation, as calculated at single time instant, for different sea conditions. For each 
figure, the shadowed region of the radar signal, at the time instant selected for the 
reconstruction, is indicated with grey bands. The shadowed region is reported for 
presentation purposes in order to give a qualitative indication of the extension and 
pattern of the shadowing. Particularly interesting is the case in Figure 3.15, where an 
example of reconstruction for the condition SC017 is presented. This case appears to be 
characterized by some systematic issue in the reconstruction, as also indicated by the 
corresponding data reported in Figure 3.15. In fact, for the case 4Nτ = , Figure 3.11 
highlights a systematic large error in the reconstruction of the wave elevation far from 
the radar antenna. The proposed procedure struggles in reconstructing the wave 
elevation, especially in correspondence to the shadowed regions of the synthetic radar 
images, as reported Figure 3.15. It eventually fails in the reconstruction of the wave 
elevation for few time instants and for a single realization of the SC17 test. In this case, 
the wave elevation is characterized by unphysical spikes dramatically departing from 
the true wave elevation, which explain the reported time averaged reconstruction error 
standard deviation in Figure 3.11. In fact, considering this particular time instants as 
outliers, and excluding them from the averaging, a more suitable behaviour is retrieved, 
as reported in dashed line in Figure 3.11. This phenomenon has to be ascribed to the 
failure of the L-curve method in finding the optimal regularization parameter for the 
particular case considered. Further investigation has been undertaken to deal directly 
with such drawbacks in the regularization procedure. Indeed, looking at Figure 3.15, it 
is possible to appreciate, firstly, how importantly the reported condition is affected by 
the shadowing effect, and, secondly, it can be noted how including more time instant in 
the reconstruction can improve the reconstruction by (partially) compensating for data 
loss due to shadowing.  
 
Further looking at Figure 3.11, the minimum value of / SHσ   appears to be related to 
the peak period of the considered sea state. Better performance are achieved for large 
peak periods, at least up to the ones considered in these tests: compare, for instance, the 
reconstruction results with peak period 7.74pT s=  with the ones at 17.60pT s=  in 
Figure 3.11. This is related to an insufficient time/space discretization of the assumed 
radar images in case of sea states with small periods, that causes the higher frequency 
tails of the spectrum to be poorly taken into account in the reconstruction. This aliasing 
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effect implies a misfit of the dispersion relation for the wave components with high 
wave number leading to a net loss of energy of the reconstructed wave elevation, an 
issue which is well represented in Figure 3.13. 
 
The reported systematic analysis gives an overall satisfactory picture of the 
performances of the LSQR approach, both in terms of standard deviation of 
reconstruction error and of correlation coefficient, at least for the investigated sea 
conditions. It is to be underlined that the good performances could also be a partially 
biased result due to the fact that the underlying “true” wave have been generated with a 
first-order linear model, i.e. the same type of model which is used in the inversion 
process. Although the linear model is justifiable for sufficiently low significant wave 
steepness, the presence of nonlinearities, typically at large steepness, could partially 
modify the outcome. For this reason, in the next section, the LSQR method is applied to 
the reconstruction of nonlinear wave fields. 
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Figure 3.11: Normalized standard deviation of the reconstruction error estimated for sea conditions 
according to Table 3.1. 100 Monte Carlo simulations for each condition. The estimated variance of 
inversion error is averaged over time, and the corresponding normalised standard deviation is reported as 
a function of the position. Position of the antenna: 0r m=  . Height of the antenna above mean water 
level: 30aZ m= . Waves propagate from right to left ( ). 
  

←
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Figure 3.12: Pearson’s correlation coefficient between the true wave elevation and the reconstructed wave 
elevation for sea conditions according to Table 3.1. 100 Monte Carlo simulations for each condition. The 
Pearson’s correlation coefficient is averaged over time and reported as a function of the position. Position 
of the antenna: 0r m= . Height of the antenna above mean water level:. 30aZ m= . Waves propagate 
from right to left ( ). 
 
  

←
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Figure 3.13: Example of instantaneous wave reconstruction from synthetic radar images using the LSQR 
inversion method in the case of long crested sea condition SC02 (see Table 3.1). The reconstruction is 
based on the backward time window strategy, considering two different time intervals for the collection 
of radar data 4,16Nτ = . Position of the antenna: 0r m= . Height of the antenna above mean water level: 

. 
 

 
Figure 3.14: Example of instantaneous wave reconstruction from synthetic radar images using the LSQR 
inversion method in the case of long crested sea condition SC09 (see Table 3.1). The reconstruction is 
based on the backward time window strategy, considering two different time intervals for the collection 
of radar data 4,16Nτ = . Position of the antenna: 0r m= . Height of the antenna above mean water level: 

. 
 

 

30aZ m=

30aZ m=



Sect. 3.6: Application examples of LSQR technique 

87 

 

 
Figure 3.15: Example of instantaneous wave reconstruction from synthetic radar images using the LSQR 
inversion method in the case of long crested sea condition SC17 (see Table 3.1). The reconstruction is 
based on the backward time window strategy, considering two different time intervals for the collection 
of radar data 4,16Nτ = . Position of the antenna: 0r m= . Height of the antenna above mean water level: 

. 

3.6.2 Long crested sea states: LSQR applied to nonlinear wave fields 
In this section the LSQR method is applied to a set of synthetic radar images generated 
from nonlinear wave fields. The nonlinear wave fields have been generated by means of 
the HOS tool described in §2 corresponding to the sea condition already presented in 
the section §2.5. The results are then compared with the ones derived for a 
corresponding set of wave fields generated by a linear model. The considered sea 
conditions account for a peak period 11.97p sT =  and for a set of different wave heights

2.5,4.5,6.4,8.5sH m= . The workflow for the generation of the synthetic radar signal is 
the same presented in section §3.6.1. The radar has been positioned at 0r m=  and 

30aZ m= . The population of the least squares problem has been setup to account for 
8Nτ =  radar images and the backward window strategy has been selected. In this case, 

however, a reduced set of 50 Monte Carlo water wave realizations has been considered.  
 
Since the wave elevation is generated by means of different tools, as a first step, the 
energy content of the different realization is compared. Figure 3.16 present the estimator 
of the standard deviation of the wave elevation ˆησ   normalized with respect to the 
corresponding nominal value / 4sH . All the results have been calculated in the domain 
of the realization, as defined in (3.27), and then averaged along the space coordinates. 
The value of / ( / 4)ˆ sHηs , for the nonlinear waves, show a tendency to decrease with 
the time. This is mainly due to the application of a low pass filter in the nonlinear 
simulation to improve the stability of the calculations. This implies that some energy is 
lost due to the filtering. However, being the values of / ( / 4)ˆ sHηs  comprised in an 

30aZ m=
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interval less than 0.025±  the simulation has been considered as adequate for the 
comparisons in the following. 
 
Figure 3.17 present the result for the standard deviation of the reconstruction error, 
ˆ / sHs  , as obtained in case of linear and nonlinear waves. The results have been 

averaged over time and presented as function of the distance from the antenna. 
Nonlinear results are presented in grey lines whereas linear results are presented in 
black lines. The lines corresponding to the same nominal sH  have been grouped. As sH  
increases, both the linear and nonlinear simulation show a degradation in the 
reconstruction performance which is manly related to the shadowing effect. In case of 
the higher sH , the reconstruction of the nonlinear wave elevation presents a significant 
gap with respect to the result obtained with the linear wave elevation. In addition, the 
gap in the reconstruction error increases has the significant wave height increases, while 
it is small for the smaller tested significant wave heights. This suggests that the 
nonlinearities of the wave fields play an important role in the reconstruction error at 
large significant wave heights. Indeed, the underlying linearity assumption about the 
wave field on which the LSQR is based on does not hold any more when nonlinear 
characteristics of the wave field become more important, and such effect increases with 
the sH . On the other hand, at low significant wave heights, where the linearity 
assumption is more appropriate, results obtained using the linear and the nonlinear wave 
fields are very close each other. 
 
Figure 3.18 presents the Pearson’s correlation coefficient, rc , between the true wave 
elevation and the reconstructed wave elevation. For both the linear and nonlinear wave 
cases, due to the shadowing, rc  decreases with the distance from the antenna with the 
increase of sH . In addition to that, the nonlinear wave cases tend to show lower 
correlation coefficients with respect to the linear cases and this discrepancies increase 
with the nonlinearity of the wave field.  
 
Finally, the LSQR performances for the linear and nonlinear wave fields seem to be 
comparable only for the lower sH . This confirms that the LSQR technique is more 
suitable only for those sea states for which the linearity hypothesis is more appropriate. 
However, although larger differences can be noted in case of higher sH , from a 
practical point of view, these cases can be considered of minor interest because of the 
difficulties in the radar imaging due to the large shadowing effects. 
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Figure 3.16: Normalized standard deviation estimator for the linear and the nonlinear wave elevations. 
The standard deviation estimator is averaged in the space coordinates and reported with respect to the 
simulation time. The normalization constant is . 
 

 
Figure 3.17: Normalized reconstruction error standard deviation as function of the distance from the 
antenna. Comparison of results obtained for the reconstruction of linear and nonlinear wave fields. 
  

/ 4sH
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Figure 3.18: Pearson’s correlation coefficient between the true wave elevation and the reconstructed wave 
elevation as function of the distance from the antenna. Comparison of results obtained for the 
reconstruction of linear and nonlinear wave fields. 

3.6.3 Short crested sea states 

3.6.3.1 Reconstruction error statistics 

In this section a realistic application of the LSQR approach to the inversion of wave 
radar images from short crested linear waves is presented. A short crested sea spectrum 
is defined according to (3.25). The spectrum ( )S k  corresponds to the sea condition 
SC09 in Table 3.1, and the main propagation direction and the spreading angle are 

45degmeanθ =  and 60degspreadθ = , respectively. The synthetic radar images have been 
generated simulating the wave radar imaging the sea surface every 0.0125dt s= , during 
which the antenna rotates of an angle of 3degdβ = , see Figure 3.5. The radar images 
are sampled in the radial direction with resolution 7.5dr m=  in the range from 

150r m=   to 2062.5r m= , accounting for 256rN =  samples. Compared to the example 
case of linear long crested waves, in this case the spatial range of the radar has been 
reduced, for reasons associated with computational effort.  The backward time window 
strategy has been selected for the reconstruction. Therefore, a snapshot of the complete 
wave elevation field is reconstructed with all the data from 0t t t= − ∆  to 0t t= , where 

τ∆  is the considered time window for the radar data collection. The radar images 
considered for the reconstruction of the wave elevation are those within 8Nτ =  antenna 
rotations, corresponding to a time interval 12 ps Tτ =∆ ≈ .  The synthetic radar images 
have been generated by applying the model (3.7) to the sea elevation time histories, 
where the radial and azimuth derivatives of the sea elevation have been calculated by 
means of the analytical expressions in (3.8). 
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The range of wave components used for the reconstruction has been restricted in the 
range , , ,50020 w min w n w maxmm λ λ λ≤ == ≤ . For the case of short crested sea 
reconstruction reported herein, this limitation has proved to be particularly useful in 
avoiding low frequency spurious effects, particularly when using reconstruction wave 
models characterised by a coarse discretization in the wave number domain. In order to 
check the performance of the LSQR approach for different choices of the reconstruction 
model, different discretization in the domain of wave numbers and wave directions have 
been considered. Wave numbers and wave directions used in the reconstruction have 
been defined with reference to evenly discretized grids of 81,161,241Nκ =  points in the 
interval min n maxκ κ κ≤ ≤ , and 31,61,91Nθ =  points in the interval 0 90degnθ≤ ≤ . In 
fact, in order to limit the number of wave directions in the wave model, the mean 
direction and the spreading of the wave spectrum is assumed to be known. Thus, the 
wave directions accounted for in the wave model cover the whole range of the wave 
component generated in accordance with the spreading of the wave spectrum,

60degspreadθ = , around the mean wave direction 45degmeanθ = . In total six different 
combinations of discretization for the reconstruction wave numbers and wave directions 
have been considered, out of the nine possible. For each selected combination, the 
number of harmonic components in the reconstruction model is hN N Nκ θ= . A set of 50 
Monte Carlo simulations have been generated in order to assess the performance of the 
different reconstruction strategies. To this end, similarly to the case of long crested 
waves, the normalized mean and standard deviation of the reconstruction error, as well 
as the Pearson’s correlation coefficient between the true and the reconstructed wave 
elevation, have been estimated from the synthetic data. For this application example, the 
reconstruction of the wave elevation has been calculated only at one time instants for 
each Monte Carlo sample.  
 
Figure 3.19 reports the normalized standard deviation of the reconstruction error, 
ˆ / sHs  , for the considered six different wave model discretization strategies. Moving 

from left to right of Figure 3.19, it is possible to appreciate the influence of the wave 
number discretization on the reconstruction error. As the discretization in the wave 
numbers gets finer, the inversion of the wave radar signal exhibits better reconstruction 
performance. On the other hand, refining the reconstruction model accounting for more 
wave directions (from top to bottom in Figure 3.19) does not provide significant 
benefits, particularly for small values of Nκ , i.e. for reconstruction models 
characterised by a more limited number of wave lengths. However, in all the cases, at 
the boundary of the reconstruction domain, ˆ / sHs   shows larger values, especially in 
correspondence of a direction normal the main propagation direction of incoming 
waves. This appears to be a feature common to all considered wave reconstruction 
models, and it is in part related to the fact that the sea waves imaged at an azimuth 
normal to the main propagation direction of the incoming waves contribute less to the 
radar signal tilt modulation. The general outcome from the analysis of the 
reconstruction error standard deviation is confirmed, from a qualitative point of view, 
by Figure 3.20, where the Pearson’s correlation coefficient, rc  , between the true wave 
elevation and the reconstructed wave elevation is reported. In fact, the maps of rc show 
larger correlation values when the discretization of the reconstruction wave numbers 
gets finer, while negligible benefits are observed from a better discretization of the wave 
components directions. The edge effects are clearly visible at the boundary of the 
reconstruction domain where the correlation coefficient visibly drops. For sake of 
completeness, the normalized mean of the reconstruction error, ˆ / sHµ , is reported in 
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Figure 3.21. In contrast to what is done for the 1D cases, for the 2D cases the wave 
numbers adopted for the reconstruction have been limited to those corresponding to the 
wave length comprised between , , ,50020 w min w n w maxmm λ λ λ≤ == ≤  This results in 
filtering out the low frequency contribution to ˆ / sHµ . The effect can be noted 
comparing Figure 3.21, 2D short crested sea case, with Figure 3.7, 1D long crested sea 
case. Three instructive example reconstructions are reported in Figure 3.22, Figure 3.23 
and Figure 3.24. Each figure is associated with a different azimuth angle, namely: 

45degβ =  (collinear with the main propagation direction of incoming waves - Figure 
3.22), 90degβ = (at 45deg from the main propagation direction of incoming waves - 
Figure 3.23), and 135degβ = (orthogonal to the main propagation direction of 
incoming waves - Figure 3.24). For each figure, reconstructions from two different 
discretization in wave number and direction domains are reported, namely: 
( )81, 31 2511hN N Nκ θ= = ⇒ =  and ( )161, 61 9821hN N Nκ θ= = ⇒ = . In addition, the 
“true” wave elevation is reported as reference target. It can be seen that the 
reconstruction is better for 45degβ =  and  90degβ = , for which an increased 
discretization for the reconstruction model leads to a visible improvement of the 
reconstruction. Instead, the reconstruction for 135degβ =  is very poor and the increase 
in the discretization of the reconstruction model leads to very minor improvements.  
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Figure 3.19: Normalized standard deviation of the reconstruction error, as estimated from 50 Monte Carlo 
simulations. Different reconstruction wave models are organized in a grid.  The discretization in wave 
numbers increases from left to right, while the discretization in wave directions increases from top to 
bottom. The space averaged value is reported above each plot. Sea condition SC09 (see Table 3.1). 
Antenna at 0r m=  and 30aZ m= . Reconstruction strategy: backward time window with length 

. 

  
( )12 8s Nτ τ=∆ =
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Figure 3.20: Pearson’s correlation coefficient between true and reconstructed wave elevation, as 
estimated from 50 Monte Carlo simulations. Different reconstruction wave models are organized in a 
grid. The discretization in wave numbers increases from left to right, while the discretization in wave 
directions increases from top to bottom. The space averaged value is reported above each plot. Sea 
condition SC09 (see Table 3.1). Antenna at 0r m=  and 30aZ m= . Reconstruction strategy: backward 
time window with length . 

 
  

( )12 8s Nτ τ=∆ =
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Figure 3.21: Normalized mean value of the reconstruction error, as estimated from 50 Monte Carlo 
simulations. Different reconstruction wave models are organized in a grid. The discretization in wave 
numbers increases from left to right, while the discretization in wave directions increases from top to 
bottom. The space averaged value is reported above each plot. Sea condition SC09 (see Table 3.1). 
Antenna at 0r m=  and 30aZ m= . Reconstruction strategy: backward time window with length 

. 

  
( )12 8s Nτ τ=∆ =
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Figure 3.22: Example of wave reconstruction from synthetic radar images using the LSQR inversion 
method in case of short crested sea condition  SC09 (see Table 3.1), with mean propagation direction 

45degmeanθ =   and spreading angle 60degspreadθ =  The reconstruction is performed at the azimuth 

45degβ = , considering two different wave models: ( )81, 31N Nκ θ= =  and ( )161, 61N Nκ θ= = . 
Reconstruction strategy: backward time window with length . 
  

 
Figure 3.23: Example of wave reconstruction from synthetic radar images using the LSQR inversion 
method in case of short crested sea condition  SC09 (see Table 3.1), with mean propagation direction 

45degmeanθ =   and spreading angle 60degspreadθ =  The reconstruction is performed at the azimuth 

90degβ = , considering two different wave models: ( )81, 31N Nκ θ= =  and ( )161, 61N Nκ θ= = . 
Reconstruction strategy: backward time window with length . 

  

( )12 8s Nτ τ=∆ =

( )12 8s Nτ τ=∆ =
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Figure 3.24: Example of wave reconstruction from synthetic radar images using the LSQR inversion 
method in case of short crested sea condition  SC09 (see Table 3.1), with mean propagation direction 

45degmeanθ =   and spreading angle 60degspreadθ =  The reconstruction is performed at the azimuth 

135degβ = , considering two different wave models: ( )81, 31N Nκ θ= =  and ( )161, 61N Nκ θ= = . 
Reconstruction strategy: backward time window with length . 
 
Results presented in Figure 3.19, Figure 3.20 and Figure 3.21, clearly indicate that the 
quality of the reconstruction depends on the considered underlying reconstruction wave 
model. In particular, the more the number hN  of wave components used in the 
reconstruction wave model is increased (particularly in terms of wave numbers), the 
better are the reconstruction performance. However, increasing the number of wave 
component considered for in the reconstruction model significantly increases the 
computational time. A possible solution to overcome this bottleneck is to reduce the 
number of radar images taken into account, for example, limiting the reconstruction 
region to a particular a sector of the wave field. In fact, it can be expected that less wave 
components can be required to guarantee the LSQR surface fitting the sufficient 
flexibility to adapt to real data, if the reconstruction domain is reduced. Moreover, 
because of the way the reconstruction strategies is defined, the number of radar data M  
taken into account is always much larger than the reconstruction frequencies adopted in 
the model. This makes the matrix A  a thin matrix for which N M<< . Since the 
computational cost of the SVD is 3 211 2N MN+  (according to Golub and Van Loan 
[58]) reducing the number of radar data used in the reconstruction, keeping N  fixed, 
linearly reduces the computational effort. 
Starting from the above considerations, a possible strategy to reduce the computational 
bottleneck due to the SVD decomposition in the LSQR approach, could then be to 
reduce the number of harmonic components in the reconstruction model and, at the 
same time, to reduce also the region from which wave radar data are retrieved and for 
which the wave reconstruction is carried out. The sub-region of the radar domain can be 
identified, for instance, as a sector min maxβ β β≤ ≤  (see Figure 3.5). In the previously 
presented results, the full radar domain was selected ( 0deg 360degmin maxβ β β≤ ≤= =
). As an alternative, the limitation of the reconstruction to, and the retrieval of the data 
from, the range 0deg 90degmin maxβ β β≤ ≤= =  is now considered. 

( )12 8s Nτ τ=∆ =
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Figure 3.22 and Figure 3.23  present ˆ / sHs   and rc  calculated accounting only for the 
radar images in the interval 0deg 90degβ≤ ≤ . The rest of the inversion strategy is the 
same as for the case using data from 0deg 360degβ≤ ≤ . Results are compared with 
the previous application of the LSQR, already presented in Figure 3.19 and Figure 3.20, 
in terms of ˆ / sHs  and rc , respectively. The comparison is carried out only for the 
azimuth angles 0 90degβ≤ ≤ , where the reconstruction of the reduced model is 
expected to be applicable. It can be noted that, for a fixed discretization of the 
reconstruction wave model, much better reconstruction performances are obtained from 
the reconstruction based on the reduced region of azimuth angles, both for the standard 
deviation of the reconstruction error (Figure 3.25) and for the Pearson’s correlation 
coefficient (Figure 3.26). The suggested adaptation/reduction of the LSQR approach 
achieves much better reconstruction performances also in terms of computational time. 
This, however, comes at the cost of a contraction of the reconstruction domain. 
 

 
Figure 3.25: Normalized standard deviation of the reconstruction error, as estimated from 50 Monte Carlo 
simulations. Reconstruction strategies using data from different azimuth regions: 0deg 360degβ≤ ≤  
(top) and 0deg 90degβ≤ ≤  (bottom). Two different wave model discretization are reported, one for 
each column: coarse model (left) and fine model (right). The space averaged value is reported above each 
plot. Sea condition SC09 (see Table 3.1). Antenna at 0r m=  and 30aZ m= . Reconstruction strategy: 
backward time window with length .  ( )12 8s Nτ τ=∆ =
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Figure 3.26: Pearson’s correlation coefficient between true and reconstructed wave elevation, as 
estimated from 50 Monte Carlo simulations. Reconstruction strategies using data from different azimuth 
regions: 0deg 360degβ≤ ≤  (top) and 0deg 90degβ≤ ≤  (bottom). Two different wave model 
discretization are reported, one for each column: coarse model (left) and fine model (right). The space 
averaged value is reported above each plot. Sea condition SC09 (see Table 3.1). Antenna at 0r m=  and 

30aZ m= . Reconstruction strategy: backward time window with length . 

3.7 Concluding remarks 
In this chapter an approach for the inversion of wave radar images has been proposed. 
The method presents element of novelties with respect to prevailing techniques, in the 
way the inversion process is setup and regarding the way the shadowing effect is 
addressed. The core of the proposed procedure is based on the setup of a linear least 
squares inversion problem which is based on the linearization of the optical/geometrical 
model of the wave radar mechanism, combined with the assumption of linear (first-
order) underlying wave field. The proposed approach, referred to as Least SQuares with 
Regularization (LSQR), is aimed at providing the reconstruction of the wave elevation 
starting from wave radar signals, considering the shadowing effect as a loss of 
information, and therefore disregarding shadowed region in azimuth/time and radial 
direction. This is an alternative way of dealing with the shadowing phenomenon 
compared to existing techniques, such as, e.g., the most common MTF approach, where 

( )12 8s Nτ τ=∆ =
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shadowed regions of the field are kept in the processing. In order to provide the 
proposed inversion method with a self-tuning capability, the solution of the inversion 
problem is sought by means of a Tikhonov regularization procedure, where the 
regularization parameter is automatically determined by means of the L-Curve 
approach. In this phase of the development, straightforward implementation and 
robustness of the algorithm have been preferred over computational performances. As a 
result, the presented implementation was based on the adoption a well-established, 
although computationally expensive, SVD decomposition.  
 
The theoretical background of the methodology has been described in details, both 
regarding the employed model of wave radar, as well as the inversion procedure. The 
LSQR reconstruction performances have then been tested through the inversion of 
synthetically generated radar images, considering both the cases of long crested and 
short crested seas. The reconstruction error has been analysed as a stochastic process. 
Attention has been given, in the analysis, to its mean, standard deviation and 
covariance, which have been estimated from Monte Carlo simulations. In case of long 
crested seas, an extensive analysis has been carried out on a series of different sea 
conditions, indicating that the performances of the LSQR technique strongly depend on 
selected inversion strategy. In general the LSQR was capable of reconstructing the sea 
surface elevation with small, and in some cases very small, standard deviations of the 
reconstruction error in the central region of the reconstruction radar domain. However, 
edge effects have been observed, with the performances deteriorating at boundaries of 
the reconstruction domain. Nonetheless, the way the LSQR approach deals with the 
shadowing effect seems to allow acceptable reconstruction performance also in case of 
synthetic radar data deeply affected by shadowing. This is likely a consequence of the 
fact that, with respect to the presently available inversion techniques, whereby the 
shadowing effect are often disregarded or cured with a-posteriori corrections, the LSQR 
approach naturally overcomes the shadowing effect by compensating for the lack of 
spatial data with additional samples taken in time/azimuth domain. This compensation 
is possible thanks to the flexibility of the problem setup. The detailed analysis of the 
reconstruction error process has shown, in general, that while the process is stationary 
as a consequence of the assumed stationarity of the underlying wave field, there is a 
spatial non-uniformity of all the analysed statistical quantities. The spatial non-
uniformity was more visible in cases with poor reconstruction performances and in the 
tested short crested sea case. The systematic characterization of the reconstruction error 
is a seldom addressed matter and this chapter has therefore tried to provide the LSQR 
regularization method with detailed information in this respect. In fact, the knowledge 
of the statistical characteristics of the inversion error process can potentially be fed to 
deterministic sea wave prediction (DSWP) methodologies, when these latter are able to 
provide the prediction along with an associated confidence bound accounting also for 
wave measurement error. In case of wave radars, in fact, the “measurement error” is 
represented by the reconstruction error. Finally, the reconstruction of radar images 
generated from nonlinear wave fields has been tested and though the inherent linearity 
assumption of the LSQR results in worst performance compared to the case of linear 
wave fields, the differences are limited to the higher significant wave height sea 
conditions. This confirms that the linearity assumption of the LSQR model are adequate 
in dealing with most of the sea condition, or at least with the ones that are of practical 
interest in the case of shipborne wave radars. 
 
The main drawback of the proposed LSQR method is, however, its large computational 
cost, especially when finely resolved reconstruction models are necessary, as it is the 
case for realistic short crested seas. In this respect, the presented implementation has 
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shown its limitations, preventing the method to be adopted for realistic real time 
applications. Still, the LSQR method can be used as an off-line reconstruction 
procedure, for testing or analysis purposes. However, further analysis of the inversion 
problem and of the regularization step, for example resorting to more efficient 
regularized least squares techniques, could possibly open the door to improvements in 
the computational performances. Another limitation of the LSQR method, which is 
however in practice shared with other prevailing inversion techniques, is the assumption 
of linearity for the underlying wave field. In this respect, it is conceivable an extension 
of the LSQR method to the reconstruction of nonlinear wave fields, at least for the 
retrieval of some prominent nonlinear features. In fact, a step forward in this direction 
could be undertaken by dropping the linearity assumption about the reconstruction wave 
field assuming, for example, a weakly nonlinear wave model for the definition of the 
inversion problem. However, this would imply a change of paradigm in the inversion 
procedure, abandoning the direct linear least squares inversion techniques used herein, 
for different, more suited and likely more complex algorithms. Nonetheless, a technique 
capable to consistently retrieve wave nonlinear features from radar measurements could 
indeed be considered as a substantial step forward in the framework of deterministic 
wave elevation reconstruction from wave radar images, and it is worth being pursued in 
further researches. Finally, is must be underlined that tests carried out herein have all 
been based on synthetically generate wave radar images. Although this approach can 
provide relevant indications at a proof of concept stage, testing on real wave radar 
images is necessary in order to fully understand the potentiality of the proposed 
approach. 
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4 DETERMINISTIC SEA WAVE 
FORECASTING AND 
PREDICTION ERROR 
ASSESSMENT 

In this chapter a semi-analytical methodology for the determination of prediction error 
statistics associated with a class of Deterministic Sea Wave Prediction (DSWP) 
methods is presented. The wave elevation is modelled as a Gaussian stochastic process 
and the fitting/propagation model is assumed to be a linear. The possible additional 
sources of error linked, for instance, to the measurement uncertainties, are explicitly 
taken into account in the formulation. The resulting approach provides a Linear 
Estimator of Prediction Error (LEPrE), which associate an assessment of the standard 
deviation of the prediction error to the fitting procedure assumed for the DSWP, taking 
into account the actual sea spectrum characteristics. The presented approach is able to 
complement the phase-resolved deterministic predictions methods with a sound 
prediction error measure, and redefines the concept of “Predictability Region” in a 
consistent probabilistic framework. Example applications are reported, both for long 
crested and short crested waves, with verification through Monte Carlo simulations. 
Single point wave gauge/wave buoy measurements as well as spatial extent wave radar 
measurements have been considered. The developed methodology is also compared 
with existing approaches highlighting and discussing both the differences and the 
interesting qualitative commonalities. Then, the performances of the  LEPrE method are 
assessed in the case of the prediction of linear and nonlinear long crested waves. In 
addition, an application of the model, accounting also for the reconstruction error 
induced by the wave radar inversion process, is tested. Eventually, a case of linear short 
crested sea is reported. 
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4.1 Introduction 
The nowadays interest about deterministic wave propagation models is justified in light 
of the developing capabilities of the marine wave radar technology in providing for 
deterministic reconstruction of the sea surface. Indeed, wave radar and phase-resolved 
wave models, considered as a whole, could possibly have a beneficial impact for the 
safety and operability at sea. For short-term wave forecasting technology (with temporal 
horizon of the order of minutes, and spatial horizon of the order of hundreds meters) it 
is of crucial importance to be in the position of relying on large scale and instantaneous 
sea surface measurements. Although, LIDAR technology seems to have the requested 
accuracy in time and space (Belmont et al. [11]; Nouguier et al. [109]) it results to be 
inadequate because of the too narrow imaging capability. Marine wave radars represents 
a more suitable device, since they are capable of scanning large areas (in the order of 
kilometres) with a satisfactory temporal resolution (of the order of the second) (Dankert 
and Rosenthal  [35]; Nieto Borge et al. [105]; Serafino et al. [128]; Naaijen and Wijaya 
[104]).  
 
Phase-resolved wave propagation procedures are typically based on two main steps: a 
fitting step (FS), in which the phase-resolved sea surface measurements are fitted to a 
wave model, and a propagation step (PS), in which the wave model, initialized by the 
fitting, propagates the information to the required region of space and time. The key 
aspects for the wave forecasting procedures to be successfully applied to real time 
application are the computational performances, in dealing with the FS/PS steps, and the 
accuracy in modelling the wave field evolution. In general, linear deterministic wave 
propagation models are preferred because of the performances of the FS/PS procedures 
and the satisfactory accuracy in modelling the most relevant wave field features in the 
typical time and spaces horizon of a DSWP application (Hilmer and Thornhill [68]). 
Different aspects of their implementation have been investigated in the past (Belmont et 
al. [9][10]; Blondel-Couprie and Naaijen [17]; Connell et al. [33]; Naaijen and Blondel-
Couprie[97]; Naaijen et al. [102]; Naaijen and Huijsmans [99]). Usually, in the case of 
linear models, the FS of the wave elevation data is carried out in the measurement 
domain (time and/or space) by means of Fourier decomposition techniques, either based 
on the DFT(FFT) (Morris et al. [96]; Naaijen and Blondel-Couprie [97]) or on a least-
squares approach (Connell et al. [33]; Naaijen et al. [103]; Vettor [146]). Afterwards, 
for the PS, linear wave models are used. Also in this case, the adoption of FFT 
techniques is very convenient from a computational cost point of view. An extensive 
discussion about the adaptation of the FFT techniques to short crested sea applications 
is presented in Blondel-Couprie and Naaijen [17] and Naaijen and Blondel-Couprie 
[97]. Different implementations of linear fitting and propagation procedures have also 
been proposed by, e.g., Abusedra and Belmont [1] and Belmont et al. [10]. 
 
In the framework of DSWP applications, the possible use of nonlinear wave 
propagation models is justified in the light of a more accurate modelling of the water 
wave field and the possibility to better account for its dynamics. Although steps in this 
direction have been proposed by several authors (e.g. Blondel-Couprie et al. [15]; Wu 
[159]; Yoon et al. [166]), still the inherent complexity of the FS from measured data 
represents a serious bottleneck for the application of nonlinear wave models. For 
example, the wave elevation data provided by wave radar devices, due to the typical 
assumption in the radar inversion techniques (see §3), generally lacks of those nonlinear 
information which are needed for a correct initialization of a nonlinear propagation 
models. So, usually, the measured wave elevation data have to be pre-processed before 
being actually ready for the nonlinear propagation step. The complexity of the pre-
processing step depends mainly on the nature of the available measurements and on the 
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considered nonlinear model. However, the general tendency is to resort to iterative 
procedures on the measured data or data assimilation procedures (e.g. Wu [159]; 
Blondel et al. [15]; Yoon et al. [166]; Aaragh and Nwogu [5]; Hassanaliaragh, 2009 
[67]). A quite complete analysis on these data assimilation procedures can be found in 
the work of Blondel-Couprie [14]. 
 
Whether the DSWP is based on linear or nonlinear models, a common issue to all 
DSWP methods is related to the need of providing an estimation of the region where the 
deterministic prediction can be considered as reliable. In fact, any DSWP procedure is 
inevitably affected by prediction errors with respect to the true wave elevation. The 
limits of the DSWP procedures depend directly from the adopted propagation model but 
also on the way the fitting/propagation steps are carried out. In fact, both the inherent 
limitation of the propagation model and its matching with the measured data contribute 
to determine the final quality of the prediction. In addition to that, in real applications, 
the wave measurements are usually affected by measurement errors, which bring into 
the problem an additional source of uncertainty, an aspect which is often overlooked. 
This means that a key aspect of DSWP should be the capability of providing not only an 
estimation of the predicted wave elevation, but also some information regarding the 
prediction error. However, although the assessment of the prediction error is crucial for 
a consistent deterministic wave prediction, the problem is rarely addressed specifically. 
In this context, also the way this assessment is derived is of particular importance 
because inevitably subject to the same requirement, of readiness and accuracy, for 
suitable real time DSWP application. In fact, the option of resorting to brute force 
approaches, such as the massive use of Monte Carlo simulations, to estimate the 
expected prediction errors statistics is, in general, practically unfeasible. Therefore 
methods of faster and more direct application are required. 
 
The most widespread concept related to the performances assessment of a DSWP 
application is the so-called “Predictability Region”. The Predictability Region is 
considered to be the region of space and time where it is considered “possible” to 
predict the wave elevation, ideally without errors. It is therefore, originally, a binary 
concept, which splits the time/space domain in a region where the prediction “is 
possible”, and a region where the prediction “is not possible”. In the past, a matter of 
discussion has been whether to use the group velocity or the phase velocity of the waves 
for the identification of the Predictability Region (e.g. Abusedra and Belmont [1]; Edgar 
et al. [45]; Morris et al. [96]; Naaijen et al. [102]; Wu [159]). According to Wu [159] 
(see also Naaijen et al. [102]), the Predictability Region is defined using the group 
velocity of the fastest and slowest wave components of the considered sea spectrum. 
This concept has been further developed by Wu [159] and Naaijen et al. [102] with the 
introduction of the “Predictability Indicator”: a continuous measure (defined in the 
interval [0,1]) of the prediction capability at a generic point in time and space, which is 
related to the assumed/measured sea spectrum. The Predictability Indicator takes into 
account the distribution of the wave energy content based on the shape of the wave 
spectrum, representing an advance with respect to the standard Predictability Region. 
Naaijen et al. [102] have also verified the Predictability Indicator method with respect to 
Monte Carlo simulations of different wave fitting and propagation applications, 
showing a qualitatively consistent matching. The encouraging results showed by 
Naaijen et al. [102] and the simple formulation of the method makes the Predictability 
Indicator an interesting tool for a more advanced, and potentially more precise, 
definition of Predictability Region compared to the original concept. However, the 
Predictability Indicator still lacks a consistent statistical background theory able to 
provide a clear probabilistic interpretation of the obtained quantitative values.  
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It is then useful to make a step forward in the definition of the concept of Predictability 
Region, with a view to more soundly account for the prediction error from a 
probabilistic perspective. To this end, a theoretical approach for providing a consistent 
probabilistic measure of prediction error for deterministic phase-resolved linear wave 
prediction models, is herein presented. The approach is based on the description of the 
sea as a Gaussian stationary stochastic process. The features of the fitting procedure and 
of the prediction model are naturally embedded in the formulation. Furthermore, the 
formulation takes into account, in an analytic way, the actual shape of the spectrum for 
long crested and short crested waves. On top of this, the proposed framework also 
allows taking consistently into account the possible presence of additional measurement 
noise.  
  
The chapter is structured as follows. First, a brief review of the definition of the 
Predictability Region and Predictability Indicator is reported. Then, the theoretical 
background of the developed alternative methodology is presented, starting from the 
definition of the fitting model and then providing the definition of the prediction error 
as a stochastic process. The assessment of the ensemble variance of the error process 
leads to the natural definition of a Linear Estimator of Prediction Error (LEPrE), which 
accounts also for the possible contribution of measurement noise. Five different test 
cases are then developed, considering long crested and short crested sea states, to show 
how the LEPrE can be used in identifying the level of prediction error. Reported results 
are verified along with corresponding sets of Monte Carlo simulations. Eventually, 
some comparison with the classical (binary) Predictability Region and the Predictability 
Indicator by Wu [159] and Naaijen et al. [102] are also provided, in order to show how 
the presented LEPrE compares with existing approaches. The first application shows 
details of a comparison between LEPrE approach, Monte Carlo simulations, (binary) 
Predictability Region and Prediction Error Indicator for a simplified bimodal spectrum 
made of two separated band limited white noise regions. The second application is 
conceived to presents an ideal, though realistic, laboratory experiment where the 
measurement device, used for the propagation step, is affected by measurement noise. 
Other two long crested wave examples have been conceived to show how the LEPrE 
performs in predicting nonlinear wave fields and how to possibly include in the LEPrE 
formulation the additional error source induced by the wave radar inversion techniques. 
In the last application, the LEPrE methodology is applied to a more realistic scenario 
where an offshore structure is considered and the wave elevation, used for the 
propagation model, is assumed to be measured by means of a wave radar device.  
 

4.2 Predictability Region and Predictability Error Indicator 
In this section the Predictability Region and Predictability Indicator are presented 
recasting their definitions (already reported in Wu [159], Naaijen et al. [102]) in the 
case of a wave radar like application for long crested seas. 
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Figure 4.1:Scheme for the definition of the Predictability Region. 

 
With reference to Figure 4.1, the wave radar is considered to image the sea surface at a 
time 0 0t =  and on a space region defined by the interval OL as ,[ ]O Lx x x∈ . Assuming 
two wave numbers mink  and maxk  and their corresponding group speeds, the 
Predictability Region is defined as the space/time region for which: 
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The ( ),x t  region for which (5.1) holds is schematically presented in Figure 4.1, as a 
dark grey area identified by the triangle OLA.  
 
An equivalent definition of the Predictability Region can now be introduced, which is 
relevant to the following discussion. The OLA region can be constructed as the 
intersection of two the plane strips ( , )

iks x t  depending on the wave number, as defined 
as: 
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 (4.2) 

 
The plane strips are reported as light grey areas Figure 4.1. Their intersection is actually 
the region { }, :

min maxk kOLA x t s s= ∩ , representing an equivalent definition of the 

Predictability Region. The Predictability Region is considered as the ( ),x t  region where 
it is possible to predict, ideally without errors, the wave elevation on the basis of the 
measurement taken in the measurement region OL. In fact, following the arguments 
proposed by Wu  [159], if the energy content of the wave elevation field is considered 
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to be comprised within the wave number interval min maxk k k≤ ≤  then the region where 
these two wave component can be propagated on the basis of the group speed 
completely identifies the region where the full information acquired in the measurement 
region OL can be used for carrying out the prediction. However, in the definition of the 
Predictability Region, there is no information about the relative importance of the 
energy associated to each wave components within mink  and maxk , with respect to the 
whole energy distribution.  
 
A different and more advanced approach, that however shares many commonalities with 
the Predictability Region, is the Predictability Indicator, herein presented following 
Naaijen et al. [102]. 
 
The Predictability Indicator is a measure of the expected prediction performance based 
on the shape of the true wave elevation spectrum and it is defined as: 
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where Sη  is the wave elevation spectrum, the total energy is 

0
( )E S dk kη

∞
= ∫ , and 

( , )min mink xk t=  and ( , )max maxk xk t=  are the integration limits of the numerator of  (4.3) 
which depend on the point ( ),x t  considered. The interval over which the integral at the 
numerator of (4.3) is calculated depends on which of the wave components of the wave 
spectrum propagating from OL, and moving with the corresponding group velocity, can 
be considered to have actually reached the point ( ),x t . A simpler formulation of (4.3) 
can be obtained by assuming to discretize the wave spectrum energy as ( )j jkE kSη= ∆  
and introducing a discretized energy ratio for each wave number jk  as /j je E E= . 
Then, by means of the definition of the plane strips (4.2), the following step valued 
function sχ  can be defined: 
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In this way the Predictability Indicator can be defined, for every point ( , )x t , simply as 
the sum of 

jsχ  over the wave numbers as: 
 

 ( , ) ( , | )
j

j
s jP x t x t kχ=∑  (4.5) 

 
Equivalently to (4.3), equation (4.5) calculates the Predictability Indicator for each point 
( , )x t  as the amount of wave energy of the spectrum over the total energy that actually 
“reaches” (at least from the point of view of information for the prediction) the 
prediction point ( , )x t . In the limit 0k∆ → , the two formulations (4.3) and (4.5) 
become equivalent.  
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The Prediction Error Indicator proposed originally by Wu [159] can be defined as a 
function of ( , )P x t  as: 
 

 ( , ) 1 ( , )P x t P x t= −  (4.6) 
 
whereas Naaijen et al. [102] used in their work the value 2 ( , ) 1 ( , )P x t P x t= − . An 
example of calculation of the Prediction Error Indicator as presented in (4.6) is reported 
in Figure 4.2. 
 
Following Wu [159], the idea underlying the Predictability Error Indicator is that for the 
points ( , )x t  for which ( , ) 0P x t =  the wave elevation should be perfectly predicted. 
Conversely, for the points ( , )x t  for which ( , ) 1P x t = , the wave elevation cannot be 
predicted on the basis of the measurement on OL. However, the intermediate values of 

( , )P x t , 0 ( , ) 1P x t< < , are not provided with a clear interpretation that allows to use 
( , )P x t  as a quantitative indicator of the prediction error. Nonetheless, in this respect, 

Naaijen et al. [102] have shown the indicator 2 ( , )P x t  to be related, at least from 
practical point of view, to the variance of the prediction error calculated in the ensemble 

domain of Monte Carlo realizations, as
( )( )2

2

ar

2

v

η

η ζ

σ

−
 where ( , )x tη  is the true wave 

elevation and ( , )x tζ  is the predicted wave elevation on the basis of the measurement 
data.  
 

 
Figure 4.2: Prediction Error Indicator calculated for a Bretschneider sea spectrum ( 11.97pT s= ). The 
Predictability Region is calculated based on the group velocity associated to the wave frequencies 

/ 0.70min pω ω =  and max / 3.97pω ω = . 

 
The question arises, then, if a more formal indicator to assess the performance of a 
predictive model can be derived. In addition, it would be useful to have an indicator 
which avoids the debated a-priori assumption about the group velocity, as already 
discussed by Abusedra and Belmont [1]. In fact, although, in the case of an initial value 
problem on the wave elevation, the wave energy content of a wave packet can be seen 
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as propagating along the characteristic curves ( )g
x C
t

κ=  and the wave energy between 

any two of such lines remains constant (Witham [155]), it remains disputable if such 
energy arguments can be straightforwardly applied to fitting and propagation procedures 
typical of a DSWP applications, which are dealing with a stationary sea state. It seems 
to be more relevant, for the assessment of the prediction error, to account for the 
characteristics of the fitting of the wave elevation signal ( , )x tη  through the propagation 
model, ( , )x tζ . This is an aspect which often represents the core point of the DSWP 
application, but which not directly addressed by the Prediction Region and 
Predictability Indicator. To this end, in the next section, an alternative prediction error 
model is presented. 
 

4.3 Linear Estimator of Prediction Error (LEPrE) 
In order to face the gap identified in the assessment of a sound measure of the prediction 
error, a more consistent probabilistic approach has been developed. The FS/PS steps of 
a linear DSWP application has been redefined in a probabilistic framework. The main 
assumption is the description of the sea as a Gaussian stationary stochastic process. On 
this basis, the fitting and propagation procedures, herein assumed as linear, represent a 
linear transformation of Gaussian random variables. Consequently, the derived 
formulation embeds naturally the fitting and propagation models adopted for the 
DSWP, eventually accounting, in a consistent way, also for the actual shape of the wave 
spectrum. The result is a semi-analytical methodology for the estimation of the 
prediction error that is valid for generic linear fitting procedures. The developed 
framework is general and applicable to both long crested and short crested waves, with 
and without presence of measurement noise. More specific applications are reported in 
the application section. Preliminary results by the application of the proposed 
methodology for the long crested (1D) case in absence of measurement noise and using 
a Fourier fitting have been reported by Fucile et al. [53]. 
 

4.3.1 Theoretical Background 
It is firstly assumed that the true wave elevation field ( ),x tη  is a stationary Gaussian 
process for which a single generic realization can be represented as follows: 
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 (4.7) 

 
In the expression for the wave elevation ( ),x tη , ( ),

T

i x yk k k=  is the wave number 
vector for the i-th harmonic component, which is linked to the wave frequency iω  by a 
suitable dispersion relation. In the case of linear waves and infinite water depth 

ii g kω = . The space and time dependent vector ( ),p x t
η

 can be referred as the 
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“propagator vector” for η  (see also Connell et al. [33]) since it propagates the wave 
elevation field in time and space if the coefficients vector α  is known. In (4.7) a finite, 
but sufficiently large, number of harmonic components, Nη , is considered, while the 
actual stochastic process is in principle recovered in the limit Nη →∞ . It is also 

assumed that ( ),x tη  can be measured at certain points in space ( 2,1x∈ ) and/or time (

t∈ ), and that the measured wave elevation ( ),M x tη  is associated with a certain 
measurement error ηδ , i.e.: 
 

 ( ) ( ) ( ), , ,M x t x t x tηη η δ= +  (4.8) 
 
The case of measurements without error represents a special case of (4.8) where 

( ), 0x tηδ =  for all positions and time instants. Herein the wording “measured” is used 
for sake of simplicity, although, in general, the wave elevation can be either measured 
(e.g. at a wave gauge or wave buoy) or reconstructed (e.g. from the inversion of wave 
radar images, Connell et al. [33]; Dankert and Rosenthal [35]; Fucile et al. [54]; Nieto 
Borge et al. [105]; Wijaya et al. [156]). It is now assumed that the true wave elevation is 
fitted through a phase-resolved wave model ( ),x tζ  having the following expression, 

similar to that of ( ),x tη : 
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where, in general, the harmonic components of ( ),x tζ  differ from those of ( ),x tη  and, 
in addition, typically N Nζ η<< . The next assumption is that, given a set of MN  

measurements ( ),jM jx tη  1,..., Mj N=  at different points in space and/or time, the 
coefficients vector β  can be determined by a linear transformation of the available 
measurements through an appropriate matrix 

M
T , i.e.: 
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Such an assumption covers at least three important cases. The first case is the classical 
Fourier analysis on rectangular grids, in which case 

M
T  is the DFT matrix (Golub and 

Van Loan [58]). The second one is associated with a direct least-squares fitting process 
(see Connell et al. [33]; Vettor [146]). In such case the fitting is firstly setup as follows: 
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where 

,M
P
ζ

 can be referred to as the propagator matrix (Connell et al. [33]) at the 

measurement points in time and space, and 
M

T  is the Moore-Penrose pseudoinverse of 

,M
P
ζ

, i.e. 
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assuming that the matrix 

,M
P
ζ

 is a full rank matrix and, therefore, that the matrix 

product 
, ,

T
M M

P P
ζ ζ

 is actually an invertible matrix. 

The third case covered by the assumption (4.10) is the regularised least-square fitting 
using Tikhonov regularisation (Hansen [64]; Vogel [147]), where a solution β  is 
sought such to minimize the following objective function:   
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In (4.13),Λ  is an 2 2N Nζ ζ×  regularisation matrix, which is often chosen as 
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 the 2 2N Nζ ζ×  identity matrix and λ  the regularisation 

parameter. In such case the matrix 
M

T  becomes: 
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It is worth noticing that the classical least-squares case is a special case of the Tikhonov 
regularisation, while the classical Fourier case can also be seen as a special case of both 
the other two. 
 
Using the model (4.9) and the assumption (4.10), the fitted model can be evaluated at 
any point in space and time as follows: 
 
 ( ) ( ) ( ), , , ,F M M

x t p x t p x t Tδ ζ ζ
ζ β η= =  (4.15) 

 
The subscript “ ,F δ ” indicates that the model is using coefficients which have been 
determined through fitting taking into account the presence of measurement error ηδ . It 
is now possible to determine the error between the fitted model and the true wave 
elevation ( ),x tη  as follows: 
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 ( ) ( ) ( ) ( ) ( ),, , , , ,F M M
x t x t x t p x t T p x tδ δ ζ η

ε ζ η η α= − = −  (4.16) 
 
Furthermore, using (4.7) and (4.8), the vector of measured wave elevation can be 
written as: 
 

 

( )

( )
( ) ( )( )

, ,,
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, 1 1
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, ,..., ,
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P

p x t

x t x t

η

η ηη

η

η

η

η η η

η η δ α δ

δ δ δ

 = + = +
      = ∈

 
   


 = ∈

 



 (4.17) 

 
Combining (4.16) and (4.17), the error ( ),x tδε  can therefore be written as: 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

,

,

1,2 1,

, , ,

with

, , ,

, ,

,  ;  , M

M

M M

M

N N

x t q x t n x t

q x t p x t T P p x t

n x t p x t T

q x t n x th

hδ

hζ h

ζ

ε α δ


= +


 = −


=

 ∈ ∈ 

 (4.18) 

 
From the first equation in (4.18), it can be seen that the error ( ),x tδε  is due to two 

sources. The first term, ( ),q x t α , represents the error due to the fact that the fitted 

model, in general, differs from the actual process. The second term, ( ) ,, Mn x t ηδ , 
represents the propagation of the measurement error through the fitted model. Both 
error sources also embed the effect of the fitting procedure.  
 
It is now worth noticing that the error ( ),x tδε  as obtained in (4.18) is a linear function 

of the amplitudes of the harmonic components of the true wave elevation ( ),x tη . 

Furthermore, taking into account the fact that ( ),x tη  is, actually, a stochastic process 

and the fact that ,Mηδ  is a random vector, the error ( ),x tδε  can be interpreted as a 
stochastic process. In all the following considerations, the set of MN  measurement 
points is assumed to be deterministically fixed in the ensemble domain, i.e., across 
multiple realisations. Furthermore, it is assumed that other possible fitting parameters 
(e.g. the regularization matrix Λ  in (4.14)) are also deterministically fixed. These two 

latter assumption allow to consider ( ),q x t  and ( ),n x t  in (4.18) as deterministic 
functions of space and time. 
 
By using the assumption that ( ),x tη  is a (discretised) linear Gaussian process, similarly 
to the one dimensional case (Tucker et al. [144]), the amplitudes ia  and ib  of the 
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harmonic components are considered as zero mean independent Gaussian variables. 
They are linked to the (single side) directional wave energy spectrum ( )iS kη  as 
follows: 
 

 

( ) ( ) ( )

{ } { }

{ }

2 2 2
, ,

2 2

0,   ;  0,   ; 

0   0   
,   ;  ,

      

, 0  ,

ii i i i i x i y i

i j i j
i i

i j

a N b N S k k k

i j i j
COV a a COV b b

i j i j

COV a b i j

ησσσ 

σσ

 = ∆ ∆

 ≠ ≠  = =  

= = 
 = ∀

 

 (4.19) 

 
where ( )20, iN σ indicates a normal distribution with zero mean and variance 2

iσ , ,x ik∆  
and ,y ik∆  are wave number intervals associated with the assumed discretization of the 

spectrum ( )iS kη  in Nη  wave components, and { }.,.COV  indicates the covariance 
operator. According to (4.19) the wave amplitudes vector α  is a zero mean Gaussian 
random vector with diagonal covariance matrix, that is: 
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 (4.20) 

 
where {}.E  is the expected value operator. In addition, it is assumed that the 

measurement error ( ),x tηδ  is a zero mean Gaussian process and that it is independent 
of η . As a consequence, given the specific set of MN  measurement points in space and 
time, the vector ,Mηδ  is a zero mean Gaussian vector with a given covariance matrix 
depending on the assumed measurement error characteristics, i.e.: 
 

 
{ }

( )( )
,

, , , ,

,

, ,,

0
M

M M M M

M

T

M M

E

C E

η

η η η η

ηδ

η ηδ δ δ δ

µ δ

δ µ δ µ

 = =

  = − −  

 

 (4.21) 

 
If it is assumed that the measurement errors ηδ  at two different points in time and space 
are independent, then the covariance matrix 

, ,,M M
C

η ηδ δ
 becomes diagonal: 
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 (4.22) 

 
The generic term ( )2 ,j jx t

ηδ
σ , with 1,..., Mj N= , represents the measurement error 

variance at point   jx  in space and at time jt . If, in addition, it is assumed that the 
measurement error is a uniform noise with variance 2

δσ , then the covariance matrix 

, ,,M M
C

η ηδ δ
 simplifies to:  

 
 

, ,

2
,, M MM M N N

C I
ηη η
δδ δ

σ=  (4.23) 
 
The assumption presented so far are proposed as possible formal simplifications of the 
error process which, before being actually implemented within this methodology, has to 
be carefully characterised. Indeed, from a practical point of view, in case the error ,Mηδ  
is correlated in time and space, the full definition of covariance matrix in (4.21) has to 
be used. This has proven to be the case of the error induced by the LSQR inversion 
technique introduced in section §3.6.2. In addition, another important underlying 
hypothesis is to be stressed, i.e. the implicit assumption that ,Mηδ  is independent of η , 
i.e. the fact that ,Mηδ  is an additive error. Although for certain source of error this 
assumption can easily be justified, in other cases this assumption needs some special 
care. Notwithstanding this difficulty, in the present formulation, this assumption is 
necessary for the further development of the methodology.  
 
Then, by using (4.18), (4.20) and (4.21), the assumption that ( ),x tηδ  is independent of 

η , and recalling that, from the considered assumptions, ( ),q x t  and ( ),n x t  are 
deterministic vector functions, it is now possible to provide a full probabilistic 
characterisation of the prediction error ( ),x tδε . Indeed, from (4.18), it follows that 

( ),x tδε  is a Gaussian process, since it is a linear combination of random Gaussian 

vectors. Furthermore, the mean and the variance of ( ),x tδε  can be determined as 
follows: 
 

 
( ){ }
( ){ } ( ) ( ) ( ) ( ) ( )

, ,

2
, ,

, 0

, , , , , ,
M M

T T

E x t

Var x t x t q x t C q x t n x t C n x t
δ η η

δ

δ ε aa  δ δ

ε

ε σ

 =


= = +
 (4.24) 

 
where {}.E  is the expected value operator, {}.Var  is the variance operator, and 

( )2 ,x t
δε

σ  is the variance of the prediction error at ( ),x t . From the considered 
assumptions, it follows that the prediction error has zero mean. In addition, similarly to 
what was noticed when commenting (4.18), it can be noticed that also in (4.24) the 
variance of the prediction error is composed of two terms: the first term is associated 
with the inherent difference between the fitted model and the true process, while the 
second term represents the effect of the measurement error. 
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If use is made of the assumption that the covariance matrices 

,
C

α α
 and 

, ,,M M
C

η ηδ δ
 are 

diagonal, and by using (4.19), the expression for the variance of the prediction error can 
be simplified to:  
 

 
( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2 2 2 2 2 2
2 1 2

1 1

2 2 2 2
2 1 2 , ,

1 1

, , , , ,

, , , ,

M

M

N N

ji i i j j
i j

N N

i ji i x i y i j j
i j

x t q x t q x t n x t x t

q x t q x t S k k k n x t x t

η

δ η

η

η

ε δ

η δ

σσσ 

σ

−
= =

−
= =

= + + =

= + ∆ ∆ +

∑ ∑

∑ ∑
 (4.25) 

 
Each term in the first summation in (4.25)  represents the contribution to the prediction 
error variance at ( ),x t  coming from the spectral energy around the wave number vector 

ik . Each term in the second summation in (4.25) represents, instead, the contribution to 
the prediction error variance at ( ),x t  coming from the measurement error at the 

measurement point ( ),j jx t . In the limit the number of harmonics assumed in the model 

of ( ),x tη  increases towards infinity ( Nη →∞ ), the first term in (4.25) tends to an 
integral involving the spectrum of η , and the variance of the prediction error can be 
rewritten as: 
 

 ( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 2 2
1 2

1
, , , , , , ,

MN

jx y j j
j

x t f k x t f k x t S k dk dk n x t x t
d ηε η dσσ

=

= + +∑∫∫  (4.26) 

 
where ( )2

1 , ,f k x t  and ( )2
2 , ,f k x t  are functions depending on the fitting procedure. It is 

important, at this point, to underline that the single side energy spectrum ( )S kη  
appearing in (4.25) and (4.26) is the spectrum of the true wave elevation η  and it must 
not be confused with the spectrum, assuming it could be consistently defined, of the 
measured wave elevation. In fact, the measured wave elevation is contaminated, in 
general, by the effect of the measurement error process.  
 
A closed form analytical formulation for the functions ( )2

1 , ,f k x t and ( )2
2 , ,f k x t  is 

difficult to derive in the general case, for it depends on the fitting model as it has to 
embed the solution step in (4.10). However, some specific consideration can be given to 
the case where the fitting model is derived from a Discrete Fourier Transform (DFT) 
approach. In fact, choosing a suitable orthogonal basis in the sense of DFT, possibly 
accounting only for a subset of allowed Fourier frequencies, the calculation of the 

M
T  

matrix and of the product 
,M M

T P
η

 can be carried out analytically, leading, eventually, 

to analytical expressions for the resulting functions ( )2
1 , ,f k x t and ( )2

2 , ,f k x t . Further 

details about the calculation of the functions ( )2
1 , ,f k x t  and ( )2

2 , ,f k x t  in such special 
case are provided in §4.3.3. 
 
Moreover, it is worth to mention, that, once specified, the fitting model completely 
defines the matrix 

M
T  that, consequently, will remain a constant quantity of the 

problem. The majority of the computational burden is then limited to the calculation of 
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the matrix 
M

T  at the beginning of the procedure, while other quantities can then be 
easily calculated afterwards.  
 
The Linear Estimator of Prediction Error (LEPrE) in (4.25) (or its continuous version 
(4.26)) can now be used for providing a sound definition of Predictability Region. In 
fact, being ( ),x tδε  a zero mean Gaussian process (in space and time), it is completely 

characterised, for each single point ( ),x t , by its variance. The Predictability Region can 
therefore be defined as that region Π , in time and space, where the variance of the 
prediction error is sufficiently small. Given a threshold ετ  for the standard deviation of 
the prediction error, the predictability region can then be defined as:  
 
 ( ) ( ) ( ){ }2 2, : ,x t x t

δε ε εtσt  Π = ≤  (4.27) 
 
It can be noticed that, in the probabilistic framework developed herein, there is no single 
Predictability Region, and the Predictability Region depends on which level of 
prediction error is considered to be acceptable through the specification of the threshold 
ετ .  

4.3.1 Embedding the effect of linear transformations of measured wave 
elevation signal 
It is worth presenting how the LEPrE methodology can be extended to include, in its 
general definition, any linear transformation applied to the measured signal of the wave 
elevation. In this respect, the need for applying an additional linear transformation to the 
measured signal can be justified in the light of an improvement of certain characteristics 
of the original signal. For example, the application of a windowing function to the 
sampled signal, formally equivalent to a multiplication with a weighting matrix, is a 
quite common practice when there is a need for reducing, for example, the leakage 
effects on the Fourier coefficients, as explained in Prabu [118]. Moreover, the original 
signal may require a filtering step before being implemented in the LEPrE calculation, 
in order, for example, to filter out unwanted or spurious frequency components from the 
measured wave elevation. Also this case, if a linear filter is applied, as for example 
described in Kaiser and Reed [71] in the case of a low pass filter, a linear transformation 
will be involved. 
 
Now, assuming for simplicity an arbitrary weighting matrix ,M MN NW ∈ , the 

transformed (filtered) measured wave elevation, ( )* ,
M

x tη  , can be redefined as: 
 

 ( ) ( ) ( ) ( )* , , , ,
M M

x t W x t W x t W x tηη η η δ= = +  (4.28) 
 
The coefficient of the equation (4.10) can then be simply rewritten as: 
 
 
 

 
* * *

*

M MMM

M M

T T

T T W

β η η = =


=
 (4.29) 
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where now the updated matrix, *

MM
T T W= , has been introduced. This new matrix 

embeds also the transformation/filtering procedure applied to the measured signal. 
 
The definition of the additional matrix *

M
T  allows keeping the previously introduced 

derivation of the prediction error formally unchanged. In fact, the derivation of the 
prediction error can just be obtained by adopting the matrix *

M
T  as (see (4.18)): 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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, , , , ,

, , ,

M

M M M M

M M
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q x t p x t T P p x t p x t T W P p x t

n x t p x t T p x t T W

h

hh ζ h ζ h

ζ ζ

δε α δ = +

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 = − = −
 = =

 (4.30) 

 
Moreover, the considerations already drawn about the statistical characteristics of the 
prediction error will still be valid and unaffected by the additional linear transformation. 
This leads to the definition of the following mean and variance of the prediction error, 
similarly to (4.24), as: 
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( ){ } ( ) ( ) ( ) ( ) ( )*

, ,

*

* 2
,

* *

,

* *

, 0

, , , , , ,
M M

T T
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Var x t x t q x t C q x t n x t C n x t
δ η η

δ

δ ε aa  δ δ

ε

ε σ

 =


= = +

 (4.31) 

 
The main statistically relevant quantities, the covariance matrix 

,
C

α α
 and 

, ,,M M
C

η ηδ δ
, are 

not affected by the linear transformation and they keep exactly the same statistical 
meaning as discussed before. The only terms affected by the linear transformation of the 
sea wave elevation are the q  and n  terms. 
 
The definition of the LEPrE can then be obtained exactly as done already in §4.3.1, but 
using the newly defined terms *q  and *n . 
 

4.3.2 Implementation and usage 
Expression (4.25)/(4.26) can be used in deterministic phase-resolved wave predictions 
to supplement the prediction of wave elevation along with an estimation of the 
prediction error associated with the specific fitting and prediction procedure.  
 
To this end, in general, a fitting model (4.19) is firstly chosen, and this corresponds to 
the definition of a certain set of wave number vectors  hk  1,...,h Nζ= . Then, it is 
necessary to define the set of MN  points, in time and/or space, which are used for the 
fitting of the propagation model according to the decided fitting procedure. To further 
proceed it is necessary to know, or at least to have an as good as possible estimation, of 
the sea elevation spectrum ( )S kη . In some applications, such as laboratory experiments 

or numerical simulations, the spectrum ( )S kη  is known with sufficient accuracy. 
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However, in applications at sea, the estimation of ( )S kη  can be a critical issue; 
depending on the specific application, methods based on wave radar processing (Nieto 
Borge et al. [105]), wave buoys, or ship-as-a-wave-buoys (e.g. Tannuri et al. [139]), can 
be exploited to estimate ( )S kη . It is however crucial that the estimator of the true wave 

elevation spectrum ( )S kη  is depurated, as much as possible, from the effects of 
measurement noise. In this respect, if the measurement noise is assumed to have a flat 
spectrum S

ηδ
 additive to ( )S kη , it follows that the spectrum of the measured wave 

elevation becomes ( )S S k
ηδ η+ . In such case, the analysis of very low and very high 

wave number regions could be used to estimate the contamination S
ηδ

 which should 
then be removed from the spectrum of the measured wave elevation, to get, eventually, 
the (depurated) estimation of ( )S kη . Another step for the application of the proposed 
methodology is the definition of a modelling for the covariance matrix of the error in 
the measurement of the wave elevation (see (4.21)). In case a flat spectral noise level 
S

ηδ
 is determined, the variance of the measurement error can be obtained from the 

integration of S
ηδ

 over the region of k  up to Nyquist limits from the Fourier analysis. 
Alternatively, the measurement error can be defined, for instance, from the knowledge 
of the measurement system, being it, e.g. a wave gauge, a wave buoy, or a wave radar, 
as appropriate. Other application-specific methods can, of course, also be used. 
 
From the description above, almost all the major information would be available at this 
stage. However, in order to determine (an estimator of) ( )2 ,x t

δε
σ  it is necessary to make 

some additional assumption regarding the process ( ),x tη . If the fitting procedure is 

such that analytical expressions for the functions ( )2
1 , ,f k x t  and ( )2

2 , ,f k x t  can be 
determined, then expression (4.26) can be directly used, combined with a suitable 
numerical integration procedure. Alternatively the discrete formulation (4.25) can be 
directly used in the general case. However, when using (4.25), it is necessary to specify 
a certain number of harmonic components Nη  which are assumed to represent the 

underlying (unknown) stochastic process ( ),x tη . In order for ( ),x tη  to be a 
sufficiently good approximation of the true underlying sea elevation Gaussian process, 
Nη  should be sufficiently large. From application tests, it has been noticed that, when 
the number of components Nη  is sufficiently large, and in particular sufficiently larger 
than the number of components Nζ  used for the fitted model, the behaviour of 

( )2 ,x t
δε

σ  converges, sufficiently for practical purposes, to the value which is obtained 
with much larger Nη  (ideally with Nη →∞ ). This is expectable, since (part of) 

( )2 ,x t
δε

σ  represents the prediction error for ( ),x tζ  which, loosely speaking, is 

associated with an insufficient frequency resolution in ( ),x tζ  to resolve “all” the 

components of ( ),x tη . The wording “all” is in quotation marks since, in reality, ( ),x tη
, as a stochastic process, has infinite harmonic components of infinitesimal amplitude. 
This convergence can also be understood from a numerical perspective when (4.25) is 
considered as a discretised version of the integral in (4.26). The drawback of using the 
discrete formulation (4.25) is that an increase of Nη  tends to increase the dimensions of 
some of the matrices involved in the calculations, with a consequent increase of 
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memory consumption and computational time. In order for the procedure to be 
practically viable with present resources, it is necessary to find a trade-off for Nη  such 
that it has a sufficiently large value to have a sufficiently good/converged estimation of 

( )2 ,x t
δε

σ , but without exceeding the available computational time and resources. 
 
With all data available, ( )2 ,x t

δε
σ  can therefore be estimated in a suitable range of space 

and/or time. This allows, first, to supplement the prediction ( ),x tζ  with an associated 

Gaussian confidence interval based on ( ),x t
δε

σ . Furthermore, given a limit threshold 

level ετ , the predictability region ( )ετΠ  can be eventually determined in accordance 

with (4.27). It is also to be noted that the possibility of estimating ( )2 ,x t
δε

σ  allows, in 
addition, to devise “optimum” prediction strategies and/or fitting and prediction setups 
in order to provide wave elevation predictions with minimum/smaller confidence 
bounds. 

4.3.3 Analytical formulation of LEPrE in case of DFT fitting and long 
crested(1D) and short crested (2D) waves 
This section presents the derivation of functions ( )2

1 , ,f k x t  and ( )2
2 , ,f k x t , in 

equation (4.26), in the special case when a DFT fitting approach is applied. Both the 
long crested (1D) and short crested (2D) cases are considered.  
 
The derivation starts from the case of long crested (1D) sea states, where waves 
propagate in the same direction. In this case the generic wave number vector k  can be 
replaced by its corresponding scalar magnitude k  and the generic position vector x  can 
be replaced by a scalar coordinate x .  
 
The possible presence of measurement error does not affect the definition of ( )2

1 , ,f k x t  

and ( )2
2 , ,f k x t  in (4.26), since the contribution to the prediction error standard 

deviation due to the presence of measurement error represents an additive term.  
Therefore, for the purpose of this appendix, the prediction error can be defined by 
combining equations (4.16) and (4.18) as follows, without considering measurement 
error: 
 

 ( ) ( ) ( ) ( ) ( ),
, , , , , ( , )F M M

x t x t x t p x t T P p x t q x t
ηζ η

ε ζ η α α = − = − =   (4.32) 
 
The measurement of the wave elevation is assumed to be carried out on an evenly 
spaced 1D grid of M  points, with sampling resolution x∆  so that the sampled position 
is 0m x mx x= + ∆  with {0,..., 1}m M= −  and 0x  is a given bias position. The 

corresponding Fourier wave numbers are defined as 2 /sk s M xπ= ∆ , with the index s  
taking the values on a convenient subset of the set 0,1,..{ ., }/ 2M . The fitting model is 
then assumed to be based on a set of Nζ  wave numbers, 1,...{ , }i Nk k k ζ∈   , chosen 
among the previously defined Fourier ones. For sake of simplicity, the analytical 
solution will not account for the zero wave number, 0k = , and for the possible Nyquist 
wave number / xk π= ∆ . Exploiting the properties of the DFT matrix, it is 
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straightforward to prove that the matrix 
M

T  appearing in (4.10) can be actually written 
as: 
 

 ,
2 T

M MT P
M ζ=  (4.33) 

 
The matrix product 

,M M
T P

η
 can now be rewritten in the following block matrix form: 
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 (4.34) 

 
The determination of the elements of 

,i j
f  can be carried out analytically, leading to the 

following results: 
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where ( 1)M
M

α− Θ = + 
 

 with 0 / (2 )x xMα = ∆ . iµ  is a natural number defined as 
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 and jv  is in general a real number defined as 
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function ( , )D p M  appearing in the previous expressions is defined as: 
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The wave numbers ik  and jk  are, respectively, the Fourier wave number of the fitting 
model and the assumed wave number of the underlying model. This latter, in general, 
can be arbitrary, and not necessarily linked to the sampling grid.  
 
The results reported so far are provided assuming that the measurement and fitting is 
carried out in the space domain. However, the obtained results can be recast in a form 
suitable for the dual situation where the measurement and fitting procedure is carried 
out in time domain. In such case, it is necessary to interchange space and time, as well 
as wave numbers and wave frequencies. In a time domain fitting it shall also be 
assumed that the fitting frequencies correspond to an orthogonal basis with respect to 
the measurement domain, and that the wave numbers corresponding to the fitting 
frequencies are determined from the dispersion relation. 
 
It is worth noticing at this point that, in phase-resolved propagation methods, it is good 
practice to define the sampling grid in such a way to avoid, as much as possible, 
aliasing problems. However, in general, the sampling grid is defined by the sampling 
resolution of the measuring device and some aliasing is unavoidable. In this case the 
whole fitting and propagation procedure will be affected by aliasing. The LEPrE 
methodology naturally embeds the fitting model characteristics in its definition and 
consequently it will provide a prediction error that consistently takes into account the 
presence of aliasing. 
 
The elements of the vector ( ),q x t  in (4.32) can now be rewritten as: 
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However, the terms ( )2 1 ,jq x t−  and ( )2 ,jq x t  are now in a closed form with respect to 
the generic (arbitrary) wave number jk . As a result, the subscript j  can be dropped and 

the final formulation of the functions ( )2
1 , ,f k x t  and ( )2

2 , ,f k x t  can be written as: 
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 (4.41) 

 
The formulation developed so far can be easily extended to the short crested (2D) case 
within the hypothesis the fitting procedure is carried out using an orthogonal Fourier 
basis. The measurement of the wave elevation is assumed to be carried out on an evenly 
spaced 2D grid of MN  points, with sampling resolution x∆  along the x  direction and 
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y∆  along the y  direction. The grid points ( ), , T
m n m nx x y=  are defined as 

0m x mx x= + ∆  with {0,..., 1}m M= −  and 0n y ny y= + ∆  with {0,..., 1}n N= − , with 0x  
and 0y  given bias position. The corresponding Fourier wave numbers, considered in 

their vector form ( ),x y

T
k k k=   , are defined as ( ), 2 /x rk r M xπ= ∆  with the index r  

taking the values on a convenient subset of the set 0,1,..{ ., }/ 2M  and 
( ), 2 /y sk s N yπ= ∆  with the index s  taking the values on 0,1,..{ ., }/ 2N . The fitting 

model is then assumed to be based on a set of Nζ  wave numbers, 

( ) 1, ,, ,..., }{
T

Nx i yi ik k k k k ζ∈=     , chosen among the previously defined Fourier ones, 

excluding the zero and the Nyquist wave numbers.  
 
In this case the functions ,  ,  ,  cc cs sc ssf f f f  presented from equation (4.35) to (4.38), can 
be exploited to calculate a set of corresponding functions associated with the 2D case 
as: 
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Similarly to (4.41), the index j  associated to the frequency in the underlying assumed 
wave elevation model η  can now be dropped, so that the functions ( )2

1 , ,f k x t  and 

( )2
2 , ,f k x t  for the general short crested (2D) case can finally be written as: 
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4.4 Application examples 
Some applications examples exploiting the described LEPrE methodology are reported 
in this section. The first two applications are simplified long crested sea cases, used to 
show and discuss the main characteristics and capabilities of the LEPrE methodology. 
In the third application a more realistic scenario, dealing with the prediction of water 
wave elevation for nonlinear long crested sea, is investigated. In the fourth application, 
the measurement noise, as derived in §3 is accounted for in the case of linear long 
crested sea. Eventually, the predictive performances of the LEPrE have been tested in 
the case of linear short crested sea. 
 
The first application, reported in §4.4.1, has been conceived to show how the LEPrE 
methodology compares with respect to the Predictability Region (Wu [159]) and 
Predictability Indicator (Wu [159]; Naaijen et al. [102]) techniques in the case of a 
simplified archetypal strongly bimodal spectrum. The considered simplified spectrum is 
used for comparison and description purposes, in order to emphasize the effects which 
might appear, although less evidently, in a smoother realistic wind waves plus swell 
bimodal case. 
 
The second application, reported in §4.4.2, presents a simulated laboratory experiment 
where the wave elevation is assumed to be produced by a wave maker. The purpose of 
this application is to set up a controlled and yet realistic environment where to test the 
LEPrE methodology dealing also with the effects of measurement error (noise). The 
main results are then verified with respect to a set of Monte Carlo simulations and the 
effect of the measurement noise is discussed. 
 
The third example, reported in §4.4.3, shows some result about the application of the 
LEPrE methodology to nonlinear wave fields. In the case of moderate sea states the 
LEPrE method represents an adequate indicator for the prediction error level. However, 
for steeper sea states characterised by stronger nonlinearities, the linear assumptions 
underlying the LEPrE approach will show their limits.   
 
In the fourth example, reported in §4.4.4, the LEPrE methodology has been provided 
with an estimation of the additional noise source coming from wave measurements. The 
results obtained for the LSQR inversion model (see chapter §3) have been exploited and 
integrated in the LEPrE approach. Despite the implemented partial characterisation of 
the measurement error and its simple implementation in the LEPrE approach the results 
show a satisfactory agreement with the reference Monte Carlo simulations. 
 
In the last application, reported in §4.4.5, the LEPrE methodology is applied to a more 
realistic scenario where an offshore structure is considered and the wave elevation, used 
for the propagation model, is assumed to be measured by means of a wave radar device. 
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For this short crested application the wave elevation field is assumed as linear. By 
keeping the fitting model as fixed, the effect of spreading of spectral energy angles is 
then discussed. The results are then verified against a corresponding set of Monte Carlo 
simulations. 
 

4.4.1 Verification and Monte Carlo Simulations 
This example considers the application of LEPrE methodology in the case of a 
simplified, idealised, bimodal spectrum. The main aim is to establish a simple 
archetypal scenario able to highlight the common behaviours and the main differences 
between the LEPrE methodology, the Predictability Region and the Predictability 
Indicator techniques, as already described in section §4.2. In this example case, results 
from the LEPrE methodology are compared with the Predictability Error indicator 
defined in (4.6). For verification purposes, all results are also compared against a set of 
500 Monte Carlo realizations. 
  
The two bimodal spectra used for this application are reported in Figure 4.3. Each 
spectrum is designed as the sum of two simple band limited flat spectra with a narrow 
bandwidth 00.1wb k=  and with symmetric peaks separated by { }0 00.25 ,0.75k kk∆ = ⋅ ⋅  
from the central reference wave number 0 02 / [1/ ]mk π λ= . The corresponding 
reference period is 0 0/2T π ω=  and the reference wave frequency in deep water is 

0 0k gω = ⋅ with g  the acceleration of gravity. These spectra represent an interesting 
benchmark for a comparison with the Predictability Region and Predictability Indicator. 
Indeed, the Predictability Region approach only takes into account the fastest and 
lowest component of the spectrum, without accounting for the actual spectral shape, 
basing the identification of the predictability region on the assumption of using the 
group velocity as reference speed. On the other hand, the Predictability Error Indicator 
approach, although still using the group velocity as reference speed for the 
computations, is able to take into account the actual spectral shape. Finally, the LEPrE 
approach accounts, in an analytic way, for all the features of the fitting procedure and 
for the exact spectral shape of the underlying wave elevation process, without any 
addition semi-empirical assumption. 
 
The fitting is carried out in the space domain on a measurement region of length

013ML λ=  with sampling interval 0 /15x λ∆ = . The measurement interval is 

00 / 13x λ≤ ≤ . The fitting/propagation model is defined on the basis of DFT analysis. 
The Fourier wave numbers selected for the fitting model are /2 ( )j Mk xj Nπ= ∆  with 

1,..., / 2 1Mj N= − , with 196MN = , thus, zero and  Nyquist wave frequencies are not 
taken into account in the calculations. For the propagation model the infinite depth 
dispersion relation j jgkω =   has been used. 
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Figure 4.3: Simple bimodal spectra. Band shift parameter: 0.20 5 kk∆ = ⋅  (green line) and 0.70 5 kk∆ = ⋅  
(blue line).  
 
Results from the application of the different methodologies are reported in Figure 4.4, 
where surfaces of ( ) ( ), 2 2sx t Hεs  are shown. Since in this case no measurement 

error is considered, the standard deviation of prediction error is indicated as εσ  instead 
of 

δε
σ . It can be noticed that there is an overall qualitative consistency among the 

different methodologies. The region where the LEPrE approach shows small values of 
prediction error standard deviation are in line with the identified Predictability Region 
according to Wu [159], and are also in line with the regions where the Prediction Error 
Indicator, according to Naaijen et al. [102], is small. Furthermore, the outcomes from 
the LEPrE methodology are fully verified by the comparison with Monte Carlo 
simulations, as the two methods show almost undistinguishable prediction error maps. It 
can be noticed that all methods agree in identifying a reduction of the minimum error 
region when the bimodal spectrum is characterised by a wider separation between the 
two bands, which corresponds to the presence of wave components with very different 
group speeds. The presence of traces in the time/space map associated with the different 
speeds of the components belonging to the two bands is quite evident, particularly in 
case of 00.75k k∆ = ⋅ .  
 
However, a closer look to results shows how the LEPrE method provides much more 
information on the prediction error in terms of error pattern, thanks to its capability of 
implicitly embedding the exact characteristics of the fitting model as well as the exact 
spectral characteristics of the underlying wave elevation process. Moreover, from the 
reported comparison, the high level of qualitative agreement between the Prediction 
Error Indicator and the LEPrE methodology is evident, which suggests the possibility of 
identifying some underlying relation, and provides a sort of justification to the 
assumptions used in the determination of the Prediction Error Indicator, at least for the 
considered fitting procedure set up and for the selected spectral shape. 
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Figure 4.4: Prediction performance map according to different approaches for two bimodal spectra with 
band shift parameter 0.20 5 kk∆ = ⋅  (left) and 0.70 5 kk∆ = ⋅  (right). The limits of the Predictability Region 
(see §4.2) are reported as red dashed lines in all plots. Normalized prediction error standard deviation, 
with normalization coefficient / 2 2sH , according to LEPrE (top) and as estimated by means of 500 
Monte Carlo realizations (centre). Bottom: Prediction Error Indicator according to (4.6). 
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4.4.2 Prediction error and measurement error 
Seakeeping experiments may require measuring the wave elevation at particular 
locations along the wave tank or at the tested model surroundings. In some cases, an 
instrumental measurement may be prevented by the presence of obstacles, like the 
tested model itself, or the setup of the wave probes can turn out to be particularly 
inconvenient. A possible solution is to measure the wave elevation at suitable distance 
upstream from the points of interest and then derive an indirect measure of the 
(undisturbed) wave elevation where this information is needed. This kind of 
reconstruction process will eventually be affected by errors and therefore it must be 
supplemented with a sound error analysis. The LEPrE methodology can be applied to 
this scenario in its complete definition (4.25) or (4.26), which allows dealing with 
deterministic predictions in presence of measurement noise.  
 
For this example application a wave probe is assumed to be placed in the middle of a 
wave tank with water depth 3.8TD m= , see Figure 4.5. The indirect predicted wave 
elevation is required at two downstream probing points at distance 1 3.0d m=  and 

2 6.0d m=  from the measuring wave probe. According to (4.25)/(4.26), the LEPrE 
methodology requires the knowledge of the wave spectrum Sη . In general, the “true” 
wave spectrum is unknown and it has to be assessed from the wave measurement. 
However, for sake of simplicity, in this case the nominal spectrum is assumed to be 
known, since it is a typical input for the experimental wave generation. In particular, the 
spectrum considered in this example is a JONSWAP spectrum with significant height 

5sH m= , peak period 9.30pT s=  and peak enhancement factor 3.3γ = . It is assumed 
that this spectrum is realized in the experimental laboratory at a model scale 50λ = . 
The wave probe measurements are considered to be affected by Gaussian random noise 
with a standard deviation proportional to sH . Two different levels of noise are 
considered, namely 0.02n sHs =  and 0.10n sHs = .  
 
The characteristics of the fitting model are defined by the recording time window, 
assumed to be 10M pT T= ⋅ , and the wave probe sampling frequency, assumed to be 
50Hz, corresponding to 0.02t s∆ = . The measurement is defined to start at 0t s=  and 
to finish at 13.14t s= . The fitting/propagation model is based on DFT analysis. The 
selected Fourier frequencies used for fitting model are /2 ( )j MN tjω π ∆=  with 

1,..., / 2 1Mj N= −  where 658MN = , thus, zero and  Nyquist wave frequencies are not 
taken into account in the calculations. For the propagation model the finite depth 
dispersion relation tanh( )j j j Tgk k Dω = 



  has been used. 
 

 
Figure 4.5: Scheme of the wave tank and of the considered laboratory experimental setup. 
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Results from the LEPrE methodology are verified against a set of 500 Monte Carlo 
realizations and a 95% confidence interval is provided to account for sampling 
uncertainty of Monte Carlo simulations. The prediction error standard deviation 

δε
σ  is 

presented in non-dimensional form, i.e. by normalization with respect to sH . 
 
First, Figure 4.6 reports the reconstruction of the wave elevation for four different 
random realizations of the considered sea state at the probe location 1 3d m=  and with 
the measurement noise level of 0.02n sHs = . The true wave elevation is also reported. 
The LEPrE methodology is used to provide the reconstructed wave elevation with an 
error bound 2

δε
σ±  corresponding, approximately, to the 95% confidence interval (the 

exact 95% confidence interval would correspond to 1.96
δε

σ± ). It is possible to note that 
there is a time interval where the reconstructed wave elevation matches particularly well 
the true wave elevation and this time window is independent on the realization. 
Assuming a conventional threshold level 0.05 sH

δε
s < , a predictability time window 

can therefore be defined on the basis of the LEPrE prediction error standard deviation. 
Such time window is indicated in Figure 4.6 by two vertical dashed lines. It can be 
noticed that, consistently for all the reported realizations, within the defined 
predictability time window, the reconstructed wave elevation well reproduces the true 
wave elevation, whereas, outside, the prediction tends to deviate more significantly 
from the true wave elevation. 
 
Figure 4.7 and Figure 4.8 show the time history of the prediction error standard 
deviation as calculated at the two probe locations for the two considered levels of noise. 
Furthermore, the “optimal time delay” opttδ  is also identified and highlighted; this is the 
time delay from the beginning of the measurement window at which the standard 
deviation of prediction error, εσ , shows its minimum for the considered probe location. 
This information could be useful in devising optimum reconstruction strategies, based 
on the minimization of the prediction error. LEPrE results in Figure 4.7 and Figure 4.8 
are almost indistinguishable from Monte Carlo simulations and clearly within the 
confidence interval, indicating that the LEPrE methodology has been properly 
implemented. Looking at Figure 4.7 and Figure 4.8 it can be seen how the distance from 
the measurement wave probe changes the behaviour of

δε
σ , with the region of minimum 

error shifting forward in time and higher in value as the reconstruction point is farther 
from the measurement probe in the direction of wave propagation. A comparison 
between results of Figure 4.7 and Figure 4.8 indicates that, as the noise level increases, 
the prediction error standard deviation tends to saturate, flattening the region of 
minimum error. However, at least for the two tested cases characterised by small and 
moderate noise levels, the optimal prediction delay opttδ  is independent of the noise 
level and it only depends on the probe location. 
 
Figure 4.9 and Figure 4.10 provide a wider picture, by showing the space/time error 
maps for both the noise levels using the LEPrE methodology. In the figures, the 
locations of the probe are highlighted with vertical red lines and the points of minimum 
prediction error standard deviation are indicated by a circular yellow symbol. The 
comparison of the two maps shows that the LEPrE methodology consistently accounts 
for the presence of higher measurement noise: the increase of the noise level causes an 
increase of the values of 

δε
σ  in the whole space/time domain.  
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Figure 4.6: Comparison between the true wave elevation, 1( , )d tη  , and the reconstructed wave elevation, 

1( , )d tζ  at the first probing point 1 3d m= . Time histories for four different realizations of the same sea 
state. Measurement noise level: 0.02n sHs = . The error bound 2

δε
σ±  is reported as a red band. The two 

vertical dotted black lines indicate the limit of the time window where the prediction error standard 
deviation from LEPrE is smaller than the considered threshold value, i.e. 0.05 sH

δε εs τ< = . 
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Figure 4.7: Normalized prediction error standard deviation as a function of time for two different probe 
locations. Measurement noise level: 0.02n sHs = . 
 

 
Figure 4.8: Normalized prediction error standard deviation as a function of time for two different probe 
locations. Measurement noise level: 0.10n sHs = . 
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Figure 4.9: Map of normalized prediction error standard deviation / sH

δε
s . Measurement noise level:

0.02n sHs = . The red lines report the position of the reconstruction points. 
 

 
Figure 4.10: Map of normalized prediction error standard deviation / sH

δε
s . Measurement noise level:

0.10n sHs = . The red lines show the position of the reconstruction points. 
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4.4.3 Effect of wave field nonlinearities for long crested seas 
In this section, the LEPrE method, as measure of the standard deviation of the 
prediction error, has been compared with the error results for a set of 100 Monte Carlo 
linear DSWP application performed for different realization of long crested seas. Both 
linear and nonlinear wave fields have been considered as reference data for the fitting of 
the propagation model. The sea conditions account for two different Bretschneider 
spectra, both having peak period of 11.97p sT = , but two different significant wave 
heights 2.5,6.5sH m= . The details about the generation of the nonlinear wave field are 
reported in section §2.5. In calculating the prediction error from the Monte Carlo 
simulation, the wave field is assumed to be perfectly retrieved by a wave radar like 
device allowing the fitting step of a linear DSWP to be performed on the true wave 
elevation. Then, a linear propagation step is performed, for both the case linear as well 
as nonlinear wave fields.  Eventually, the resulting signal of the true wave elevation 

( , )x tη  and of the fitted and propagated wave elevation ( , )x tζ  are compared, and the 
standard deviation of the prediction error from Monte Carlo simulations is calculated in 
the ensemble domain. The wave radar is assumed to image the sea surface at 0 0t s=  
and the measurement region is defined as the interval [450,2250]x m= . The sea 
elevation is sampled on 241xN =  points with space discretization of 7.5dx m= . The 
waves are assumed to propagate towards the wave radar antenna. A probing point has 
been defined at the position of the radar, 0px m= , corresponding to a relative distance 
with the closer edge of the fitting region of 450d m= . The DSWP propagation step is 
performed by a DFT application assuming the resulting wave numbers discretization 

2
n

x

n
N

k
dx
π

=  with 1,.., ( 1) / 2xn N= − . A deep water condition has been assumed, 

leading to  wave frequencies being determined as nn gkω = . 
 
Figure 4.11 presents the comparison between LEPrE and Monte Carlo simulation 
results in case the underlying wave field is linear, for 2.5sH =  . In Figure 4.12 the same 
results are compared for the same sea condition but considering a nonlinear wave field. 
Despite the comparison is, overall, satisfactory, some differences can be found in the 
case of nonlinear waves.  
 
Results for 6.5sH m= , in case of linear waves, are reported in Figure 4.13. In terms of 
normalized standard deviation of the prediction error the expected results are indeed 
equivalent to the ones obtained for the lower significant wave height, presented in 
Figure 4.11, as a consequence of the linearity of the problem. Corresponding results are 
presented for the case of nonlinear waves, in Figure 4.14. Being the DSWP method 
linear, and the underlying wave field nonlinear, the prediction error assessed with the 
Monte Carlo simulation is no more consistent with the LEPrE results. This is a 
somewhat expected result which indicates the fact that the linearity assumption 
underlying the LEPrE approach is no longer suitable for this condition. In this respect, 
in Figure 4.15, the limits of a linear fitting and propagation model applied to a nonlinear 
wave elevation field are presented. The true and linearly predicted wave elevations of 
two realization of the same sea condition, 6.5sH m= , are presented both in the case of 
linear and nonlinear underlying wave fields. The sea surface is reported for a generic 
time instant 120t s= . For the nonlinear case, the true wave elevation appears to be 
shifted towards the origin with respect to the corresponding linear prediction, and a 
systematic fitting problem in accounting for the smaller waves can be noted. The 
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observed behaviour could be related to the fact that the linear model cannot account for 
the correct nonlinear dispersion relation and for the correct propagation of the nonlinear 
bounds waves. It is however to be noted that the observed shifting is almost a rigid 
shifting. This seems to indicate that a significant portion of the large prediction error 
visible in Figure 4.14 from Monte Carlo simulations could be due to the rigid shift 
rather than a poor prediction of the wave elevation profile. This may indicate that an 
improvement of the dispersion relation used in the LEPrE approach could help in 
reducing the observed differences. 
 
 

 
Figure 4.11: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. Linear waves generated for Bretschneider spectrum with 

2.5sH m=  and 11.97pT s= . 
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Figure 4.12: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. Nonlinear waves generated for Bretschneider spectrum with 

2.5sH m=  and 11.97pT s= . 

 

 
Figure 4.13: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. Linear waves generated for Bretschneider spectrum with 

6.5sH m=  and 11.97pT s= . 
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Figure 4.14: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. Nonlinear waves generated for Bretschneider spectrum with 

6.5sH m=  and 11.97pT s= . 

 

 
Figure 4.15: Two independent wave elevation realizations for: a linear wave field (top); and a nonlinear 
wave field (bottom). The true wave elevation is reported with the corresponding linear DSWP. The 
considered sea condition account for a Bretschneider spectrum with 6.5sH m=  and 11.97pT s= . 
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4.4.4 Effect of the wave radar inversion error for linear long crested seas 
In this section, the LEPrE capability in dealing with the source of noise introduced by 
the radar inversion procedure is tested. The DSWP procedure has been based on the 
wave elevation data derived from the LSQR inversion procedure on wave radar images, 
see chapter §3. The idea is to provide the LEPrE method with an assessment of the 
noise introduced by the inversion procedure and then to compare the results of the 
LEPrE method with a set of 100 Monte Carlo simulations based on the actual LSQR 
reconstruction of wave elevation field. The radar images are assumed to be produced at 
time 0 0t = , then a linear fitting and propagation is applied to the probe point 0px m= .  
 
The DSWP model is based on the same discretization assumptions, about space and 
wave numbers, already presented in section §4.4.3. In particular, the assumed DSWP 
fitting region is defined by the space interval [450,2250]x m=  that is actually a 
restriction of the space region where the actual radar images are derived (the 
reconstruction of the wave elevation is carried out by the LSQR approach within the 
interval [150,2542.5]  x m= , see §3.6.2). This assumption allows accounting for the 
reconstructed wave elevation in the central measurement region avoiding the spurious 
effect taking place at the edges of the reconstruction region, as reported in Figure 4.16 
(see also section §3.6.2). 
 
The inversion error is modelled by means of a simplified diagonal covariance matrix, 

,M M
Cδ δ , in equation (4.25), associating at each point on the measurement region, 

[450,2250]Mx m∈ , the corresponding value of the inversion error variance. This 
assumption does not take into account the spatial correlation of the reconstruction error, 
but it allows a simpler implementation of the LEPrE method. The diagonal entries of the 
matrix have been defined on the basis of the inversion error assessment carried out in in 
section §3.6.2and then fitted to the assumed restricted fitting region, as reported in 
Figure 4.16.  
 
The sea state conditions considered in this example are associated to a Bretschneider 
spectrum with 11.97pT s=  and different significant wave heights 

2.5, 4.5,6.5,8.5sH m= . The underlying wave field is assumed to be linear. 
 
Results of the LEPrE method, accounting for the additional noise introduced by the 
wave radar reconstruction error, are compared with Monte Carlo simulations results in 
Figure 4.17 to Figure 4.20, for increasing sH  . Despite the assumed simplified model 
for the reconstruction error, the LEPrE and Monte Carlo simulation presents an overall 
common behaviour. In particular, the value of the prediction error is consistently 
increased, in the time region around 150t s= , according to the increased value of the 
reconstruction error associated to different sH . Moreover, the LEPrE prediction error 
can also account, quite satisfactorily, for the time dependence of the prediction error 
standard deviation, although some more notable differences can be found in the shape of 
the curve around its minimum values. 
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Figure 4.16: Definition of the error associated to the LSQR reconstruction procedure to be used in the 
LEPrE approach. A restricted region of space where the fitting of the DSWP is applied is highlighted. 
 
 

 
Figure 4.17: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. The noise source coming from the LSQR reconstruction 
procedure is accounted for by means of a simplified diagonal error covariance matrix. Linear waves 
generated for a Bretschneider spectrum with 2.5sH m=  and 11.97pT s= . 
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Figure 4.18: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. The noise source coming from the LSQR reconstruction 
procedure is accounted for by means of a simplified diagonal error covariance matrix. Linear waves 
generated for a Bretschneider spectrum with 4.5sH m=  and 11.97pT s= . 

 

 
Figure 4.19: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. The noise source coming from the LSQR reconstruction 
procedure is accounted for by means of a simplified diagonal error covariance matrix. Linear waves 
generated for a Bretschneider spectrum with 6.5sH m=  and 11.97pT s= . 
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Figure 4.20: Normalized prediction error standard deviation at 0px m= : comparison between LEPrE and 
results from 100 Monte Carlo simulations. The noise source coming from the LSQR reconstruction 
procedure is accounted for by means of a simplified diagonal error covariance matrix. Linear waves 
generated for a Bretschneider spectrum with 8.5sH m=  and 11.97pT s= . 

 

4.4.5 Short crested sea states 
In this example case, the LEPrE methodology is applied to a realistic scenario where the 
wave elevation is predicted on the basis of the assumed availability of wave radar 
measurements. Figure 4.21 presents the overall scheme of the problem where a wave 
radar on an offshore structure scans the nearby sea surface. The wave elevation signal is 
considered to be measured in a annular domain defined by a maximum radar range 

3000R m=  and limited by a proximity (blind) range 250r m= . The notional wave 
radar imaging bounds are considered to be representative of a usual wave radar 
measurement. For sake of simplicity, the wave radar is assumed to provide a 
reconstruction of the instantaneous wave field on the whole domain without errors. 
Accordingly the prediction error standard deviation is indicated as εσ   and not as 

δε
σ . 

The fitting procedure is carried on a squared sub-domain of the sensing region with 
dimension 1800 1800x yL m L m×= = , as reported in Figure 4.21, and the wave elevation 
signal is sampled on an evenly spaced grid with spacing 10x y m∆ = ∆ = , which is a 
typical wave radar resolution. As observed by Blondel-Couprie and Naaijen [17] the 
propagation model based on the DFT fitting of an instantaneous wave radar image is 
particularly sensitive to misinterpretation of the correct propagation direction of the 
wave components, because of the leakage effects. This leads to an incorrect propagation 
of waves and is, in general, detrimental to a correct prediction of the wave field. In this 
work the problem has been dealt with by defining the wave numbers used in the fitting 
and propagation model to belong to the same quadrant of the main propagation direction 
of the waves so to have , 0x yk k >   (Blondel-Couprie and Naaijen [17]). This assumption 
basically corresponds to the implementation, in the fitting model, of specific 
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information regarding the directional wave spectrum, and the LEPrE methodology can 
directly handle this sort of situation. 
 
A grid of x yN N  points, with 181x yNN == , is used for the chosen domain. The time 
instant of the measurement is conventionally set to 0t s= .The fitting/propagation 
model is defined on the basis of DFT analysis. The selected Fourier wave numbers for 
the fitting model are defined in vector form as ( ), , ,,

T

i j x i y ik k k=    with , /2 ( )x i xik xNπ ∆=  

and , /2 ( )y j yjk yNπ ∆=  with ( )0,..., 1 / 2xi N= −  and 0,..., ( 1) / 2yj N= − . The zero 

wave number, ( 0, 0)x yk k k= = =    is excluded from the calculations. For the 
propagation model the infinite depth dispersion relation has been used, so that the wave 

frequency is calculated as ,, i ji j g kω = 

  with  2 2
, , ,i j x i y jk kk +=   . 

 

 
Figure 4.21: Schematic view of the offshore structure scenario. Radii R  (maximum sensing range) and r  
(proximity range) limit the annular sensing region. 
 
A JONSWAP wave elevation spectrum with significant wave height 3sH m= , peak 
period 12pT s=  and peak enhancement factor 3.3γ = , is considered in this case. The 
directional wave spectrum ( , )S k θ  is defined by using a multiplicative cosine squared 
spreading function ( )D θ  as follows: 
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 (4.47) 

 
where spreadθ  is the spreading angle and χ  is the main propagation direction. Different 

spreading angles are considered for the test, namely { }30,60,90 degspreadθ = , while the 
main propagation direction is kept constant, 45degχ = . An example of directional 
spectrum is presented in Figure 4.22. 
 

 
Figure 4.22: Example of directional wave spectrum used in the calculation. JONSWAP spectrum with 
cosine squared spreading function: main direction 45degχ = ; spreading angle 60degspreadθ = (range 

[15 ,75 ]  ). 
 
The LEPrE approach is used here to determine the prediction error standard deviation 
associated with the assumed fitting and propagation scheme. The determination of the 
prediction error standard deviation allows also to define, on the one hand, an optimum 
time delay for the prediction (as shown before) and, on the other hand, a predictability 
region given a specified threshold value ετ (see (4.27)). In the following examples a 
conventional value 0.05 sHετ =  is used. Reported results are also verified against a set 
of 100 Monte Carlo realizations, which have been analysed in ensemble domain 
providing estimated expected values and 95% confidence intervals for the prediction 
error standard deviation. 
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Figure 4.23 shows the comparison of normalized prediction error standard deviation 
between Monte Carlo simulation and LEPrE results at the offshore structure location. It 
is noted that the coordinates reported in Figure 4.23, and in the following ones, are 
referenced to the lower left corner of the sensing sub-domain shown in Figure 4.21, and 
therefore the structure is placed at coordinates 2000x y m= = . The very good matching 
between LEPrE results and Monte Carlo simulations, taking into account the sampling 
uncertainty reflected by confidence intervals, verifies the  implementation of LEPrE 
also for directional sea state application. Similarly to the previously reported examples, 
the time history of the normalized error shows a minimum, which allows to identify the 
optimal time delay for a deterministic prediction to be carried out in the considered 
situation (fitting region, fitting model and sea spectrum). Furthermore, given the 
considered situation, the behaviour of the prediction error allows also to define the 
predictability region. The predictability region takes here the form of a predictability 
time window, as the time interval during which the prediction error standard deviation 
is below the defined threshold 0.05 sHετ = , i.e. the time window in the future within 
which the prediction error is considered to be acceptable, according to the threshold 
limit, from a probabilistic perspective. 
 

 
Figure 4.23: Normalized prediction error standard deviation at the structure location for 30degspreadθ = : 
comparison between LEPrE and results from 100 Monte Carlo simulations. 
 
Figure 4.24 presents the LEPrE results, again at the offshore structure location, as 
obtained for different spreading angles { }30,60,90spread degθ = . Results indicate that an 
increase of prediction error standard deviation is expected as the spreading angle 
increases. In the specific case of 90spread degθ =  the prediction error standard deviation 
of the propagation model fails to drop below the specified (although notional) 
acceptable threshold limit. This indicates that in some cases a predictability region 
could not exist and this should be taken as an indication about the need of improving the 
fitting model and/or changing the measurement region. 
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Figure 4.24: Normalized prediction error standard deviation at the structure location for

{ }30,60,90 degspreadθ = : LEPrE results. 

 
Finally Figure 4.25 to Figure 4.29 provide maps of the normalized prediction error 
standard deviation in the space region surrounding the offshore structure, for different 
time instants, being 0t s=  the instant when the fitting of the propagation model takes 
place. Normalization in this case is carried out using the normalization factor / 2 2sH . 
Results from Monte Carlo simulations are also reported as verification of the LEPrE 
predictions, showing that, considering the natural sampling uncertainty from Monte 
Carlo simulations, the LEPrE implementation can be considered to be verified. Looking 
at Figure 4.25 to Figure 4.29 as time evolution of the surface of normalized ( ),x tεσ , it 
can be noticed that the region of minimum of the surface, i.e. the region of better 
prediction from a probabilistic perspective, while modifying its shape in time, 
propagates along the main wave propagation direction. A smoothing of the “edges” 
(regions of large gradients) of the surface can be also noted as the time increases, 
particularly when comparing Figure 4.25 and Figure 4.26.  
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Figure 4.25: Map of normalized prediction error standard deviation at time 10t s=  for a spreading angle 
of 30degspreadθ = . Normalization coefficient: / 2 2sH .: Left: LEPrE results. Right: Monte Carlo 
simulation results. 
 

 
Figure 4.26: Map of normalized prediction error standard deviation at time 70t s=  for a spreading angle 
of 30degspreadθ = . Normalization coefficient:_ / 2 2sH . Left: LEPrE results. Right: Monte Carlo 
simulation results. 
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Figure 4.27: Map of normalized prediction error standard deviation at time 150t s=  for a spreading 
angle of 30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo 
simulation results. 
 

 
Figure 4.28: Map of normalized prediction error standard deviation at time 240t s=  for a spreading 
angle of 30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo 
simulation results. 
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Figure 4.29: Map of normalized prediction error standard deviation at time 300t s=  for a spreading 
angle of 30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo 
simulation results. 

4.5 Concluding remarks 
In this chapter the determination of prediction error statistics for linear DSWP models 
has been addressed. The proposed approach is based on a redefinition of the problem in 
the framework of the stochastic processes. In fact, the basic assumptions are the 
modelling of the wave elevation as a Gaussian process and then assuming that the 
fitting and propagation model can be obtained by means of linear transformations. The 
final results is a semi-analytical methodology provided with the possibility to account 
for additional source of uncertainty, as for example, the ones coming from the error in 
the wave measurement. Eventually, the presented approach allows to obtain a Linear 
Estimator of Prediction Error (LEPrE) in space and time, where the prediction error is 
measured through its ensemble variance. This estimator embeds the characteristics of 
the fitting model, as well as the exact characteristics of the sea spectrum. The approach 
is applicable in both long crested and short crested sea states and allows to directly 
accounting for different types of fitting procedures for the coefficients of the fitting and 
propagation model.  
 
The LEPrE approach allows to provide a stochastically consistent measure of prediction 
error and represents a conceptual step forward with respect to existing approaches 
(binary Predictability Region, and Prediction Error Indicator). Overall, the application 
of LEPrE methodology provides a full picture of the evolution of the standard deviation 
of prediction error in space and time. Furthermore, it allows a statistically consistent 
redefinition of the Predictability Region by specifying the acceptable level of prediction 
error standard deviation. A qualitative relation has been observed between the 
prediction error standard deviation from LEPrE and the Prediction Error Indicator. 
However, the presented methodology does not require the a-priori assumptions 
underlying the Prediction Error Indicator. In fact, all the properties of the LEPrE 
method stem directly from the assumption about the wave elevation as a stochastics 
process. 
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The LEPrE approach has been applied to a series of representative example cases, 
covering long crested and short crested seas, as well as unimodal and (archetypal) 
bimodal spectra. Corresponding Monte Carlo simulations have also been reported for 
verification purposes, showing the expected agreement with the LEPrE semi-analytical 
calculations. Some example cases have also accounted for the introduction of the 
measurement error, as an additional source of uncertainty in the prediction process. This 
topic has been faced for two long crested sea applications for which the measurement 
error is considered to be induced either by buoy-like or wave radar-like devices. The 
performances of the LEPrE have been tested also in the case of prediction of nonlinear 
wave elevation fields. Although the obtained results cannot be considered as 
comprehensive as those obtained in the linear case, they suggest some limits in applying 
the proposed method in the case of wave fields with significant nonlinear features. 
Eventually, a realistic short crested sea application has been presented with the purpose 
of stressing the capability of the LEPrE approach of determining the space time region 
of optimum prediction of the wave elevation. Also in this case there was an overall 
agreement with the reference Monte Carlo simulations proving this method to be 
potentially applicable for practical applications in complex sea states, at least in case of 
moderate steepnesses. 
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5 DETERMINISTIC SHIP 
MOTION FORECASTING AND 
PREDICTION ERROR 
ASSESSMENT 

In this chapter the LEPrE approach is extended to the assessment of the prediction error 
for the case of linear responses and, in particular, to the case of linear ship motions. The 
background theory is presented and the prediction of the ship motions has been 
implemented as a linear transformation applied to a linear DSWP approach. Moreover, 
the effect of possible wave measurement error on the prediction of motions has been 
accounted for. A series of example application has been presented considering both a 
zero-speed floating unit and a ship advancing in the seaway. The extended LEPrE 
approach has been then verified against a set of Monte Carlo simulations and the main 
outcomes are discussed. Eventually, some technological and practical indication about 
the application of the LEPrE approach to ship motions has been reported.  

5.1 Introduction 
Phase-resolved wave elevation predictions can in principle be used, after a proper 
coupling with suitable ship motion models, for the deterministic prediction of the 
behaviour of offshore structures in a seaway. The feasibility of this kind of technology 
has been widely investigate (Connell et al. [33]; Clauss et al. [31]; Dannenberg et al. 
[36]; Naaijen and Huijsmans [99]; Naaijen et al. [103]; Naaijen and Blondel-Couprie 
[98]; Milewski et al. [93]; Reichert et al. [119]) and proposals of integrated system for 
computer aided decision support systems are becoming a reality (Alford et al. [3]; 
Clauss et al. [30]; Kusters et al. [75]). The wide majority of this combined models rely 
on the marine wave radar as the main source for the wave elevation measurement, 
though, Alford et al. [3] for example, also considered the possibility to integrate the 
radar measurements with other devices. Then, the propagation of the acquired wave 
information is carried out, most of the times, by means of linear wave propagation 
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models based on Fourier techniques resulting in a predicted wave elevation obtained as 
a linear superposition of wave harmonics. In this respect, the adoption of linear ship 
motion models appears to be a reasonable option (see for example Naaijen and 
Huijsmans [99], Kosleck [74]). In addition, the coupling of linear models for both 
waves and ship motion possibly allows to satisfy the computational time constraints 
required by an effective real-time prediction, thanks to the reduced computational time 
required by the application of linear models. In the work of Naaijen and Huijsmans [99] 
an interesting analysis of the performances of the wave prediction and motion prediction 
models has been carried out with the support of experimental observation. Interestingly, 
Naaijen and Huijsmans [99] has shown that, as long as linear ship motions are 
concerned, the relation between the wave prediction error and the ship motion 
prediction error is not immediate since a prominent role is played by the wave-structure 
interaction in terms of response of the dynamical system to the wave forcing. More 
precisely, it has been shown that the normalized prediction error of the motion depends 
on the combination of the shape of the sea spectrum and of the motion transfer function 
(i.e., eventually, of the motion spectrum). This leads, for example, to satisfactory 
motion prediction even in case of suboptimal wave elevation prediction. Clearly, the 
opposite can also be true and both the results can be explained by thinking at the 
structure dynamic response as a linear filter acting on the wave elevation, and so, 
weighting differently the sea elevation spectrum. 
 
The question arises if, at least in the linear framework, the motion prediction can be 
directly provided with an error measure capable of consistently accounting for the 
wave-structure interaction. In fact, a widespread method for assessing in advance the 
possibility of a satisfactory motion prediction, is to associate this quantity to the 
time/space region where prediction of the wave elevation is considered as possible, 
oftentimes identified by means of methods like Predictability Indicator or Predictability 
Region, see §4. Although the latter can be considered as a reasonable assumption this 
implicitly assumes the wave elevation and the ship motion predictability horizon to be 
consistently overlapping (Kosleck [74]), a fact that has been at least questioned by the 
experiments of Naaijen and Huijsmans [99]. Indeed, since in this simplified approach 
the wave-structure interaction effects are neglected, the error of the wave elevation 
prediction is not sufficient for a satisfactory characterization of the motion prediction 
performance leaving, as open, the problem for a consistent measure of the motion 
prediction error. Moreover, another aspect, oftentimes overlooked, is the assessment of 
the influence of wave measurement uncertainties on the motion predictions methods. In 
this respect, Stredulinsky and Thornhill [136] have found the wave radar, especially 
when used as a shipborne device on moving platforms, as possibly prone to a 
considerable dispersion in the measure of the significant wave height that can be 
eventually corrected by instrument calibration. This brings into play the need of 
accounting for such measurement uncertainties in a consistent way and to embed the 
measurement error in the motion prediction methodology. 
 
In this respect, the LEPrE method, developed in §4 as a measure of the ensemble 
variance of wave elevation prediction error, is herein extended to account for the wave-
structure interaction. Indeed, in the framework of the linear seakeeping, the ship 
responses to the wave excitation can be computed as a linear transformation in 
frequency domain of the wave complex amplitudes. The resulting adaptation of the 
LEPrE methodology is straightforward, involving the addition of the linear 
transformation corresponding to the motion transfer functions. Besides, the additional 
linear transformations do not affect the stochastic assumption about the error process, 
and this allows the LEPrE methodology to be consistently extended to the assessment of 
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the ensemble variance of the motion prediction error. In the same framework, an 
additional term accounting for the wave measurement error can also be introduced.  
 
The chapter is organized as follows. First the linear model of the ship motion is briefly 
introduced. Then the LEPrE methodology for the assessment of the ensemble variance 
of motion prediction error is discussed. Eventually, example applications are reported 
for two different ships. The first vessel is considered at zero-speed, whereas the second 
is assumed to be advancing in the seaway with forward speed. The results of the motion 
prediction error calculated by means of the LEPrE methodology are compared with 
Monte Carlo simulations results for verification purposes and some example 
deterministic motion prediction, relevant to the discussion, is also reported to show how 
the proposed approach can supplement the prediction with a confidence band. 
Furthermore, the main aspects about the introduction of the wave measurement error are 
discussed. Eventually some technological and practical indication about the assessment 
of the motion prediction error is reported. 

5.2 Linear ship motion model 
The theoretical framework reported herein is derived in the framework of linear 
seakeeping theory. The derivation is carried out in a right handed inertial reference 
frame which is steadily translating with the average forward ship speed shipU . This 
reference system is identified as Oxyz . An additional earth-fixed reference frame, 
O x y z′ ′ ′ ′ , is defined as parallel to the translating reference frame Oxyz , and considered 
as coincident to Oxyz  at the arbitrary time instant 0t = . The location of the centre O  of 
the reference system does not affect the derivation. However, it is convenient to 
consider the plane xyΠ  to correspond to the calm water plane.  
 
It is assumed that, in the reference system Oxyz , the average ship speed shipU  becomes  
 
 ,0,0

T

ship shipU U =    (5.1) 
 
In this framework, a linear monochromatic Airy wave takes the following form: 
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 (5.2) 

 
where ,

T

x yk k k =    is the wave number vector for the i-th harmonic component, and eω  
is the encounter wave frequency, which can be determined starting from the wave 
frequency ω , the wave number vector k  and the ship speed shipU , as follows: 
 
 shipe k Uω ω= − ⋅  (5.3) 
The wave number vector and the wave frequency are linked by the linear dispersion 
relation as follows: 
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 ( )tanhg k k dω =  (5.4) 
 
where g  is the gravitational acceleration and d  is the water depth.  
 
It is now assumed that the ship, on average, is at a generic position shipx  in the reference 
system Oxyz . For sake of simplicity, the position shipx  will be considered coincident 
with the origin of Oxyz . Thanks to the assumption of linear ship motions, the harmonic 
response ( )h t , at steady state, induced by the wave ( ),x tη  can be determined by 

means of the transfer function having magnitude ( ), shipH k U  and phase ( ),h shipk Uγ  as 
follows: 
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 (5.5) 

 
It is underlined that the response transfer function, in terms of magnitude and phase, 
depends on the wave number vector k  (i.e. on the wave length and wave propagation 
direction with respect to the vessel) and on the average forward ship speed. Equation 
(5.5)  is associated to the case of a single monochromatic wave. However, the assumed 
linearity of the problem allows the use of superposition in case of presence of multiple 
wave components with different lengths and/or propagation directions, and this will be 
exploited in the next section. The derivation in the next section is obtained as a 
generalisation of the LEPrE methodology presented in Fucile et al. [52] [53]. 
 

5.3 LEPrE approach for ship motions 
Similarly to the case of LEPrE methodology for the assessment of ensemble variance of 
wave elevation prediction error, presented in §4, (see also Fucile et al. [52] [53]), the 
true wave elevation is assumed to be given, in discretised form, as the sum of Nη  
harmonic components: 
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It is also assumed that ( ),x tη  can be measured at certain points in space ( 2,1x∈ ) 

and/or time ( t∈ ), and that the measured wave elevation ( ),M x tη  is associated with a 
certain measurement error ηδ , i.e.: 
 
 ( ) ( ) ( ), , ,M x t x t x tηη η δ= +  (5.7) 
 
The case of measurements without error represents a special case of (5.7) where 

( ), 0x tηδ =  for all positions and time instants. 
 
It is now assumed that the true wave elevation is fitted through a phase-resolved wave 
model ( ),x tζ  having the following expression, similar to that of ( ),x tη : 
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 (5.8) 

 
It is noted that the phase-resolved fitting wave model implicitly account for Doppler 
effect by using the encounter frequency in the propagation vector ( ),p x t

ζ
. Given a set 

of MN  measurements ( ),jM jx tη  1,..., Mj N=  at different points in space and/or time, 
the coefficients vector β  is assumed to be determined by a linear transformation of the 
available measurements through an appropriate matrix 

M
T  (Fucile et al. [52] [53]), i.e.: 
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In the framework of linear theory, exploiting linear superposition, the true response 
( )h th , i.e. the system response induced by the true wave elevation ( ),x tη , is given by: 

 
 ( ) ( ),shiph t p x t Hh hh

α=  (5.10) 
 
where the transfer function matrix H

η
 is a block diagonal matrix as follows: 
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On the other hand, the response predicted by using the fitted model ( ),x tζ  and the 
response transfer function is: 
 
 ( ) ( ),shiph t p x t Hζ ζζ

β=  (5.12) 
 
Where, also in this case, the transfer function matrix H

ζ
 is a block diagonal matrix as 

follows: 
 

 

( )
( )

( )

1

2 ,22

, 0 0

0 ,

0

0 0 ,

ship

N Nship

N ship

H k U

H k U
H

H k U

ζ ζ

ζ

ζ

 
 
 
 = ∈
 
 
 
 



 



  



 (5.13) 

 
The prediction error for the considered response can then be written as: 
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The subscript δ  in ( ),h tδε  highlights the fact that the prediction error takes into 
account also the presence of measurement noise which is embedded in 

M
η  according to 

(5.7). Furthermore, using (5.6) and (5.7), the vector of measured wave elevation can be 
written as: 
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Substituting (5.15) in (5.14), it is possible to recast ( ),h tδε  as follows: 
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Similarly to the case of deterministic wave elevation prediction, the error ( ),h tδε  has 
two sources. The first term, ( )h

q t α , represents the error due to the fact that the fitted 
model for the wave elevation, in general, differs from the actual wave elevation process. 
As a result, the true response and the predicted response, which are obtained through the 
transfer function of the system at the respective wave numbers, differ as well. The 
second term, ( ) ,h Mn t hδ , represents the propagation of the measurement error through 
the fitted model. Both error sources also embed the effect of the fitting procedure. 
 
In order to obtain error statistics, exactly as in Fucile et al. [52] [53], also in this case it 
is assumed that ( ),x tη  is a (discretised) linear Gaussian process. Hence, the amplitudes 

ia  and ib  of the harmonic components are considered as zero mean independent 
Gaussian variables, which are linked to the (single side) directional wave energy 
spectrum ( )iS kη  as follows: 
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It then follows that the mean value of the random vector α  and its covariance matrix 
are: 
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It is also assumed at this stage that the wave measurement error vector at the 
measurement points ,Mηδ  is a zero mean Gaussian vector with a given covariance 
matrix depending on the assumed measurement error characteristics, i.e.: 
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By using (5.14), (5.18) and (5.19), the assumption that ( ),x tηδ  is independent of η , 

and recalling that, from the considered assumptions, ( )h
q t  and ( )hn t  are deterministic 

vector functions, it is now possible to provide a full probabilistic characterisation of the 
prediction error ( ),h tδε . In fact, from (5.14), it follows that ( ),h tδε  is a Gaussian 
process, since it is a linear combination of random Gaussian vectors. Furthermore, the 
mean and the variance of ( ),h tδε  can be determined as follows: 
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From the considered assumptions, it follows that the prediction error has zero mean. In 
addition, similarly to what was noticed when commenting (5.16), it can be noticed that 
also in (5.20) the variance of the prediction error is composed of two terms: the first 
term is associated with the inherent difference between the fitted model and the true 
process, while the second term represents the effect of the measurement error. In both 
terms the effect of the fitting procedure and of the transfer function of the system are 
automatically embedded. 
 
Using now the fact that the covariance matrix 

,
C

α α
 is diagonal (see (5.18)), it is 

possible to rewrite the ensemble variance of prediction error as: 
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(5.21) 

 
In the limit the number of harmonics assumed in the model of ( ),x tη  increases towards 
infinity ( Nη →∞ ), the first term in (5.21) tends to an integral involving the spectrum of 
η , and the variance of the prediction error can be rewritten as: 
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where ( )2

1 , ,shipg k U t  and ( )2
2 , ,shipg k U t  are functions depending on the fitting procedure 

and on the characteristics of the transfer function of the system for the response h .  
 
In those special cases where the measurement errors ηδ  at two different points in time 
and space are independent, the covariance matrix 

, ,,M M
C

η ηδ δ
 becomes diagonal 

 

 

( )
( )

( )
, ,

2
1 1

2
2 2

,

2

, 0 0

0 , 0

0 0 ,

M M

M MN N

x t

x t
C

x t

η

η

η η

η

δ

δ

δ δ

δ

σ

σ

σ

 
 
 

=  
 
 
  





   



 (5.23) 

  
and the term ( ) ( )
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T
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, therefore, simplifies to 
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It is finally noted that the LEPrE methodology developed by Fucile et al. [52] [53] for 
the estimation of the ensemble variance of the wave elevation prediction error is a 
special case in the framework presented herein. In fact, it can be obtained by simply 
considering the transfer function matrix ( ), shipH k U  as the 2x2 identity matrix.  

5.4 Example applications 
A series of example applications have been carried out only considering the case of long 
crested seas. Two different sea conditions, both characterised by a Bretschneider 
spectrum, and with significant wave height [2.5,6.5]sH m=  and peak period 

[11.97,17.60]pT s= , respectively, have been considered. The motion prediction 
procedure has been set up as depicted in Figure 5.1. 
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Figure 5.1: Scheme for the set-up of the motion prediction methodology for the case of long crested sea. 

 
In the examples reported in this section it is assumed that wave radar is capable of 
retrieving the true wave elevation without measurement error. The effect of 
measurement error is separately discussed in §5.5. Since only long crested seas are 
considered, the measurement of the wave elevation is assumed to be carried out along 
the direction of the wave vector k  and in the space region from which the waves are 
considered to come from. The wave elevation data are considered to be available every 

1.5a sτ =  and on a grid of points with spatial discretization 7.5dr m= . The radar 
images are considered to be available in an annular region, as report Figure 5.1, with 
inner bound defined as minr . The maximum extent of the sensing region is given by the 
radius maxr . Three different inner and outer bounds have been considered for the 
calculations, corresponding to different values of minr , in particular 

[150,300,600,1200]minr m= , and different lengths M max minL r r= −  of the spatial intervals 
over which the wave elevation is measured, namely [1200,2400,4800]ML m= . 
 
LEPrE predictions and Monte Carlo simulations have been carried out for a set of 
different ship-wave encounter angles [0, 45,90,135,180]degθ = . The calculations of the 
motions are referred to the seakeeping reference point, placed over the mid 
perpendicular of the ship, on the centreplane, and at a height corresponding to the calm 
water, and shipx O≡ . 
 
The motion transfer function has been calculated by means of strip theory tool (Bulian 
and Francescutto [24]). For each of the encounter angle the corresponding Response 
Amplitude Operator of the motion (RAO) has been calculated. The RAO have been then 
re-interpolated on the basis of the wave number discretization coming from the fitting 
step of the wave elevation propagation. In the case of forward speed the correction of 
the encounter frequency has been taken into account by means of the relation (5.3).  
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5.4.1 FPSO at zero speed 

5.4.1.1 Ship geometry and mechanical data 

The ship used for the zero speed calculation is based on the geometry and the main 
mechanical data of a Floating Production Storage and Offloading unit (FPSO) ship as 
reported by Greco et al. [60] [61] and Lugni et al. [80]. Views of the three dimensional 
geometry are shown in Figure 5.2. The main geometrical data and mechanical data are 
reported in Table 5.1 and Table 5.2, respectively. 
 
The FPSO is provided with bilge keels, see Table 5.3, and the additional quadratic 
damping term for the roll motion has been accounted for  as a linear equivalent roll 
damping approach, in order to keep the linear framework. Greco et al., [60] [61] and 
Lugni et al. [80] reported the values of the equivalent linear roll damping calculated 
from the roll decay experiment. However, during the roll decay test, the model was 
fixed to a gimble restraining the sway and yaw motions. For this reason, herein, the 
equivalent roll damping has been recalculated taking as reference the work of de 
Oliveira and Fernandes [37] and interpolating the reported data for the bilge keels and 
the ship data considered herein. The equivalent linear damping reported in Table 5.3 has 
been calculated for two reference roll amplitudes [5,10]degeφ =  and it is reported in 
Table 5.3 in dimensionless form, normalized with respected to critical roll damping. 

 
Figure 5.2: FPSO hull. Representative views. 

 

Table 5.1: FPSO. Main geometrical data. 

Ship length  
between perpendiculars LBP 

m 168.80 

Ship Breath B m 32.26 
Draught T m 10.00 
Trim  m 0.00 
Hull volume ∇  m3 42401 

Table 5.2: FPSO. Main mechanical data. 

Vertical position of the centre of 
gravity (w.r.t. the keel point) KG  m 12.922 

Transversal metacentric height GMT m 1.44 
Dimensionless (w.r.t. B) dry roll 
radius (w.r.t CoG) - 0.37 

Dimensionless (w.r.t. LBP) dry pitch 
and yaw radii (w.r.t. CoG) - 0.27 
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Table 5.3: FPSO. Bilge keels data, equivalent roll damping and natural roll period. 

Length of bilge keels m 67.52 
Span of bilge keels m 0.50 
Roll natural period s 22.15 
Equivalent dimensionless (w.r.t. 
critical) linear roll damping for 5deg 
at zero-speed  

- 0.029 

Equivalent Dimensionless (w.r.t. 
critical) linear roll damping  
for 10deg at zero-speed 

- 0.056 

 

5.4.1.2 Test conditions 

Calculations have been performed for a Bretschneider spectrum with significant wave 
height 6.5sH m=  and peak period 17.60p sT = . The considered wave encounter angle 
is 90degθ =  (beam waves) and the assumed linear damping accounted for is the one 
calculated for the roll amplitude 10degeφ = . Results from the application of the LEPrE 
methodology have been compared with a set of 100 Monte Carlo simulations. For the 
simulations of the deterministic predictions of motions it is assumed that the wave 
elevation data are available at a single the time instant 0t s=  and in a spatial interval of 
length 2400ML m=  . Then a linear wave prediction model propagates the wave from 
the measurement region, see Figure 5.1, to the ship reference position, O , which 
coincides with O′  at zero speed. Then, accounting for the motion transfer functions, the 
predicted motions are calculated. The wave prediction model is based on a discretized 

set of wave numbers 160N =  defined as  with [1,...,162 0]n
M

nk
L

nπ
==  and with 

corresponding wave frequency calculated for the deep water condition n nkgω =  . 
 

5.4.1.3 Results 

The main aim of this section is to show, by means of a simple example, how the LEPrE 
methodology can account for the relative shapes of the motion transfer functions and the 
input wave spectrum, producing a consisted assessment of the deterministic motion 
prediction error. To this end, the normalized sea spectrum and the normalized motion 
spectrum for heave, roll and pitch motions are reported with the normalized RAO, in 
Figure 5.3, Figure 5.4 and Figure 5.5. The comparison of the normalized standard 
deviation of motion prediction error between the LEPrE methodology and the Monte 
Carlo results is presented in Figure 5.7. The normalization constant is two times the 
variance of exact motion calculated by using the true wave elevation spectrum as 

2 2
, ( )

j jhh RAO S k dkhh σ = ∫ . The LEPrE approach, within the sampling uncertainties 
associated to the reduced number of Monte Carlo simulation, can be considered as 
verified also in the case of the linear ship motion. Moreover, it is interesting to note how 
the prediction error of heave, roll and pitch motions exhibit completely different 
behaviours. For the heave motion, the time interval for which the prediction error attains 
its lower values is very much consistent with the corresponding time interval of the 
prediction error for the wave elevation as presented in Figure 5.6. On the contrary, the 
roll motion presents a much focused region where the minimum of the error is attained. 
Further, the pitch motion, though characterized by an expectable low response in beam 
sea, see Figure 5.8, shows the larger region of minimum of the prediction error. Indeed, 
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these results are visually confirmed by the time history of an example linear 
deterministic motion prediction, presented in Figure 5.8. A qualitative understanding of 
the observed behaviour could be gained by looking at Figure 5.3, Figure 5.4 and Figure 
5.5 and noting the different shapes of the motion spectra. In the case of roll, the transfer 
function acts like as a band-pass pass filter at relatively low frequencies. For the pitch 
the transfer function also acts as a band-pass filter, but centred at higher frequency, such 
that the pitch motion spectrum retain only the high frequency components. Finally the 
heave, being characterised by an almost constant transfer function in the considered 
wave spectrum region, retains almost all the features of the wave elevation spectrum. 
This means that the transfer function can be thought as “filtering/modifying” the 
prediction error characteristics accounting, in the case of roll for the error associated 
with the propagation of the longer waves, for heave for the prediction error for the 
whole spectral bandwidth and for pitch only for the error associated with the 
propagation of the shorter and slower waves. This line of reasoning could also explain 
the fact that the prediction error associated with roll is larger than the other two. This is 
mainly related to the small dimension of the fitting region, 2400ML m=  which, 

compared to the typical wave length of the spectrum 2 484
2p p
g T mλ
p

≡ = , suggests a 

lack of frequency resolution especially in catching the longer wave components (i.e. the 
lower wave frequency components). In order to support these last arguments, in section 
§5.6, the roll prediction error has also been calculated in the case of extended or reduced 
measurement regions. 
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Figure 5.3: FPSO at zero speed with wave 
encounter angle 90deg (beam waves). Normalized 
spectrum of the wave elevation, normalized 
spectrum of the heave motion and normalized RAO 
of the heave motion. 

 
Figure 5.4: FPSO at zero speed with wave 
encounter angle 90deg (beam waves). Normalized 
spectrum of the wave elevation, normalized 
spectrum of the roll motion and normalized RAO 
of the roll motion.. 

 

 
Figure 5.5: FPSO at zero speed with wave 
encounter angle 90deg (beam waves). 
Normalized spectrum of the wave elevation, 
normalized spectrum of the pitch motion and 
normalized RAO of the pitch motion. 

 

 

 
Figure 5.6: Normalized standard deviation of the prediction error for the wave elevation, in the case of a 
Bretschneider spectrum with significant wave height 6.5sH m=  and peak period 17.60pT s= . 
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Figure 5.7: FPSO at zero speed with wave encounter angle 90deg (beam waves). Normalized standard 
deviation of the prediction error for the motions. Bretschneider spectrum with significant wave height 

6.5sH m=  and peak period 17.60pT s= . 
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Figure 5.8: FPSO at zero speed and heading 90deg (beam waves). Example deterministic prediction of 
time histories wave elevation and motions. Bretschneider spectrum with significant wave height 

6.5sH m=  and peak period 17.60pT s= . 
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5.4.2 Container ship in forward speed 

5.4.2.1 Ship geometry and mechanical data 

Example calculations with forward speed have been carried out for a Container ship 
which has been already studied by Bulian et al. [23] [25] and Moro et al. [95]. Figure 
5.9 reports a set of representative views of the Container ship, while Table 5.4 and 
Table 5.5 present the main geometrical and mechanical data considered for the 
simulations. The ship is considered as moving with the forward speed of 

5.144 /shipU m s=  corresponding to a 10knots. The main data about bilge keels fitted on 
the ship are reported in Table 5.6. The equivalent linear damping reported in Table 5.6 
has been calculated for two reference roll amplitudes [5,10]degeφ =  at the 
corresponding forward speed of 10 knots, and it is reported in dimensionless form, 
normalized with respected to critical roll damping.  
 
 

 
Figure 5.9: Container ship. Representative views. 

 
 

Table 5.4: Container ship. Main geometrical data. 

Ship length  
between perpendiculars LBP 

m 217.00 

Ship Breath B m 32.25 
Draught T m 12.20 
Trim  m 0.00 
Hull volume ∇   m3 55460 

 

Table 5.5: Container ship. Main mechanical data. 

Vertical position of the centre of 
gravity (w.r.t. the keel point) KG  m 12.922 

Transversal metacentric height GMT m 2.0 
Dimensionless (w.r.t. B) dry roll 
radius (w.r.t CoG) - 0.40 

Dimensionless (w.r.t. LBP) dry pitch 
and yaw radii (w.r.t. CoG) - 0.24 
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Table 5.6: Container ship. Bilge keels data, equivalent roll damping and natural roll period. 

Length of bilge keels m 80.0 
Span of bilge keels m 0.50 
Roll natural period s 19.60 
Equivalent dimensionless (w.r.t. 
critical) linear roll damping  
for 5deg  
for Uship = 5.144m/s=10kn 

- 0.0343 

Equivalent dimensionless (w.r.t. 
critical) linear roll damping  
for 10deg 
for Uship = 5.144m/s=10kn 

- 0.0505 

 

5.4.2.2 Test conditions 

Calculations have been performed for a Bretschneider spectrum with significant wave 
height 2.5sH m=   and peak period 11.97p sT = . The considered wave encounter angles 
considered are 135degθ =  (bow quartering waves) and 180degθ =  (head sea). The 
assumed linear damping accounted for is the one calculated for the roll amplitude, 

5degeφ = . A set of 100 Monte Carlo simulations has been carried out assuming, for the 
deterministic prediction of the motions, that the true wave elevation data is available at 
a single the time instant 0t s=  and on a spatial interval of length 2400ML m= . The 
linear wave prediction model propagates the wave from the measurement region, see 
Figure 5.1, to the ship reference position, O . This latter, for a generic time instant, is 
located at shipx U t′ = . The wave prediction model is based on a discretized set of wave 

numbers 160N =  defined as  with n=[1,.. ,1602 . ]n
M

k n
L
π

=  and with corresponding 

wave frequency calculated for the deep water condition n nkgω = . 
 

5.4.2.3 Results 

The normalized standard deviations of the motion prediction error are presented, for the 
case of the Container ship in forward speed and for the two considered encounter angles 
135 180deg− , in Figure 5.10 and Figure 5.11. Example deterministic prediction of wave 
elevation and motions are reported in Figure 5.12 and Figure 5.13. The obtained results 
show a satisfactory agreement with the Monte Carlo simulations, thus further verifying 
the implementation of the LEPrE approach. The Doppler effect, induced by the forward 
speed, results in a narrowing of the time interval where the motion predictions attain 
their minimum. This behaviour is quite well represented in the case of the surge, heave 
and pitch motions, and, comparing the results for the two encounter angles 135deg  and 
180deg , a contraction of the region where good prediction performance can be noted. 
The obtained ensemble domain results are qualitatively confirmed by the example 
deterministic predictions of wave elevation and  ship motions presented in Figure 5.12 
and Figure 5.13.  
 
The prediction error of roll motion presents an erratic behaviour characterized by high 
values of the standard deviation of the prediction error and strong oscillations. This 
effect can be associated to the motion spectrum presented in Figure 5.15. In fact, the roll 
motion spectrum is characterized by a bimodal shape with two separated peaks with 
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almost equal energy content, one in the low frequency region and one in the high 
frequency region. The high prediction error could be associated with the lack of 
frequency resolution, similarly to what was already discussed in the previous section for 
the FPSO, which is particularly affecting the resolution of the lower wave numbers. The 
oscillations are reasonably due to the presence of the higher part of the spectrum. The 
same kind of arguments can explain why the pitch motion presents a longer prediction 
time widow if compared, for example, with the heave motion (see Figure 5.10, Figure 
5.12, Figure 5.14 and Figure 5.16). Also in this case the resolution of the longer waves, 
which are more relevant for heave, may play a significant role. 
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Figure 5.10: Container ship advancing at 10knots with wave encounter angle 135deg (bow quartering 
waves). Normalized standard deviation of the prediction error for the motions. Bretschneider spectrum 
with significant wave height 2.5sH m=  and peak period 11.97pT s=  
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Figure 5.11: Container ship advancing at 10knots with wave encounter angle 180deg (head sea). 
Normalized standard deviation of the prediction error for the motions. Bretschneider spectrum with 
significant wave height 2.5sH m=  and peak period 11.97pT s= .  
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Figure 5.12: Container ship advancing at 10knots with wave encounter angle 135deg (bow quartering 
waves). Example deterministic prediction of time histories of wave elevation and motions. Bretschneider 
spectrum with significant wave height 2.5sH m=  and peak period 11.97pT s= . 
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Figure 5.13: Container ship advancing at 10knots with wave encounter angle 180deg (head waves). 
Example deterministic prediction time histories of wave elevation and motions. Bretschneider spectrum 
with significant wave height 2.5sH m=  and peak period 11.97pT s= . 
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Figure 5.14: Container ship advancing at 10knots 
with wave encounter angle 135deg (bow quartering 
waves). Normalized spectrum of the wave 
elevation, normalized spectrum of the heave motion 
and normalized RAO of the heave motion. 

 
Figure 5.15: Container ship advancing at 10knots 
with wave encounter angle 135deg (bow 
quartering waves). Normalized spectrum of the 
wave elevation, normalized spectrum of the roll 
motion and normalized RAO of the roll motion. 

 

 
Figure 5.16: Container ship advancing at 
10knots with wave encounter angle 135deg 
(bow quartering waves). Normalized spectrum 
of the wave elevation, normalized spectrum of 
the pitch motion and normalized RAO of the 
pitch motion. 

 

 

5.5 Effect of measurement error 
The assessment of the significant wave height by means of shipborne wave radar, in 
particular when installed on a ship advancing in the seaway, appears to be prone to 
measure dispersion issues (Stredulinsky and Thornhill [136]). For this reason, in this 
example application, the measurement error associated with an imprecise measure of the 

sH  is simulated by the introduction of an additional random noise to the of the true 
wave elevation data. The additional noise is modelled as a Gaussian random process 
with zero mean and standard deviation 0.25 sHδs = . The chosen value has been 
selected mainly for presentation purposes. This simple formulation of the noise 
measurement corresponds, in the framework of the wave radar inversion error, see §3 
and §4, in assuming a covariance matrix for the error simply defined as an identity 
matrix multiplied by the value of the noise variance. The results of application the 
LEPrE methodology applied to the ship motion accounting also for the measurement 
error are presented in Figure 5.17. The considered example case refers to the Container 
ship advancing at 10knots in bow quartering waves (135deg). The prediction error of 
the LEPrE, accounting for the measurement error, is reported as a black line, while the 
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LEPrE without measurement error is reported as a blue line. The reported Monte Carlo 
simulations provided with a 95% confidence interval refer only to the case with 
measurement noise, for verification purposes. It can be noticed that different degrees of 
freedom are indeed differently affected by the introduction of the measurement noise. 
For all the motions a degradation of the performance of the deterministic motion 
prediction is observed, and the most affected degrees of freedom is roll. On the other 
hand, the yaw and the pitch motion seem to maintain a reasonable region of 
predictability, although this is characterised by a higher prediction error. The same 
results can also be qualitatively observed in the example deterministic prediction time 
histories as reported in Figure 5.18. 
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Figure 5.17: Container ship advancing at 10knots with wave encounter angle 135deg (bow quartering 
waves). Normalized standard deviation of the prediction error for the motions. Bretschneider spectrum 
with significant wave height 2.5sH m=  and peak period 11.97pT s= . An additional measurement error 
affecting the wave elevation data is modelled as Gaussian noise with standard deviation 0.25 sHδs = . 
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Figure 5.18: Container ship advancing at 10knots with wave encounter angle 135deg (bow quartering 
waves). Example deterministic prediction of time histories of wave elevation and motions. Bretschneider 
spectrum with significant wave height 2.5sH m=  and peak period 11.97pT s= . An additional 
measurement error affecting the wave elevation data is modelled as Gaussian noise with standard 
deviation 0.25 sHδs = .  
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5.6 Technological and procedural indications 
At the early stages of the definition of the prediction process, the LEPrE methodology, 
as extended to the assessment of the motion prediction error, can be used as a tool for 
the choice of the main parameters for the implemented deterministic sea wave and ship 
motion prediction procedure. The effects of widening the measurements region, 
considering radar images taken at different distance from the structure or changing the 
prediction model are oftentimes investigated only considering the prediction error of the 
wave elevation. In this respect, the extended LEPrE approach can be used to ground 
these considerations on more solid basis considering for example the motion prediction 
error accounting for a specific degree of freedom or for any linear combination in the 
framework of the linear seakeeping theory. To stress this argument, hereinafter, two 
simple examples are carried out.  
 
First, the effect of accounting for a larger region of space where to measure the wave 
elevation is presented in the case of the prediction error for the roll motion of the FPSO 
at zero speed in beam waves. In this case, the calculation has been carried out by 
measuring the wave elevation from the point 150minr m=  up to the length 

[1200,2400,4800]ML m= . The measurements have been taken for a single time instant 
or on a set of time instant in the past within an interval based on the peak period of the 
wave spectrum, i.e. 0t = , ,[ ]02 pTt∈ −  or ,[ ]04 pTt∈ − . The time discretization 
considered is 1.5dt s= . The wave prediction model is based on a discretized set of 
wave numbers [80,160,320]N =  on the basis of the considered measurement region 

defined as  with n=[1,..,N]2
n

M

nk
L
π

=  and with corresponding wave frequency 

calculated for the deep water condition n nkgω = . The fitting has been then carried 
out using least square approach eventually considering more than one time instant, for 
the relevant cases.  
 
Figure 5.19 presents the normalized standard deviation of the wave elevation prediction 
error, as well as that of roll motion. It can be noticed from the results in Figure 5.19 
that, by widening the measurement region, the roll prediction error attains lower values 
confirming that the prediction of roll motion would benefit from a finer resolution in the 
wave frequency of the prediction model. Moreover, this suggests how the choice of 
main parameter of the prediction model, as well as of the underlying measurement 
technology, can be based on the specification of target prediction accuracies regarding 
motions. 
 
In the second example, the Container ship advancing at 10knots in bow quartering 
waves is considered, and the minimum distance from the measurement region minr   
(which can be considered to correspond, for instance, to the wave radar blind region) is 
varied considering [150,300,600,1200]minr m= . The length of the measurement interval 
is kept constant to 2400ML m= . Such long range measurements are, herein, considered 
only because relevant to the discussion. However, although such figure is within typical 
wave radar maximum range, in the case of shipborne devices some detrimental effect in 
the inversion of the radar images can be expected. The analysis is carried out on the 
prediction error for wave elevation and, as an example, for ship motions, and results 
from the analysis are reported in Figure 5.20. 
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The observed increasing of the minimum of the prediction error as minr  increases, as 
well, as the change of the shape of the prediction error curve for the wave elevation, is a 
well-known result (Naaijen et al. [102]; Vettor [146]). It is however noted that the 
prediction error for the pitch motion seems to be less affected from the changing of the 
distance of the ship from the measurement region, apart from the increasing delay 
linked to the propagation of the wave elevation model. 
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Figure 5.19: FPSO at zero speed with wave encounter angle 90deg (beam waves). Assessment of 
dimension of measurement region on prediction error. Normalized standard deviation of the prediction 
error of wave elevation (left column) and of roll motion (right column) . Bretschneider spectrum with 
significant wave height 6.5sH m=  and peak period 17.60pT s= . 
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Figure 5.20: Container ship advancing at 10knots with wave encounter angle 135deg (bow quartering 
waves). Assessment of effect of taking radar images at different distance from the ship. Normalized 
standard deviation of the prediction error of wave elevation (left column) and of pitch motion (right 
column). Bretschneider spectrum with significant wave height 2.5sH m=  and peak period. 
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5.7 Concluding remarks 
In this chapter, the LEPrE approach, originally developed for the estimation of 
prediction error in case of wave elevation, has been extended to the case of linear ship 
motions. In fact, the linearity assumption of the LEPrE methodology naturally allows 
extending this technique to take into account any linear transformation on the prediction 
model coefficients. As a result, in the case of linear ship motion, it was sufficient to 
consistently take into account the transfer functions of the motions in order to arrive at a 
direct semi-analytical assessment of the motions prediction error. Moreover, in the 
framework of linear theory, this method can be extend to account for any linear 
response which might arise from the wave field, from a combination/transformation of 
ship motions, or by a combination of ship motions and wave field. In the framework of 
the linear seakeeping theory, the approach could account for quantities like the relative 
motion with respect to the sea surface, keel emergence, accelerations at given point, 
linear forces, etc.  
 
The LEPrE approach has proven to be capable in dealing also with the possible presence 
of wave measurement error, accounting for it also in the assessment of the motion 
prediction error. Furthermore, the LEPrE approach could be proposed as tool for a 
“motion oriented” setup of a linear deterministic sea wave and ship motion prediction 
procedures. In fact, presently, the wave elevation prediction error is considered as the 
reference quantity to judge on the feasibility of a deterministic prediction procedure. In 
the reported examples, however, it has been highlighted that the motion prediction 
performance can depart form the wave prediction performance. As a result, considering 
only the latter aspect of the prediction problem can be limiting and/or could lead to 
erroneous choices. It is also worth mentioning that the proposed approach can also be 
used to assess the influence of the wave measurement capabilities, providing potential 
indications for the most effective direction towards which developing the measurement 
technology. 
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6 CONCLUSIONS 

In this thesis the main aspects of the deterministic prediction of ship motions has been 
studied. Starting from the observation of existing limitations in, and gaps between, 
different steps of an envisioned deterministic sea wave and ship motion prediction 
chain, the focus of the research has been put on development and investigation of new 
approaches, with the intention of contributing to the improvement of the existing state-
of-the-art. To this end, the whole forecasting chain, starting from the analysis of wave 
radar inversion techniques and ending with the assessment of ship motions prediction 
error, has been analysed, trying to include, in the developed methodology, a way to 
consistently account for the unavoidable uncertainties coming from the measurement 
devices and eventually propagated by the prediction models.  
 
This work has mainly dealt with linear deterministic forecasting procedures, although, 
in chapter §2, some aspects of nonlinear wave modelling and propagation have been 
studied. Indeed, a High-Order Spectral (HOS) method has been implemented as a 
flexible tool for the generation of nonlinear wave fields, which can represent a more 
“realistic” representation of the actual sea compared to linear models, particularly for 
severe sea states. The main aspects of its implementation have been presented with 
particular attention to initialization and stability issues. The HOS method has been 
conceived in the present work as a benchmarking tool for the testing of the other, 
mainly linear, developed methodologies. In chapter §3 a novel approach for the 
inversion of the wave radar images, the Least SQuares with Regularization (LSQR) 
technique, has been presented. The method shares some commonalities with already 
existing techniques, but its definition has allowed in dealing, innovatively, with some 
often overlooked problems in wave radar imaging inversion, as the shadowing effect. 
The error introduced by the LSQR inversion of synthetically generated radar images has 
been investigated and some proposal for the characterization of the main statistical 
features of the measurement error has been suggested, with reference to a possible 
application to deterministic sea waves and ship motions predictions techniques. In 
chapter §4 a new technique for the semi-analytical estimation of prediction error 
statistical characteristics, the Linear Estimator of the Prediction Error (LEPrE), has been 
introduced. This technique stems from the combination of predictions based on linear 
fitting procedures and the framework of Gaussian stochastic processes for the 
representation of the underlying wave field. The LEPrE approaches the deterministic 
sea wave prediction problem by embedding, in a simple methodology, the main features 
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coming from the linear fitting and the subsequent propagation procedure. The 
theoretical background of the LEPrE procedure allows a consistent statistical 
assessment of the wave elevation prediction error, which has also been extensively 
verified by means of Monte Carlo simulations. Furthermore, the LEPrE approach also 
allows to consistently account for the wave measurement error, which is an aspect often 
overlooked in the analysis of deterministic sea wave prediction error. Eventually, in 
chapter §5 the LEPrE methodology has been extended to the prediction of linear ship 
motions. The main features of the proposed approach have been discussed by presenting 
also some example application.  
 
In investigating existing wave radar inversion models, potential sources of inversion 
issues have become apparent. This was particularly the case when considering the 
procedural approach, accounting for different layers of filtering and manipulation of the 
radar signal, which is typical of the techniques based on the concept of Modulation 
Transfer Function (MTF). In particular, the investigation has focussed on the necessity 
of trying to consistently address the inherent difficulties associated with the presence of 
the shadowing effect, an effect which is particularly relevant in the case of shipborne 
wave radars operating at low grazing angles. To this end, the LSQR technique has been 
conceived to take into account, from the very beginning of the inversion problem, the 
temporal and spatial lack of backscatter signal due to the shadowing effect. The 
inversion procedure has therefore been developed around the idea of considering the 
presence of shadowing as a missing data problem, by providing a solution of the 
inversion problem by means of a least squares regularized approach. The results 
obtained for linear long crested and short crested wave field confirm the potential of the 
LSQR method in dealing with the inversion problem. Furthermore, some example test 
carried out also in the case of nonlinear long crested seas, generated by means of the 
developed HOS tool, has shown encouraging results. The step by step fitting of the sea 
surface, on which the LSQR methodology is based on, has, in principle, the sufficient 
flexibility to reconstruct also a nonlinear wave field. However, without specific further 
modifications, the information retrieved by a naïve application of the LSQR approach is 
likely to be missing most of the original nonlinear features. In this respect, some future 
improvement of the LSQR technique could possibly address also nonlinear wave fields. 
In fact, it is possible to envisage a convenient adaptation of the LSQR method, for 
example accounting for iterative techniques, in order to extract nonlinear features of the 
wave field, as for example the second order bound waves, by considering the required 
underlying relation among free and bound wave components. Moreover, improvements 
can be envisaged, also in this case based on iterative techniques, in order to take into 
account nonlinear effects on the wave dispersion relation. In this respect, the envisaged 
improvements would represent a substantial step forward for wave radar inversion 
techniques. Finally, it must be stressed that the LSQR method, as presently 
implemented, have such computation cost that renders its direct application to a real 
time inversion of the wave radar images practically unfeasible. The main issues come 
from the adopted regularisation technique. In fact, the SVD algorithm, at the basis of 
this technique, presents a cubic scaling with respect to the number of unknowns in the 
inversion problem. Existing techniques, which potentially allow a real-time 
implementation, are based on FFT approaches, which outperform the presented LSQR 
technique in terms of computational time. Nevertheless, present FFT-based techniques 
are not capable of accounting for shadowing as missing information.  Due to the 
computational cost, particularly in case of short crested seas, the LSQR technique, for 
the time being, could be considered as a complementary inversion technique. However, 
there is still a large margin of improvement by adopting more efficient regularization 
techniques, which are better suited to deal with large data set. Moreover, tests carried 
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out in case of short crested waves, indicate that gain in computational time could be 
achieved, thanks to the flexibility of the LSQR approach, by addressing only limited 
portions of the space in the inversion procedure, depending on the directional spreading 
of the wave field. These aspects, therefore, are worth additional investigation. 
 
The most commonly used deterministic sea wave and ship motion prediction 
methodologies are mainly based on the assumption that linear models are sufficiently 
accurate for a practical deterministic prediction of the wave elevation and the ship 
motions. However, even in the linear framework, the problem of the error associated 
with the measurement of the sea surface is seldom addressed. Often the presence of 
wave measurement error is neglected a-priori, which represents a too optimistic 
assumption. The LEPrE technique developed in this thesis has shown to be able to 
naturally account for this source of error, by consistently embedding it in a larger 
framework for the assessment of the wave elevation prediction error. Moreover, the way 
the LEPrE methodology has been conceived does not require the debated assumption 
about the use of the wave group velocity, on which techniques like the Predictability 
Region and Prediction Error Indicator are based on. In this respect, in developing the 
LEPrE approach it appeared as more consistent to focus on the fitting and propagation 
problem. This has allowed the inherent characteristic of the prediction error, in terms of 
time-space evolution, to directly and naturally arise from the developed methodology, 
without any assumption apart from that regarding the linearity and Gaussianity of the 
underlying wave elevation process. More importantly, results provided by the LEPrE 
methodology represent quantities that have a clear probabilistic interpretation, allowing 
a more consistent characterisation of the prediction performance and giving the 
possibility to provide sound confidence bounds to a deterministic prediction. This 
approach is innovative and all at once it gives the possibility to account for 
measurement error, to account consistently for the fitting and propagation model and it 
can be straightforwardly extended to account for any linear transformation of the wave 
elevation field. In this respect, the extension to motion prediction error has come at 
almost no cost from the original theoretical background developed for the LEPrE for the 
wave elevation prediction. In the framework of linear seakeeping theory, this tool can 
be conveniently adapted for the estimation of the prediction error of many other relevant 
quantities, such as, for instance, the prediction of keel emergence, the prediction of 
velocity and acceleration at certain points of the ship, the relative clearances between 
moving structures. In general, the approach can directly account for all those quantities 
which can be modelled through a linear transfer function with respect to the wave 
elevation. Eventually, the proposed LEPrE approach can also represent a useful tool for 
the early design and setup of linear deterministic sea wave and ship motion procedures. 
In fact, the proposed approach allows to base choices considering the predictability 
horizon of wave elevation, as it is common nowadays, but also on the predictability 
horizon of motions or other quantities of interest. However, being based on linearity 
assumptions, the LEPrE method is clearly not suitable for problems that have to account 
for prominent nonlinearities of the wave field or ship motions. Some minor 
modifications can be introduced to better account for limited or simplified nonlinear 
features. However, more investigation is needed in order to address whether and how 
this methodology could be adapted or extended also in case of situations governed by 
nonlinear effects. 
 
 



 

184 



 

185 

7 REFERENCES 

[1] Abusedra, L., Belmont, M.R., 2011. Prediction diagrams for deterministic sea wave 
prediction and the introduction of the data extension prediction method. 
International Shipbuilding Progress 58, pp. 59–81. 

[2] Alam, M.-R., 2014. Predictability horizon of oceanic rogue waves. Geophys. Res. 
Lett. 41, pp. 8477–8485. 

[3] Alford, L.K., Beck, R.F., Johnson, J.T., Lyzenga, D., Nwogu, O., Zundel, A., 2015. 
A Real-Time System for Forecasting Extreme Waves and Vessel Motions. 
Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore 
and Arctic Engineering (OMAE 2015), May 31-June 5, 2015, St. John's, 
Newfoundland, Canada, 7p. 

[4] Alpers, W.R., Ross, D.B., Rufenach, C.L., 1981. On the detectability of ocean 
surface waves by real and synthetic aperture radar. Journal of Geophysical Research 
86, pp. 6481-6498. 

[5] Aragh, S., Nwogu, O., 2008. Variation Assimilating of Synthetic Radar Data into a 
Pseudo-spectral Wave Model. Journal of Coastal Research,pp. 235–244. 

[6] Barrick, D.E., 1995. Near-grazing illumination and shadowing of rough surfaces. 
Radio Science 30, pp. 563–580. 

[7] Bateman, W.J., Swan, C., Taylor, P.H., 2001. On the efficient numerical simulation 
of directionally spread surface water waves. Journal of Computational Physics 174, 
pp. 277–305. 

[8] Beck, R.F., 2012. Optimum Vessel Performance in Evolving Nonlinear Wave 
Fields. Technical Report, No. 0704-0188, Nov., 38p. 

[9] Belmont, M.R., Christmas, J., Dannenberg, J., Hilmer, T., Duncan, J., Duncan, J.M., 
Ferrier, B., 2014. An examination of the feasibility of linear deterministic sea wave 
prediction in multidirectional seas using wave profiling radar: Theory, simulation, 
and sea trials. Journal of Atmospheric and Oceanic Technology 31, pp. 1601–1614. 

[10] Belmont, M.R., Horwood, J.M.K., Thurley, R.W.F., Baker, J., 2006. Filters for 
linear sea-wave prediction. Ocean Engineering 33, pp. 2332–2351. 

[11] Belmont, M.R., Horwood, J.M.K., Thurley, R.W.F., Baker, J., 2007. Shallow angle 
wave profiling Lidar. J. Atmos. Oceanic Technol. 24, pp. 1150–1156. 



 

186 

[12] Benjamin, T.B., Feir, J.E., 1967. The disintegration of wave trains on deep water 
Part 1. Theory. Journal of Fluid Mechanics 27, pp. 417–430. 

[13] Benjamin, T.B., Olver, P.J., 1982. Hamiltonian structure, symmetries and 
conservation laws for water waves. Journal of Fluid Mechanics 125,pp. 137–185.  

[14] Blondel-Couprie, E., 2009. Reconstruction et prévision déterministe de houle à 
partir de données mesurées. Ph.D. Thesis. Université de Nantes, Ecole Centrale de 
Nantes (ECN). 

[15] Blondel-Couprie, E., Bonnefoy, F., Ferrant, P., 2010. Deterministic non-linear 
wave prediction using probe data. Ocean Engineering 37, pp. 913–926. 

[16] Blondel-Couprie, E., Bonnefoy, F., Ferrant, P., 2013. Experimental Validation of 
Deterministic Non-linear Wave Prediction Schemes in 2D. Proceedings of the 
Twentieth International Offshore and Polar Engineering Conference (ISOPE 2010), 
Beijing, China, June 20-25, 2010, pp. 284–292. 

[17] Blondel-Couprie, E., Naaijen, P., 2012. Reconstruction and prediction of short-
crested seas based on the application of a 3D-FFT on synthetic waves: Part 2 - 
Prediction. Proceedings of ASME 31st International Conference on Ocean, Offshore 
and Arctic Engineering (OMAE 2012), 1-6 July , Rio de Janeiro, Brazil, pp.  55-70. 

[18] Blondel-Couprie, E., Naaijen, P., 2012. Deterministic Prediction of ocean waves 
based on X-band radar measurements. Presented at the 13èmes Journées de 
L’Hydrodynamique, Chatou, France. 

[19] Bonnefoy, F., 2005. Modélisation expérimentale et numérique des états de mer 
complexes. Ph.D. Thesis. Université de Nantes, Ecole Centrale de Nantes (ECN). 

[20] Brueckner, K.A., West, B.J., 1988. Vindication of mode-coupled descriptions of 
multiple-scale water wave fields. Journal of Fluid Mechanics 196, pp. 585–592.  

[21] Bryant, P.J., 1983. Cyclic gravity waves in deep water. The Journal of the 
Australian Mathematical Society. Series B. Applied Mathematics 25, pp. 2–15. 

[22] Bryant, P.J., 1983. Waves and Wave Groups in Deep Water, in: Nonlinear Waves. 
CUP Archive. 

[23] Bulian, G., Bresciani, F., Francescutto, A., Fucile, F., 2016. Effect of large initial 
ship stability on ship safety: An example study, Proc. 26th European Safety and 
Reliability Conference (ESREL2016), 25-29 September 2016, Glasgow, Scotland, 
UK, in “Risk, Reliability and Safety: Innovating Theory and Practice”, Walls, Revie 
& Bedford (Eds), CRC Press/Balkema, Taylor & Francis Group, London, 2017, pp. 
2302-2309. 

[24] Bulian, G., Francescutto, A., 2009. Experimental results and numerical simulations 
on strongly non-linear rolling of multihulls in moderate beam seas. Proceedings of 
the IMechE 223, pp. 189–210. 

[25] Bulian, G., Moro, L., Brocco, E., Bresciani, F., Biot, M., Francescutto, A., 2015. 
Using time domain nonlinear ship motion simulations to assess safety of people and 
cargo onboard a container vessel, in: Soares, C.G., Dejhalla, R., Pavletic, D. (Eds.), 
Towards Green Marine Technology and Transport. CRC Press, pp. 99-110. 

[26] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., 1988. Spectral Methods in 
Fluid Dynamics. Springer Series, in Computational Physics. Springer-Verlag, 
Berlin, Heidelberg, 1988. 



 

187 

[27] Chen, Z., Zhang, B., He, Y., Qiu, Z., Perrie, W., 2015. A new modulation transfer 
function for ocean wave spectra retrieval from X-band marine radar imagery. Chin. 
J. Ocean. Limnol. 33, pp. 1132–1141. 

[28] Clamond, D., Francius, M., Grue, J., Kharif, C., 2006. Long time interaction of 
envelope solitons and freak wave formations. European Journal of Mechanics - 
B/Fluids, Rogue waves 25, pp. 536–553. 

[29] Clauss, G.F., Klein, M., Dudek, M., Onorato, M., 2015. Deterministic Non-Linear 
Wave Forecast and Motion Prediction for Short-Term Offshore Operations. 
Proceedings of Twenty-fifth International Ocean and Polar Engineering Conference 
(ISOPE 2015), Kona, Big Island, Hawaii, USA, June 21-26, 2015, p. 1236-1244. 

[30] Clauss, G.F., Kosleck, S., Testa, D., 2008. CASH - Decision Support System for 
Computer Aided Ship Handling. Proceedings of Annual General Meeting of the 
Schiffbautechnische Gesellschaft e.V. p. 30 p. 

[31] Clauss, G.F., Kosleck, S., Testa, D., 2009. Critical Situations of Vessel Operations 
in Short Crested Seas: Forecast and Decision Support System. Proceedings of the 
ASME 2009 28th International Conference on Ocean, Offshore and Arctic 
Engineering (OMAE2009), May 31 - June 5, 2009, Honolulu, Hawaii, USA, 14 p. 

[32] Colicchio, G., Landrini, M., 2003. On the use of boundary-integral equation 
methods for unsteady free-surface flows. Journal of engineering mathematics 46, pp. 
127–146. 

[33] Connell, B.S.H., Rudzinsky, J.P., Brundick, C.S., Milewski, W.M., Kusters, J.G., 
Farquharson, G., 2015. Development of an environmental and ship motion 
forecasting system. Proceedings of ASME 34th International Conference on Ocean, 
Offshore and Arctic Engineering (OMAE 2015), May 31-June 5, St. John's, 
Newfoundland, Canada, 11p. 

[34] Dankert, H., Horstmann, J., Rosenthal, W., 2005. Wind- and wave-field 
measurements using marine X-band radar-image sequences. IEEE Journal of 
Oceanic Engineering 30, pp. 534–542. 

[35] Dankert, H., Rosenthal, W., 2004. Ocean surface determination from X-band radar-
image sequences. J. Geophys. Res. 109, C04016. 

[36] Dannenberg, J., Hessner, K., Naaijen, P., Boom, H.V.D., Reichert, K., 2010. The 
On board Wave and Motion Estimator OWME. The Twentieth International 
Offshore and Polar Engineering Conference (ISOPE 2010), 20-25 June, 2010 
Beijing, China, pp.424–431. 

[37] de Oliveira, A.C., Fernandes, A.C., 2012. An Empirical Nonlinear Model to 
Estimate FPSO With Extended Bilge Keel Roll Linear Equivalent Damping in 
Extreme Seas. Proceedings of the AMSE 2012 31st International Conference on 
Ocean, Offshore and Arctic Engineering (OMAE 2012). 1-6, July, July 1-6, 2012, 
Rio de Janeiro, Brazil, pp. 413–428. 

[38] Dean, R.G., Dalrymple, R.A., 1991. Water Wave Mechanics for Engineers and 
Scientists. World Scientific Publishing. 

[39] Debnath, L., 1994. Nonlinear Water Waves. Academic Press Inc. 

[40] Dommermuth, D., 2000. The initialization of nonlinear waves using an adjustment 
scheme. Wave Motion 32, pp. 307–317. 

[41] Dommermuth, D.G., Yue, D.K.P., 1987. A high-order spectral method for the 
study of nonlinear gravity waves. Journal of Fluid Mechanics 184, pp. 267–288. 



 

188 

[42] Ducrozet, G., 2007. Modélisation des processus non-linéaires de génération et de 
propagation d’états de mer par une approche spectrale. Ph.D. Thesis. Université de 
Nantes, Ecole Centrale de Nantes (ECN). 

[43] Ducrozet, G., Bingham, H.B., Engsig-Karup, A.P., Bonnefoy, F., Ferrant, P., 2012. 
A comparative study of two fast nonlinear free-surface water wave models. Int. J. 
Numer. Meth. Fluids 69, pp. 1818–1834. 

[44] Ducrozet, G., Bonnefoy, F., Le Touzé, D., Ferrant, P., 2007. 3-D HOS simulations 
of extreme waves in open seas. Natural Hazards and Earth System Science 7, pp. 
109–122. 

[45] Edgar, D.R., Horwood, J.M.K., Thurley, R., Belmont, M.R., 2000. The effects of 
parameters on the maximum prediction time possible in short term forecasting of the 
sea surface shape. International Shipbuilding Progress 47, pp. 287–301. 

[46] Fedele, F., Brennan, J., León, S.P. de, Dudley, J., Dias, F., 2016. Real world ocean 
rogue waves explained without the modulational instability. Scientific Reports 6, 
11p. 

[47] Fedele, F., Lugni, C., Fucile, F., Campana, E.F., 2016. On the prediction of rogue 
waves during Hurricane Joaquin. NTSB Tehnical report. 
https://dms.ntsb.gov/public/58000-58499/58116/598564.pdf 

[48] Fenton, J.D., 1988. The numerical solution of steady water wave problems. 
Computers and Geosciences 14, pp. 357–368. 

[49] Fenton, J.D., 1999. Numerical methods for nonlinear waves. Advances in coastal 
and ocean engineering 5, pp. 241–324. 

[50] Fenton, J.D., 2014. Use of the programs FOURIER, CNOIDAL and STOKES for 
steady waves. 

[51] Fornberg, B., 1998. A practical guide to pseudospectral methods. Cambridge 
university press. 

[52] Fucile, F., Bulian G., Lugni, C., 2016. A probabilistic approach for the 
quantification of prediction error in deterministic phase-resolved wave forecasting. 
Under review. 

[53] Fucile, F., Bulian, G., Lugni, C., 2016. Quantifying error in deterministic 
predictions based on phase-resolved linear wave models. Proc. 26th European Safety 
and Reliability Conference (ESREL2016), 25-29 September 2016, Glasgow, 
Scotland, UK, in “Risk, Reliability and Safety: Innovating Theory and Practice”, 
Walls, Revie & Bedford (Eds), CRC Press/Balkema, Taylor & Francis Group, 
London, 2017, pp. 355-361, ISBN 978-1-138-02997-2. 

[54] Fucile, F., Ludeno, G., Serafino, F., Bulian, G., Soldovieri, F., Lugni, C., 2016. 
Some Challenges in Recovering Wave Features From a Wave Radar System. 
Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering 
Conference (ISOPE2016), Rhodes, Greece, June 26-July 1, Volume 3, ISBN 978-1-
880653-88-3, ISSN 1098-6189, pp. 319-326. 

[55] Furhman, D.R., Madsen, P.A., 2006. Short-crested waves in deep water: a 
numerical investigation of recent laboratory experiments. Journal of Fluid 
Mechanics 559, pp. 391–411. 

[56] Furhman, D.R., Madsen, P.A., Bingham, H.B., 2006. Numerical simulation of 
lowest-order short-crested wave instabilities. Journal of Fluid Mechanics 563, pp. 
415–441.  

https://dms.ntsb.gov/public/58000-58499/58116/598564.pdf


 

189 

[57] Gallego, G., Benetazzo, A., Yezzi, A., Fedele, F., 2008. Wave Statistics and 
Spectra via a Variational Wave Acquisition Stereo System. Proceedings of 27th 
International Conference on Offshore Mechanics and Arctic Engineering (OMAE 
2008), June 15-20, 2008, Estoril, Portugal pp. 801–808. 

[58] Golub, G.H., Van Loan, C.F., 2013. Matrix computations (Fourth edition). The 
Johns Hopkins University Press, Baltimore. 

[59] Golub, G.H., Von Matt, U., 1997. Tikhonov regularization for large scale 
problems. Proceeding of the Workshop on Scientific Computing (1997), March 10-
12 1997, Hong Kong, pp. 3–26. 

[60]  Greco, M., Lugni, C., Faltinsen, O.M., 2014. Can the water on deck influence the 
parametric roll of a FPSO? A numerical and experimental investigation. European 
Journal of Mechanics-B/Fluids 47, pp. 188–201. 

[61]  Greco, M., Lugni, C., Faltinsen, O.M., 2015. Influence of motion coupling and 
nonlinear effects on parametric roll for a floating production storage and offloading 
platform. Philosophical Transactions of the Royal Society of London A: 
Mathematical, Physical and Engineering Sciences 373, 20140110. 

[62] Guyenne, P., Nicholls, D.P., 2007. A high-order spectral method for nonlinear 
water waves over moving bottom topography. SIAM Journal on Scientific 
Computing 30, pp. 81–101. 

[63] Halliday, J.R., Dorrell, D.G., Wood, A.R., 2011. An application of the Fast Fourier 
Transform to the short-term prediction of sea wave behaviour. Renewable Energy 
36, pp. 1685–1692.  

[64] Hansen, P.C., 1998. Rank-Deficient and Discrete Ill-Posed Problems: Numerical 
Aspects of Linear Inversion. Mathematical Modeling and Computation. Society for 
Industrial and Applied Mathematics. 

[65] Hansen, P.C., 1999. The L-curve and its use in the numerical treatment of inverse 
problems. Department of Mathematical Modelling, Technical University of 
Denmark. 

[66] Hansen, P.C., O’Leary, D.P., 1993. The use of the L-curve in the regularization of 
discrete ill-posed problems. SIAM Journal on Scientific Computing 14, pp. 1487–
1503. 

[67] Hassanaliaragh, S., 2009. Radar Data Assimilation and Forecasts of Evolving 
Nonlinear Wave Fields. Ph.D. Thesis. University of Michigan. 

[68] Hilmer, T., Thornhill, E., 2014. Deterministic wave predictions from the WaMoS 
II. Proceedings of OCEANS 2014 – MTS-IEEE, Taipei, Taiwan, 7-10 April, 2014 
8p. 

[69] Hilmer, T., Thornhill, E., 2015. Observations of predictive skill for real-time 
Deterministic Sea Waves from the WaMoS II. OCEANS 2015 - MTS/IEEE 
Washington, Washington DC, 19-22 October 2015, 7p. 

[70] Johnson, R.S., 1997. A Modern Introduction to the Mathematical Theory of Water 
Waves. Cambridge University Press. 

[71] Kaiser, J.F., Reed, W.A., 1977. Data smoothing using low‐pass digital filters. 
Review of Scientific Instruments 48, pp. 1447–1457. 

[72] Kanevsky, M.B., 2009. Radar imaging of the ocean waves. First edition, Elsevier, 
Amsterdam. 



 

190 

[73] Kofiani, K.N., 2009. A new numerical method for the problem of nonlinear long-
short wave interactions. Ph.D. Thesis. Massachusetts Institute of Technology. 

[74] Kosleck, S., 2013. Prediction of Wave-Structure Interaction by Advanced Wave 
Field Forecast. Ph.D. Thesis, Naval Architecture and Ocean Engineering 
Department, Technical University Berlin, Germany. 

[75]  Kusters, J.G., Cockrell, K.L., Connell, B.S.H., Rudzinsky, J.P., Vinciullo, V.J., 
2016. FutureWaves™: A real-time Ship Motion Forecasting system employing 
advanced wave-sensing radar. Proceeding of OCEANS 2016 MTS/IEEE, Monterey, 
9p. 

[76] Lake, B.M., Yuen, H.C., Rungaldier, H., Ferguson, W.E., 1977. Nonlinear deep-
water waves: theory and experiment. Part 2. Evolution of a continuous wave train. 
Journal of Fluid Mechanics 83, pp.  49–74. 

[77] Le Touze, D., 2003. Spectral methods for modelling nonlinear unsteady free-
surface flows. Ph.D. Thesis. Université de Nantes, Ecole Centrale de Nantes (ECN). 

[78] Lee, S.-B., Choi, Y.-M., Do, J., Kwon, S.-H., 2014. Prediction of propagated wave 
profiles based on point measurement. International Journal of Naval Architecture 
and Ocean Engineering 6, pp. 175–185. 

[79] Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Gozzini, 
B., Serafino, F., 2014. Remocean System for the Detection of the Reflected Waves 
from the Costa Concordia Ship Wreck. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing 7, pp. 3011–3018. 

[80] Lugni, C., Greco, M., Faltinsen, O.M., 2015. Influence of yaw-roll coupling on the 
behavior of a FPSO: An experimental and numerical investigation. Applied Ocean 
Research 51, pp. 25–37. 

[81] Lund,  B., Collins, C.O., Tamura, H., Graber, H.C., 2016. Multi-directional wave 
spectra from marine X-band radar. Ocean Dynamics, 66, pp. 973–988. 

[82] Lund, B., Collins, C.O., Graber, H.C., Terrill, E., Herbers, T.H., 2014. Marine 
radar ocean wave retrieval’s dependency on range and azimuth. Ocean Dynamics 
64, pp. 999–1018. 

[83] Lyzenga, D.R., Maffett, A.L., Shuchman, R.A., 1983. The Contribution of Wedge 
Scattering to the Radar Cross Section of the Ocean Surface. IEEE Transactions on 
Geoscience and Remote Sensing GE-21, pp. 502–505. 

[84] Ma, Q., 2010. Advances in Numerical Simulation of Nonlinear Water Waves, 
Advances in Coastal and Ocean Engineering. World Scientific. 

[85] Madsen, P.A., Fuhrman, D.R., 2012. Third-order theory for multi-directional 
irregular waves. Journal of Fluid Mechanics 698, pp. 304–334.  

[86] Madsen, P.A., Furhman, D.R., 2006. Third-order theory for bichromatic bi-
directional water waves. Journal of Fluid Mechanics 557, pp. 369–397.  

[87] McLean, J.W., 1982. Instabilities of finite-amplitude gravity waves on water of 
finite depth. Journal of Fluid Mechanics 114, pp. 331–341. 

[88] McLean, J.W., Ma, Y.C., Martin, D.U., Saffman, P.G., Yuen, H.C., 1981. Three-
dimensional instability of finite-amplitude water waves. Physical Review Letters 46, 
817 -821. 

[89] McTaggart, K., de Kat, J.O., 2000. Capsize risk of intact frigates in irregular seas. 
SNAME Annual Meeting, Vancouver, BC, October, 2000. 



 

191 

[90] Mei, C.C., 1989. The applied dynamics of ocean surface waves. World scientific. 

[91] Mei, C.C., Stiassnie, M., Yue, D.K.-P., 1989. Theory and Applications of Ocean 
Surface Waves: Part 1: Linear Aspects Part 2: Nonlinear Aspects. World Scientific. 

[92] Milder, D.M., 1990. The effects of truncation on surface-wave Hamiltonians. 
Journal of Fluid Mechanics 217, pp. 249–262. 

[93] Milewski, W.M., Connell, B.S., Vinciullo, V.J., Kirschner, I.N., 2015. Reduced 
order model for motion forecasts of one or more vessels. Proceedings of the ASME 
2015 34th International Conference on Ocean, Offshore and Arctic Engineering 
(OMAE 2015), May 31-June 5, 2015, St. John's, Newfoundland, Canada. 11p. 

[94] Mori, N., Yasuda, T., 2002. Effects of high-order nonlinear interactions on 
unidirectional wave trains. Ocean Engineering 29, pp. 1233–1245. 

[95]  Moro, L., Bulian, G., Brocco, E., Bresciani, F., Biot, M., Francescutto, A., 2015. 
Failure analysis of container stacks by non-linear FE simulations under non-linear 
inertial loads, in: Soares, C.G., Dejhalla, R., Pavletic, D. (Eds.), Towards Green 
Marine Technology and Transport. CRC Press, pp. 745–754. 

[96] Morris, E. L., Zienkiewicz, H. K., Belmont, M. R., 1998. Short term forecasting of 
the sea surface shape. International Shipbuilding Progress 45 (444), pp. 383-400. 

[97] Naaijen, P., Blondel-Couprie, E., 2012. Reconstruction and prediction of short-
crested seas based on the application of a 3D-FFT on synthetic waves: Part 1 - 
Reconstruction. Proceedings of ASME 31st International Conference on Ocean, 
Offshore and Arctic Engineering (OMAE 2012), 1-6 July, Rio de Janeiro, Brazil, pp. 
43-55. 

[98] Naaijen, P., Blondel-Couprie, E., 2012. Wave induced motion prediction as 
operational decision support for offshore operations. Proceedings of the 
International Conference Marine Heavy Transport & Lift III, 24-25 October, 2012, 
London, UK, pp. 11-18. 

[99] Naaijen, P., Huijsmans, R., 2008. Real Time Wave Forecasting for Real Time Ship 
Motion Predictions. Proceedings of ASME 27th International Conference on Ocean, 
Offshore and Arctic Engineering (OMAE 2008), 15-20 June, Estoril, Portugal, 8p. 

[100] Naaijen, P., Huijsmans, R.H.M., 2010. Real Time Prediction of Second Order 
Wave Drift Forces for Wave Force Feed Forward in DP. Proceedings of ASME 29th 
International Conference on Ocean, Offshore and Arctic Engineering, American 
Society of Mechanical Engineers (OMAE 2010), June 6-11, 2010, Shanghai, China. 
pp. 357–364. 

[101] Naaijen, P., Roozen, D.K., Huijsmans, R.H.M., 2016. Reducing Operational 
Risks by On-Board Phase Resolved Prediction of Wave Induced Ship Motions. 
Proceedings of the ASME 35th International Conference on Ocean, Offshore and 
Arctic Engineering (OMAE2016), June 19-24, 2016, Busan, South Korea, 11 p. 

[102] Naaijen, P., Trulsen, K., Blondel-Couprie, E., 2014. Limits to the extent of the 
spatio-temporal domain for deterministic wave prediction. International 
Shipbuilding Progress 61, pp. 203–223. 

[103] Naaijen, P., van Dijk, R.R.T., Huijsmans, R.H.M., El-Mouhandiz, A.A., 2009. 
Real time estimation of ship motions in short crested seas. Proceedings of ASME 
28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 
2009), May 31 - June 5, Honolulu, Hawaii, pp. 243-255. 



 

192 

[104] Naaijen, P., Wijaya, A. P. 2014. Phase resolved wave prediction from synthetic 
radar images. Proceeding of ASME 33rd International Conference on Ocean, 
Offshore and Arctic Engineering, (OMAE 2014), 8-13 June, San Francisco, 
California, 9p. 

[105] Nieto Borge, J., Rodriguez, G.R., Hessner, K., González, P.I., 2004. Inversion of 
Marine Radar Images for Surface Wave Analysis. J. Atmos. Oceanic Technol. 21, 
pp. 1291–1300. 

[106] Nieto Borge, J., Soares, C.G., 2000. Analysis of directional wave fields using X-
band navigation radar. Coastal Engineering 40, pp. 375–391. 

[107] Nieto Borge, J.C., 1997. Análisis de campos de oleaje mediante radar de 
navegación en banda X. Ph.D. Thesis. Universidad de Alcalá de Henares. 

[108] Nieto-Borge, J., Hessner, K., Jarabo-Amores, P., De La Mata-moya, D., 2008. 
Signal-to-noise ratio analysis to estimate ocean wave heights from X-band marine 
radar image time series. Sonar Navigation, IET Radar, 2, pp. 35–41. 

[109] Nouguier, F., Grilli, S. T., Guerin, C. A. 2014. Nonlinear ocean wave 
reconstruction algorithms based on simulated spatio-temporal data acquired by a 
flash LiDAR camera. Geoscience and Remote Sensing, IEEE Transactions on 52(3), 
pp. 1761–1771. 

[110] Orszag, S.A., 1971. Numerical Simulation of Incompressible Flows within 
Simple Boundaries. I. Galerkin (Spectral) Representations. Studies in Applied 
Mathematics 50, pp. 293–327.  

[111] Patterson Jr., G.S., Orszag, S.A., 1971. Spectral Calculations of Isotropic 
Turbulence: Efficient Removal of Aliasing Interactions. Physics of Fluids (1958-
1988) 14, pp. 2538–2541. 

[112] Paulsen, B., 2011. Inversion of Marine Radar Imagery to Surface Realizations and 
Dual-Polarization Analysis. Msc. Thesis. University of Massachusetts Amherst. 

[113] Phillips, O.M., 1960. On the dynamics of unsteady gravity waves of finite 
amplitude Part 1. The elementary interactions. Journal of Fluid Mechanics 9, pp. 
193–217. 

[114] Plant, W.J., 1990. Bragg Scattering Of Electromagnetic Waves From The Air/Sea 
Interface, in: Geernaert, G.L., Plant, W.J. (Eds.), Surface Waves and Fluxes. 
Springer Netherlands, Dordrecht, pp. 41–108. 

[115] Plant, W.J., 2003. Microwave sea return at moderate to high incidence angles. 
Waves in random media 13, pp. 339–354. 

[116] Plant, W.J., Farquharson, G., 2012. Origins of features in wave number-frequency 
spectra of space-time images of the ocean. J. Geophys. Res. 117, C06015.  

[117] Plant, W.J., Keller, W.C., 1990. Evidence of Bragg scattering in microwave 
Doppler spectra of sea return. Journal of Geophysical Research 95, 16299.  

[118] Prabhu, K.M.M., 2013. Window functions and their applications in signal 
processing. CRC Press Taylor& Francis Group. 

[119]  Reichert, K., Dannenberg, J., van den Boom, H., 2010. X-Band radar derived sea 
surface elevation maps as input to ship motion forecasting. OCEANS 2010 IEEE-
Sydney. IEEE, pp. 1–7. 

[120] Rienecker, M.M., Fenton, J.D., 1981. A Fourier approximation method for steady 
water waves. Journal of Fluid Mechanics 104, pp. 119–137.  



 

193 

[121] Saket, A., Peirson, W.L., Banner, M.L., Barthelemy, X., Allis, M.J., 2015. Wave 
breaking  of two-dimensional deep-water wave groups in the presence and absence 
of wind. arXiv:1508.07702 [physics]. 

[122] Schäffer, H.A., 2008. Comparison of Dirichlet–Neumann operator expansions for 
nonlinear surface gravity waves. Coastal Engineering 55, pp. 288–294. 

[123] Schwartz, L.W., 1974. Computer extension and analytic continuation of Stokes’ 
expansion for gravity waves. Journal of Fluid Mechanics 62, pp. 553–578. 

[124] Schwartz, L.W., Fenton, J.D., 1982. Strongly nonlinear waves. Annual review of 
fluid mechanics 14, pp. 39–60. 

[125] Seemann, J., Ziemer, F., 1995. Computer simulation of imaging ocean wave 
fields with a marine radar, in: OCEANS’95. MTS/IEEE. Challenges of Our 
Changing Global Environment. Conference Proceedings. IEEE, pp. 1128–1133. 

[126] Seemann, J., Ziemer, F., Senet, C.M., 1997. A method for computing calibrated 
ocean wave spectra from measurements with a nautical X-band radar, in: 
OCEANS’97. MTS/IEEE Conference Proceedings. IEEE, pp. 1148–1154. 

[127] Senet, C.M., Seemann, J., Ziemer, F., 2001. The near-surface current velocity 
determined from image sequences of the sea surface. IEEE Transactions on 
Geoscience and Remote Sensing 39, pp. 492–505. 

[128] Serafino, F., Lugni, C., Nieto Borge, J. C., Soldovieri, F. 2011. A simple strategy 
to mitigate the aliasing effect in X-band marine radar data: numerical results for a 
2D case. Sensors 11(12), pp. 1009–1027. 

[129] Serafino, F., Lugni, C., Soldovieri, F., 2008. Sea surface topography 
reconstruction from X-band radar images. Advances in Geosciences 19, pp. 83–86. 

[130] Serafino, F., Lugni, C., Soldovieri, F., 2010. A Novel Strategy for the Surface 
Current Determination From Marine X-Band Radar Data. IEEE Geoscience and 
Remote Sensing Letters 7, pp. 231–235. 

[131] Shen, S.S., 2012. A Course on Nonlinear Waves. Springer Science & Business 
Media. 

[132] Skandrani, C., Kharif, C., Poitevin, J., 1996. Nonlinear evolution of water surface 
waves: the frequency down-shift phenomenon, in: Dias, F., Ghidaglia, J.-M., Saut, 
J.-C. (Eds.), Mathematical Problems in the Theory of Water Waves: A Workshop on 
the Problems in the Theory of Nonlinear Hydrodynamic Waves, May 15-19, 1995, 
Luminy, France. Contemporary Mathematic, 200, pp. 157-171. 

[133] Skjelbreia, L., Hendrickson, J., 1960. Fifth order gravity wave theory. 
Proceedings of 7th Coastal Engineering Conference, Hague, Netherlands, 1960, 1, 
pp. 184–196. 

[134] Stiassnie, M., Shemer, L., 1984. On modifications of the Zakharov equation for 
surface gravity waves. Journal of Fluid Mechanics 143, pp. 47–67. 

[135] Stoker, J.J., 1992. Water Waves: The Mathematical Theory with Applications. 
John Wiley & Sons. 

[136] Stredulinsky, D.C., Thornhill, E.M., 2011. Ship motion and wave radar data 
fusion for shipboard wave measurement. Journal of ship research 55, pp. 73–85. 

[137] Tanaka, M., 2001. A method of studying nonlinear random field of surface 
gravity waves by direct numerical simulation. Fluid Dynamics Research 28, pp. 41–
60. 



 

194 

[138] Tanaka, M., 2001. Verification of Hasselmann’s energy transfer among surface 
gravity waves by direct numerical simulations of primitive equations. Journal of 
Fluid Mechanics 444, pp. 199–221. 

[139] Tannuri, E.A., Simos, A.N., Sparano, J.V., Matos, V.L.F., 2012. Motion-based 
wave estimation: small-scale tests with a crane-barge model. Marine Structures 28, 
67–85. 

[140] Toffoli, A., Benoit, M., Onorato, M., Bitner-Gregersen, E.M., 2009. The effect of 
third-order nonlinearity on statistical properties of random directional waves in finite 
depth. Nonlinear Processes in Geophysics 16, pp. 131–139. 

[141] Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J., Bitner-Gregersen, E., 
Onorato, M., 2010. Evolution of weakly nonlinear random directional waves: 
laboratory experiments and numerical simulations. Journal of Fluid Mechanics 664, 
pp. 313–336. 

[142] Trefethen, L.N., Bau, D., 1997. Numerical Linear Algebra. Society for Industrial 
and Applied Mathematics. 

[143] Tsai, W.-T., Yue, D.K., 1996. Computation of nonlinear free-surface flows. 
Annual review of fluid mechanics 28, pp. 249–278. 

[144] Tucker, M. J., Challenor, P. I., Carter, D. J. T, 1984. Numerical simulation of a 
random sea: a common error and its effect upon wave group statistics. Applied 
Ocean Research 6(2), 118-122 

[145] Valenzuela, G.R., 1978. Theories for the interaction of electromagnetic and 
oceanic waves - A review. Boundary-Layer Meteorology 13, pp. 61–85. 

[146] Vettor, R., 2010. Sviluppo di una metodologia di nowcasting del moto ondoso 
finalizzata all'operatività di mezzi offshore (Development of wave elevation 
nowcasting methodology for the operability of offshore units). M.Sc. Thesis (In 
Italian). University of Trieste. 

[147] Vogel, C.R., 2002. Computational methods for inverse problems. Society for 
Industrial and Applied Mathematics. 

[148] Voronovich, A.G., 1996. On the theory of electromagnetic waves scattering from 
the sea surface at low grazing angles. Radio Sci. 31, pp. 1519–1530. 

[149] Watson, K.M., West, B.J., 1975. A transport-equation description of nonlinear 
ocean surface wave interactions. Journal of Fluid Mechanics 70, pp. 815–826. 

[150] Wei, Y., Zhang, J.-K., Lu, Z., 2016. A Novel Successive Cancellation Method to 
Retrieve Sea Wave Components from Spatio-Temporal Remote Sensing Image 
Sequences. Remote Sensing 8, 607, 19p. 

[151] West, B.J., Brueckner, K.A., Janda, R.S., Milder, D.M., Milton, R.L., 1987. A 
new numerical method for surface hydrodynamics. J. Geophys. Res. 92, pp. 11803–
11824. 

[152] Wetzel, L.B., 1977. A model for sea backscatter intermittency at extreme grazing 
angles. Radio Science 12, pp. 749–756. 

[153] Wetzel, L.B., 1990. Electromagnetic Scattering from the Sea at Low Grazing 
Angles, in: Geernaert, G.L., Plant, W.J. (Eds.), Surface Waves and Fluxes. Springer 
Netherlands, Dordrecht, pp. 109–171. 

[154] Wetzel, L.B., 2008. Sea Clutter, in: Skolnik, M. (Ed.), Radar Handbook, Third 
Edition. McGraw-Hill Education. 



 

195 

[155] Whitham, G.B., 2011. Linear and Nonlinear Waves. John Wiley & Sons. 

[156] Wijaya, A.P., Naaijen, P., Adonowati, van Groesen, E., 2015. Reconstruction and 
future prediction of the sea surface from radar observations. Ocean engineering 106, 
pp. 261–270. 

[157] Wright, J., 1966. Backscattering from capillary waves with application to sea 
clutter. IEEE Transactions on Antennas and Propagation 14, pp. 749–754. 

[158] Wright, J., 1968. A new model for sea clutter. IEEE Transactions on Antennas 
and Propagation 16, pp. 217–223.  

[159] Wu, G., 2004. Direct simulation and deterministic prediction of large-scale 
nonlinear ocean wave-field . Ph.D. Thesis. Massachusetts Institute of Technology. 

[160] Wu, G., Liu, Y., Yue, D.K.P., 2007. Ocean Wave Prediction Using Large-Scale 
Phase-Resolved Computations.  Proceedings of High Performance Computing 
Modernization Program Users Group Conference, DoD, (HPCMP-UGC), 18 -21 
June 2007, Pittsburgh, PA, pp. 449–454.  

[161] Xiao, W., 2013. Study of directional ocean wavefield evolution and rogue wave 
occurrence using large-scale phase-resolved nonlinear simulations. Ph.D. Thesis. 
Massachusetts Institute of Technology. 

[162] Xiao, W., Liu, Y., Wu, G., Yue, D.K.P., 2013. Rogue wave occurrence and 
dynamics by direct simulations of nonlinear wave-field evolution. Journal of Fluid 
Mechanics 720, pp. 357–392. 

[163] Xiao, W., Liu, Y., Yue, D.K.P., 2009. Ocean Wave Prediction Using Large-Scale 
Phase-Resolved Computations.  Proceedings of DoD High Performance Computing 
Modernization Program Users Group Conference, DoD,  (HPCMP-UGC), 15 -18 
June 2009, San Diego, CA, pp. 278–284. 

[164] Xu, L., Guyenne, P., 2009. Numerical simulation of three-dimensional nonlinear 
water waves. Journal of Computational Physics 228, pp. 8446–8466.  

[165] Xue, M., Xu, H., Liu, Y., Yue, D.K., 2001. Computations of fully nonlinear three-
dimensional wave–wave and wave–body interactions. Part 1. Dynamics of steep 
three-dimensional waves. Journal of Fluid Mechanics 438, pp. 11–39. 

[166] Yoon, S., Kim, J., Choi, W., 2016. An Explicit Data Assimilation Scheme for a 
Nonlinear Wave Prediction Model Based on a Pseudo-Spectral Method. IEEE 
Journal of Oceanic Engineering 41, pp. 112–122. 

[167] Young, I.R., Rosenthal, W., Ziemer, F., 1985. A three-dimensional analysis of 
marine radar images for the determination of ocean wave directionality and surface 
currents. J. Geophys. Res. 90, pp. 1049–1059. 

[168] Yue, D.K.P, 2008. Nonlinear Wave Environments for Ship Motion Analysis. 27th 
Symposium of Naval Hydrodynamics, Seul, Korea; 5-10 October, 2008, 19p. 

[169] Zakharov, V.E., 1968. Stability of periodic waves of finite amplitude on the 
surface of a deep fluid. Journal of Applied Mechanics and Technical Physics 9, pp. 
190–194. 

[170] Zakharov, V.E., Dyachenko, A.I., Vasilyev, O.A., 2002. New method for 
numerical simulation of a nonstationary potential flow of incompressible fluid with 
a free surface. European Journal of Mechanics - B/Fluids 21, pp. 283–291. 

[171] Zeimer, F., Rosenthal, W., 1987. On the transfer function of a shipborne radar for 
imaging ocean waves. GKSS-Forschungszentrum, Geesthacht. 



 

196 

[172] Zhang, J., Chen, L., 1999. General Third-Order Solutions for Irregular Waves in 
Deep Water. Journal of Engineering Mechanics 125, pp. 768–779. 

[173] Zhang, J., Yang, J., Wen, J., Prislin, I., Hong, K., 1999. Deterministic wave model 
for short-crested ocean waves: Part I. Theory and numerical scheme. Applied Ocean 
Research 21, pp. 167–188. 

[174] Zhao, H., Song, Z., Li, L., Kong, J., 2014. On the Fourier approximation method 
for steady water waves. Acta Oceanologica Sinica 33, pp. 37–47. 


	List of figures
	List of tables
	1 Introduction
	1.1 Deterministic wave and ship motion forecasting
	1.2 Objectives and outline of the work

	2 Water wave modelling
	2.1 Introduction
	2.2  Water wave problem
	2.3 Linear wave modelling
	2.4 High-Order Spectral method
	2.4.1 Analytical model
	2.4.2 Spectral basis
	2.4.3 HOS numerical implementation
	2.4.3.1 Nonlinear terms calculations and anti-aliasing techniques
	2.4.3.2 Time integration
	2.4.3.3 Numerical instabilities and filtering
	2.4.3.4 Operation count of the Dirichlet problem

	2.4.4 Initialization issues & strategies
	2.4.5 Convergence test for vertical velocity
	2.4.6 Nonlinear wave interaction

	2.5 Generation of nonlinear irregular waves
	2.6 Concluding remarks

	3 Wave radar signal inversion
	3.1 Introduction
	3.2 Wave radar imaging model
	3.3 MTF inversion technique
	3.4 Linearized imaging model
	3.5 An alternative inversion technique: Least Squares with Regularization (LSQR)
	3.5.1 Set-up of least squares problem with missing data based on linearized tilt model
	3.5.2 Tikhonov regularization
	3.5.3 Selection of regularization parameter: L-curve method
	3.5.4 Some notes on alternative setups of the inversion problem

	3.6 Application examples of LSQR technique
	3.6.1 Long crested sea states
	3.6.1.1 Reconstruction error statistics

	3.6.2 Long crested sea states: LSQR applied to nonlinear wave fields
	3.6.3 Short crested sea states
	3.6.3.1 Reconstruction error statistics


	3.7 Concluding remarks

	4 Deterministic sea wave forecasting and prediction error assessment
	4.1 Introduction
	4.2 Predictability Region and Predictability Error Indicator
	4.3 Linear Estimator of Prediction Error (LEPrE)
	4.3.1 Theoretical Background
	4.3.1 Embedding the effect of linear transformations of measured wave elevation signal
	4.3.2 Implementation and usage
	4.3.3 Analytical formulation of LEPrE in case of DFT fitting and long crested(1D) and short crested (2D) waves

	4.4 Application examples
	4.4.1 Verification and Monte Carlo Simulations
	4.4.2 Prediction error and measurement error
	4.4.3 Effect of wave field nonlinearities for long crested seas
	4.4.4 Effect of the wave radar inversion error for linear long crested seas
	4.4.5 Short crested sea states

	4.5 Concluding remarks

	5 Deterministic ship motion forecasting and prediction error assessment
	5.1 Introduction
	5.2 Linear ship motion model
	5.3 LEPrE approach for ship motions
	5.4 Example applications
	5.4.1 FPSO at zero speed
	5.4.1.1 Ship geometry and mechanical data
	5.4.1.2 Test conditions
	5.4.1.3 Results

	5.4.2 Container ship in forward speed
	5.4.2.1 Ship geometry and mechanical data
	5.4.2.2 Test conditions
	5.4.2.3 Results


	5.5 Effect of measurement error
	5.6 Technological and procedural indications
	5.7  Concluding remarks

	6 Conclusions
	7 References

