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Background

Cancer

Definition

According to World Health Organization (WHO reference) and Us National Cancer
Institute (NCI reference), two of the most important authorities in medicine and oncology,
respectively, cancer is a generic term for a large group of diseases that can affect any part
of the body. Other synonyms are malignant tumors and neoplasms. The word tumor
derives from the Latin verb “tumeo”, to swell, because a swollen mass is usually the
common sign of the presence of cancer in the body (except for some blood cancer). The
tumoral mass is formed by abnormal cells that grow beyond their usual boundaries.
Normally, in the healthy condition, human cells grow and proliferate to form new cells as
needed, they are shaped to specific functions — differentiated — useful to the respective
organ, and when they grow old or become damaged, they die and are replaced by new
cells. This ordered process is a consequence of cells acceptance of the organism signals of
proliferation, differentiation and suppression. The disruption of this orderly process give
rise to cancer, which can thus be seen as a non-observance of signals and instructions
given by the organism to individual cells.

As a consequence, in cancer cells proliferate also when they are not needed and damaging
other cells, then progressively acquire a phenotype more and more different from their
original nature and refuse to die at the proper moment. In this way many cancers form
solid tumors, which are masses of tissue. Cancers of the blood, such as leukemias,
generally do not form solid tumors, but proliferating neoplastic cells spread into the bone
marrow and blood stream. In both cases cancer cells can eventually invade nearby parts of
the body and spread to other organs, generating what are called metastasis — which are in
the end the major cause of death from cancer.

Tumors are defined as malignant when they show the above-mentioned characteristics of
invasion of nearby tissues; if this features is absent, tumors are called benign. The only
problem with benign tumors is that they may compress sensible organs, such as brain,
otherwise they would be innocuous. When they are removed, they usually don’t recur,

while cancer often does.



Key facts and cost of cancer care
World Health Organization (WHO reference) also provides key facts about cancer, giving
an overall idea about the burden of the disease, main types and correlation with known

causes.
Cancer is a leading cause of death and its trend is expected to increase:

= “Cancers is a leading causes of morbidity and mortality worldwide, with
approximately 14 million new cases and 8.2 million cancer related deaths in
2012 (Stewart and Wild 2014).

= “The number of new cases is expected to rise by about 70% over the next 2
decades.”

= “Itis expected that annual cancer cases will rise from 14 million in 2012 to 22
within the next 2 decades” (Stewart and Wild 2014).

Cancer most common sites are well-defined. Among all, lung cancer is the big killer
and its mortality at 5-years is over 90% (Cancer research UK). In women, breast cancer
is the leading cause of death, with currently a good survival for early detected cancer
(Cancer Research UK):
= “Among men, the 5 most common sites of cancer diagnosed in 2012 were lung,
prostate, colorectum, stomach, and liver cancer.”
= “Among women the 5 most common sites diagnosed were breast, colorectum,

lung, cervix, and stomach cancer.”

Currently, scientific community thinks that some cancers are due to known behavioral
and dietary risks:
= “Around one third of cancer deaths are due to the 5 leading behavioral and
dietary risks: high body mass index, low fruit and vegetable intake, lack of
physical activity, tobacco use, alcohol use.”
= “Tobacco use is the most important risk factor for cancer causing around 20%
of global cancer deaths and around 70% of global lung cancer deaths.”



Other cancer are caused by known infections:
= “Cancer causing viral infections such as HBV/HCV and HPV are responsible
for up to 20% of cancer deaths in low- and middle-income countries” (De
Martel et al. 2012).

Cancer geographic distribution highlight how the majority of cancer and cancer-related
death is in developing countries, thus indicating that cancer is more of a global plague
rather than a disease of the wealthy, developed world.
= “More than 60% of world’s total new annual cases occur in Africa, Asia and
Central and South America. These regions account for 70% of the world’s

cancer deaths” (Stewart and Wild 2014).

Cancer is heavily impacting national healthcare system balance, and whole society both
from a social and economic perspective. According to Fernandez, (Luengo-Fernandez
et al. 2013), cancer cost the EU €126 billion in 2009, including healthcare cost,
productivity losses and informal care, with healthcare accounting for €51 billion (40%).
Please note that, contrary to what often expected, direct costs are a minor part of the
whole. Usually, productivity losses and informal care are underestimated due to their
hidden nature, but their weight is comparable to direct costs. Across the EU, the
healthcare costs of cancer were €102 per citizen, but with a high variation from €16 per
person in Bulgaria to €184 per person in Luxembourg, showing the impact of different
healthcare models. Productivity cost because of early death is €42.6 billion and lost
working days €9.43 billion. Informal care cost €23.2 billion.

The cost per type of cancer mirrors cancer epidemiology, with lung cancer having the
highest economic cost (€18.8 billion, 15% of overall cancer costs), followed by breast
cancer (€15.0 billion, 12%), colorectal cancer (€13.1 billion, 10%), and prostate cancer
(€8.43 billion, 7%).

In a US-review, total costs of cancer care have been estimated in $157 billion dollars in
2010. Forecasts contained in the same review predicted that costs of care will increase
annually by 2% in the initial and last year of care, with a total cost in 2020 projected to
be $174 billion (Mariotto et al. 2011).



The Hallmarks of cancer
In year 2000, Hanahan & Weinberg published a review (Hanahan and Weinberg 2000)

listing six distinctive biological capabilities acquired during the multistep development of
human tumors, and shared by most, if not all, types of cancer (Figure 1). These features

were named ‘“hallmarks of cancer”, and are described below.
Sustaining proliferative signaling

Normal cells cannot proliferate without a growth signal. In this aspect, the cell can be
viewed as passive, “biological substance”, shaped by body signals. These signal are called
mitogenic growth signals (GS) and are required to shift cells from a quiescent state into a

proliferative condition.

Tumor cells independently generate their own growth signals, thereby reducing their

dependence on stimulation from the organism.
Evading growth suppressors

Normal cells must be functional to the organism needs, and old or unneeded cells must
accept death at the advantage of organ architecture. For this reason, within a normal tissue,
multiple antiproliferative signals operate to maintain cellular quiescence and tissue

homeostasis. These suppressive signal can arrest proliferation by two distinct mechanisms:

- Cells are reversibly moved out of their proliferative G1/S/G2/M cell cycle into the
quiescent (Go) state, from which they may re-enter active cell cycle if needed and

if appropriate extracellular signal are secreted.

- Cells are permanently forced out of their proliferative potential into postmitotic
states, usually associated with acquisition of specific differentiation-associated

traits.

Cancer cells evade these antiproliferative signals, enabling them to maintain proliferation

and to enlarge tumoral mass.



Resisting cell death

Similarly to what said above, apoptosis — a latent program of programmed cell death — is
triggered and activated when cells are not needed by the body.

Acquired resistance toward apoptosis is a hallmark of most and perhaps all types of

cancer.
Enabling replicative immortality

There is an intrinsic mechanism inside mammalian cells limiting the number of
replications they can endure. This program appears to be independent of the cell-to-cell

signaling pathways described above.

When most types of cancer cells are explanted from the body and cultured in vitro, they
don’t show this replication limit. This suggests that cancer cells lose their replicative limit

during in vivo cancer progression.
Inducing angiogenesis

All cells are strictly dependend by blood irroration, allowing them to capture oxygen and
all necessary nutrients needed for their activity. For this reason almost all cells in a tissue
reside within 100 um of a capillary blood vessel. The growth of new blood vessels — the

process of angiogenesis — is transitory and carefully regulated.

Cancer cells rapid growth requires a strong support of nutrients. For this reason, every
tumoral mass must be sustained by a dense growth of new blood vessels if it wants to
survive. Cancer cells progressively acquire the skills of inducing and maintaining

angiogenesis.
Activating invasion and metastasis

During the course of cancer progression, there comes a time in which cancer cells acquire
the ability of invading nearby tissues, and even travel to distant sites to colonize and form
new masses. Tumoral masses formed in a site different from the primary tumor are called
metastasis — from the Greek “distant location”. Metastasis are the ultimate cause of death

of most cancers.



The process of invasion and metastasis is a complex process, and its genetic and

biochemical features are incompletely understood.

The present work is strongly related to this hallmark, which we will describe with more

details than the others in the following chapter.

Sustaining proliferative
signaling

Resisting Evading growth
cell death SUPPressors

inducing
angiogenesis

Enabling replicative
immortality

Figure 1 (Hanahan and Weinberg 2000) Summarizing schematics of Hallmarks

of cancer described in the text above.

Invasion and Metastasis

Metastasis, as cited above, is the ultimate cause of death of most cancers patients, yet it
remains the one of the most poorly understood step in cancer progression. During
metastatic dissemination, a cancer cell from a primary tumor executes the following

sequence of steps:

- It locally invades the surrounding tissue, breaking the basal membrane if of
epithelial origin, and often acquiring a mesenchymal phenotype with an epithelial

to mesenchymal transition (EMT)

- Secretes matrix metalloproteinases and similar enzymes to break the extracellular

matrix and travel through it

- Enters the microvasculature of the lymph and blood systems (intravasation)



- Survives and travel through the bloodstream to microvessels of distant tissues

- Exits from the bloodstream (extravasation), surviving in the microenvironment of

distant tissues

- Finally adapts to the distant environment of colonized tissues in order to proliferate

and form a macroscopic secondary tumor (colonization).

Particularly, spread to the anatomically distant sites seems to occur almost entirely through
the blood via the process of hematogenous dissemination. (Chaffer and Weinberg 2011).
(Figure 2)

Physical translocation Colonization
from primary tumor to distant organ

@ Survival at
@ Acquisition

secondary site

of invasive )
P © B
(D=5 CTCs transit to D )

\d ) N
= “\ J\h '
_ Localinvasion CTCs extravasate
cells invade into surrounding and invade into the
stroma, then intravasate to enter parenchyma of Adaptation and

hematogenous circulation foreign tissue proliferation to
form metastases

. Differentiated . Transitioning Cancer x
( |
W cncorcoll Sabcor coll - Stromalcell (@ Inflammatory cell

Figure 2 (Chaffer and Weinberg 2011) - The metastatic cascade. At the bottom, the legend
for different cell types. Blue quadrant shows event in proximity of primary mass, while green
guadrant shows events far from primary mass. In section A, cancer cells with acquired
invasive phenotype invade nearby tissue and move through extracellular matrix aiming for a
blood vessel. In section B, intravasation occurs — please note that between section B and D
the cell is considered a circulating tumor cells, strictly connected with this thesis, and later
described. In section C the cell travel together with the blood torrent to a distant site and
extravasate D, invading distant stroma. Please note that it is far from trivial that a cell from
e.g.: breast tissue can survive a e.g.: lung environment, having to evade innate immunity and
surviving as single cells. In the last stage F, a new tumoral mass is formed and the process

might start again.
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The duration of this metastatic cascade ranges from weeks to years - sometimes metastatic

tumors become apparent decades after a patient is considered cured.

Needless to be said, a better understanding of metastasis mechanisms and triggers would
help to prevent most of cancer deaths. Even if with this knowledge might not fulfill
tumoral mass eradication, at least its spread throughout the body could be heavily limited

and other combined approached can be used at the same time.

The first useful piece of knowledge to understand metastasis would be the identification,
between the heterogenous mix of cells in the primary tumour, of the cells responsible of
invasion, and their characterization with respect to cells unable to carry on the whole

process.

Our knowledge on this topic is still incomplete because there are currently some barriers

to the study of metastasis:

1. Secondary tumours large enough to be detected are often not biopsied because
patients are in fragile health, and being biopsy an invasive, painful and risky
procedure, especially in specific organs (e.g.: lung, brain, common sites of
metastasis)

2. The initial growth and progression of metastasis would be an extremely interesting
topic to study, but single cells and even initial clusters are too small to show up in
imaging scans, which have a resolution power of 0.5 mm at their best.

3. The attempts to stop metastatic spread in its initial phase is often not studied,
because today’s clinical trials are not designed for this purpose. Although
potential compounds to stop or slow down metastatic spread are already available,
trials tend to enroll patients with advanced disease and established metastatic
tumours. Cancer progression in this groups is far from its early stage and these

compounds cannot show their efficacy.

In the last years, an alternative approach to access metastatic cells and thus face above-
mentioned problems 1 and 2 is emerging. This approach consists in isolating cancer cells
present in patients' blood between the intravasation and extravasation step of the
metastatic cascade. These so-called circulating tumor cells (CTCs) de facto constitute a

“liquid biopsy”, minimally invasive and serially repeateble. CTCs may unveil some
11



mechanisms of metastasis, since among them there should be some cells responsible of
eventual colonization. Once isolated, genetic, molecular and functional analysis can be
performed, and their characterization compared to that of the primary tumor's, highlighting

key factors of invasive phenotype. (Bourzac 2014).

The aim of this work has been the implementation of a new method to detect and isolate
CTCs, overcoming current limitations. For this reason, in the next chapter we will focus
on CTCs definition and potential value in the clinic, describe current state of the art and its

limitations.

Circulating Tumor Cells (CTCs)

Definition

CTCs are defined as neoplastic cells found in blood, supposedly coming from primary
tumors and with at least a subgroup forming the seeds of future metastasis, as Zhang et al.
proved (Zhang et al. 2013). CTCs are considered rare cells in the blood of cancer patients:
they can be found in cancer patient — easier but not only in advanced metastatic cancer
patients — with a frequency of 1-10 CTCs per mL of blood (Miller, Doyle, and Terstappen
2010).

Traditionally, CTCs were defined as cells with an intact nucleus, presence of cytokeratins
indicating their epithelial origin and absence of CD45 membrane expression, excluding
their hematopoietic origin (Racila et al. 1998). CTCs can be also found in clusters (Aceto
2014). More recently, the emergence of multiple other methods of detection enlarged the
definition including CK negative cells, cells undergoing Epithelial to Mesenchymal
transition (EMT), apoptotic CTCs and small cells morphologically similar to white blood
cells. (Marrinucci et al. 2012; Yu et al. 2013). Importantly, cells undergoing EMT or with
a mesenchymal phenotype seem to be more correlated with progression of disease. (Yu et
al. 2013).
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Value

Personalized/Precision medicine

Evidence-based occidental medicine usually provides treatment to patients based on the
diagnosed pathology, regardless of individual differences (except for dose adjustment in
the children and elders or in patient with organ failure e.g: kidney or liver failure).
Although the observation that different patients can react differently to the same therapy is
not new, it’s not easy to predict which therapy will fit a certain patient in the best way.
The advent of low-cost genomic brought also the idea that indications for tailored,
personalized treatments could be obtained by analyzing genomic dataset.

This consolidating trend in medicine is called personalized, or precision medicine (the
terms are used interchangeably, sometimes with slight differences). The supporters of
precision medicine propose the customization of healthcare, with medical decisions,
practices, and products being tailored to the individual patients. Such customization is
based on diagnostic testing, that is the analysis of a patient’s genetic content or other
molecular or cellular data (Lu et al. 2014).

This model does not necessarily mean the creation of individual-tailored medical devices
or drugs, but rather the possibility of classifying individuals into subgroup that share
common features, like susceptibility to a certain disease, natural history of that disease and

response to treatment.

As a consequence, clinicians might concentrate positive effects of therapies in those
responsive patients, sparing side-effects to non-responders. There would be also an
advantage in the economical perspective, in this era of sky-rocketing cost of targeted
drugs, avoiding to waste such advanced treatments on non-responsive patients. Thus,
precision medicine could improve the overall clinical and economic efficiency of

treatments.

In order to understand better this concept, I’ll present Imatinib emblematic case, which

describes the context in which such concept of medicine arouse:

“In 1996, early clinical trials were designed for one of the first drugs aimed at a cancer-specific genetic
mutation (Imatinib, a monoclonal antibody targeting BCR-ABL mutated tyrosin kinase in chronic myeloid
leukaemia, suppressing its activity and consequently cancer cells growth). Patients who had been debilitated
by the disease rapidly improve when given the medicine. (Bourzac 2014) This success comes at a price: in

2012, a year's worth of the therapy cost US$92,000 (Gravitz 2014). Unfortunately, many of those cancers
13



relapsed as they became resistant to the drug. In this scenario, it emerged the technological challenge of
figuring out what mutation caused the disease and designing a drug to target it, but also the malignant
potential of cancers rapidly developing drug resistances. Imatinib was then followed by two further drugs to
combat the emerging drug resistance, but treating cancer by chasing mutation after mutation with drug after
expensive drug is not a sustainable model, and not considering the fact that most of tumours show a plethora
of mutations rather than a single one (Bourzac 2014).

Vulnerabilities such as the one that Imatinib capitalizes on are known as driver oncogenes, genetic changes
that generate the proteins driving a cancer's growth. Understanding how to disable the common driver
oncogenes should therefore enable the treatment of a large number of cancers (Gravitz 2014).

Such an approach means that oncologists were no longer limited to treating cancer on the basis of the organ
in which it first appeared, but they were instead starting to classify tumors by their mutations and expression

profile as opposed to their histology.”

Exploiting this kind of stories, Baselga and his colleagues are designing clinical trials that
group patients by genotype rather than by a cancer's organ of origin (Hyman et al. 2015).
In this scenario, pharmaceutical companies, which are obviously sensitive to trends in
drug treatments, perceived the efficiency of this strategy of studying genomic
characteristics to guide treatments. For this reason, pharmaceutical companies has
partnered with diagnostic companies to develop and produce a whole new category of
diagnostics, called companion diagnostics! - and ensuring in this way diagnostic
foundations for future targeted and effective treatments.

There are also other more subtle parameters beyond matching tumour or patient to drug,
which new insights into patients characterization might generate. As an example,
providing drugs at the right time or at the right dose might be a key factor for the success
of a treatment. Considering targeted treatments, in order to monitor a tumour state and its
vulnerabilities, repeated biopsies would be necessary, but they would be difficult, invasive
and often impossible (in small or hard-to-reach lesions), and can be confounded by intra-
tumor heterogeneity (Murtaza et al. 2013).

Researchers have therefore been working on non-invasive ways to monitor mutations.

In this context, the emergent concept of “liquid biopsy” is dominant, which consists in
obtaining tumoral samples from venous blood, mainly of two kinds: CTCs and circulating
DNA (Gravitz 2014). At the beginning there was uncertainty on whether such samples

would have been relevant, but their clinical meaning has been widely assessed. For

L A companion diagnostic is a medical device, often an in vitro device, which provides information that is
essential for the safe and effective use of a corresponding drug or biological product (Health n.d.)

14



example, Dawson and colleagues have found that changes in cell-free tumour DNA are
detectable, on average, five months before any changes to the disease are seen in
computed tomography (CT) or other scans (Dawson et al. 2013), and Cristofanilli and
colleagues, confirmed by many others, have found that CTCs frequency in blood at three
to four weeks is correlated with prognostic behavior, usually monitored by imaging at 6-8
weeks (de Bono et al. 2008; Cohen et al. 2008; Cristofanilli et al. 2004; Hou et al. 2012;
Riethdorf et al. 2007).

CTCs role in precision medicine

Because dissemination mostly occurs through the blood, and CTCs have been proven to be
competent for metastasis generation (Zhang et al. 2013), it follows that the potential
clinical value of CTCs is clear:

“Early detection and treatment of metastatic spread are key for disease outcome, and
CTCs offer the ability to target metastasis in real time ” (Vicki Plaks, Charlotte D.
Koopman et al. 2013)

The presence of CTCs correlates with increased metastatic burden, aggressive disease, and
a decreased time to relapse (Chaffer and Weinberg 2011). Furthermore, these CTCs offer
the prospect of understanding how cells are able to survive in the circulation and generate

metastasis.

For these reasons and for the minimal invasiveness of the assay, CTCs might be monitored
longitudinally in time and a clinician might be guided by their number and nature in the
evaluation of the ongoing treatment efficacy and in his clinical decisions.

CTCs nature and biology though is not completely clear, and a deeper understanding of
their behavior might help to identify subpopulation of CTCs with real competence to form
metastasis, and thus refine the clinical meaning of the assay. For this reason researchers
are currently trying to provide robust CTC isolation and single-cell “omics” techniques,
comprising genomic, transcriptomic and proteomic (Vicki Plaks, Charlotte D. Koopman et
al. 2013).
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State of the art

State of the art in CTCs detection is summarized in Figure 3. We could divide the whole
scenario in two categories: methods trying to exploit CTCs protein phenotype — named
biological properties — or others — named physical properties. At present, the only FDA-
approved CTCs detection device — Veridex CellSearch® — provides enumeration of CTCs
with positive selection methods. Specifically, CTCs are first enriched via magnetic
EpCAM labeling and then identified by eye-verification of a trained operator as DAPI-
positive, EpCAM-positive, CK(8, 18, 19)-positive and CD45-negative.
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Figure 3 — State of the art of CTCs technologies (Alix-Panabiéres and Pantel 2014)

CellSearch® has received FDA approval for its use in breast, colorectal and prostate
cancer. (Cellsearch® specifications) Other methods are using other combinations of
antibody cocktails or improved methods of mixing and staining, based on the same
concept. Alternative approaches depletes CD45-positive cells, enriching CTCs for further

immunostaining procedures. The main drawbacks of these methods are:

- Cancer protein expression must be known a priori, and being cancer both a
heterogenous and rapidly transformating disease this is a difficult task. E.g.: Cells
undergoing EMT, shown to be highly significant for cancer progression, are

missed by EpCAM-based strategies.
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- Intracellular protein labeling often require fixation and permeabilization of cells,
compromising cell viability and thus possibly modifying their original condition

- Good quality monoclonal antibodies production is expensive compared to other

approaches not based on antibodies.

Physical approaches are trying to identify CTCs by some of their parameters as size (c, g),
deformability (d), density (e), charges distribution (f). Generally, these approaches have a
lower-cost and a higher throughput than antibody-based approach, leaving the cells alive
and intact. None of these methods, though, has reached clinical significance, putting them
a step below above-mentioned antibody-based approaches.

Limitations

A key limitation in the capture and analysis of CTCs is their extreme rarity with respect to
the 5 x 10° erythrocytes and 1-10 x 10° leucocytes per mL of blood. Although red blood
cells can be easily removed by osmotic cell lysis, leucocytes (white blood cells) share
many of the physical, chemical and biological properties of CTCs, leading to high
contamination levels in many CTC detection methods (Alix-Panabiéres and Pantel 2014).
This intrinsic rarity makes extensive study of CTCs a cumbersome task, and doesn’t help
to solve open questions on CTCs biology and the role they play in metastatic

disseminations, summarized in Figure 4.

Circulating carcinoma cells have diameters typically ranging from 20 to 30 pum, that are
far too large to allow them to pass through capillaries (~8-um diameter), such as those
present in the capillary beds of the lungs. Shed CTC should thus be trapped in capillary
beds just after be released from the primary tumor. The persistence of some CTCs type for
far longer periods of time (with half-lives of 1 to 2.4 hours) suggests the possibility that
only exceptionally small or physically plastic CTCs can pass through pulmonary

microvasculature and thus circulate freely in the blood.

For the same reason, CTC clusters should pass even more hardly small vessels and thus

should be underrepresented by a blood sample obtained by venous access.

17



Recent results on CTC concentration in blood from arterial access apparently confirm this
view (Terai et al. 2015).
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Figure 4 (Vicki Plaks, Charlotte D. Koopman 2013) — The picture summarizes open
questions in CTCs detection. There are biophysical factors that may decrease CTC detection
sensitivity, including trapping of A single CTCs and B clusters of CTCs in capillary bed;
covering of CTCs by platelets or coagulation factors named “cloaking”. Biological factors
impairing precise CTC quantification are D the presence of benign epithelial cell sharing
protein expression with CTCs, E cellular heterogeneity making it difficult to select a single
labeling factor to detect them all and F the possible stemness and loss of differentiation
phenotype of some CTCs or G EMT cells undergoing EMT transition and loss of epithelial
phenotype. Moreover, real metastatic seeding potential of detected CTCs is still unclear H.
Current research lines are trying to improve detection and isolation of CTCs | and working
towards a robust single-cell ‘omics’ platform for sequencing isolated CTC genome and

transcriptome, as well as proteomics J.
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Platelet adhesion to CTC membrane is documented (Palumbo et al. 2005) and could
impair detection in two different directions. It could both induce stickiness of CTCs to
small vessel walls and hide cell-surface marker antigens preventing antibody based

detection.

CTCs detection by antibodies shares also other complications: given the rapidly
transformating nature of cancer and its high level of heterogeneity between single cells,
the subpopulation targeted by selected antibodies could be unclear and time-changing,
leading to confused diagnostics.

For example, we know that many cancer cells undergo EMT, achieving a phenotype for
many aspects useful for dissemination — secretion of metalloproteinases for matrix
destruction, higher mobility, elongated shape for intra and extravasation, basal membrane
independent survival. Recent studies have demonstrated that the EMT can induce non-
Cancer Stem Cells (CSC) to enter into a CSC-like state, and that drug-resistant cell
subpopulations often exhibit a more mesenchymal phenotype. (Chaffer and Weinberg
2011). Needless to be said, the main target of a therapy should be the CSC cell

subpopulation, which if left untouched, will regrow the tumor over and over again.

Not all CTCs may be clinically relevant. Some events tagged as CTC by current
technologies can be detected in patients with benign conditions, such as inflammatory
colon disease, while healthy patients not showing evidences of CTC presence. Curiously,
in a mouse model of pancreatic cancer, CTCs were found in the blood before the
appearance of a primary tumor. Thus, current CTC assays are limited in distinguishing
between cancer cells, noncancerous tumor components, and benign cells (Vicki Plaks,
Charlotte D. Koopman et al. 2013).

CTCs may be shed from different locations of tumors, which are heterogeneous in
nature, and even from metastases. Frequently there is a discrepancy in gene expression
between primary tumors and CTCs, as well as heterogeneity within the CTC population. It
has been shown, though, that CTCs represent the most updated data available for gene
expression. In theory, it should be possible in future to identify the tissue of origin of
CTCs by detecting organ-specific signatures. This would help to localize small metastatic
lesions and to guide further diagnostic and therapeutic strategies(Vicki Plaks, Charlotte D.
Koopman 2013).
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Our metabolism-based approach

Given the state of the art when the project started in 2013, our research group perceived
the need of a method overcoming said CTCs detection limitations. We can now say that,
despite many advances in the fields and the emergence of many CTC detection companies
providing new technologies, the same need is still not fulfilled, allowing our research to be
fortunately still actual.

Back at the beginning of this project, not convinced by antibody labeling limitations and
by weakly described physical properties of CTCs, we envisioned an unexplored,
transversal approach, based on the abnormal metabolism of cancer cells. To better
understand our approach, we will briefly describe established knowledge on cancer

peculiar metabolism.

Reprogramming of energy metabolism - an emerging Hallmark of cancer
Following the cited 2000 review, in 2011 Hanahan and Weinberg published an updated
edition of the first paper (Hanahan and Weinberg 2011), showing how conceptual progress

occurred in the time gap between the two reviews has added two emerging hallmarks of

Emerging Hallmarks

Deregulating cellular Avoiding immune
energetics destruction

Genome instability Ny Tumor-promoting
and mutation Inflammation

Enabling Characteristics

Figure 5 - (Hanahan & Weinberg, 2011) Emerging Hallmarks and Enabling Characteristics.
Two emerging hallmarks was added to the seven original ones. The alteration of cellular
metabolism (top-left) and the adaptation to elude immune system (top-right). Two features
named enabling characteristics are also identified: genomic instability that speed up
mutation and thus acquisition of hallmarks, and chronic inflammation easing tumor
zprogression. In this work we will focus only on the deregulation of cellular energetics and its

consequences.



the original list — one of which is reprogramming of energy metabolism - Figure 5.
The uncontrolled cell proliferation that constitutes one of the foundations of neoplastic
disease requires corresponding adjustments of energy metabolism in order to meet

demanding hyperproliferation and abnormal cell growth.

Among all known deregulations, we selected two of them, trying to identify measurable
alterations both widespread and specific to cancer cells, with the aim of founding the most
general yet specific marker of neoplastic nature, in order to generate a highly sensitive and
specific assay. The two selected features in this work are, primarily, the acidification of
the extracellular medium, and in minor part, aerobic glycolysis, or Warburg effect — (the

increased rate of glycolysis with lactate production even in the presence of oxygen).

The acidification of the extracellular medium

The most widespread metabolic feature of cancer cells is their ability to acidify the
extracellular medium, by secreting protons (H*) and acids (Cardone, Casavola, and
Reshkin 2005; Montcourrier et al. 1997; Parkins et al. 1997; Webb et al. 2011). Initially,
this phenomenon was considered as a consequence of Warburg effect, but it proved to be
even more widespread between different cancer cell types and more precocious in tumor
natural history. This reversed pH gradient is already apparent during the earliest step of
neoplastic progression, and, notably, this ability increases with tumour aggressiveness.
(Cardone et al. 2005).

More precisely, tumor cells have an imbalance between extracellular (pHe) and
intracellular pH (pHi), with an alkaline pHi values (7.12—7.65 compared with 6.99-7.20 in
normal tissues) and acidic pHe values (6.2-6.9 compared with 7.3—-7.4).

The development and maintenance of this gradient was commonly considered based
primarily on glycolytic lactate production and release. However, this hypothesis has been
disrupted in the ‘90s by the observation that glycolysis-deficient tumor cells and cells
lacking lactate dehydrogenase were still fully able to acidify their micro-environment
(Newell et al. 1993; Yamagata et al. 1998). This indicates that there are other mechanisms
that maintain pH dysregulation. Protein responsible of proton secretion have been
identified in Na*/H" exchanger NHEL1, the Na*-independent and Na*-dependent HCO3/ClI
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exchangers and the H*/lactate cotransporter (known as the monocarboxylate transporter,
MCT) (Cardone et al. 2005).

Aerobic glycolysis, or Warburg effect

In the presence of oxygen, under aerobic conditions, normal cells process glucose first to
pyruvate via glycolysis in the cytosol and then to carbon dioxide in the mitochondria;
under anaerobic conditions, glycolysis is favored, with relatively little amount of pyruvate
produced, in favor of larger amounts of lactate (Hanahan and Weinberg 2011).

Otto Warburg in the 1920s documented an anomalous characteristic of cancer cell energy
metabolism (Warburg 1925): even in the presence of oxygen, cancer cells displayed a high
rate of glycolysis, leading to massive secretion of lactate and acidification of the tumor
environment, a phenomenon that has been termed the “Warburg effect” or “aerobic

glycolysis”.

Even though it’s not quite clear why cancer cells base their energy metabolism on
glycolysis, given the low efficiency of this pathway compared to normal mitochondrial
one (18-fold lower efficiency), altered energy metabolism proved to be as widespread in

cancer cells as other traits accepted as hallmarks of cancer (Hanahan and Weinberg 2011).

The upregulation of glucose transporter GLUT1, and the consequent avidity of cancer
cells for glucose is a phenomenon associated with aerobic glycolysis and already exploited
in the clinical settings. ®F-fluorodeoxyglucose Positron-Emission Tomography (FDG-
PET) measures glucose uptake and is currently the gold standard for metastasis detection
in virtually all solid tumors, proving that metabolism is a robust and transversal base for

cancer diagnostics (Juweid and Cheson 2006).

Extracellular pH measurement - compartmentalization

The method described in this thesis aims at detecting CTCs based on their described
aberrant metabolism: acidification of the extracellular medium and Warburg effect have
been known for over 50 years, but they have never been used to detect CTCs, as such cells
are so rare that they do not noticeably alter the pH or lactate levels in a sample of blood.

By enclosing each cell in a volume so little that is altered by the low amount of protons

secreted by the single cell though, this in principle would be possible.
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To achieve this, we split the macroscopic blood sample into picoliter aqueous droplets. In
order to measure pH robustly, monodisperse water-in-oil emulsions was produced with
microfluidics with established techniques (Chokkalingam et al. 2013; Mazutis et al.
2013a). In this way, we could measure the extracellular acidification (or lactate
concentration) of individual cells, trying to identify CTCs with these parameters.

The explained concept is illustrated in Figure 6.

,o+* Glucose

o* cTc <lac

*

."".‘ Lac- Lac H+
" : H+ H+

é pH(CTC) < pH(WBC, empty)

WBC

Figure 6 — the concept of compartmentalization — a cell suspension is divided in multiple um-
sized picoliter droplets. Thanks to the small volume, concentrations of secreted molecule
rapidly increase up to measurable level. Lactate and protons are symbolically shown

secreted only by the cancer cells, which can thus be detected by the assay.
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Materials and methods

Microfluidic circuit fabrication

25 pm thick layer of SU8-2025 was spun on silicon wafer, baked, exposed through
transparency mask, baked again and developed according to manufacturer instructions
(MicroChem corp.). Sylgard 184 (PDMS) prepolymer and crosslinking agent (Dow
Corning) were mixed at a mass ratio of 10:1 (w/w); a mixture was poured onto a master,
degassed and cured at 65°C for at least 2h. The replica was detached from master and
reservoirs were bored using a blunt hypodermic needle. A PDMS replica was washed in
soapy water and ethanol, and blow dried with nitrogen. A clean glass slide and a clean
PDMS replica were treated with oxygen plasma and bonded. The device was silanized
with 1% (Tridecafluoro-1,1,2,2-Tetrahydrooctyl)-1-Trichlorosilane (Sigma-Aldrich) in
FC-40 (3M), fluorinated oil, which was introduced into microfluidic channels (enough to
completely wet whole microfluidic network) and then the device was kept at 95°C for at
least 30 min. To fabricate a reservoir for an emulsified sample a brass cone (10 mm in dia.

and 5 mm tall; ~130 uL volume) was placed directly on silicon wafer and replicated

together with photolithographically defined features.

o ol

Figure 7A Picture of PDMS fabricated circuit. Sample is coming from A, oil is
coming from the B. Droplets are formed at the T-junction C, and naturally go to
the lower resistance arm D. When electrodes E are activated, droplets are deviated

into F arm.
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Figure 7B — Schematics of microfluidics ChipShop droplet generator circuit and connector.

Quotes are expressed in mm.

Since late 2015, microfluidics circuits and connectors have been purchased at
microfluidics ChipShop, with significant advantage on experimental quality. A sample

circuit architecture is shown in Figure 7B.

Cells

A549 cells (human lung carcinoma, Hubrecht lab), MDA-MB 231, MDA-MB 453, MDA-
MB 468 (breast cancer cell lines, Colombatti lab) TOV21G (Ovarian cancer cell lines,
Colombatti lab), HT-29 (Colorectal cancer cell line, Colombatti lab) were cultured in
DMEM (Dulbecco’s Modified Eagle Medium, a culture medium) + 10% Fetal Bovine
Serum + 1% Penicillin-Streptomycin, detached using 0.25% Trypsin-EDTA and re-

suspended in the incubation buffer.

White blood cells are obtained by lysing blood with Beckton-Dickinson or Miltenyi lysis
solution, according to manufacturer’s protocol. Cells are then spun down at 300g for 10

min, and resuspended in the incubation medium.

Droplet production

Monodisperse droplets are generated in chips with 20 um wide T-junction.Continuous
phase: 2% (w/w) surfactant (Krytox—Jeffamine—Krytox A—B—A triblock copolymer)
(Chokkalingam et al. 2013) in HFE-7500 (3M) Dispersed phase: cell suspension in HBSS
or Joklik’s modified EMEM (without Ca?* and Mg?*, to avoid cell adhesion), Optiprep
15%, pH-sensitive dye (2-8uM). Flowrates are set such as continuous phase flow is at least
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2 times higher than a flowrate of a dispersed phase; a typical flowrate for disperse phase
was 300 uL/h and 600 uL/h for continuous phase.

Lactate enzymatic assay

A three-channel architecture microfluidic circuit was used: one channel bringing the cell
suspension (dispersed phase), one bringing the reagents of lactate assay (Cell Technology,
Inc.) and one bringing continuous phase. Emulsification step was performed at 4°C to
slow down cell metabolism to avoid lactate contamination of the whole solution by cancer
cells. With this microfluidic device we could expose cells to the enzymes of the lactate
assay only after encapsulation in the micro-droplets, to avoid unspecific activation prior
the encapsulation. Images were taken after 15 min incubation at room temperature after

emulsification.

Widefield fluorescence imaging

Lactate assay, pHRodo green experiments: An inverted epifluorescence microscope
(Olympus 1X81) was equipped with xCite 120Q lamp (Lumen Dynamics Group Inc.),
resorufin and FITC filter sets (Semrock) and iXon 897 camera (Andor). An aliquot of
processed sample was pipetted on a microscope glass slide and covered with a cover slip

to prevent evaporation.

High throughput detection with SNARF-5F.

An inverted microscope (Olympus 1X70) was used to analyze flowing droplets one by
one. A laser (488 Argon-ion Cyonics) beam was expanded (2x) and focused down with a
cylindrical lens crossing orthogonally the microfluidic channel. The fluorescence signal of
excited SNARF-5F dye (Life Technologies) in droplets was collected with a 40x objective
(Olympus LUCPIlanFLN, 40x/0.60), split with dichroic filter (DLP555, Semrock) and
detected through bandpass filters (579/34 630/38) by Photo Multiplier Tubes (PMTS)
(H957-15, Hamamatsu). Signal went through a transimpedance amplifier with 1V/uA gain
and was detected by the acquisition system (National Instruments cR10-9024, analog

input module N19223) with a 10 psec scan rate. The acquisition system was driven by
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Figure 8 droplet crossing the excitation laser slit in the microfluidic circuit.

LABView custom software. The software detects all data-points of a droplet over a set
threshold and computes in real time averaged values; it also provides trigger pulse for
image capture on a camera. Liquids were pumped using neMESY'S (Cetoni) low-pressure

syringe pumps.

A549 guantitation

Cultured cells were washed with PBS, trypsinized and transferred into medium (typical
concentration 500,000 to 1000,000 cell/mL). Cells were spun down and resuspended in
Joklik’s modified EMEM (pH 7.4). If lower concentration of A549s was required, cell
suspension was diluted to ~ 1000 cell/mL in Joklik’s modified EMEM. 100 pL of sample
solution was obtained by mixing cell suspension, SNARF-5F stock (2 mM) and in Joklik’s
modified EMEM. Fraction of obtained solution was used to verify A549 concentration in
counting chamber. 1 to 2M cell/ml suspension of WBC in Joklik’s modified EMEM was
used to prepare samples of A549 with WBCs. Samples were emulsified at flowrate of 300
pL/h (600 pL/h for oil), collected in cone reservoir and incubated for 20 minutes. Droplets
were reinjected from cone device directly into a readout device (50 to 100 pL/h for
droplets; 300 to 500 pL/h for spacer oil). Detected acid droplets were verified to be cancer

cells with images acquired for droplets with reduced pH.

CD45 immuno-magnetic depletion and/or staining

We followed manifacturer’s protocol for CD45+ depletion using Miltenyi human CD45
Microbeads, MidiMACS™ Separator, MultiStand and LD Column.

CDA45 staining protocol: Anti-CD45 antibody (Alexa 488 — conjugated) (Life
Technologies) was added 5uL/100uL of sample, incubated 20 min at 4°C and washed

(sample centrifuged 300g x 5 min and resuspended in incubation buffer)
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Patient protocol

2 mL of whole blood from metastatic cancer patients, taken with a venous puncture and
collected in EDTA tubes was lysed with BD lysis RBC lysis solution, depleted of CD45+
fraction with CD45 magnetic beads and LD columns (Miltenyi), CD45-Alexa488 stained
(BD — 4 °C incubation for 20 minutes) and resuspended in incubation medium and 15%
Optiprep for a final volume of 50-70uL. Washing steps are performed with centrifugations

at 300g x 5 minutes at room temperature.

Spike protocol

A549 cells were spiked into 1-2mL of whole blood from healthy donor and “patient
protocol” was followed. In some experiments, cells were pre-stained with Calcein Violet

AM (ThermoFischer) according to manifacturer’s protocol.

Labview software

Custom LabVIEW software has been implemented on a cR1O 9024 modular system.
Analog input module N19223. Digital 1/0 module N19401. Each voltage channel is
acquired simultaneously using N19223 Analog input module. Scan rate is adjustable,
starting from one acquisition every 5 usec. A threshold value is set so that all fluorescence
below threshold value is ignored. For each droplet, all data-points are averaged and
number of data points, average value and peak value of channel is computed in real-time.

Triggering conditions as set by the user activate camera and electrodes for cell isolation.

28



Results

Cell occupancy in droplets

By generating water in oil emulsion droplets from a cell suspension, the number of cells in
each droplet depends on cell concentration and droplet size, following a Poisson
distribution. For a droplet of approximately 40 um diameter, most droplets contain a single
cell, as shown in Figure 9. A row of new-generated drops, most of which empty and with
one drop showing single cell encapsulation is shown in Figure 10.
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# of cells in a droplet
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Figure 9 Distribution of cell occupancy in droplets. Distributions shown for emulsification of
1 000 000 cell/mL (A) and 5 000 000 cell/mL (B) in 35pL drops. By far the majority of

droplets are empty, and more than 90% of droplets containing cells have only 1 cell per
droplet.

Figure 10 A single MDA-MB 231 encapsulated in a 50um diameter droplet.
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Detection of lactate secretion via lactate enzymatic assay

The concept of CTC detection is represented in Figure 11, showing how
compartmentalization in droplets from a usual undivided sample enables cell secretion
measurements for each individual cell, thanks to a rapid increase in concentration due to
small droplet volume. The drawing shows lactate and proton symbolically secreted only
by the cancer cell. The results shown constitute the proof of concept that cancer cells can
be discriminated by their abnormal lactate secretion. In this particular case, cancer cells
are bigger because they come from a big-size cancer cell line, and thus easily identified
with respect to smaller white blood cells. Only cancer cells display increase in
fluorescence, quantified in the dot plot. Averages from different droplets populations are

averaged in Figure 12.
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Figure 11 (A) CTC detection based on Warburg effect using compartmentalization in
microdroplets. (B) Production of lactate by A549 cell in droplets. Only A549 containing
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droplets (large cells) show increase in fluorescence. Please note that even clusters of white
blood cells do not reach the level of lactate generated by A549, suggesting high specificity of
the method. The picture has been brightness/contrast enhanced for clarity. (C) Dot plot is
instead measuring raw picture average intensity per droplet, clearly showing two distinct
populations: the red one formed by the cancer cells above a baseline formed by empty

droplets and white blood cells containing droplets, showing the same values than empty ones.

Average lactate fluorescence
25

P <0.001

15

1
oo Figure 12 Averaged values of Figure
. 11C. A549 average is significantly

Empty drops WBCs A549 higher than other populations.

Normalized fluorescence (A.U.) (bars=SD) =

Detection of medium acidification via pHRodo Green

In order to detect measure pH, we used pHRodo Green, which is a pH-sensitive dye that
increases its fluorescence while pH value decreases.

A sample of A549s (and WBCs in a separate experiment) was resuspend in Joklik’s
modified EMEM; pHRodo Green was added to yield 5 uM final concentration and
obtained mixture was emulsified and incubated at 37°C for 30 min. Comparison of empty
droplets and droplets containing tumor or WBCs is shown in Figure 13. Results were
consistent with the experiment with lactate secretion: cancer cells showed a significantly
higher average acidity compared to both empty droplets and white blood cells, which in

turn show values comparable to empty droplets.

31



Fluorescence intensity (a.u.)

1500
2500 -
2000
1000
1500
1000 5004
500
0 - 0-
A549 Empty drops PBMC's Empty drops
- 1300 -
3000 . e A9 e PBMCs
o 1200
® m  Empty droplets . ® emply droplets
2000 {# 11004 L
] n L]
. = g N
[ ]
1000 (] 9004 -
’ w "
. 800+ -
0 i . ] ] i . 700

Figure 13 Detection of pH. pHrodo Green dye was used to indicate pH changes. Results are
comparable to lactate assay and confirm the difference between cancer cells and white blood
cells. Both averages and scatter plot are reported. The difference between A549 and empty

drop is statistically significant with P < 0.01.

SNARF-5F calibration

pHRodo green dye was not suitable for high-precision measurement of pH, its detection
being sensitive to dye concentration and possible differences in detection pathway or
excitation conditions. In order to detect pH changes with higher accuracy, we changed it
with SNARF-5F, a fluorescent pH-sensitive ratiometric dye with two emission peaks, at
580nm and 630nm. With lowering of the pH, the ratio between 580nm and 630nm

emission peaks increases., as shown in Figure 14.

SNARF-5F ratiometric measurement is independent from dye concentration, light source
variation and electrical noise, because it always has the internal reference of itself. We
monitored SNARF-5F in the prototype system described in materials and methods, being
comparable to a customized cytofluorimeter in which droplets, instead of cells, are
flowing and detected. To calibrate the system, we prepared a set of solutions of Joklik’s
modified EMEM titrated to various pHs between 7.4 and 5. These solutions were

emulsified and pH values (emission ratio) of obtained droplets detected similarly to A549
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samples. Raw track examples can be found in Figure 14B, showing how the gap between
red and blue track increases with pH decrease. Raw data appear in Table 1 and curve
fitting in Figure 14C. We obtained a coefficient of variation (Standard deviation/average)
close to 1% for 300.000 measurements, confirming the precision of the combination of

this ratiometric dye with our system.

Figure 14 Fluorescence emission spectra of
SNARF-4F 5-(and 6-)carboxylic acid showing the
pH-dependent spectral shift that is characteristic
of this and other SNARF pH indicators. (Anon
n.d.)
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Figure 14B Red and blue tracks are respectively 580nm and 630nm fluorescence channels.

With lowering of the pH, 580/630nm ratio increases.
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Figure 14C Calibration of SNARF-5F response. Ratio between fluorescence intensity at 580
nm and intensity at 630 nm. Standard deviation is smaller than dot shown and was not

clearly visible.

pH Ratio SD Range N CV (%)
average
7.4 1.07 0.015 0.13 46000 1.40
7.05 1.47 0.0187 0.156 111000 1.27
6.7 2.02 0.026 0.219 119000 1.29
6.2 2.79 0.03 0.223 70000 1.08
5.7 3.68 0.0378 0.316 315000 1.03
5.1 4.15 0.0424 0.344 316000 1.02

Table 1 — Raw parameters of calibration. Please note relatively low Coefficient of

Variation (Standard deviation/average).
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Extracellular acidification, evaluation of various cell lines

After calibration, we tested our system with cancer cell lines, in the same method
described above for pHRodo Green. The results were consistent, and with much higher
throughput and number of droplet evaluated in short time (1000 drops/second). We tested
several cell lines, obtaining comparable results: all cell lines showed an acid population
raising above empty droplet baseline (horizontal distribution at the bottom). We tested cell
lines from breast cancer (MDA-MB-231, MDA-MB-453, MCF-7), colorectal cancer (HT-
29, TN420), ovarian cancer (TOV21G), lung cancer (A549), and glioblastoma — brain
cancer (U231).

MDA-MB-231 MDA-MB-453 MCF -7
Triple negative breast Breast cancer Breast cancer
Ratio 580/630 cancer

HT-29 TOV21G White blood cells
Colorectal adenocarcinoma Ovarian
Ratio 580/630 adenqcarcinoma/clear cell

Droplet number Droplet number Droplet number

Figure 15 Dot plots obtained analyzing several cancer cell lines with the prototype and
SNARF-5F. Y-axis Ratio (Acidity), X-axis (droplet width — to obtain a two —dimensional
distribution). WBC dot plot is given for comparison in bottom right corner. Please note the
ubiquitous presence in cancer cell lines of an acid population raising above empty droplet
baseline (horizontal distribution at the bottom). White blood cells do not show this

population.
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White blood cells dot plot is shown in the bottom right corner as negative
control, lacking acid population. The cell lines tested were notable both EpCAM(+) and
(-), with several degrees of epithelial and mesenchymal phenotype, demonstrating the

transversal validity of the method, Figure 15.

Evaluation of proton secretion dynamics

We evaluated how the above shown acid population was affected by incubation time. All
samples were processed similarly to protocol described above. After droplet generation,
the same sample was measured at different incubation time, ranging from less than 2
minutes to 90 minutes. The cancer population showed higher values of average acidity
with higher incubation times, reaching a plateau phase after 10 minutes, as shown in
Figure 16A.
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Figure 16A (Top panels) Dot plots showing a population of droplets becoming increasingly
acid over time. (Bottom panel) The fraction of droplets reaching a threshold value (>1 —

green trace; >1.5 — red trace) increases with time, reaching a plateau phase after 10 min.
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We repeated the same experiment using white blood cells instead of cancer cells. WBCs
didn’t show such an increase in acidity. We can observe a slight emergence of a
population from baseline at 25 min, suggesting WBCs do acidify the droplet, but a much

slower rate, Figure 16B.
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Figure 16B WBCs tested for different incubation times. Panels are showing from left to
right <2 min, 5 min, 10 min and 25 min of incubation. The acidic population is not
comparable to cancer cells. There is a slight emergence of a population from baseline at

25 min, suggesting WBCs do acidify the droplet, but a much slower rate

Confirmation of positive events by antibody labeling and pictures

To confirm true positivity of observed acid events, we followed several different
strategies. We stained MCF-7 EpCAM(+) cancer cells with EpCAM and verified the
correlation of low pH and EpCAM (+), as shown in Figure 17. Dot plots are visible in
Figure 18. This technique enabled a precise quantification of sensitivity and specificity,
because we could see also if cancer droplets overlapped with baseline values. Frequency
distribution of pH at different incubation time of cancer cells vs WBCs is shown in Figure
18. At 30 minutes of incubation, we measure a sensitivity of 60% and a specificity of
99.99%.

During the experiments, we observed some acid dots even in white blood cells samples.
Sometimes raw tracks showed a strange pattern, and we wanted to verify the true cellular
nature of these events. We implemented a triggered camera set to capture images of acidic
droplets. In this way we could discriminate between artifacts/junk Figure 20A and true

events in Figure 19.
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Figure 17 Raw track showing co-presence of antibody labeling and acidification of the droplet
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Figure 18 — Dot plots showing EpCAM labeling on X Axis and acidity on Y axis. The
EpCAM(+) population is clearly distinguishable and becomes increasingly acid with time.
Please note that an EpCAM(-) population can be observed even in MCF-7 EpCAM(+) cell

line, proving the lower sensitivity of antibody labeling compared to our method.
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Figure 19 Frequency distribution of WBCs and MCF-7. The red line shows an arbitrary
threshold over which we reached 60% sensitivity with 99.99% specificity.

Figure 20A Triggered camera captured picture of acidic events revealing artifacts. Since
our project addresses a rare cell problem, specificity is key, thus it is mandatory to verify

false positives.

Figure 20B True events, showing clearly cells contained in droplets. Please note that doublets

and clusters can also be detected.
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Picture characterization

The implementation of camera revealed that sometimes a doublet or a cluster was enclosed
in a droplet. We measured differences in acidity in these groups, showed in Figure 21. We
observed that more cells produced more acid, and more importantly that single cells
distribution suggested the existence of multiple subpopulations, which according to us

would be worth to investigate further.

CAL 127, HBSS, 70umx70um channel, 25 min
50

20 Lower pH

20

Frequency (%)
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12 13 14 15 16 17 18 19 2 21 22 23
-10
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NO Of—l CEll P CElE  —3 ar more cels

Figure 21 Frequency distribution of acidity measured
separately for single-cells, doublets or triplets and clusters.
The average acidity is increasing with the number of cancer

cells enclosed. Please note that single cell frequency

distribution has a two peaks distribution, suggestina cellular
heterogeneity inside the population, maybe due to cell cycle

differences or other reasons.

Spike experiment — ex vivo model

In order to simulate ex vivo real patient samples, we spiked known numbers of cancer
cells in blood samples from healthy donors. We pre-stained spiked cells with Calcein

Violet AM, which is a dye staining only viable cells, in order to distinguish them from
WBCs — Figure 22. We could thus demonstrate that by gating for acidity we retrieved

mostly cancer cells.
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Figure 22 Dot plots of pre-stained FaDu spiked 1:50 in WBCs suspension from lysed blood.
421nm X-Axis displays Calcein Violet AM. Top-right quadrant contains Acid-producing
cancer cells. Please note: bottom-right quadrant overestimate false negatives. We checked
them by picture and they are mostly true negative, being empty droplets. Thus, the
sensitivity of the method is over 90%. Top-left quadrant indicates false positives. They are

mostly empty droplets. Sometimes, white blood cells cluster might reach those values.

We tried to go lower and lower with number of spiked cells. We could detect cancer cells
averaging 60% recovery efficiency, with a good correlation between numbers of cells
spiked and recovered, Figure 23.
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Figure 23 Correlation between numbers of cells spiked and numbers of cells recovered.
Black dots indicate cancer cells alone, while white dots indicate cancer cells mixed with

WABCs. In the right section of the picture fraction detected by the analysis.
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Figure 24 shows a nice example of how, by fine-tuning incubation time, three distinct

populations can be observed (empty droplets, white blood cells and cancer cells). Those
three populations corresponded to cell concentration spiked. We verified positive values
with picture, shown below the figure. Every dot over the threshold shown in the dot plot

correspond to a picture of a cancer cell.

1 - Ratio/EpCAM Droplets E

2.2+ : Y pH 6.4

2|

Cancer cells

pH 7.0

I White blood cells
— Empty drops

Cancer cells

Figure 24 Dot plot of a spike experiment. Three distinct population can be observed: empty
droplets, white blood cells and cancer cells, respectively with 7.4, 7.3 and 6.7 pH median.
Picture of acid events demonstrated cancer cells present inside. Droplet detected is always in

the same position, which is the drop right at the left of the bright laser slit.

As said above, we observed a partial recovery of spiked cells. Please note that this is not
due to low sensitivity of the assay, as demonstrated by Calcein Violet AM and EpCAM
experiments, but to low efficiency of encapsulation and cell loss in circuitry.

In order to cross-check this aspects, we took random pictures of generated droplets and

counted the actual cells present in it compared to the original value of cell suspension.

With 50.000 cells/mL for example, we observed 20% of cells actually going into droplets.
In spiked experiments though, spike recovery was measured at 60%. We speculate that,
given much higher amount of WBCs than cancer cells, statistically the loss of WBCs was

higher with respect to rare spiked cells.
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Patients samples — Depleted

We analyzed blood samples from metastatic cancer patients, after red blood cells lysis,
CD45 positive cells magnetic depletion and CD45 immunostaining. Healthy donors
showed essentially no CD45(-) acid(+) population (only 1 doubt event in 1 donor over 4).
The patients instead (4 patients — 2 lung, colorectal and breast cancer) displayed a variable
number of CD45(-)acid(+) population of drops (Table 2). Drops in patients showed a pH
value comparable to the positive control (spikes with cancer cell lines) — Figure 25. The
number of cells detected in patients was in the range of 2-16/mL, thus consistent with
known concentrations of CTCs. Please note that patients selected were highly metastatic,
in order to maximize CTCs number. We did not confirmed that positive events were
CTCs, so the exact number might be confused by the presence of false positives, and will
be discussed in the discussion section. The presented results are the cleanest in a much
larger dataset of experiments performed (N>20). Unfortunately, the majority of
experiments was aborted or gave messy readouts due to clogging of microfluidics and
breaking of droplets. For this reason, we consider these data as highly preliminar and to be
confirmed with a dedicated industrial-level device overcoming existing limitations in

microfluidics, as discussed in the discussion section.

CDA45(-)Acid(+) | Cancer | Healthy | 1apje 3 The table reports patient statistics

cells/10%drops patient | donor | compared to healthy donors. Data are obtained
with the “patient protocol” explained in the
Lung 9 0 )
methods section. Data reported show CD45(-)
Lung 20 1 Acid(+) cells number normalized for 10°drops,

corresponding approximately to the total 50uL

Breast 32 0 sample (2mL whole blood). Number of droplets
measured range from 700.000 to 1.500.000.

Pancreas 5 0
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Figure 25 Healthy donor vs spike vs colorectal cancer patient. Plots are showing the CD45(-)
population, after magnetic depletion and immunostaining. We excluded all droplets showing
CD45 positivity. Please note that in the patient there is a population of drops ranging pH

values comparable with the cancer cell line spiked in the positive control.

In patients, the size of CD45(-)/acid(+) cells sometimes was not compatible with white
blood cells. We also performed experiments labeling with EpCAM and noticed one case
of EpCAM positive cell in a breast cancer patient. These experiments did not have the

CD45 possibility of control, so we do not know whether it was an unspecific labeling.

44



R PN

xl SNAREGF 832 o

—| A

l
s 0 , =5

T

7 34B8E407 7 JAEISIE'C 7 JCES‘EOC 7 ]lﬂéli *Q7 ]4BS4E «07 JQBSSE

\/ \#
1 1;’ \/ u

o

Figure 26 Picture A is showing a positive droplet from a metastatic lung cancer patient,
including a big cell with a size not compatible with a white blood cell. Picture B is showing a
positive droplet from a metastatic breast cancer patient, with raw track showing EpCAM

positivity and high acidity. Several cells are detected in the droplet.

Patient samples - Undepleted

By depleting sample spiked with low number of cells, we observed that we couldn’t detect
cells anymore, most likely due to high number of passages for magnetic staining,
depletions, and washings. For this reason, we decided to avoid the depletion passage in
order to avoid underestimation of CTCs. Our throughput, though didn’t allow us to

process undepleted lysed blood samples quickly enough.

For this reason, we tried to increase flow rates by purchasing polymer devices with Luer
connectors, as described in materials and methods section. We managed to increase flow-
rates of 4 to 8-fold, as shown in table 3. The total experimental duration with these flow-

rates would have been 3 hours for a sample of 2 mL (including 30 minutes RBC lysis).
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Emulsification Reinjection step
step
Old 30x22um circuit 500uL/hour 500uL/hour
New 35x48um circuit | 2mL/hour 2mL/hour
New 70x70um circuit | 4mL/hour 2mL/hour

Table 3 — Max flow rates achieved with polymer circuits.

Unfortunately, by processing lysed blood, the higher number of cells induces the
formation of a lot of clusters, and a consequent increase in false positives, leading to a

messy readout.

Between both depleted and undepleted samples, we tested many patients and controls (20

to 30), but frequent problems in microfluidics led to inconclusive results.

We concluded that our technology is not ready to collect clinical data without

improvements discussed in the next section.

Epithelial vs Mesenchymal phenotype

After founding out that the device was unable to collect clinical data efficiently, we
focused on measuring if there was a quantitative difference in acid production between
epithelial and mesenchymal phenotype. We selected MCF-7 as an emblematic epithelial
phenotype and MDA-MB-231 as a more mesenchymal, invasive phenotype. Notably,
MCEF-7 is a tumorigenic, low glycolysis cell line, while MDA-MB-231 is a metastatic,
heavily glycolytic cell line (Hart et al. 2015).
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Our results indicate that MDA-MB-231 are acidifying more extensively the droplets, as

shown in Figure 27.
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Figure 27 — Cumulative frequency of droplets. Two replicates per cell line, showing high

coherence between replicates and a significative difference between MCF-7 and MDA231.

MDA-MB-231 proved to be consistently acidifying droplets at a higher degree both at 30

minutes and 60 minutes of incubation, with two averaged replicates shown in Figure 28.
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Figure 28 — Single-cell containing droplet with MDA-MB-231 vs MCF-7 at 30 and 60
minutes of incubation. Please note that MDA-MB-231 show a higher degree of acidification

even at 30 minutes compared to MCF-7 at 60 minutes.

Interestingly, the same pattern appeared consistently also considering droplets containing
two cells — Figure 29 — even though in absolute terms doublets (triplets and clusters) were
more acid than singlets — Figure 30 — similarly to results shown before.

Doublets MDA231 vs MCF7
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Figure 29 — Droplet containing two cells (doublets) were measured one by one thanks to

camera implementation, and their frequency displayed the same pattern of single cells.

48



MCF7 30 min

-

(5]

o
1

— MCF-7 30 min

— doublets MCF-7 30 min
triplets MCF-7 30 min

= more MCF-7 30 min

-

(=]

o
1

[%)]
o
1

o

2 3 4
Ratio

Relative frequency (percentages)

o
-

Figure 30 — MCF-7 singlets, doublets, triplets and clusters frequency distribution. As

similarly shown before, acidification is proportional to number of cells.

These results suggest that the sensitivity of our method increases with more aggressive and
metastatic phenotypes. This fits particularly well our task, which is of finding metastatic
cells in the blood — CTCs.
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Discussion

Our method has several advantages over state of the art, but experimental practice induces
us to admit it is still crippled by some technical limitations. We will discuss these points,
together with future steps needed to achieve clinical validation, and which impact might in

the end this project have.

Advantages

Transversal validity

The method has been confirmed for all tested cancer cell lines, covering epithelial and
mesenchymal phenotypes, showing transversal validity. This ensures a good sensitivity
and a broad range of applications not limited by epithelial phenotype or a priori

knowledge of protein biomarkers.

Metabolism already used in the clinic

Cancer peculiar metabolic properties are already recognized and of widespread use in the
clinical routine: cancer avidity for glucose is exploited in positron-emission tomography
scan (PET-scan, Schrevens et al. 2004). Since our method is based on a strongly correlated
metabolic effect, it’s brought closer to the clinic than the other physical properties-based
methods — which need to demonstrate their clinical relevance and be accepted by the —

usually conservative — clinical world.

Low-cost

The method has lower-cost reagents (Oil, medium, pH-sensitive dye) compared to
monoclonal antibodies. In some of our experiment we used antibodies, but this was
required to deplete sample volume, being the lab setting unable to process big volumes of
sample. With an eventual industrial parallelization of circuitry in order to increase flow-
rates, the method won’t require any antibody labeling, and could process tens of mL of

blood quickly enough for a routine laboratory practice.

Automated counting
The majority of emerging methods for CTCs detection doesn’t provide automated
counting, but only enrichment (size-based filters, CTC-iCHIP, spiral channel). Counting is

then performed by immunostaining. Epic sciences apparently provides a semi-automated
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counting system, but always based on massive immunostaining. Our system allows semi-
automated counting, and is at this stage comparable with CellSearch architecture,

requiring picture verification by human eye.

Viable cell isolation

Our system can provide viable cell isolation. Cells are label-free, untouched and alive in
their own medium. They are exposed to less shear-stress compared to size-based filtration,
and to comparable stress of other emergent technologies. Although our system for CTC
isolation is not stable enough for such a rare cell problem, the proof of concept that
dielectrophoretic isolation of droplets is possible is widely present in literature (Mazutis et
al. 2013a; Sciambi and Abate 2014; Shields, Reyes, and Lopez 2015).

Limitations and future steps

Confirmation of CTCs nature.

Although we have demonstrated that our method is capable of detecting cancer cells from
a cell line in a white blood cells mix, and the pattern detected in patients is comparable to
the one of the cell lines, two points are still not confirmed. If detected droplets are actually
containing CTCs, and if the number of CTCs detected is clinically meaningful. In order to
do this, droplet isolation would be essential. After isolating detected cells, they could
either be matched with current definition for CTCs (immunostaining for e.g.: DAPI,
EpCAM, CK, CD45) or be revealed as neoplastic by detecting known mutations present in
primary cancer. Since complex tumor genome can be inferred by CTCs (Heitzer et al.
2013), the detection of cancer-specific mutations (e.g.: estrogen receptor in breast cancer)
would be confirmative even if absent in the primary tumor, because of intrinsic limits of
solid biopsies, overlooking disease progression and tumor heterogeneity (Diaz and
Bardelli 2014).

Microfluidics

The main limitation we met in our study has been in microfluidics. In order to provide a

reliable CTC counting, we identified technical issue that need to be addressed.

Cells encapsulated as first and as last undergo different incubation times, and at the same
time, droplet measured as first and as last, undergo different incubation times. Although

statistically the difference is balanced because encapsulation and measurements steps are
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independent and droplet are mixed in between, implementing a method to keep produced
droplet at constant 4°C temperature would stop metabolism and enhance the quality of the
experiment. Keeping both syringes and tubing at 4°C would also have the advantage of

reducing cell adhesion and possibly reduce cell loss in syringe and tubing.

Tubing seems to be the main cause of cells loss and clumping, resulting in low yield of
encapsulation, obstruction of circuits and false positive generation. Shorter tubing might
help, as well as smaller diameter, causing cells to move faster, and with higher pressure.
Personally, I think that a method to completely get rid of tubing by directly connecting the

syringe with the circuit would be the best option.

Circuit obstruction seems to be a very frequent problem in microfluidics. Despite our
attempts to obtain a clean sample by strainers and filters, frequently experiments are
burdened by clogging of the circuit. Thus, additional filtering steps are needed and parallel
circuitry would be probably solving the problem, because even if a circuit would be

clogged, the flow would be redirected to other circuits, not affecting the overall results.

Our system demonstrated to be able to detect cell clusters, which is an advantage as other
important papers claim (Aceto 2014). There is the open question, though, whether the

clusters we see are real clusters or are due to cell clumping in the tube/syringe.

There would also be the necessity of increasing the throughput of our system. Although
our throughput is acceptable in terms of lab tests, in order to process larger volumes of
blood and shorten the execution time for the assay, an increase of 4-5 folds would be
needed. Currently, CellSearch® sample volume is of 7.5 mL and this increase in
throughput would lead to processing time for a similar sample of 1-2 hours, compatibly
with diagnostic procedures. According to our opinion, this would be most likely
achievable by simple parallelization of circuitry. High-pressure, screwed connections
might also benefit, because they would allow for higher flow-rates without possible

spillovers.

In order to stabilize the whole system for diagnostic procedures, our opinion is that a
closed reservoir to collect droplets inside the circuits would be desirable. Right now
droplets are collected inside an external reservoir, which expose them to air and dust,

increasing the risk for droplet evaporation and circuit clogging.
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Our experience with cell sorting was somewhat oscillating. Although we have enough data
to support the hypothesis of our sorting mechanism, the stability and robustness of sorting
is insufficient. We are trying to redesign sorting circuit according to apparently successful
papers (Mazutis et al. 2013b), but we cannot conclude that the technology is ready to work
without interruptions for the whole duration of the assay. While our sorting technique
works for positive sorted droplets, its main problem is that empty or negative droplets
stochastically go into sorted channels, leading to downstream contamination and reduction
of isolation purity.

The main problem which hampered our biological verification of detected putative CTCs
is that sorted droplets are not trivial to collect and stain.

Potentially, we could use microfluidics for generation of droplets only, leaving detection
and sorting to more stable devices. We are working to implement a method to screen
generated droplets with FACS (Fluorescence Activated Cell Sorters) — in order to do that,
either we need to adapt an existing FACS device to run with oil and droplets, or we need
to produce double emulsions, which are soluble and can run into standard FACS (Bernath
et al. 2004; Zinchenko et al. 2014). Commercial chips for the production of double
emulsion are already available, for example at Microfluidic ChipShop or Dolomite, and
should ease the management of this step.

Specificity

Since CTC detection is a rare cell problem, even the smallest amount of false positive
could make the assay inconclusive. We observed artifacts and cell clustering identified as
acid events, but these should be easily excluded by electronic filtering or automated image
processing. In some of our experiments, we detected rare cells showing acidification of the
droplet in healthy controls. At the same time, we detected empty drops showing
acidification of their content. The reason behind it is unclear. This means that further work
is needed to clarify whether observed acid cells are truly acidifying the environment or
they are a random event corresponding to acid empty droplets. If they are a true event, that
nature of the cell would need to be investigated, to understand if there is a way to
discriminate it from actual CTCs or whether they might be clinically meaningful for other
pathological conditions. The causes of potential decrease of the specificity of the method

(e.g.: inflammations, infections) must also be investigated in dedicated clinical trials and a
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cut-off value must be established to discriminate between different pathological

conditions.

For these reasons, additional parameters to cross-correlate to correctly identify the real
CTC might be needed. This parameter could be for example EpCAM or CD45, leading to
a results where acid positivity is linked to antibody positivity to give a more complex and

possibly more robust readout.

Clinical meaning

While our technology might look promising, no clinical meaning is still associated with
our assay. This would be obtainable only with a dedicated clinical trial to assess sensitivity
and specificity of the method for given conditions. These initial trials are relatively simple
and can be performed quickly enough (2-3 months) once the technology has been
stabilized. More detailed trials, linking CTC level to overall survival or progression free
survival would require more time (3-5 years), although they could be simplified in first
instance for example by associating CTC level to imaging outcome, that is now correlating
with progression of disease, shortening required time to 6 months. Finally, most important
trials, assessing the clinical utility, might be more cumbersome: for example, they would
require randomized controlled architecture where we investigate the potential of the

method to predict the most appropriate therapy.

Impact

The impact of CTCs diagnostics does not have a uniform consensus in the scientific
community, especially in the clinical world. Despite rising evidence in CTCs evidence
(Joosse, Gorges, and Pantel 2015) and amount of CTC companies pursuing the objective
of delivering better CTCs devices, the clinical world is divided in supporters and
detractors, due to many potential advantages, but also unsolved questions and problems
(Hong and Zu 2013). Personally, we believe that the current unavailability of a low-cost,
standardized device robustly detecting CTCs is a critical factor in leaving questions

unsolved.

The current only FDA-approved device for CTCs testing, CellSearch®, is time-intense,

cost-prohibitive and above all operator-dependent, a big defect for a diagnostic device,
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leading to variability and lack of standardization of results (Miller et al. 2010; Tibbe,
Miller, and Terstappen 2007).

Needless to be said, if the technology is not ready to test CTCs, questions can’t be directly

addressed and solved.

For this reason, we think that if we manage to implement our method in a robust
diagnostic device, keeping the cost per analysis low enough, we would contribute to solve

current tangles.

We already described in the introduction the potential advantages of CTCs isolation for
the understanding of their biology and targeted therapy, so we focus here on CTCs
enumeration, which according to us is currently underestimated with respect to the above-

mentioned isolation.

In our personal view, we don’t think that CTCs enumeration will directly solve cancer
problem, but that, meeting diagnostic requirements of robustness and cost, it would be an
excellent tool to drive the clinicians in a series of decisions that nowadays is taken in the
dark — especially in therapy administration and follow-up. From the beginning of a
treatment up to the first evaluation with imaging, there are several weeks in which the
clinicians often don’t have a clue of what’s happening: biopsies are not repeatable due to
their invasive nature, imaging isn’t sensitive enough and current blood biomarkers often
are not specific enough to support protocol changes. CTCs enumeration instead, being a
specific blood-based assay, if kept at low cost could be used serially to monitor patients’
status on a weekly, or even more frequent basis. Thus, unseen oscillations in patients’
conditions might emerge, relapses and recurrences might be detected before current limits,
and progression of disease might be addressed by rapid changing or adjustment of therapy
protocols. Furthermore, differences in drug cocktails, doses, or administration methods
might emerge. For example, the effect of different administration regimes of the same
drug, metronomic vs standard chemotherapy (Gasparini 2001; Hanahan, Bergers, and

Bergsland 2000), could be better understood by time-resolved CTCs enumeration.
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Conclusion

In conclusion, we demonstrated that a single-cell metabolic analysis is possible and can
discriminate cancer cell lines from white blood cells. We implemented the method in a
semi-automated high-throughput prototype, paving the way to the first metabolism-based
platform for CTCs detection. We gave the proof of concept that the detection is possible in
cancer patients, although further confirmation of putative CTCs nature and their clinical
meaning still needs to be assessed. Although our results are very promising, the real CTC
detection potential and its clinical value must be rigorously confirmed, and in order to do

this the mentioned technical issues need to be solved.

During the course of our PhD we acquired skills in several fields of knowledge — physics
(optics, microfluidics), engineering (signal acquisition, signal processing), software
programming (prototype software, data analysis) — combining them with our previous
expertises — medicine, cellular biology — coherently with our idea of research and
development, and with the multidisciplinary character of our mentor prof. G. Scoles and
our PhD school.
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