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Chapter 1

Introduction

One of the most intriguing properties of quantum mechanics is the possibility of
establishing correlations between physical systems that have no classical counterpart,
the most peculiar ones being known under the name of entanglement. At first consid-
ered as a mere curiosity [1,2], entanglement has nowadays become a physical resource
allowing the realization of protocols and tasks in quantum information and quantum
technology not permitted by classical physics [3–5].
However, entanglement is a very fragile resource, and it can be rapidly spoiled by
the presence of an external environment. In general, any quantum system can hardly
be considered to be completely isolated: coupling to its surroundings is unavoidable
and, usually, this leads to decoherence effects and to the emergence of a classical
behaviour [6–13]. Indeed, although the dynamics of the total system, system plus
environment, is reversible, the time-evolution of the system alone, obtained by aver-
aging over the infinitely many, uncontrollable degrees of freedom of the environment,
turns out to be irreversible, rather complicated and hardly amenable to an analytic
treatment. Nevertheless, in many physical instances, the coupling between system and
environment can be considered to be weak; further, the system evolution usually occurs
on time scales much larger than the decaying time of correlations in the environment.
In such situations, very well met in many physical applications, the reduced dynam-
ics of the system alone can be given in terms of a quantum dynamical semigroup:
this is a collection (a one-parameter (=time) family of) linear maps on the set of sys-
tem’s states, composing only forward in time (semigroup property), with the additional
characteristic of being completely positive, property that guarantees consistency in all
physical situations. This framework, the so-called open quantum system paradigm, is
very general, and has been successfully used to describe environment induced decoher-
ence effects in atomic and molecular physics, quantum optics and condensed matter
models.
However, an environment not always degrades quantum coherence and entanglement:
in some situations, it may happen that it can enhance them through purely mixing
mechanisms. Indeed, it has been realized that, in certain circumstances, two indepen-
dent, non-interacting systems can become entangled by the action of a common bath
in which they are immersed [14–20]. In general, the obvious way of entangling two

1



2 1. Introduction

quantum systems is through a direct Hamiltonian coupling accounting for interaction
among them. A different possibility is, indeed, to put them in contact with a same
external environment; commonly, in these situations entanglement is still created by
an Hamiltonian coupling between the systems generated by the action of the bath. Re-
markably, it is possible to show that, even excluding any possible direct Hamiltonian
interaction, the presence of the bath induces a mixing-enhancing mechanism able to
actually generate quantum correlations among systems immersed within it.
So far, such an interesting possibility has been explored and ascertained in microscopic
systems, made of few qubits or oscillators [20–22]. In view of the recent developments
in optomechanics, spintronics and in the preparation and manipulation of trapped ul-
tracold gases, one may ask whether a similar mechanism may work also for “large”,
many-body systems.
At first sight this possibility seems rather remote: the larger a system becomes, the less
one is expecting quantum properties to be shown. This clearly holds for many-body
quantum systems, i.e. quantum systems composed by a large number N of elementary
constituents. In such systems, the study of single particle properties is impractical and
the only sensible information, that can usually be gathered, concerns the behaviour of
collective observables, i.e. observables involving all system degrees of freedom.
In general, such collective observables represent extensive properties of the system,
growing indefinitely with N . Collective observables need therefore to be normalized by
suitable powers of 1/N . Provided the system density N/V is kept fixed, V being the
system volume, these normalized observables become independent from the number N ,
allowing one to work in the so-called thermodynamic, large N limit.
Typical examples of collective observables are average observables, i.e. suitable means
of single particle quantities computed over all constituents, an example of which is the
mean magnetization in spin systems. Although single particle observables possess a
quantum character, average observables show in general a classical behaviour as the
number N of constituents increases, thus becoming so-called macroscopic observables.
The well-established theory of these average observables [23, 24] precisely describes
many-body systems at this macroscopic level.
Nevertheless, recently there have been studies reporting the observation of some sort of
quantum behaviour also in systems made of a large number of particles; typically, these
systems either involve Bose-Einstein condensates [25–27], namely thousands of ultra-
cold atoms trapped in optical lattices [28,29], or optomechanical systems [30] made of
micro-oscillators (cantilevers).
Clearly, macroscopic observables, being averages quantities, scaling as 1/N for large
N , can not be used to explain such a behaviour. Indeed, it turns out that the scaling
of these averages is too strong for them to retain quantum properties when N is large.
However, other kinds of collective observables have been introduced and studied in
many-body systems; in analogy with classical probability theory, they are called fluc-
tuations [31]. They still involve all the degrees of freedom of the system, but they
account for quantum deviations around the macroscopic average behaviour. They
scale as 1/

√
N and exhibit some quantum properties even in the large N limit. Being

half-way between the microscopic observables, namely those describing the behaviour
of single particles in the system, and the macroscopic averages, they are called meso-
scopic observables.
The set of fluctuation observables forms an algebra, that, irrespective of the nature of
the microscopic constituents, turns out to be non-classical, i.e. non-commutative, and
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always of bosonic character: it is at the elements of this algebra that one should look
in order to properly describe quantum features of large systems.
Although the properties and the time-evolution of the fluctuation operators algebra
have been studied in various physical models [31–33], very little is known of its be-
haviour in open many-body systems [34], i.e. in large systems in contact with an
external environment. As already mentioned, this is the most common situation en-
countered in actual experiments, where these systems can never be thought of as com-
pletely isolated from their thermal surroundings. Aim of this thesis is precisely to
give first a comprehensive analysis of the dissipative dynamics of many-body fluctua-
tion operators and then to study whether such open system time-evolutions are able
to generate quantum correlations through a purely mixing-enhancing mechanism. We
shall see that quite in general two non-interacting many-body systems, made of a collec-
tion of spin variables, and immersed in a common bath, can indeed become entangled
at the level of mesoscopic fluctuations solely because of the presence of mixing effects.
Even more strikingly, in certain situations, the created entanglement can persist for
asymptotically long times.
In more detail, the thesis is organized as follows:

• In Chapter 2, the basic mathematical tools for the description of many-body
quantum systems are briefly reviewed. They are based on the algebraic approach
to quantum mechanics, which represents the most general formulation of the
theory, valid for both finite and infinite dimensional systems. Furthermore, such
an approach is necessary for the definition and the study of collective observables.

• Chapter 3 focuses on the properties of collective many-body observables and in
particular on the algebraic structure generated by fluctuation operators. In many-
body systems characterized by short-range correlations, the large N limit leads to
fluctuation operators that are bosonic quantum degrees of freedom with Gaussian
characteristic function. Such a limiting behaviour can be shown by means of an
extension to the quantum setting of the classical central limit theorem [35].

• Chapter 4 is dedicated to the description of the dissipative dynamics of fluctuation
operators. A brief presentation of the theory of open quantum systems is first
given, assuming the coupling between system and environment to be weak. In
such situations, as already mentioned, physically motivated approximations lead
to reduced microscopic dynamics of the system that can be very well described
by a Markovian, i.e. memoryless, time evolution, generated by a master equation
in Kossakowski-Lindblad form. The dynamics is chosen in such a way to leave
the microscopic reference state of the system invariant and to map into itself the
linear span of relevant single-site observables. Under this condition, we show that
the emergent, large N mesoscopic dynamics for the bosonic fluctuations results
in a quantum dynamical semigroup of quasi-free type, thus preserving the initial
Gaussian character of the fluctuation algebra.

• In Chapter 5, this general result is applied to the study of the behaviour of a
many-body system composed by two, independent spin-1/2 chains, immersed in
a common thermal bath. The two chains are initially prepared in a microscopic
Gibbs state, with a separable, tensor product structure that excludes long-range
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correlations. The attention is then focused on a suitable set of single-site opera-
tors giving rise to quantum fluctuations that, in the large N limit, identify col-
lective bosonic degrees of freedom exclusively referring to either one or the other
of the two chains. Despite the lack of direct microscopic interactions among the
spins either in a same or in different chains, the dissipative dynamics due to the
presence of the bath is able to create mesoscopic collective entanglement between
the two many-body systems at the level of their fluctuation operators through a
purely noisy mechanism. Remarkably, in certain situations the created entangle-
ment can persist for asymptotic long times.
The behaviour of the created collective quantum correlations is then studied in
detail as a function of the bath temperature and other properties of the dissipative
dynamics. One then discovers that a sort of entanglement phase transition is at
work: a critical temperature can always be identified, above which entanglement
between mesoscopic observables can not be created.

The Appendices contain technical calculations and proofs that is not appropriate
to include in the main text.

Finally, we would like to point out that the obtained results are quite general and
independent from specific models. As such, they can find direct applications in all
instances where mesoscopic, coherent quantum behaviours are expected to emerge,
e.g. in experiments involving spin-like and optomechanical systems, or ultra-cold gases
trapped in optical lattices [25–27,36–38]: the possibility of entangling these many-body
systems through a purely mixing mechanism may reinforce their use for the actual
realization of quantum information and communication protocols [39–41].



Chapter 2

Mathematical Description of
Infinite Systems

Physics deals with reproducible phenomena that can be tested and verified through
experiments. Any experiment consists in two main procedures: the preparation of the
system under study in an initial state and the measurement of some of its properties
or observables. The statistical interpretation of the measurement stems from the pos-
sibility of preparing many times the system in the same state.
On the other hand, an observable of a system is a physical quantity identified by the
apparatus used for its measurement [42].
From experiments one obtains outcomes of measurement processes, consisting of real
finite numbers associated to the correspondent observables; it is the aim of physics to
provide a mathematical setting where these outcomes can be interpreted and predicted.

2.1 Algebraic Approach to Quantum Mechanics

Any physical system is characterized by a set of independent measurable quan-
tities; to each of these quantities one associates an element in an operator set. Its
spectrum consists of the possible outcomes of a measurement; thus, the operator has
to be self-adjoint in order to possess real eigenvalues. Using these abstract elements
one can construct, by means of products and linear combinations, an algebra A, whose
self-adjoint elements correspond to all possible measurable quantities.
The algebra A turns out to be a C∗-algebra; this means that it is a linear, associative
algebra (with unity) over the set of complex numbers C. Further, A is endowed with

an anti-linear involution ∗ : A → A, such that
(
a†
)†

= a, ∀a ∈ A. In addition, a norm

‖ · ‖ is defined on A, satisfying ‖ab‖ ≤ ‖a‖ ‖b‖, ∀ a, b ∈ A, such that
∥∥a†a∥∥ = ‖a‖2;

A is closed under this norm, i.e. A is a complete space with respect to the topology
induced by the norm.
The main difference between quantum and classical mechanics lies in the character of
this algebra: observables of a quantum system do not commute, meaning that during
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6 2. Mathematical Description of Infinite Systems

experiments the ordering of the different measures is relevant.
To connect the abstract elements of the algebra A to actual experiments, a mathemat-
ical representation of the physical state of the system is needed. Since the complete
information about the condition of a system lies in the knowledge of all moments and
correlation functions of its observables, it is natural to identify its physical state with
a linear functional on the algebra A. Of course, in order for these functionals to be
interpreted as states, they must obey some physical properties.

Definition 2.1. A quantum state is a functional ω : A → C, such that:

1) ω (a+ λb) = ω(a) + λω(b), ∀ a, b ∈ A, λ ∈ C ,
2) ω

(
a†a
)
≥ 0, ∀ a ∈ A ,

3) ω(1) = 1 .

The first condition represents linearity; the second one embodies the positivity
requirement: the expectation of any positive observable must be positive. The last
condition is the normalization requirement, which is needed to conform with the sta-
tistical interpretation of quantum mechanics.

Remark 2.1. The above definition of quantum states as positive linear normalized
functionals, reduces to the familiar one in terms of density operators, in the case of
finite dimensional quantum systems. In such cases, the set of all density matrices forms
the convex space of positive, unit trace operators on the system Hilbert space H:

S(H) = {ρ : H → H |Tr(ρ) = 1, ρ ≥ 0} .

Being hermitian the generic element of such space can always be written as follows:

S(H) 3 ρ =
∑
i

λi|ψi〉〈ψi|,

〈ψi|ψj〉 = δij, 0 ≤ λi ≤ 1, ∀i,
∑
i

λi = 1 .

Pure states are projectors, obtained when just one λi is equal to 1 all others being zero.
Within this formalism, expectation values over states are computed by means of the
trace operation:

〈o〉 = Tr(ρ o) , ∀ o ∈ A, ρ ∈ S(H) .

Therefore, the state ω of a finite-dimensional system can always be written as

ω(o) = Tr(ρ o) ,

and one can check that it obeys the rules of Definition 2.1.

The description of a quantum system as a C∗-algebra containing the observables
and a functional ω on this algebra, serving as state, is the minimal one, sufficient for
the description of any quantum system, finite or infinite dimensional. It further allows
a Hilbert space interpretation through the so-called GNS-construction.
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2.1.1 The GNS-construction

An important mathematical result, with wide application in many-body systems,
goes under the name of GNS-construction (Gelfand-Naimark-Segal) [43, 44]. It shows
that, given any C∗-algebra A together with a state ω, one can find a state dependent
triple (Hω, πω,Ψω), where Hω is a Hilbert space, πω a representation of the algebra
into linear bounded operators and Ψω is a cyclic vector for the Hilbert space Hω, such
that

ω(a) = 〈Ψω|πω(a)|Ψω〉 , ∀ a ∈ A .

This construction allows to pass from an algebra and a state, to the more familiar
description by means of Hilbert spaces and bounded operators [23,45–48].

Theorem 2.1. (GNS Construction) Let ω be a state over the C∗-algebra A. It
follows that there exists a cyclic representation (Hω, πω,Ψω) of A such that:

ω(a) = 〈Ψω|πω(a)|Ψω〉 , ∀ a ∈ A ,

consequently, ‖Ψω‖2 = 〈Ψω|Ψω〉 = 1. Moreover, the representation is unique up to
unitary equivalence.

The so constructed triple (Hω, πω,Ψω) provides the suited tools for the standard
description of quantum systems and makes it apparent that the notion of Hilbert space
associated to a quantum system is not a primary concept, but an emergent one.

Example 2.1. Consider a two-level system: it is described by the spin operator algebra
As = M2 (C), the algebra of 2 × 2 matrices; a basis of the algebra is provided by
the operator {sµ}3

µ=0, obeying the following commutation relations [sµ, sν ] = iεµνηsη,
µ, ν, η = 1, 2, 3, while [s0, sµ] = 0, and Tr(s2

µ) = 1
2
, ∀µ. Further, on this algebra let us

consider the functional such that:

ωβ(s1) = ωβ(s2) = 0, ωβ(s3) = −1

2
tanh

(
β

2

)
.

It is straightforward to show that one can represent this functional by means of a density
matrix, interpretable as a thermal state at inverse temperature β:

ωβ(·) = Tr(ρβ·) , (2.1)

ρβ =
e−βs3

2 cosh(β
2
)
. (2.2)

By purification [49] of the density operator1, one finds the following unit GNS-vector
|Ψωβ〉 ∈ C4:

|Ψωβ〉 = λ+(β)|+〉 ⊗ |+〉+ λ−(β)|−〉 ⊗ |−〉
1Given a d-dimensional quantum system, a generic density matrix ρ ∈ S

(
Cd
)

can be written as

(see Remark 2.1) ρ =
∑d
i=1 ri|i〉〈i| , with {|i〉}di=1, an orthonormal basis of Cd. The purified vector

|Ψ〉 related to ρ, in the enlarged Hilbert space Cd ⊗Cd, is of the form |Ψ〉 =
∑d
i=1

√
ri|i〉 ⊗ |i〉, and it

is such that
TrII (|Ψ〉〈Ψ|) = ρ ,

being TrII (·) the partial trace over the second copy of the Hilbert space Cd.
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with |±〉 eigenstates of s3, such that s3|±〉 = ±1
2
|±〉, and

λ+(β) =

√√√√ e−
β
2

2 cosh(β
2
)
, λ−(β) =

√√√√ e
β
2

2 cosh(β
2
)
.

Further, representing the algebra on C4 as πωβ(As) = M2 (C)⊗ 1, one can verify that:

ωβ(sµ) = 〈Ψωβ |
1

2
σµ ⊗ 1|Ψωβ〉 , ∀µ ∈ {0, 1, 2, 3},

with (1, σ1, σ2, σ3) the Pauli matrices. The GNS-Hilbert space Hωβ , is obtained complet-

ing the complex linear span formed by the vectors {|Ψµ〉}4
µ=1, with |Ψµ〉 = σµ⊗1|Ψωβ〉,

with respect to the vector norm ‖|Ψµ〉‖2 = 〈Ψµ|Ψµ〉.
This example is also useful to deduce some properties of representations; the commu-
tant of a representation π(A) : A → B(H) (where B(H) is the algebra of bounded linear
operators on H) is defined as the set [50]:

π′(A) =
{
b ∈ B(H)

∣∣[a, b] = 0, ∀ a ∈ π(A)
}
. (2.3)

In the example what one can see is that the commutant is isomorphic to the represen-
tation itself, indeed π′ωβ(As) = 1 ⊗M2 (C); an algebra with non-trivial commutant is
called reducible.
Nevertheless, one can check that the center [50], defined as the intersection of the
representation with its commutant

Z = πωβ(As) ∩ π′ωβ(As) =
{
α1⊗ 1

∣∣α ∈ C
}
,

consists of multiples of the identity. Such a representation is a reducible factor repre-
sentation.
It is interesting to consider the limiting case of zero temperature, so that β →∞; what
happens is that the GNS-vector becomes

lim
β→∞

|Ψωβ〉 = |−〉 ⊗ |−〉 ,

and there is no need of enlarging the Hilbert space up to C4. In this situation, with the
vector |Ψω∞〉 = |−〉 and the representation πω∞(As) = M2 (C), one is able to recover
all expectations

ω∞(sµ) = 〈Ψω∞|
1

2
σµ|Ψω∞〉 .

The state ω∞ is a pure state and the arising GNS representation πω∞ has a trivial
commutant, hence irreducible.

2.2 Disjoint Phases and Inequivalent Representa-

tions

We have seen that, given an algebra A and a state ω on it, one can construct
a cyclic representation of A, allowing for a fully physical description of the quantum



2. Mathematical Description of Infinite Systems 9

system. Varying the state, one obtains several representations; it turns out that in finite
dimensions all these representations are unitarily equivalent, in the sense of Theorem
2.1.
On the contrary, when the system is made of an infinite number of particles, this is in
general no longer true. Such a feature is not just a mathematical artefact, it reflects
specific physical conditions. Indeed, one has that the same infinite system can be found
in different inequivalent configurations corresponding to different physical phases. In
general, the physical configurations of a same system differ just for finite number of
operations that could be performed on the system, while others require an infinite
number of operations to be obtained one from the other, namely an infinite amount
of energy; experimentally, infinite amounts of energy are not accessible. The following
examples [50], clarify these points.

Example 2.2. Let us start with a system made by a number N of spin-1
2

particles; the
algebra of each of these particles is the same finite dimensional algebra As considered
before in Example 2.1, and to each particle is associated a Hilbert space C2.
The Hilbert space of the total system is constructed by means of the tensor product
structure

HN =
N⊗
k=1

(
C2
)(k)

, (2.4)

where k labels different spins. Taking two vectors, representing the situation in which
all particles are in the same state |ψ〉 or |ϕ〉,

|ψN〉 =
N⊗
k=1

|ψ(k)〉 ,

|ϕN〉 =
N⊗
k=1

|ϕ(k)〉, |ψ〉, |ϕ〉 ∈ C2, 0 < |〈ϕ|ψ〉| < 1 ,

the scalar product is defined multiplicatively:

〈ϕN |ψN〉 =
N∏
k=1

〈ϕ(k)|ψ(k)〉 = 〈ϕ|ψ〉N . (2.5)

As N increases, the scalar product becomes smaller and smaller, and it eventually goes
to zero in the limit of infinite number of particles, even if 〈ϕ|ψ〉 6= 0.
The scalar product on this infinite tensor product Hilbert space defines equivalence
classes of vectors belonging to the same phase of the system. Thus, the latter two
vectors become orthogonal and belong to different separable Hilbert spaces, describing
disjoint phases of the system.
In general, different equivalence classes cannot be unitarily equivalent. For instance,
on the single particle Hilbert space, one can always identify a one parameter rotation
Uα, U0 = 1, such that there exists an ᾱ, giving:

Uᾱ|ϕ〉 = |ψ〉 ;

thus, the operator UN
ᾱ =

⊗N
k=1 U

(k)
ᾱ rotates |ϕN〉 into |ψN〉; nevertheless, the formal

writing U∞ᾱ is meaningless, since such an operator would not even be a weakly contin-
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uous2 unitary operator in α; indeed, it is easy to check that

〈ϕ∞|U∞α |ϕ∞〉 =

{
1 if α = 0
0 whenever α 6= 0

.

By Stone theorem [50], the existence of a generator for such a rotation is equivalent to
the strong continuity (see Footnote 2) of U∞α , but such an operator is not even weakly
continuous in α, thus there is no generator (notice that strong continuity would imply
the weak one). Physically speaking, the experimentalist should be able to provide enough
energy to rotate all particles of the system from |ϕ〉 to |ψ〉, but this operation would
cost infinite energy; the two states are thus meaningfully interpreted as different phases
of the system.

Example 2.3. Let us consider again spin-1
2

particles; we show how in the infinite limit
inequivalent representations emerge.
We focus on the class of factorized, translation invariant states |n̄〉 with spins directed
along the direction n̄ for all, infinitely many particles; thus

|n̄〉 =
∞⊗
k=1

|n̄(k)〉, 〈n̄|s(k)
µ |n̄〉 = nµ .

Considering the C∗-algebra A containing all the observables of the systems (for a precise
definition, see below Section 2.3.1), by means of the GNS-construction, one can find
the triples (Hn̄, πn̄,Ψn̄), based on the states |n̄〉.
It is clear from equation (2.5), that 〈n̄|n̄′〉 = 0, whenever n̄ 6= n̄′; furthermore, no
local action can change the convergence of the latter scalar product; this means that,
∀ a ∈ A,

〈n̄|πn̄(a)|n̄′〉 = 0 .

With the help of a particular class of observables, which will be thoroughly investigated
in Section 3.1, we shall show that there exists no unitary operator relating the two
representations πn̄, πn̄′. Let us define the average magnetization along the α-axis

S̄Nα =
1

N

N∑
k=1

πn̄
(
s(k)
α

)
; (2.6)

in the limit N → ∞, this observable converges in the strong topology of the GNS-
representation to a multiple of the identity, proportional to the mean-value [23,31,50].
Such a type of convergence means that

lim
N→∞

〈n̄|πn̄
(
a†
) (
S̄Nα − nα1

)2
πn̄ (a) |n̄〉 = 0, ∀ a ∈ A , (2.7)

and is denoted as
s− lim

N→∞
S̄Nα = nα1 .

2Given a Hilbert space H, and an operator At depending on t ∈ R, acting on such Hilbert space,
the operator At is said to be weakly continuous if limt→t0〈φ| (At −At0) |χ〉 = 0, ∀χ, φ ∈ H. In other
words, an operator At is weakly continuous if all of its matrix elements are continuous functions of t.
Similarly, the operator At is said to be strongly continuous if limt→t0〈φ| (At −At0)

†
(At −At0) |φ〉 = 0,

∀φ ∈ H.
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If a unitary operator U mapping the two representations one into the other existed,
once applied to the averages, it would imply that

UnαU
−1 = n′α .

This is impossible since different scalars can not be mapped one into the other by a
unitary operator.
Thus, the two representations πn̄, πn̄′ are inequivalent.

2.3 Infinite Number of Distinguishable Particles

In this thesis, we shall deal with many-body systems composed by an infinite num-
ber of distinguishable particles, such that one is able to address each one of them
independently (e.g. lattice systems). We first discuss the proper definition of the
algebra A containing all the observables of the system and then its relevant states.

2.3.1 The quasi-local Algebra

It is assumed that each particle can be described by means of a same d-dimensional
C∗-algebra Ad, containing all relevant single-particle observables. Since one is able to
distinguish between different particles, the latter will be labelled by an integer number
k ∈ Z; in particular A(k)

d will denote the algebra relative to particle k. Referring to
different degrees of freedom, we have[

A(k)
d ,A(h)

d

]
= 0, ∀ k 6= h ∈ Z ; (2.8)

by means of the tensor product structure one can construct local algebras, including
just a finite number of particles. For instance, the algebra

A[q,p] =

p⊗
k=q

A(k)
d , q, p ∈ Z, q ≤ p , (2.9)

contains all operators of the set of particles from q to p. The family of local algebras{
A[q,p]

}
q≤p possesses the following properties [23]:[
A[q1,p1],A[q2,p2]

]
= 0 if [q1, p1] ∩ [q2, p2] = ∅ (2.10)

A[q1,p1] ⊆ A[q2,p2] if [q1, p1] ⊆ [q2, p2] (2.11)

The union of these algebras over all possible finite sets of particles, contains all the
observables of the system.

Definition 2.2. Microscopic observables are all the Hermitian elements of the C∗-
algebra A, defined as:

A =
⋃

∀ q≤p∈Z

A[q,p]

‖·‖
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where the notation means completion with respect to the norm topology. The algebra
A is called the quasi-local algebra.
Within this algebra one can write the operator a of the particle k in the following way:

a(k) = 1k−1] ⊗ a⊗ 1[k+1 ,

where 1k−1] is the tensor product of identities from −∞ to the particle k− 1, and 1[k+1

is the product of identities from the particle k + 1 to +∞. Clearly, a(k),∀ a ∈ Ad acts
non trivially only on the k-th particle.
Such an algebra, is naturally embedded with the translation automorphism τ : A → A,
acting on the operator a(k) of the particle k in the following way:

τ(a(k)) = a(k+1), ∀ a ∈ Ad, ∀ k ∈ Z .

Clearly, some operators in this quasi-local algebra A act non-trivially only on a
finite set of particles and can be named local ; to each of these local operators one can
associate a set, called support, providing a measure of the spreading of its action on
the infinite system.

Definition 2.3. An operator O ∈ A is said to be local, if there exists a set of intervals
of lattice sites [k, h], with k ≤ h ∈ Z, such that

[
O, x(j)

]
= 0, ∀x ∈ Ad, and ∀ j /∈ [k, h].

The length of such intervals [k, h] is given by ` ([k, h]) = h − k + 1, and the smallest
among all possible ones, according to such a length, is called the support of the operator
O.

Remark 2.2. The fact that, the quasi-local algebra A is the norm closure of the union
of all possible local algebras, has an important consequence in the approximation of
any given element a ∈ A. Indeed, it means that, ∀ε > 0 , there exists a strictly local
operator aε such that in the norm topology

‖aε − a‖ < ε ;

in other terms, the error considering a local observable aε instead of a ∈ A can be made
arbitrarily small. This means that the set of strictly local operators is dense in A.

Such an algebra possesses an interesting property that has also a relevant physical
meaning; given the very large number of particles, it is physically expected that mea-
surements of observables far away from each other become compatible.
It turns out that indeed such an algebra, possesses the strongest form of such a prop-
erty, usually called asymptotic abelianess [23,46].

Proposition 2.1. The quasi-local algebra A is norm asymptotic abelian, in the sense
that:

lim
|k|→∞

∥∥[τ k(a), b
]∥∥ = 0, ∀a, b ∈ A .

Proof. Let us consider two operators a, b ∈ A; because of Remark 2.2 above, ∀ε > 0
one has

‖a− aε‖ < ε ,

‖b− bε‖ < ε ,
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with aε, bε strictly local. Therefore∥∥[τ k(a), b
]∥∥ < 2ε (‖aε‖+ ‖b‖) +

∥∥[τ k(aε), bε]∥∥ ,
and for k large enough, the support of τ k(aε) does not intersect the one of bε, therefore
the two operators belong to disjoint local algebras, and the commutator, in the above
equation, becomes zero for the locality property (2.10). This means that the norm of
the commutator can be made arbitrarily small for k large.

2.3.2 Physically Relevant Representations

After having introduced the main properties of the algebra of the microscopic ob-
servables, one has to specify a reasonable class of physical states that can only be
dictated by actual experimental conditions.
Given a many-body system, it is then reasonable to require that observables related
to regions that are far away from each other show no correlations. By means of the
translation automorphism τ , this property can be expressed in the following way:

lim
|k|→∞

[
ω
(
τ k(a)b

)
− ω

(
τ k(a)

)
ω (b)

]
= 0, ∀ a, b ∈ A . (2.12)

Therefore, the requirement (2.12), together with the asymptotic abelianess of the al-
gebra, gives the usual cluster property of states.

Definition 2.4. A state ω is said to be clustering if ∀ a, b, c ∈ A, one has:

lim
|k|→∞

ω
(
aτ k(c)b

)
= ω(ab) lim

|k|→∞
ω
(
τ k(c)

)
.

Another assumption that is usually made on states of infinite systems is translation
invariance. We give now the definition and then explain the physical reasons why this
mathematical requirement does not restrict the class of physical operations that can
be performed during an experiment.

Definition 2.5. A state ω is called translation invariant if ∀ a ∈ A, one has:

ω
(
τ k(a)

)
= ω

(
τh(a)

)
= ω(a), ∀h, k ∈ Z .

Any physical operation necessarily consists of a finite amount of energy transferred
to the system; this means that in an experiment only a finite number of particles can
be simultaneously addressed. Therefore, the phase of the system, as outlined in Section
2.2, is determined by the boundary conditions, roughly speaking by what happens to
particles at infinity. The most simple reference state for the system is therefore [46] a
translation invariant one, all other states being obtained by means of local (quasi-local)
perturbations of this reference state. Thus, considering a translation invariant state ω
and a physical operation described by the operator b ∈ A, a state ωb can be obtained
from the invariant one as follows:

ωb(·) =
ω
(
b† · b

)
ω (b†b)

. (2.13)
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Therefore, assuming a translation invariant reference state ω, one can benefit from
relevant mathematical simplifications without limiting the class of states that can be
considered.

Definition 2.6. A state ω : A → C is said to be a translation invariant, clustering
state if:

1) ω
(
τ k(a)

)
= ω

(
τh(a)

)
= ω(a), ∀h, k ∈ Z (2.14)

2) lim|k|→∞ ω
(
a τ k(c) b

)
= ω(a b)ω (c) , ∀ a, b, c ∈ A . (2.15)

In the following we shall always consider states ω satisfying these two general prop-
erties. With any of these states, and the algebra A, by means of the GNS construction
one can identify the triple (Hω, πω,Ψω), where the Hilbert space Hω contains all possi-
ble states that can be obtained by quasi-local manipulations of the unique translation
invariant vector Ψω.

Example 2.4. Let us consider again an infinite number of spin-1
2

particles, all with
the same thermal state as in Example 2.1. Clearly, the corresponding state ω∞β is
translation invariant. Notice that this state can not be obtained by extending the finite
N density operator

ρNβ =
e−β

∑N
k=−N s

(k)
3

Tr
(
e−β

∑N
k=−N s

(k)
3

) ,
to an infinite number of particles. In fact, when N →∞ this operator is ill defined as
it converges in norm to zero [50]:

lim
N→∞

∥∥ρNβ ∥∥ ≤ lim
N→∞

(
e
β
2

e
β
2 + e−

β
2

)2N+1

= 0 , (2.16)

although it is a unit trace operator ∀N . In the infinite setting, states are indeed not,
in general, represented by density matrices; instead, the functional ω∞β

ω∞β (·) =
∞⊗

k=−∞

ω
(k)
β (·) , ω

(k)
β (·) = Tr (ρβ·) , (2.17)

with ρβ as in (2.2) has a precise mathematical meaning.
Starting from this initial translation invariant clustering state, one can obtain all other
states in the GNS representation; for instance, the state in which the k-th spin is
directed down in the third direction can be obtained as follows

ω̃ (·) =
ω∞β

(
s

(k)
+ · s

(k)
−

)
ω∞β

(
s

(k)
+ s

(k)
−

) , (2.18)

where s
(k)
± are the ladder operators defined as s

(k)
± = s

(k)
1 ± is

(k)
2 .

As a matter of fact, usual states in quantum statistical mechanics are either ground
states of a given Hamiltonian or generalized thermal states (KMS-states [51–53]); since
the GNS representations arising from these two kind of states possess nice properties,
it is useful to review some of them explicitly.
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Ground state

Given a Hamiltonian, the eigenprojections onto its one-dimensional energy eigen-
vectors are pure quantum states. Within the algebraic formalism, one can rephrase the
notion of purity by means of the following definition [46].

Definition 2.7. A state ω over a C∗-algebra is said to be pure if it can not be written
as a convex sum

ω = λω1 + (1− λ)ω2 , 0 < λ < 1 ,

of other two states ω1, ω2.

As already seen in Example 2.1, representations arising from pure states are irre-
ducible, meaning that the commutant of such representations contains only multiples
of the identity. This result is a consequence of the following theorem [23].

Theorem 2.2. Let ω be a pure state over the C∗-algebra A, and (Hω, πω,Ψω) the
associated GNS representation, then (Hω, πω) is irreducible.

KMS-states

Other relevant states are the so-called Kubo-Martin-Schwinger (KMS) states [23,
46, 50]; for finite dimensional systems, these are just the Gibbs states with respect
to a given Hamiltonian at inverse temperature β. As discussed in Example 2.4, the
density operator formalism becomes ill-defined in infinite dimensions, and the proper
generalization of Gibbs states is as follows:

Definition 2.8. A state ω is a KMS-state with respect to an automorphism αt and the
inverse temperature β, if:

ω (αt(a)b) = ω (b αt+iβ(a)) , ∀ a, b ∈ A ,

which is the so-called Kubo-Martin-Schwinger condition.
The state ω is an extremal KMS-state if it can not be written as a convex sum

ω = λω1 + (1− λ)ω2 , 0 < λ < 1 ,

of two other KMS-state ω1, ω2.

For extremal KMS-states one has the following Theorem [50].

Theorem 2.3. If a KMS-state ω is extremal, then its GNS-representation πω is a
factor, i.e. the center Z = πω(A) ∩ π′ω(A) consists of multiples of the identity.

In this Chapter, we have provided the basic tools for the description of the mi-
croscopic degrees of freedom of an infinite quantum system. As mentioned in the
Introduction, these degrees of freedom are essentially local and, as such, unable to pro-
vide collective descriptions of many-body systems. In the next Chapter two relevant
classes of collective observables will be introduced and their properties studied.
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Chapter 3

Collective Observables of
Many-body Quantum Systems

In the study of many-body systems, made of a large number of microscopic con-
stituents, the relevant observables are collective ones, those involving all the degrees of
freedom; indeed, microscopic observables referring to single particles are usually exper-
imentally inaccessible. Collective observables are suitably scaled sums of microscopic
operators, as for instance macroscopic averages, but also fluctuations around these av-
erages.
Given the large amount of particles considered in these collective observables, one ex-
pects their quantum features to fade away as the number of constituents increases; this
is indeed what happens to macroscopic averages. This behaviour is not surprising: aver-
ages are believed to describe the macroscopic world, where quantum features should be
replaced by classical behaviours. However, taking inspiration from mesoscopic classical
physics, e.g. Brownian motion, one can identify another class of collective observables
retaining some quantum features: fluctuations around macroscopic averages. As we
shall see, this second class of collective observables will be very useful in the study
of the quantum behaviour of many-body systems at the mesoscopic scale, half-way
between the microscopic description of single-particle observables and the classical one
essentially based on macroscopic averages.

3.1 Macroscopic Observables

The first, most natural class of collective observables one can construct are averages;
considering the set of particles ΛN from −N to N , and the single-particle observable
x ∈ Ad, the average of x over ΛN is defined as

MN(x) :=
1

NT

N∑
k=−N

x(k) , (3.1)

17
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NT = 2N + 1, the collective nature of the large N operator being then transparent.
For finite N , such an operator inherits the properties of its microscopic building blocks
and thus behaves in a quantum way. For instance, one might consider the commutator
of this average with a local operator o, whose support is contained in the set ΛNo : we
have (N > No),

[MN(x), o] =
1

NT

No∑
k=−No

[
x(k), o

]
; (3.2)

notice that the sum runs inside a finite set ΛNo , so that the commutator vanishes as
NT becomes large.
This behaviour holds, even if one considers quasi-local operators o ∈ A and not just
strictly local operators (see Remark 2.2). From these results one can deduce that the
limiting point of the sequence (3.1) belongs to the commutant of the GNS representa-
tion π′ω (A), being ω any state of the system; in other terms, one finds that, in norm,[

lim
N→∞

MN(x), A
]

= 0 , ∀x ∈ Ad . (3.3)

Remark 3.1. In order to understand what kind of operator is the limiting point of the
sequence (3.1) as N increases, one needs to find a proper operator topology, where a
good convergence is reached. For instance, such limiting operator does not belong to
the quasi-local algebra A. If it were so, since the C∗-algebra A is closed in the norm
topology, then the sequence {MN(x)}N should be a Cauchy sequence1 with respect to
such topology, but this is not true.
To show it, let us consider the quantity:

INK = ‖MN(x)−MK(x)‖ ;

without loss of generality, we assume N > K, thus collecting the equal terms of the
summation

INK =

∥∥∥∥∥∥
(

1

NT

− 1

KT

) K∑
h=−K

x(h) +
1

NT

∑
h=ΛN\ΛK

x(h)

∥∥∥∥∥∥ .
Since the norm is greater than the expectation over any possible state, we consider:

|ψNK〉 =
−K−1⊗
h=−N

|xmax〉(h) ⊗
K⊗

h=−K

|xmin〉(h) ⊗
N⊗

h=K+1

|xmax〉(h)

where |xmin〉, |xmax〉 are the eigenstates corresponding to the minimum eigenvalue xmin,
respectively the maximum xmax; therefore

INK ≥ |〈ψNK |MN(x)−MK(x)|ψNK〉| =
∣∣∣∣(KT

NT

− 1

)
xmin +

(
1− KT

NT

)
xmax

∣∣∣∣ ,
that can be written as

INK ≥
(

1− KT

NT

)
(xmax − xmin) , (3.4)

showing that {MN(x)}N is not a Cauchy sequence in the norm topology.

1A sequence of operators {An}n is a Cauchy sequence in the norm topology, if ∀ ε > 0, there exists
an integer n0, such that

‖An −Am‖ < ε , ∀n,m > n0 .
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Nevertheless, with respect to translation invariant clustering states (see Definition
2.6, equations (2.14),(2.15)), the limit of the sequence (3.1) can properly be defined.

Theorem 3.1. Given the quasi-local algebra A and a translation-invariant clustering
state ω, in the GNS representation (Hω, πω,Ψω) one has:

πω

(
s− lim

N→∞
MN(x)

)
= ω(x)1, ∀x ∈ Ad.

with MN(x) as in (3.1).

Proof. We can consider x = x†, but the proof can easily be extended to non-Hermitian
operators.
Recalling Theorem 2.1, and equation (2.7), in order to prove convergence in the strong
operator topology of the GNS representation πω, one has to show that

lim
N→∞

ω
(
a† (MN(x)− ω(x))2 a

)
= 0 , ∀ a ∈ A .

It has been already shown that in the limit MN(x) commutes with the whole algebra
A, thus we have:

lim
N→∞

ω
(
a† (MN(x)− ω(x))2 a

)
= lim

N→∞
ω
(
a†a (MN(x)− ω(x))2) ;

using the Cauchy-Schwarz inequality and the norm bound for x and a, it follows that

ω
(
a† (MN(x)− ω(x))2 a

)
≤ 2‖a‖2‖x‖

√
ω
(
(MN(x)− ω(x))2) ,

showing that the convergence of this sequence does not depend on a. The relevant
contribution is given by the argument of the square root; expanding the square and
using the translation invariance of the state, one writes

lim
N→∞

ω
(
(MN(x)− ω(x))2) = lim

N→∞

(
ω
(
MN(x)2

)
− ω(x)2

)
.

Focusing on the argument of the limit,

ω
(
MN(x)2

)
− ω(x)2 =

1

N2
T

N∑
k,h=−N

(
ω
(
x(k)x(h)

)
− ω(x)2

)
,

by translation invariance of the state, it can be written as follows:

ω
(
MN(x)2

)
− ω(x)2 =

1

N2
T

N∑
k=−N

N−k∑
m=−k−N

(
ω
(
x(0)x(m)

)
− ω(x)2

)
;

taking the modulus, and bounding it by means of the sum of the moduli, and extending
the second summation, we finally find:

∣∣ω (MN(x)2
)
− ω(x)2

∣∣ ≤ 1

N2
T

N∑
k=−N

NT∑
m=−NT

∣∣∣∣∣ω (x(0)x(m)
)
− ω(x)2

∣∣∣∣∣ =

=
1

NT

NT∑
m=−NT

∣∣∣∣∣ω (x(0)x(m)
)
− ω(x)2

∣∣∣∣∣ .
(3.5)
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Because of the clustering condition,

lim
m→±∞

∣∣∣∣∣ω (x(0)x(m)
)
− ω(x)2

∣∣∣∣∣ = 0 ,

by Cesàro mean2 [54] one gets:

lim
N→∞

∣∣ω (MN(x)2
)
− ω(x)2

∣∣ = 0 .

3.1.1 The Classical Algebra of Macroscopic Observables

As a result of the previous theorem, one can conclude that no quantum description
is possible by means of macroscopic observables. The proper mathematical description
of the set of these classical observables can be given as follows.
Let us consider an orthonormal Hermitian basis of the single-particle algebra Ad,
{vµ}d

2

µ=1; this means that:

Tr(vµvν) = δµν , ‖vµ‖ ≤ 1, ∀µ .

With these operators we construct the vector:

~mN = (MN(v1),MN(v2), . . . ,MN(vd2))
tr ,

where tr means transposition, and considering a translation-invariant clustering state
ω, also the vector of expectations:

~ω = (ω(v1), ω(v2), . . . , ω(vd2))
tr .

The space C of all possible configurations of ~ω is constrained by the positivity of the
functional ω; indeed, such a functional defines a single-particle density matrix ρ, acting
on the single-particle Hilbert space, given by

ρ =
d2∑
α=1

ω(vα)vα, ρ ≥ 0, Tr(ρ) = 1 .

Therefore, the only physical ~ω are those ~ω ∈ C, where

C =

{
~x :

d2∑
α=1

xαvα ≥ 0,
d2∑
α=1

xαTr(vα) = 1

}
.

Assuming ~x ∈ C, given any continuous function f(~x), from Theorem 3.1, it follows
that:

lim
N→∞

ω (f(~mN)) = f(~ω) . (3.6)

2Let {An} be a sequence of numbers, if limn→∞An = A, then also

lim
n→∞

1

n

n∑
k=1

Ak = A .
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This allows us to consider the commutative algebra L of continuous functions f(~x) on
the space of configurations C, together with a state δ~ω (·) of the following form:

δ~ω (g) =

∫
C
d~y δ (~y − ~ω) g (~y) = g(~ω) (3.7)

and Theorem 3.1 and relation (3.6) show

lim
N→∞

ω (f (~mN)) = δ~ω (f) = f(~ω) . (3.8)

Therefore, the algebra of macroscopic observables is, in the infinite particles limit, the
algebra of continuous functions L(C), where the actual information about the quasi-
local state ω is encoded in the functional δ~ω : L(C)→ C.

3.2 Quantum Fluctuation Operators

In order to get inspiration on how to construct collective operators that retain some
quantum behaviour, it is useful to recall some results in classical probability.

3.2.1 Classical Fluctuations and the Central Limit Theorem

For the sake of simplicity, let us consider a discrete family X̄N = (X1, X2, . . . , XN)
of independent stochastic variables with the same distribution p(X). Thus, calling
E [g] the expectation of the function g(X̄), we have

E [Xi] = µ, ∀ i;
E [(Xi − µ)(Xj − µ)] = σ2δij ;

E [g(Xi)h(Xj)] = E [g(Xi)]E [h(Xj)] , ∀ i 6= j .

(3.9)

In classical probability theory, one can construct two quantities, both with well behaved
limit as N becomes large. The first one is the average and is governed by the law of
large numbers. Considering the stochastic variable ΣN =

∑N
k=1Xk one has that

lim
N→∞

1

N
ΣN = µ ,

where the convergence has to be understood in distribution; this means that, when N
increases, the average of the considered process gets closer and closer to the determin-
istic value µ, which is the single stochastic variable expectation. These averages are
obviously the classical analogue of the macroscopic observables introduced in Section
3.1.
The second relevant collective stochastic variables are the fluctuations around mean-
values, F (X̄N), defined as follows:

F (X̄N) =
1√
N

N∑
k=1

(Xk − µ) =
1√
N

ΣN −
√
Nµ ,

E
[
F (X̄N)

]
= 0 .

(3.10)
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Their convergence in the large N limit can be studied by means of their characteristic
function

lim
N→∞

E
[
eiαF (X̄N )

]
= χαF (X̄) . (3.11)

Expanding the exponential function, and using the third of the properties (3.9), one
has:

χαF (X̄) = lim
N→∞

N∏
k=1

(
1− α2

2N
E
[
(Xi − µ)2]+ o

(
1

N

))
= lim

N→∞

(
1− α2

2N
σ2

)N
, (3.12)

showing that the stochastic variable F (X̄N) tends to a Gaussian variable with zero
mean and covariance given by σ2:

χαF (X̄) = lim
N→∞

(
1− α2

2N
σ2

)N
= e−α

2 σ2

2 .

What one would like to investigate is whether a quantum analogue of these fluctua-
tions can be defined having good convergence properties. Such a problem has been
investigated in [31, 32, 35], and it was found that the quantum fluctuations can be de-
fined and that they tend, in the large N limit, to bosonic operators, obeying a Weyl
algebra. Before introducing the definition of quantum fluctuation operators, it is then
convenient to recall the main properties of Weyl algebras.

3.2.2 Weyl Algebras and quasi-free states

Let H be the real vector space spanned by the sequence of the linearly independent
elements {xα}nα=1; a generic element of this space can then be expressed as

qr = (r, x) =
n∑
µ=1

rµxµ, with rµ ∈ R . (3.13)

The space H is equipped with a bilinear anti-symmetric form σ3, defined as follows:

σ : H ×H → R, qr × qs → σ(qr, qs) ,

σ(qr, qs) = −σ(qs, qr), σ(αqr, βqs) = αβσ(qr, qs) .
(3.14)

To the space (H, σ), one can associate the Weyl algebra W(H, σ), generated by the
Weyl operators {W (r)|(r, x) ∈ H}, defined by the following relations:

W (r)W (s) =W (r + s)e−
i
2
σ(r,s) ,

W (r)† =W (−r) .
(3.15)

As for any algebra, a state Ω for W(H, σ) is a positive, normalized, linear functional
Ω :W(H, σ)→ C; with it, we can construct the GNS triple (HΩ, πΩ,ΨΩ).

3In some of the original papers about fluctuations, the Authors refer to such a form as ”a possibly
degenerate symplectic form”. Here, the form will be generally called bilinear anti-symmetric, while it
will be named symplectic only if it can be shown that the form is also non-degenerate.
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Quasi-free states on W(H, σ) An important class of states on Weyl algebras is the
set of the so-called quasi-free states. They are identified by the Gaussian character of
their expectations on Weyl operators4:

Ω (W (r)) = e−
1
2

(r,Σ r) , (3.16)

where Σ is a positive symmetric matrix. It turns out that the corresponding GNS
representation is regular, so that the Weyl operator can be expressed as follows,

πΩ (W (r)) = ei(r,B) , (3.17)

in terms of a vector B = (B1, B2, . . . Bn)tr of (unbounded) Bose-field operators. This
allows us to give an explicit form to the matrix Σ, whose elements are ({a, b} := ab+ba):

Σµν =
1

2
Ω ({Bµ, Bν}) .

Furthermore, using relations (3.16),(3.17) one can write

Ω (W (r)) = 〈ΨΩ|ei(r,B)|ΨΩ〉 = e−
1
2

(r,Σ r) , (3.18)

which shows that Bi’s are quantum observables with zero average and covariance matrix
given by Σ.
From the first of relations (3.15), together with the Baker-Campbell-Hausdorff formula,
one derives the commutation relations of the Bose-field operators, that can be collected
in the anti-symmetric matrix σ:

σµν := −i [Bµ, Bν ] = σ (xµ, xν) . (3.19)

It is important to recall that in order for Ω to be a positive functional on the algebra,
the following condition has to be verified [55,56]:

Σ +
i

2
σ ≥ 0 . (3.20)

Example 3.1. The simplest example of Weyl algebra is the one with real vector space
H of dimension two. Thus, the independent elements of the vector space are x1, x2; on
this we consider the bilinear anti-symmetric form

σ(x1, x2) = 1 ,

giving rise to the anti-symmetric matrix

σ =

(
0 1
−1 0

)
.

Considering the regular state Ω such that:

Ω (W (r)) = e−
1
4
‖r‖2

that is positive since 1+iσ
2
≥ 0, we can represent Weyl operators in the following way

πΩ (W (r)) = ei(r,B) ,

4We consider here Gaussian states with zero average.
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with B = (B1, B2)tr obeying [B1, B2] = i ( cf. (3.19)). In this case, B1 and B2 are
position and momentum like operators and the Weyl operators can be represented as

πΩ (W (r)) = ei(r1 x+r2 p)

i.e. through displacement operators as introduced in quantum optics.
By means of the following operators

a =
1√
2

(x+ ip) , a† =
1√
2

(x− ip) ,

one can check that the chosen state Ω corresponds to the expectation

Ω (·) = 〈0| · |0〉 ,

where |0〉 is the vacuum state annihilated by a, a|0〉 = 0; indeed, by explicit computation
one finds

Ω (W (r)) = e−
1
4
‖r‖2 = 〈0|ei(r1 x+r2 p)|0〉 .

3.2.3 Algebra of Fluctuation Operators

Inspired by the classical results summarized in Section 3.2.1, given a translation
invariant state ω, one is led to define quantum fluctuation operators for the single-
particle operators x = x† ∈ Ad as

FN(x) :=
1√
NT

N∑
k=−N

(
x(k) − ω(x)

)
. (3.21)

First, let us show that these operators retain some quantum features as N gets large.
We choose two observables x, y ∈ Ad,

[
x(k), y(h)

]
= iz(k)δkh, construct the relative

fluctuations FN(x), FN(y) and study the commutator [FN(x), FN(y)]. We have

[FN(x), FN(y)] =
i

NT

N∑
k=−N

z(k) = iMN(z) , (3.22)

showing that the commutator of two fluctuations is proportional to an average macro-
scopic observable, converging to a multiple of the identity. This suggests that fluctua-
tions, might give rise in the large N limit to Bose-field operators.
We would like to give a meaning to the limit of FN(x) in (3.21), as N gets large. These
operators are more difficult to study than macroscopic observables, since their norm is
not bounded

‖FN(x)‖ =
√
N ‖x− ω(x)‖ .

Nevertheless, the subtraction of the mean value, suggests the possibility of some good
convergence properties in some state induced topology.
Indeed, the expectation over the state gives a zero average, for any N

ω (FN(x)) = 0 ,
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while ω(FN(x)2) can be made finite for some states ω. One finds

ω
(
FN(x)2

)
=

1

NT

N∑
k,h=−N

(
ω
(
x(k)x(h)

)
− ω(x)2

)
(3.23)

so that:

lim
N→∞

ω
(
FN(x)2

)
≤

∞∑
m=−∞

∣∣ω (x(0)x(m)
)
− ω(x)2

∣∣ ; (3.24)

the convergence of the series on the right hand side of the above inequality is a sufficient
condition for the existence of the variance of the fluctuation operator in the limit of
infinite particles. This condition represents an L1-clustering constraint on the state ω
relative to the operator x, that needs to be enforced in order to have a well-defined
variance for FN(x).
In order to give a meaning to the convergence of these observables in the large N limit,
one can first try to adopt the same procedure used for average operators. In this case,
the sequence {FN(x)}N should turn out to be a Cauchy sequence in the strong operator
topology induced by the GNS-construction. As a consequence, defining

ĨNM = ω
(
(FN(x)− FM(x))2) (3.25)

this should be arbitrarily small for N,M greater than a certain N0. In order to show
that this is not possible, let us consider the case of a tensor product state ω

(
x(k)x(h)

)
=

ω(x)ω(x), ∀ k 6= h. By direct computation, one has:

ĨNM = 2
(
ω(x2)− ω(x)2

)
− 1√

NTMT

N∑
k=−N

M∑
h=−M

ω
({

(x− ω(x))(k) , (x− ω(x))(h)
})

,

(3.26)
and without loss of generality considering N > M ,

ĨNM = 2
(
ω(x2)− ω(x)2

)(
1−
√
MT√
NT

)
, (3.27)

that is not a Cauchy sequence. It turns out that, as in the case of the classical central
limit theorem, the proper convergence is a convergence in distribution [35].

The Characteristic Function of Fluctuations

Given a physical system, one can in general select a set {x1, x2, . . . , xn} , xi ∈
Ad of Hermitian single-particle observables physically relevant, in particular from the
mesoscopic collective point of view of their fluctuations.

Definition 3.1. Given the set {xα}nα=1, of independent single-site observables relevant
for the description of a quantum system, one can construct the real linear span K,
whose elements are of the form

qr = (r, x) :=
n∑
µ=1

rµ xµ, r ∈ Rn .
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One can then construct the corresponding fluctuation operators.

Definition 3.2. Given a generic element (r, x) of the real linear space K, and a trans-
lation invariant state ω, we associate to it the fluctuation FN(qr), defined by

(r, FN) = FN(qr) :=
1√
NT

N∑
k=−N

(
q(k)
r − ω(qr)

)
, (3.28)

where

q(k)
r = (r, x(k)) :=

n∑
µ=1

rµ x
(k)
µ .

The exponential of such an operator, referred in the following as a pre-Weyl operator,
is explicitly given by

WN(r) = ei(r,FN ) :=
∞∑
n=0

in (r, FN)n

n!
. (3.29)

With the previous definition at hand, one has that the characteristic function of
the quantum observables FN(x1), FN(x2), . . . FN(xn) is given by

χN (r) = ω (WN(r)) . (3.30)

As discussed before, for suitable choices of the state ω, this characteristic function
converges in the large N limit to a Gaussian one. The set of states for which this holds
is specified by the following [31]:

Definition 3.3. Given the Hermitian subspace K ⊂ Ad, the system (K, ω), with ω a
translation invariant clustering state, is said to have normal quantum fluctuations, if:

1)
∞∑

k=−∞

∣∣ω (x(0)y(k)
)
− ω(x)ω(y)

∣∣ <∞, ∀x, y ∈ K , (3.31)

2) lim
N→∞

ω
(
eiαFN (x)

)
= e−

α2

2
sω(x,x), ∀x ∈ K, α ∈ R , (3.32)

where sω(x, y) := limN→∞
1
2
ω ({FN(x), FN(y)}) for all x, y ∈ K.

We shall now show how studying the behaviour of these operators WN(r), Weyl-like
relations (3.15) naturally arise.

Weyl-like Relations for Exponentials of Fluctuations

Let us consider two exponentials of fluctuations eiFN (x), eiFN (y); by Baker-Campbell-
Hausdorff formula, we have

eiFN (x)eiFN (y) = exp

{
i
(
FN(x) + FN(y)

)
− 1

2
[FN(x), FN(y)] +

− i

12
([FN(x), [FN(x), FN(y)]]− [FN(y), [FN(x), FN(y)]]) + . . .

}
,

(3.33)
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where the omitted terms involve higher order commutations. The first commutator,
as already seen, is proportional to an average macroscopic observable, so, with respect
to clustering states, it is expected to converge to a multiple of the identity. All other
terms in the above formula starting from the double commutators go to zero in norm
in the limit N →∞; indeed, as an example, we have

lim
N→∞

‖[FN(x), [FN(x), FN(y)]]‖ =

= lim
N→∞

1
√
NT

3

∥∥∥∥∥
N∑

k=−N

[
x(k),

[
x(k), y(k)

]]∥∥∥∥∥ ≤ lim
N→∞

1√
NT

4‖x‖2‖y‖ = 0 .

(3.34)

These results suggest that, in the large N limit, equation (3.33) reduces to

eiFN (x)eiFN (y) ∼ ei
(
FN (x)+FN (y)

)
e−

1
2

[FN (x),FN (y)] .

In order to better formalize this result, let us first introduce a proper anti-symmetric
matrix:

Definition 3.4. Given the ordered set {xα}nα=1 of generators of the real linear space
K, we define the operator valued matrix TN to be the matrix whose entries are

TNµν := −i [FN(xµ), FN(xν)] , (3.35)

and, by means of a translation invariant state ω, the matrix of its expectations,

σ(ω)
µν := ω

(
TNµν
)

= −iω ([xµ, xν ]) . (3.36)

Both matrices are anti-symmetric and we have:

lim
N→∞

ω ([FN(qr), FN(qs)]) = i lim
N→∞

ω
((
r, TN s

))
,

where (
r, TN s

)
=

n∑
µ,ν=1

rµsνT
N
µν ,

so that:
lim
N→∞

ω ([FN(qr), FN(qs)]) = i
(
r, σ(ω)s

)
.

Lemma 3.1. Given a normal fluctuations system (K, ω), the following equality holds

lim
N→∞

ω (WN(r)WN(s1)WN(s2)WN(t)) =

= lim
N→∞

ω (WN(r)WN(s1 + s2)WN(t)) e−
i
2(s1,σ(ω)s2), ∀ t, s1, s2, r ∈ Rn ,

where WN ’s are as in (3.29), showing that in the large N limit, under state expectation,

WN(s1)WN(s2) behaves as WN(s1 + s2)e−
i
2(s1,σ(ω)s2) .

Proof. We divide the proof in two steps: we first show that

lim
N→∞

∥∥∥WN(s1)WN(s2)−WN(s1 + s2)e−
i
2(s1,TNs2)

∥∥∥ = 0 ,
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then, the proof follows thanks to the strong convergence of macroscopic observables
(Theorem 3.1).
We start with an algebraic identity:

eiFN (qs1 )eiFN (qs2 ) − ei(FN (qs1 )+FN (qs2 ))e−
i
2(s1,TNs2) =∫ 1

0

dα
d

dα

(
eiαFN (qs1 )eiαFN (qs2 )ei(1−α)(FN (qs1 )+FN (qs2 ))e−

i(1−α2)
2 (s1,TNs2)

)
;

computing explicitly the derivative, we get

d

dα

(
eiαFN (qs1 )eiαFN (qs2 )ei(1−α)(FN (qs1 )+FN (qs2 ))e−

i(1−α2)
2 (s1,TNs2)

)
=

= ieiαFN (qs1 )
[
FN(qs1), e

iαFN (qs2 )
]
ei(1−α)(FN (qs1 )+FN (qs2 ))e−

i(1−α2)
2 (s1,TNs2)+

+eiαFN (qs1 )eiαFN (qs2 )ei(1−α)(FN (qs1 )+FN (qs2 ))iα
(
s1, T

Ns2

)
e−

i(1−α2)
2 (s1,TNs2) .

Using the result of Appendix A, and recalling the definition of TN in (3.35) we have

lim
N→∞

∥∥[FN(qs1), e
iαFN (qs2 )

]
+ α

(
s1, T

N s2

)
eiαFN (qs2 )

∥∥ = 0 .

This result together with the observation that macroscopic observables commute with
fluctuations in the large N limit (see Appendix A), allows one to conclude that the
limit of the norm of the derivative goes to zero as N becomes large. Then,

lim
N→∞

ω (WN(r)WN(s1)WN(s2)WN(t)) =

lim
N→∞

ω
(
WN(r)

[
WN(s1 + s2)e−

i
2(s1,TNs2)

]
WN(t)

)
.

From this, using that e−
i
2(s1,TNs2) commutes with WN(t) in the large N limit (see

Appendix A), and by adding and subtracting e−
i
2(s1,σ(ω)s2), one can recast the previous

result in the following form:

lim
N→∞

ω
(
WN(r)WN(s1 + s2)WN(t)e−

i
2(s1,TNs2)

)
=

lim
N→∞

ω
(
WN(r)WN(s1 + s2)WN(t)

(
e−

i
2(s1,TNs2) − e−

i
2(s1,σ(ω)s2)

))
+

+ lim
N→∞

ω (WN(r)WN(s1 + s2)WN(t)) e−
i
2(s1,σ(ω)s2) .

Finally, the limit in the second line of the above equation vanishes; indeed, using the
Cauchy-Schwarz inequality, and observing that WN ’s are unitary, this term is bounded
by

lim
N→∞

∣∣∣ω (WN(r)WN(s1 + s2)WN(t)
(
e−

i
2(s1,TNs2) − e−

i
2(s1,σ(ω)s2)

))∣∣∣ ≤
≤ lim

N→∞

√√√√ω

((
e−

i
2

(s1,TNs2) − e−
i
2(s1,σ(ω)s2)

)† (
e−

i
2

(s1,TNs2) − e−
i
2(s1,σ(ω)s2)

))
,

which goes to zero thanks to the result of Theorem 3.1 and equations (3.35),(3.36).
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The algebraic structure of fluctuations

The results just proven allow a complete characterization of the algebra obeyed
by fluctuation operators. It should be already clear that, given the system of normal
quantum fluctuations (K, ω), the operators WN(r) as in Definition 3.2 behave, under
the state expectation, as Weyl operators in the large N limit; namely

lim
N→∞

WN(r)→ W (r) ,

where W (r) belongs to the Weyl algebra W
(
K, σ(ω)

)
, with the anti-symmetric form

given in (3.36). Furthermore, the condition (3.32) suggests the existence of a quasi-free
state Ω on this algebra W

(
K, σ(ω)

)
such that:

Ω (W (r)) = e−
1
2
sω(qr,qr) .

The regularity of this state allows to represent Weyl operators as exponential of Bose-
field operators5

πΩ (W (r)) = ei(r,F ) ,

where F is the vector F = (F1, F2, . . . , Fn)tr corresponding to the large N limit of the
vector FN .
This makes clear the convergence of these fluctuation operators to Bose-field operators

lim
N→∞

FN(xα)→ Fα, α = 1, 2, . . . , n ,

where the convergence has to be understood in the quantum central limit sense [35].
This is the content of the following Theorem 3.2 [31].

Theorem 3.2. If the system (K, ω) has normal quantum fluctuations (Definition 3.3),
then for qr, qs ∈ K, there exists a quasi-free state Ω on the Weyl algebra W

(
K, σ(ω)

)
of the quantum fluctuations such that:

lim
N→∞

ω
(
eiFN (qr)eiFN (qs)

)
=

= exp

(
−1

2
sω (qr + qs, qr + qs)−

i

2

(
r, σ(ω) s

))
= Ω (W (r)W (s)) ,

(3.37)

From the previous Theorem, and the Weyl-like commutation relations of Lemma
3.1, it further follows that

lim
N→∞

ω (WN(r1)WN(r2) . . .WN(rm)) = Ω (W (r1)W (r2) . . .W (rm)) , ∀ri ∈ Rn .

This result can be reinterpreted through the introduction of what can be called a
mesoscopic limit.

Definition 3.5. Given a sequence {XN}N of operators made by polynomial or expo-
nentials of fluctuation operators, it converges in the mesoscopic topology to the operator
X, if

lim
N→∞

ω (WN(r1)XNWN(r2)) = Ω (W (r1)XW (r2)) , ∀ r1,2 ∈ Rn , (3.38)

5This representation holds in the GNS-construction induced by the regular state Ω.
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where WN(r1,2) = ei(r1,2,FN ) are as in Definition 3.2, W (r1,2) ∈ W(K, σ(ω)) and Ω a
quasi-free state as defined in (3.37).
In other words, one can say that X is the mesoscopic limit of XN , denoting it as:

m− lim
N→∞

XN = X .

Notice that for any element X in the Weyl algebra W
(
K, σ(ω)

)
, the quantities

Ω (W (r1)XW (r2)) represent all possible matrix elements of X, and therefore they de-
fine uniquely the operator X.
What is remarkable is that, despite being collective, fluctuations retain some of the
quantum nature of the microscopic underlying system, providing a useful setting where
to look for the description of quantum effects in many-body mesoscopic systems [57–60].
Their quasi-free bosonic nature allows for a description of the state in terms of covari-
ance matrices. Indeed, defining the matrix with entries

Σ(ω)
µν =

1

2
lim
N→∞

ω ({FN(xµ), FN(xν)}) ,

(r,Σ(ω)s) =
n∑

µ,ν=1

rµsνΣ
(ω)
µν ,

(3.39)

one has that

Ω (W (r)) = e−
1
2(r,Σ(ω)r) ,

and because of the Gaussian characteristic function, all possible moments of the quan-
tum variables F1, F2, . . . Fn are encoded in Σ(ω).

Example 3.2. We consider again an infinite spin-1
2

chain as in Example 2.4 with the
same thermal state, ω∞β . The following fluctuations can be constructed

FN(sµ) =
1√
NT

N∑
k=−N

(
s(k)
µ − ω∞β (sµ)

)
,

and also the anti-symmetric form

σ
(ω∞β )
µν = −iω∞β ([sµ, sν ]) ,

σ(ω∞β ) =

 0 η 0
−η 0 0
0 0 0

 , η = ω∞β (s3) = −1

2
tanh

(
β

2

)
.

From this matrix, it is clear that the asymptotic fluctuation limN→∞ FN(s3) → F3

represents a classical degree of freedom, since it commutes with the rest of the bosonic
algebra.
Out of the two remaining fluctuations FN (s1,2), we can construct the following two
operators

xN =
FN(s2)√
|η|

, pN =
FN(s1)√
|η|

,
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such that their limiting points respectively x, p, in the mesoscopic limit reviewed in
this Chapter, obey [x, p] = i. The quasi-free state Ωβ on the generic asymptotic Weyl
operators ei(αx+γp) is thermal, indeed

lim
N→∞

ω
(
ei(αxN+γpN )

)
= exp

(
−1

2

(α2 + γ2) coth
(
β
2

)
2

)
= Ωβ

(
ei(αx+γp)

)
so that

Ωβ (·) =
Tr
(
e−βH ·

)
Tr (e−βH)

, H =
x2

2
+
p2

2
.

The operators x, p are position and momentum like operators, but their physical mean-
ing is not transparent; this can be better appreciated if one passes from x, p to creation
and annihilation operators a, a†, with a = 1√

2
(x + ip). Indeed, in this description, a†

represents the creator operator of an excitation of fluctuations, as it can be deduced by
looking at the following expectation

Ωβ

(
a†a
)

=
1

2|η|
lim
N→∞

ω∞β
(
F 2
N(s1) + F 2

N(s2)
)
− 1

2
,

where the right-hand side of the equality, is proportional to total amount of fluctuations
in the system.
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Chapter 4

Dissipative Short-Range Evolution
of Fluctuations

In the previous Chapter, the kinematics of collective degrees of freedom was intro-
duced; here, instead we shall look at their dynamical properties.
A lot of work has been done in the study of unitary time-evolutions on quantum fluc-
tuations [31–33, 60], while very little is known about dissipative ones [34]. The latter
account for situations in which the many-body system is in interaction with an environ-
ment; this is the most common situation encountered in actual experiments, typically
involving cold atoms, optomechanical or spin-like systems [30, 61], that can never be
thought of as completely isolated from their surroundings.
The behaviour of the environment is usually not of interest; one just focuses on system
observables, tracing out the environmental degrees of freedom. This leads to an irre-
versible dynamics showing dissipative and noisy effects. In many physical situations
one can consider the interaction system-environment to be weak, and neglect memory
effects; in such a case the dynamics of the system can be described by effective, reduced
dynamics involving only the system degrees of freedom, that satisfies the forward-in-
time semigroup composition law.
After reviewing the theory of such open quantum systems we shall apply it to the study
of the open dynamics of fluctuations.

4.1 Effective Open Quantum Dynamics

For sake of completeness, we shall first review the standard approach to open quan-
tum systems, i.e. systems weakly coupled to external environments. The literature on
this topic is large, we refer to [8,9] for details on the derivation of the master equation,
and to [6,7], for a detailed analysis of the properties of quantum dynamical evolutions
and semi-groups.

33
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4.1.1 Open Quantum Systems

Let us consider a system S, whose observables belong to the C∗-algebra AS, inter-
acting with an environment E, whose degrees of freedom are collected in the algebra
AE. The compound system, described by the total algebra AT = AS ⊗ AE, is con-
sidered to be isolated from the rest and, as such, evolves unitarily, according to the
Heisenberg equations of motion induced by the total Hamiltonian HT ,

d

dt
Ot = i [HT , Ot] , ∀O ∈ AT . (4.1)

Such a Hamiltonian can always be decomposed in the following way

HT = HS ⊗ 1 + 1⊗HE + λHI (4.2)

where HS, respectively HE represent the Hamiltonian generating the free evolution of
the system S, respectively the environment E, while HI is the interaction term made by
operators of both system and environment, λ being a dimensionless coupling constant.
The solution to the operatorial equation (4.1), is given in terms of a family of one-
parameter unitary automorphisms US+E

t : AT → AT , obeying the composition law

US+E
t ◦ US+E

s = US+E
t+s , t, s ∈ R ,

and such that
d

dt
US+E
t [·] = H ◦ US+E

t [·], H[·] = i [HT , ·] .

In usual situations though, one is interested in the evolution of the system S, only.
This is obtained by tracing over the environment degrees of freedom. Furthermore, in
many physical cases, the system can be prepared independently from the environment,
so, one can consider the state of the compound system S + E to be a product state
ωT = ωS ⊗ωE. Given such a functional over the total algebra AT , one implements the
partial trace over the environment degrees of freedom by focusing upon the expectations
with respect to the state ωE on the total evolution of the system S observables of the
form O ⊗ 1 ∈ AT ,

OS
t = ωE

(
US+E
t [O ⊗ 1]

)
.

The resulting operators belong to the algebra of the system, OS
t ∈ AS, ∀O ∈ AS and

the partial expectation defines a family of maps Λt : AS → AS,

Λt [O] := ωE
(
US+E
t [O ⊗ 1]

)
. (4.3)

In general these maps are very complicated, do not obey the group composition law,
Λt ◦ Λs 6= Λt+s, and, because of the partial expectation over the environment, with
whom the system interacts, they also embody the irreversible character of the reduced
dynamics in that Λ−1

t 6= Λ−t, and one then ought to consider positive times, only:
t ≥ 0.
Nevertheless, these maps are linear

Λt [A+ δB] = ωE
(
US+E
t [(A+ δB)⊗ 1]

)
=

ωE
(
US+E
t [A⊗ 1] + δUS+E

t [B ⊗ 1]
)

= Λt [A] + δ Λt [B] ,
(4.4)

and also completely positive.
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Definition 4.1. A linear map Λ : A → A is completely positive, if and only if Λ⊗ 1m
is positive, on A⊗Am, ∀m ∈ N, being Am the algebra of m×m complex matrices.

Indeed, one can check the complete positivity of the maps Λt based on the following
argument. For any m ∈ N a generic operator O ∈ AS ⊗Am can be written as

O =
∑
α,β

cαβX
S
α ⊗Xm

β , where XS
α ∈ AS, Xm

β ∈ Am ,

with cαβ complex coefficients; from the linearity of the map (4.4) one has

Λt ⊗ 1m
[
O†O

]
=
∑
α,β,γ,δ

c̄αβcγδΛt

[
XS†
α X

S
γ

]
⊗Xm†

β Xm
δ . (4.5)

Being US+E
t automorphisms, one can write:

Λt

[
XS†
α X

S
γ

]
= ωE

(
US+E
t

[
XS†
α X

S
γ ⊗ 1

])
= ωE

(
US+E
t

[
XS†
α ⊗ 1

]
US+E
t

[
XS
γ ⊗ 1

])
,

and introducing the new operator Õ ∈ AS ⊗AE ⊗Am,

Õ =
∑
α,β

cαβ US+E
t

[
XS
α ⊗ 1

]
⊗Xm

β ,

one recasts (4.5) as follows

Λt ⊗ 1m
[
O†O

]
= ωE

(
Õ†Õ

)
.

Since Õ is an operator Õ ∈ AS ⊗AE ⊗Am, it can also be decomposed as follows

Õ =
∑
ᾱ

dᾱ(t)Y S
α1
⊗ Y E

α2
⊗ Y m

α3
,

with ᾱ = (α1, α2, α3) a collection of indices, dᾱ(t) suitable time-dependent coefficients
and Y S

α1
, Y E

α2
, Y m

α3
proper operators of the system, bath and of the m-level system,

respectively. Therefore, one has:

AS ⊗Am 3 ωE
(
Õ†Õ

)
=
∑
ᾱ,β̄

d̄ᾱ(t)dβ̄(t) Θα2β2 Y
S†
α1
Y S
β1
⊗ Y m†

α3
Y m
β3
,

with Θα2β2 = ωE
(
Y E†
α2
Y E
β2

)
, entries of a positive semi-definite matrix Θ. Recasting the

previous relation, one writes

ωE

(
Õ†Õ

)
=
∑
α2,β2

Θα2β2

(∑
α1,α3

dᾱ(t)Y S
α1
⊗ Y m

α3

)†(∑
β1,β3

dβ̄(t)Y S
β1
⊗ Y m

β3

)
;

the positivity of the matrix Θ, together with the structure of the operatorial part in
the right-hand side of the above equation, ensures that

Λt ⊗ 1m
[
O†O

]
= ωE

(
Õ†Õ

)
≥ 0 ,

implying that the maps Λt are indeed completely positive.
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Remark 4.1. Complete positivity is essential for the physical consistency of quantum
dynamical maps [8, 9]. Its necessity is strictly related to the possibility of having the
system initially entangled with an inert ancilla.
In these cases, positivity of the dynamical maps Λt does not guarantee that the lifted
ones Λt ⊗ 1m, implementing the evolution of system plus ancilla, are mapping positive
operators into positive ones. In absence of complete positivity, one could always find
a time t, an initial positive operator, and an entangled system-ancilla initial state for
which the expectation at the given time t provides a negative value. This contradicts
any possible experimental result.

4.1.2 Quantum Dynamical Semi-groups

Maps defined as in equation (4.3), are usually rather complicated and not amenable
to analytical treatment. Nevertheless, in many physical situations interaction between
system and environment can be considered to be weak λ � 1. Moreover, when the
typical bath relaxation time-scales are much smaller than the characteristic time-scale
of the system, memory effects can be neglected. The resulting dynamics can then be
described by completely positive unital semigroups.
In this section, we briefly review how, by means of the weak coupling limit, one can
retrieve this kind of dynamics. We will follow the procedure presented in [8], revisited
according to our definition of state.

Weak-coupling limit

As already said, our aim is to find an effective description for the evolution of
expectations of system’s observables, namely,

〈O〉t := ωT

(
US+E
t [O ⊗ 1]

)
.

By means of the automorphism implemented solely by the free Hamiltonians U0
t , we

define the interaction picture functional ωIt in the following way:

ωIt := ωT ◦ US+E
t ◦

(
U0
t

)−1
;

this is the fully evolved initial state, rotated back by means of the free evolution.
The equation of motion for the functional becomes:

d

dt
ωIt = ωIt ◦HI

t , HI
t [·] = iλ [HI(t), ·] , HI(t) = U0

t [HI ] . (4.6)

Formally integrating the equation, one obtains

ωIt = ωT +

∫ t

0

ds ωIs ◦HI
s ,

and inserting it in (4.6), we get

d

dt
ωIt = ωT ◦HI

t +

∫ t

0

ds ωIs ◦HI
s ◦HI

t . (4.7)
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Since we are interested in the system S observables, only, we construct a reduced
functional on the algebra AS in the following way:

ωSt (O) := ωIt (O ⊗ 1) .

As it will be clear below, one can always recast the Hamiltonian in such a way that
ωT
(
HI
t [O ⊗ 1]

)
= 0, thus we can rewrite the above equation in the following way

d

dt
ωIt =

∫ t

0

ds ωIs ◦HI
s ◦HI

t .

Now the first approximation comes into play [8]: because of the weak system-environment
interaction, the influence of the system on the large environment is negligible, so that
the state of the total system at any time t can be approximately described as the
following tensor product (Born approximation)

ωIt = ωSt ⊗ ωE .

Therefore, we have, on operators of the form O ⊗ 1,

d

dt
ωSt =

∫ t

0

ds ωSs ⊗ ωE ◦HI
s ◦HI

t .

Further, when memory effects can be neglected, one can perform the so-called Markov
approximation; this is done in two steps. At first ωSs is replaced by ωSt , in order to get
a time-local differential equation

d

dt
ωSt = ωSt

(∫ t

0

ds ωE ◦HI
s ◦HI

t

)
;

secondly, after operating the substitution s → t − s, one lets the upper limit of the
integral go to infinity; this is permitted when the time-scales of the evolution of the
system are much larger than the bath relaxation time. With the two approximations
one gets

d

dt
ωSt = ωSt ◦Kt

Kt : AS → AS, Kt [O] = ωE

(∫ ∞
0

dsHI
t−s ◦HI

t [O ⊗ 1]

)
.

(4.8)

These equations do not in general lead to completely positive dynamical semigroup
[62, 63]; this is achieved from (4.8), averaging over the rapidly oscillating terms in the
map Kt (secular approximation).
One first observes that in general the interaction Hamiltonian can be taken of the
following form

HI =
∑
α

Aα ⊗Bα ,

with A†α = Aα, B
†
α = Bα. Assuming HS to posses a discrete spectrum, with eigenvalues

ε relative to spectral projectors Π(ε), one can define the operators

Aα(δ) :=
∑
ε′−ε=δ

Π(ε)AαΠ(ε′) .
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As a consequence, one has

[HS, Aα(δ)] = −δ Aα(δ) ,[
HS, A

†
α(δ)

]
= δ Aα(δ) ,[

HS, A
†
α(δ)Aβ(δ)

]
= 0, A†α(δ) = Aα(−δ) ;

this enables us to recast the interaction Hamiltonian in the following form

HI =
∑
α,δ

Aα(δ)⊗Bα =
∑
α,δ

A†α(δ)⊗Bα .

Therefore, in the interaction picture

HI(t) =
∑
α,δ

e−iδtAα(δ)⊗Bα(t) =
∑
α,δ

eiδtA†α(δ)⊗Bα(t), Bα(t) = U0
t [Bα] ,

and the condition ωE ([HI(t), O ⊗ 1]) = 0, ∀O, becomes ωE (Bα(t)) = 0.
Substituting the interaction Hamiltonian into Kt one gets

Kt [O] = λ2
∑
α,β,δ,δ′

ei(δ−δ
′)t
[
A†α(δ), O

]
Aβ (δ′) Γαβ (δ′) +

+λ2
∑
α,β,δ,δ′

ei(δ
′−δ)tA†β(δ′) [O,Aα(δ)] Γ̄αβ (δ′) ,

(4.9)

where, we have defined the quantities

Γαβ (δ′) :=

∫ ∞
0

ds eisδ
′
ωE (Bα(t)Bβ(t− s)) ,

depending on the environment correlation functions. If we also assume the state ωE
to be stationary with respect to the free environment evolution, one has that Γαβ(δ′)
does not depend on t, since

ωE (Bα(t)Bβ(t− s)) = ωE (Bα(s)Bβ(0)) .

Typical time-scales of the system are represented by |δ − δ′|−1, δ′ 6= δ; if these time-
scales are large compared to the relaxation time τR of the open system, the non-secular
terms in (4.9), the ones with δ 6= δ′ may be neglected, since they oscillate very rapidly
during the time τR over which the system state varies appreciably. Thus, the generator
becomes

K [O] = λ2
∑
α,β,δ

[
A†α(δ), O

]
Aβ (δ) Γαβ (δ) +

+λ2
∑
α,β,δ

A†α(δ) [O,Aβ(δ)] Γ̄βα(δ) .
(4.10)

The half-Fourier transforms Γαβ can be decomposed in the following way:

Γαβ(δ) =
1

2
γαβ(δ) + iSαβ(δ) ,

γαβ(δ) = Γαβ(δ) + Γ̄βα(δ) =

∫ +∞

−∞
ds eiδsωE (Bα(s)Bβ(0)) ,

Sαβ(δ) =
1

2i

(
Γαβ(δ)− Γ̄βα(δ)

)
,
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therefore, the following relations hold

Γαβ(δ) =
1

2
γαβ(δ) + iSαβ(δ) ,

Γ̄βα(δ) =
1

2
γαβ(δ)− iSαβ(δ) ,

and one can recast the generator in the usual Lindblad form [64,65]

K [O] = λ2
∑
δ

∑
αβ

γαβ(δ)
( [
A†α(δ), O

]
Aβ(δ) + A†α(δ) [Aβ(δ), O]

)
+ (4.11)

+iλ2
∑
δ

∑
αβ

Sαβ(δ)
[
A†α(δ)Aβ(δ), O

]
, (4.12)

since the matrices γαβ(δ) are positive and the generator in (4.12) is Hermitian.
Within these approximations, we found that the evolution of the functional in the
interaction picture is governed by

d

dt
ωSt = ωSt ◦K ,

whose solution is given by

ωSt = ωS ◦ etK := ωS ◦
∞∑
n=0

tn

n!
K ◦K ◦ · · · ◦K︸ ︷︷ ︸

n−times

.

The second part of the generator (4.12), represents a contribution from a Lamb shift
Hamiltonian, which leads to a renormalization of the energy levels induced by the
coupling system-environment; the first term (4.11), called dissipator, is instead the
part of the generator taking into account the non-coherent aspect of the time-evolution
which is due to the interaction between the system and the environment.
The reduced dynamics acting on the algebra of the system etK : AS → AS, is such
that it obeys the semi-group composition law, indeed etK ◦ esK = e(t+s)K, t, s ≥ 0, and
provides us with an effective description of the evolution of observables. Indeed, the
above derivation shows that, under the performed approximations, we have, ∀O ∈ AS

ωE

(
US+E
t ◦

(
U0
t

)−1
[O ⊗ 1]

)
∼ etK [O] .

When the open system S is an m − level system, the results sketched above can be
summarized as follows [64,65].

Theorem 4.1. Let AS be the algebra of an m-level system and Λt : AS → AS form a
time-continuous semi-group of unital, completely positive, hermiticity-preserving linear
maps. Then, the semi-group has the form Λt = etL with generator consisting of

L[O] = H[O] + D[O] ,

H[O] = i [H,O] , H = H† ,

D[O] =
m2−1∑
µ,ν=1

Cµν
2

(
[Vµ, O]V †ν + Vµ

[
O, V †ν

])
,

(4.13)
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where the matrix of coefficients Cµν is the so-called Kossakowski matrix, and the oper-
ators Vµ are such that

Vm2 =
1√
m
, Tr

(
V †µVν

)
= δµν , 0 ≤ µ, ν ≤ m2 .

The matrix C must be positive semi-definite in order to ensure the complete positivity
of the maps Λt.

4.2 The Dissipative Generator

We shall now apply these results to the description of the open dynamics of fluctu-
ation operators.
As discussed in the previous Chapter, we shall study a system formed by a bi-infinite
lattice, where each site supports a same d-level algebra Ad.
The algebraic description of such a system is in term of a quasi-local algebra A.
One then selects an ordered set of single-site independent operators {xi}ni=1 , xi = x†i ∈
Ad, whose fluctuations are supposed of physical interest and constructs the real linear
span K (see Definition 3.1). For these operators, the corresponding fluctuations are
defined as in (3.28).
Given a translation-invariant clustering state ω (see Definition 2.6, (2.14)-(2.15)) on
this quasi-local algebra A, we will assume the system (K, ω) to have normal quantum
fluctuations as in Definition 3.3, equations (3.31),(3.32).
The aim is to study the dynamics of fluctuations inherited from a microscopic irre-
versible dynamics such that, in the Heisenberg picture,

∂tXt = LN [Xt] , (4.14)

for all local operators X ∈ A[−N,N ], where LN is a generator of Lindblad form (see
(4.13)).

LN [X] = HN [X] + DN [X] . (4.15)

The Hamiltonian contribution HN [X] = i [HN , X] will be sought with HN of the form

HN =
N∑

k=−N

h(k) , (4.16)

namely it is the sum of single-site Hamiltonians h(k) =
(
h(k)
)†

, while noise and dissi-
pation, accounted for by the dissipator DN [X], will be given by

DN [X] =
N∑

k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2

([
v(k)
µ , X

]
(v†ν)

(`) + v(k)
µ

[
X , (v†ν)

(`)
])

. (4.17)

In the above expression the operators v
(k)
ν are single site operators while the coefficients

Jk` and Dµν form the Kossakowski matrix J ⊗ D. We shall assume J ≥ 0, D ≥ 0 so
that J ⊗ D results positive semi-definite guaranteeing the complete positivity of the
dynamics. The matrix D contains information about the noisy and mixing effects due
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to environment on couples of sites, while the matrix J accounts for the strength of
these effects as a function of the distance between sites. The dissipative contribution
is made translation invariant by setting

Jk` = J(k − `) , Jkk = J0 > 0 , ∀ k, ` ∈ Z . (4.18)

We also assume that

∞∑
`=−∞

|Jk`| =
∞∑

r=−∞

|J(r)| <∞ , ∀ k ∈ Z , (4.19)

condition that establishes a fast decay of the strength of the statistical coupling of far
separated chain sites, thus describing short-range mixing effects due to environment.
A dissipative contribution of the form (4.17) is very general and accounts for a generic
lattice-environment weak interaction. As explained in the previous Section, it can
be obtained by means of a weak-coupling limit, assuming an interaction Hamiltonian
HI = H†I of the following form

HI =
∑
α

fα
∑
k,h

gkh v
(k)
α ⊗Bh ,

with v
(k)
α ’s single-particle operators of the lattice system, Bh’s operators of the envi-

ronment, and fα, gkh suitable coefficients.

4.2.1 Locality Conditions

The main purpose of this Chapter is to find the structure of the dynamics of fluctu-
ations, in particular of Weyl operators W (r), inherited from a microscopic dissipative
spin chain dynamics of the type (4.15),(4.16),(4.17).
In general, the action of the local Lindblad generator LN on (r, FN) =

∑n
j=1 rjFN(xj)

maps it into fluctuations of a single-site operator that is not in the linear span K, or it
might even generate fluctuations of operators that act non-trivially on more than just
one site. For the mesoscopic dynamics to be a map from the Weyl algebra W(K, σ(ω))
into itself, one has to assume

LN [x
(k)
i ] =

n∑
j=1

Lijx(k)
j , L = H +D , (4.20)

for all xi ∈ K, with k ∈ [−N,N ], where L is the n× n matrix with entries Lij and H,
D are the n× n matrices with entries defined by

i
[
HN , x

(k)
i

]
=

n∑
j=1

Hijx
(k)
j , DN

[
x

(k)
i

]
=

n∑
j=1

Dijx(k)
j . (4.21)

In other terms, the above condition consists in asking the linear span K to be mapped
into itself by the generator LN .
Such a constraint on the dynamics has also implications on the action of the generator
on products of operators from different sites.
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Lemma 4.1. Given a single-site operator basis {oα}d
2

α=1 in Ad and a generator LN
satisfying

LN
[
o(k)
α

]
=

d2∑
β=1

ckαβ o
(k)
β ,

then:
LN
[
o(k1)
α1

x(k2)
α2

. . . o(km)
αm

]
=
∑
β̄

ck̄ᾱ β̄ o
(k1)
β1

o
(k2)
β2

. . . x
(km)
βm

,

with multi-indices β̄ = (β1, β2, . . . , βm) and suitable coefficients ck̄
ᾱ,β̄

.

We give here the explicit proof of this result, since it shows the general methodology
that needs to be adopted in order to show many of the results discussed in the following
sections.

Proof. Due to the properties of commutators, the lemma is certainly true for the Hamil-
tonian term HN of the Lindblad generator. For the dissipative term DN we proceed
by induction: the statement is true in the case m = 1 thus, assuming this to hold also
for the product of m single-site operators, we want to show that it is valid also for
products of m+ 1 operators.
Using the algebraic relation

b
(
a [d , c] + [a , d] c

)
+
(
a [b , c] + [a , b] c

)
d − a [bd , c] − [a , bd] c = −2 [a , b] [d , c] ,

one derives that

DN [ab] = DN [a] b + aDN [b] + 2

p∑
µ,ν=1

Dµν

2

N∑
k,`=−N

Jk`
[
v(k)
µ , a

] [
b , v(`)

ν

]
,

for all operators a, b ∈ A[−N,N ]. Let a = o
(k1)
α1 o

(k2)
α2 . . . o

(km)
αm and b = o

(km+1)
αm+1 ; then,

DN

[
o(k1)
α1

o(k2)
α2

. . . o(km)
αm o(km+1)

αm+1

]
= o(k1)

α1
o(k2)
α2

. . . o(km)
αm DN

[
o(km+1)
αm+1

]
+

+DN

[
o(k1)
α1

o(k2)
α2

. . . o(km)
αm

]
o(km+1)
αm+1

+

+ 2

p∑
µ,ν=1

Dµν

2

N∑
k,`=−N

Jk`
[
v(k)
µ , o(k1)

α1
o(k2)
α2

. . . o(km)
αm

] [
o(km+1)
αm+1

, v†(`)ν

]
.

Due to the assumptions and the induction hypothesis, the first two contributions can
again be expressed as linear combinations of products of single-site basis operators at
sites k1, k2, . . . km+1. As for the last term, it amounts to

N∑
k,`=−N

Jk`
[
v(k)
µ , o(k1)

α1
o(k2)
α2

. . . o(km)
αm

] [
o(km+1)
αm+1

, v(†`)
ν

]
=

=
∑

q=k1,k2,...km

Jqkm+1o
(k1)
α1

o(k2)
α2

. . . o(kq−1)
αq−1

[
v(q)
µ , o(q)

αq

]
o(kq+1)
αq+1

. . . o(km)
αm

[
o(km+1)
αm+1

, v†(km+1)
ν

]
.

Therefore, by expanding the various commutators with respect to the single-site matrix
basis {oα}d

2

α=1, it can also be written as a linear combination of products of basis
operators at sites k1, k2, . . . km+1.
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4.3 Mesoscopic Dissipative Dynamics

In this section we shall show that, under the conditions (4.19),(4.20) on the micro-
scopic Lindblad generator preserving the microscopic state ω, the mesoscopic dynamics
that emerges in the limit N → +∞ is described by a semi-group {Φt}t≥0 of completely
positive, unital maps on the quantum fluctuation algebra.
The assumption that the generator preserves the microscopic reference state ω means
that we are considering dynamics such that

ω
(

ΦN
t (X)

)
= ω(X) ⇔ ω

(
LN [X]

)
= 0 .

This is what happens in many physical situations: asking ω ◦ΦN
t = ω is tantamount to

considering a dynamics that does not change the initial phase of the many-body system,
as discussed in Section 2.2. For instance, with this assumption one can describe all
those experimental settings where the focus is on the dynamical properties of states
prepared perturbing, by means of local manipulations, an equilibrium time-invariant
state ω (see equation (2.13) and the discussion above it)1.
Recalling the definition of the mesoscopic limit in (3.38), one naturally defines the
action of Φt in the following way:

Definition 4.2. The microscopic dissipative dynamical maps ΦN
t on the local algebras

A[−N,N ] define the corresponding mesoscopic dynamical maps Φt on the Weyl algebra
W(K, σ(ω)) of quantum fluctuations if the following mesoscopic limit

lim
N→+∞

ω
(
WN(s1)ΦN

t [WN(r)]WN(s2)
)

= Ω
(
W (s1) Φt(W (r))W (s2)

)
, (4.22)

is well-defined for all Weyl-like operators WN(s1), WN(s2), WN(r), with W (s1), W (s2)
and W (r) the corresponding limiting Weyl operators, with ω the state on the quasi-
local algebra A, and Ω the mesoscopic state on the Weyl algebra defined in (3.37) by
Theorem 3.2.

We will look for dynamical maps Φt of quasi-free type, namely mapping Weyl
operators into Weyl operators:

Φt(W (r)) = efr(t)W (rt) , ∀ r ∈ Rn , (4.23)

where both the time-dependent function fr(t) and vector rt ∈ Rn are unknowns to be
determined. The maps are unital, Φt[1] = 1, and must be completely positive. As such
they must obey the Schwartz positivity inequality

Φt(X
†X) ≥ Φt(X

†) Φt(X) , ∀X ∈ W(K, σ(ω)) . (4.24)

Then, since Weyl operators W (r) are unitary, fr(t) must satisfy

‖Φt(W (r))‖ =
∣∣efr(t)∣∣ ≤ ‖Φt[1]‖ = 1 . (4.25)

1Such an assumption can be relaxed, allowing the many-body system to dynamically change its
phase. This leads to two main technical complications: on one hand, the definition of fluctuations
as in (3.21) must be changed, subtracting a time-dependent mean-value; on the other hand, also the
commutation relations of the large N fluctuation operators would evolve in time, according to the
evolution of averages. Such an interesting situation has been studied in [66,67].
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The proof of equations (4.22),(4.23) will be based on a family of local microscopic
maps ΨN

t on the quantum lattice system interpolating between the microscopic, ΦN
t ,

and the mesoscopic dissipative time-evolution, Φt, defined by:

ΨN
t [WN(r)] = efr(t) WN(rt) = efr(t) ei(rt,FN ) (4.26)

rt = X tr
t r , Xt = et (D+H) (4.27)

fr(t) = − (r,Ytr) , Yt =
1

2

(
Σ(ω) − Xt Σ(ω)X tr

t

)
, (4.28)

where X tr denotes the transposition of the n× n matrix X and Σ(ω) is the fluctuation
covariance matrix. Because of Lemma 3.1 and Theorem 3.2, we know that

lim
N→+∞

ω (WN(s1)WN(rt)WN(s2)) = Ω
(
W (s1)W (rt)W (s2)

)
.

We are going to show that the mesoscopic dynamical maps Φt in (4.22) are of the form
(4.23), Φt [W (r)] = efr(t) W (rt), where fr(t) and rt are given by (4.27) and (4.28).
The maps Φt compose as a semigroup; indeed, for all s, t ≥ 0,

Φs ◦ Φt [W (r)] = e−(r,Yt r)−(rt,Ys rt) W ((rt)s)

= e−(r,Yt r)−(r,XtYsX trt r)W (rt+s) (4.29)

= e−(r,Yt+s r) W (rt+s) = Φt+s [W (r)] .

Furthermore, as required by complete positivity and unitality, and proved by the fol-
lowing lemma, the function fr(t) defined by (4.28) is such that exp(fr(t)) ≤ 1.

Lemma 4.2. The invariance of the microscopic state ω with respect to the microscopic
dissipative dynamics ΦN

t implies fr(t) ≤ 0.

Proof. We shall show that ω ◦ ΦN
t = ω, t ≥ 0, makes negative semi-definite, Yt ≤ 0,

the matrix defined by (4.28), for all t ≥ 0. Let λ ∈ Cn be a generic complex vector
and set qλ =

∑n
j=1 λj xj; then, using Schwartz positivity, and the time-invariance of

the state that allows one to use equations (C.22) in Appendix C, one estimates

1

2

n∑
i,j=1

λ∗iλj ω
({
FN(xi) , FN(xj)

})
=

1

2

n∑
i,j=1

λ∗iλj ω
(

ΦN
t

[{
FN(xi) , FN(xj)

]})
≥ 1

2
ω
(

ΦN
t [FN(q†λ)] ΦN

t [FN(qλ)]
)

+
1

2
ω
(

ΦN
t [FN(qλ)] ΦN

t [FN(q†λ)]
)

=
1

2
ω
((
λ,Xt FN

)(
λ∗,Xt FN

))
+

1

2
ω
((
λ∗,Xt FN

)(
λ,Xt FN

))
=

1

2

n∑
i,j;r,s=1

λ∗iλrX
ij
t X rs

t ω
({
FN(xj) , FN(xs)

})
.

In the large N limit one thus obtain, for all λ ∈ Cn,(
λ,Σ(ω) λ

)
≥

n∑
i,j;r,s=1

λ∗iλrX
ij
t X rs

t Σ
(ω)
js =

(
λ,XtΣ(ω)X tr

t λ
)
.
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In conclusion, in order to prove (4.22) with (4.23), we need to show that

lim
N→+∞

ω
(
WN(s1)

(
ΨN
t [WN(r)] − ΦN

t [WN(r)]
)
WN(s2)

)
= 0, ∀ s1, s2 ∈ Rn .

Actually, like all positive, normalised linear functionals on the Weyl algebra, ω satisfies
the Cauchy-Schwartz inequality |ω(a† b)|2 ≤ ω(a†a)ω(b†b), whence the unitarity of the
Weyl-like operators WN(r) yields∣∣∣ω (WN(s1) ∆N(t, r)WN(s2))

∣∣∣2 ≤ ω
(
WN(s1)∆N(t, r)∆†N(t, r)W †

N(s1)
)
, (4.30)

∆N(t, r) = ΨN
t [WN(r)] − ΦN

t [WN(r)] . (4.31)

In order to show that the right hand side of the above inequality vanishes with
N → +∞, we need relate the interpolating map ΨN

t to the local microscopic dissipative
dynamics ΦN

t = etLN ; namely, we need study the time-derivative of ΨN
t and its relations

with the generator LN . The structure of the time derivative can be derived by means
of the following lemma whose proof can be found in Appendix B.

Lemma 4.3. Let Mt be a time-dependent Hermitian matrix and Nt = eiMt. Then,

Ṅt :=
dNt

dt
= OtNt , Ot :=

∞∑
k=1

ik

k!
Kk−1
Mt

[Ṁt] , (4.32)

where Kn
Mt

[Ṁt] =
[
Mt , Kn−1

Mt
[Ṁt]

]
and K0

Mt
[Ṁt] = Ṁt.

Equipped with this result, we can show that, for large N , all terms in the series

expansion of
d

dt
ΨN
t [WN(r)] of order larger than 2 vanish in norm.

Proposition 4.1. For large N , the behaviour of
d

dt
ΨN
t [WN(r)] can be approximated by

d

dt
ΨN
t [WN(r)] '

(
i (rt, (H + D)FN) − 1

2
[(rt, FN) , (rt, (H + D)FN)] +

+
(
rt, (H + D) Σ(ω) rt

))
ΨN
t [WN(r)] , (4.33)

the error vanishing in norm.

Proof. The time-derivative

d

dt
ΨN
t [WN(r)] =

dfr(t)

dt
ΨN
t [WN(r)] + efr(t)

d

dt
ei(rt,FN )

consists of two terms: from (4.28), by direct computation, the first one contains

ḟr(t) =
1

2

(
rt ,
(

(H +D)Σ(ω) + Σ(ω)(H +D)tr
)
rt

)
=
(
rt , (H +D)Σ(ω) rt

)
, (4.34)
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where in the last equality use has been made of the reality of the vector rt and of
the fact that the covariance matrix is real symmetric, namely Σ(ω) =

(
Σ(ω)

)tr
. Using

Lemma 4.3 and the notation of Definition 3.2, the second term contains

d

dt
ei(rt,FN ) =

d

dt
ei FN (qrt ) =

(
i FN (q̇rt)−

1

2

[
FN (qrt) , FN (q̇rt)

])
ei(rt,FN )

+
+∞∑
h=3

ih

h!
Kh−1
FN (qrt )

[FN(q̇rt)] ei(rt,FN ) ,

where q̇rt = (ṙt, FN) =
(
rt, (H+D)FN

)
, and Kh

FN (qrt )
[FN(q̇rt)], is the multi-commutator

defined by

Kh
x [z] =

[
x,Kh−1

x [z]
]
, K0

x[z] = z . (4.35)

Then, since operators at different sites commute, one estimates∥∥∥∥∥
+∞∑
h=3

ih

h!
Kh−1
FN (qrt )

[FN(q̇rt)] ei(rt,FN )

∥∥∥∥∥ ≤
∥∥∥∥∥

+∞∑
h=3

1

h!

N∑
k=−N

1

N
h/2
T

Kh−1
qrt

[
q̇

(k)
t

]∥∥∥∥∥
≤ 1√

NT

+∞∑
h=3

(2‖qrt‖)h−1

h!
‖q̇rt‖ ≤

e2‖qrt‖
√
NT

‖q̇rt‖ .

The result thus follows as qrt and q̇rt are bounded single-site operators for all t ≥ 0
belonging to finite intervals of time.

According to the previous discussion, the convergence of the microscopic dissipative
dynamics ΦN

t = etLN to the mesoscopic dissipative dynamics Φt in (4.23) amounts to
the validity of the following result.

Theorem 4.2. Given a quantum chain with normal quantum fluctuations (K,ω), K
a linear set of single-site observables and a local Lindblad generator satisfying assump-
tions (4.19),(4.20) and preserving the microscopic state ω, then

lim
N→+∞

ω
(
WN(s1) ∆N(t, r) ∆†N(t, r)W †

N(s1)
)

= 0 , (4.36)

where ∆N(t, r) = ΨN
t [WN(r)] − ΦN

t [WN(r)] and ΨN
t is defined as in (4.26)–(4.28).

Proof. The first step in the proof is the analysis of the action of the local Lindblad
generator (4.20) on the pre-Weyl operator given in (3.29). This requires various tech-
nical steps that can be found in Appendix C.
Then, coming to the proof of the Theorem, notice that

ΨN
t [WN(r)]− ΦN

t [WN(r)] =

∫ t

0

dy
d

dy
e(t−y)LN

[
ΨN
y [WN(r)]

]
=

=

∫ t

0

dy e(t−y)LN
[
d

dy
ΨN
y [WN(r)] − LN

[
ΨN
y [WN(r)]

]]
.
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From Lemma C.1 and using (C.22) (Appendix C) because of the time-invariance of the
reference state ω, for large N , one approximates

LN [WN(ry)] '

(
i (ry, (H +D)FN) +

− 1

2

[
(ry, FN) ,

(
ry, (H +D)FN

)]
+ S(ry;N)

)
WN(ry) ,

with S(ry;N) as defined in (C.3), in Appendix C. On the other hand, Lemma 4.3
asserts that the time derivative can be approximated as follows

d

dy
ΨN
t [WN(ry)] '

(
i (ry, (H +D)FN)− 1

2
[(ry, FN) , (ry, (H +D)FN)] +

+
(
ry, (H +D) Σ(ω) ry

))
ΨN
t [WN(ry)] .

Since the errors in these approximations vanish in norm for all finite t ≥ 0 and ΦN
t is

a contracting map, ‖ΦN
t [a†a]‖ ≤ ‖a‖2, what remains to be studied is the quantity

ω
(
WN(s1)∆N(t, r) ∆†N(t, r)W †

N(s1)
)

=

=

∫ t

0

dy

∫ t

0

dz ω
(
WN(s1)ΦN

t−y [D(ry;N)] ΦN
t−z
[
D†(rz;N)

]
W †
N(s1)

)
D(ry;N) := Z(ry;N)ΨN

y

[
ei(r,FN )

]
Z(ry;N) :=

(
ry, (H +D) Σ(ω) ry

)
− S(ry;N) .

Using the Cauchy-Schwarz inequality (4.30) and then twice the Schwartz positivity
inequality (4.24), once for ΦN

t and the other for ΨN
t , the proof of the theorem reduces

to bounding

ω
(
WN(s1)ΦN

t−y
[
D(ry;N)D†(ry;N)

])
W †
N(s1)) ≤

≤ e2fr(y) ω
(
WN(s1) ΦN

t−y
[
Z2(ry;N)

]
W †
N(s1)

)
≤

≤ ω
(
WN(s1) ΦN

t−y
[
Z2(ry;N)

]
W †
N(s1)

)
.

Indeed, ZN(ry;N) is Hermitian and e2fr(y) ≤ 1 (see Lemma 4.2). Consider now

Z2(ry;N) =
(
S(ry;N) − ḟr(y)

)2

, (4.37)

where use has been made of (4.34). The operator S(ry;N) can be written as

S(ry;N) =
1

NT

N∑
k,`=−N

Jk`

d2∑
α,β=1

o(k)
α o

(`)
β ,

with oα, oβ suitable single-particle operators, showing that it is a finite summation of

terms of the form (C.24). Lemma 4.1 implies that the support of the operators o
(k)
α o

(`)
β
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is not altered by the local dissipative dynamics ΦN
t so that

ΦN
t−y [S(ry;N)] =

1

NT

N∑
k,`=−N

Jk`

d2∑
α,β=1

cαβk` (t− y) o(k)
α o

(`)
β ,

where cαβk` (t) are suitable coefficients, bounded for all finite t ≥ 0, and {oα}d
2

α=1 is a
single-site operator basis in the algebra Ad. Analogously,

ΦN
t−y
[
S2(ry;N)

]
=

1

N2
T

N∑
k,`;p,q=−N

d2∑
αβ;µν=1

Jk` Jpq d
αβ,µν
k`,pq (t− y) o(k)

α o
(`)
β o(p)

µ o(q)
ν ,

with dαβ,µνk`,p,q (t) bounded coefficients for all finite positive times t ≥ 0.

Lemma C.3 asserts that the sums over k, ` and p, q commute with the Weyl-like
operators WN(r) when N → +∞; then, using the time-invariance under ΦN

t of the
microscopic state ω, we get:

lim
N→+∞

ω
(
WN(s1)ΦN

t

[
Z2(ry;N)

]
W †
N(s1)

)
= lim

N→+∞
ω
(

ΦN
t

[
Z2(ry;N)

]
WN(s1)W †

N(s1)
)

= lim
N→+∞

ω
(
ΦN
t

[
Z2(ry;N)

])
= lim

N→+∞
ω
(
Z2(ry;N)

)
.

The proof is thus completed by means of (C.23) and of Proposition C.3 which imply

lim
N→+∞

ω
(
S2(r;N)

)
=
(

lim
N→+∞

ω (S(r;N))
)2

= ḟ 2
r (t) .

Remark 4.2. As the dynamical maps Φt transform Weyl operators into Weyl opera-
tors, their dual maps that act on the states Ω̂ on the Weyl algebra sending them into
Ω̂t = Ω̂◦Φt, transform Gaussian states into Gaussian states. For instance, as expected
for it emerges from a microscopic time invariant state ω, the state Ω in Theorem 3.2
is left invariant by Φt:

Ω (Φt [W (r)]) = efr(t) Ω (W (rt)) = e−
1
2

(r,Ytr)− 1
2

(rt,Σ(ω) rt)

= e−
1
2

(r,Ytr)− 1
2

(r,XtΣ(ω) X trt r) = e−
1
2

(r,Σ(ω) r) = Ω (W (r)) .

As they inherit the semigroup property from the Φt, the dual maps have a generator and
this generator must then be at most quadratic in the mesoscopic operators F (xi) arising
from the local fluctuation operators FN(xi). When the anti-symmetric matrix σ(ω) is
invertible ( i.e. σ(ω) is symplectic), the explicit form of the generator is derived by duality
and by explicitly computing the time-derivative of Φt [W (r)], using the Weyl algebraic
relations to reconstruct it by means of the action L [W (r)]: it turns out that the resulting
Kossakowski matrix is positive semi-definite so that the maps Φt on W(K, σ(ω)) are
completely positive.
In the cases where σ(ω) can not be inverted, thanks to the quasi-free character of the
maps Φt, complete positivity can nevertheless be proved applying the same strategy
adopted in [68], as shown in Appendix D.
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Example 4.1. The following model is useful to understand the main result of this
Chapter. Consider a bi-infinite one-dimensional lattice of spin-1 systems. At each
site, one has the angular momentum operators J1, J2, J3, such that:

[J1, J2] = iJ3 ,

and cyclic permutations. A convenient basis, is the one made by the eigenstate of J3,

J3|µ〉 = µ|µ〉, µ = −1, 0, 1 ;

using also the ladder operators J± = J1 ± iJ2, whose action on the previous basis is
described by

J+|1〉 = J−| − 1〉 = 0, J±|0〉 =
√

2| ± 1〉 ,
one obtains the action of all operators

J1| ± 1〉 = 1√
2
|0〉, J1|0〉 =

|1〉+ | − 1〉√
2

;

J2| ± 1〉 = ± i√
2
|0〉, J2|0〉 =

|1〉 − | − 1〉√
2i

.

On the quasi-local algebra of such spin-1 chain, we consider the following translation-
invariant factorized state ωβ,

ωβ (J1) = ωβ (J2) = 0

ωβ (J3) = −2
sinh (βε)

1 + 2 cosh (βε)
,

(4.38)

corresponding to a tensor product of Gibbs states at inverse temperature β for each site,
with respect to the single-site Hamiltonian εJ3.
We consider K as the linear span formed by the elements J1, J2, and therefore construct
the main local fluctuations

FN (J1,2) =
1√

2N + 1

N∑
k=−N

J
(k)
1,2 .

As reviewed in Chapter 3, these converge in the large N limit to Bose field operators
F (J1), F (J2), such that

[F (J1), F (J2)] = iωβ (J3) = iη ,

and whose covariance matrix is

Σ(ωβ) =
1 + cosh (βε)

1 + 2 cosh (βε)

(
1 0
0 1

)
.

Thus, introducing the exponentials

WN(r) = exp (i (r1FN(J1) + r2FN(J2)))

in the large N limit they tend to Weyl operators W (r) such that

lim
N→∞

ωβ (WN(r)) = e−
1
2(r,Σ(ωβ)

r) = Ωβ (W (r)) ,
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where Ωβ is the quasi-free state on the Weyl algebra generated by W (r), induced by ωβ.
Let us now consider the following dynamical generator

LN [X] = iε

[
N∑

k=−N

J
(k)
3 , X

]
+ λDN [X] , λ > 0,

DN [X] =
N∑

k=−N

(
J

(k)
3 XJ

(k)
3 −

1

2

{(
J

(k)
3

)2

, X

})
;

(4.39)

since both state and dynamics are factorized, one can check the time-invariance of the
state on single-site operators. The generic operator can be written in term of the basis
formed by the eigenvectors |µ〉 of J3. Thus, one has

ωβ ◦ LN
(
|µ〉〈ν|(k)

)
=

(
iε (µ− ν) + λ

(
µν − µ2 + ν2

2

))
ωβ (|µ〉〈ν|)

and ω ◦ LN = 0 follows from ωβ (|µ〉〈ν|) = δµν. This dynamical system obeys the main
assumptions under which Theorem 4.2 holds, and computing

LN [r1FN(J1) + r2FN(J2)] = (r1, r2)

(
−λ

2
−ε

ε −λ
2

)(
FN(J1)
FN(J2)

)
,

according to equations (C.22), one has

etLN [(r, FN)] = (r, Xt FN) ,

with

Xt = e−
λ
2
t

(
cos (ε t) − sin (ε t)
sin (ε t) cos (ε t)

)
.

Therefore, the generic Weyl operator W (r), evolves according to

Φt [W (r)] = W
(
X tr
t r
)

exp

(
−1− eλ t

2

(
r,Σ(ωβ) r

))
. (4.40)

Notice that
lim
t→∞

Φt [W (r)] = 1e−
1
2(r,Σ(ωβ)

r) ;

this means that whatever initial state Ω̃ acting on the Weyl algebra generated by W (r)
is chosen, it will asymptotically converge to the thermal one Ωβ; indeed,

lim
t→∞

Ω̃ (Φt [W (r)]) = e−
1
2(r,Σ(ωβ)

r) = Ωβ (W (r))

which is the characteristic function of the thermal state.

Remark 4.3. In the unitary case [31, 33, 60], there are situations where the large N
dynamical maps on fluctuations are dependent on the reference state of the system ω.
Nevertheless, it is known [33] that a factorized Hamiltonian, such as the one in (4.16),
acting separately on different particles without any interaction among them, determines
a dynamics for the fluctuations that depends only on the Hamiltonian itself, with no
trace of the microscopic reference state ω.
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This can also be appreciated in the previous Example (4.39): indeed, consider the gen-
erator (4.39), and set λ = 0. The resulting map (equation (4.40)) is

Φt [W (r)] = eir1(t)F (J1)+ir2(t)F (J2) ,

r1(t) = r1 cos(εt) + r2 sin(εt) ,

r2(t) = r2 cos(εt)− r1 sin(εt) .

In these equations, there is no dependence on the state ωβ of (4.38).
On the contrary, let us consider the purely dissipative map obtained setting ε = 0, λ > 0
in the generator (4.39); the dynamics is of the following form

Φt [W (r)] = W
(
e−

λ
2
tr
)

exp

(
−1− eλ t

2

(
r,Σ(ωβ) r

))
,

where the dependence on the reference state ωβ is embodied by the dependence on the
temperature parameter β in the exponential factor.
Therefore, even in the case of a strictly local dissipative evolution, with no mixing effects
among different sites, microscopic Lindblad evolutions give rise to dynamical maps on
fluctuation operators that are dependent on the reference state ω.

Another interesting comment concerns the asymptotic time-behaviour of these evo-
lutions Φt (4.23), with Xt, fr(t) as in (4.27), (4.28), respectively. If the microscopic
Lindblad dynamics, generated by (4.15), is such that the matrix Xt of equation (4.27),
converges, for large times, in the norm topology, to the null matrix,

lim
t→∞
‖Xt‖ = 0 ,

then, whatever initial state Ω̃ on the Weyl algebra W
(
K, σ(ω)

)
is considered, in the

large time limit, as a result of theorem 4.2, the characteristic function of fluctuations
will converge to

lim
t→∞

Ω̃ (Φt [W (r)]) = e−
1
2

(r,Σ(ω) r) .

The right-hand side of the above equation represents the characteristic function of the
mesoscopic state Ω defined by the reference state ω, in the sense of Theorem 3.2. This
means that, when limt→∞ ‖Xt‖ = 0, any initial mesoscopic state converges, asymptot-
ically in time, to a unique mesoscopic state Ω on fluctuation operators, defined by the
reference state ω.

In this Chapter we have shown that, in general, given a lattice system with normal
quantum fluctuations, in weak interaction with a heat bath in the sense of Section 4.1,
the dynamics of fluctuations, provided that the locality condition (4.20) and short-
range mixing effects (4.19) are guaranteed, consists of a semigroup of unital, completely
positive maps that transform mesoscopic Gaussian states into states of the same kind.
In the next Chapter, such a result will be used in order to prove the possibility of
entangling two many-body systems through the presence of a common heat bath.
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Chapter 5

Environment Induced
Entanglement in Many-body

Systems

The presence of an external environment typically affects quantum systems in weak
interaction with it via loss of quantum correlations due to decohering and mixing-
enhancing effects [6–8, 11]. Nevertheless, it has also been established that suitable
environments are capable of creating and enhancing quantum entanglement among
quantum open sub-systems immersed in them instead of destroying it [14–20]. It is
remarkable that entanglement can be generated solely by the mixing structure of the
irreversible dynamics, without any environment induced, direct interaction between
the quantum sub-systems. This mechanism of environment induced entanglement gen-
eration has been studied for systems made of few qubits or oscillator modes [20–22] and
specific protocols have been proposed to prepare predefined entangled states via the
action of suitably engineered environments [69]. Instead, here, we want to study the
possibility that entanglement be created through a purely noisy mechanism in many-
body systems.1 As already outlined in Chapter 3, in a quantum system made of a large
number N of constituents, typical accessible observables are collective ones, i.e. those
involving the degrees of freedom of all its elementary parts. There, it was pointed out
that fluctuations retain quantum properties in the infinite number of particles limit,
providing a suitable framework where to look for truly quantum behaviours in such
systems. The repeated claim of having detected “macroscopic” entanglement in sev-
eral experiments [36,37,74] poses a serious challenge in trying to interpret theoretically
those results: fluctuations may indeed play a relevant role [60].
In the following, we shall show that quantum behaviour can indeed be present at the
mesoscopic level in open many-body systems and, even more strikingly, that entangle-
ment can be generated in mesoscopic systems by the presence of an external bath. A
bipartite many-body system will be considered, with no direct Hamiltonian interaction

1For different approaches to entanglement in many-body systems, see [29, 70–73] and references
therein.
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between the two subsystems, that are nevertheless immersed in a common heat bath.
It will be shown that emergent dissipative quantum time-evolutions on fluctuations, as
the ones studied in Chapter 4, are capable of entangling fluctuations of the two infinite
sub-systems; moreover, such dissipative generated entanglement presents interesting
features when studied as a function of the temperature of the heat bath.

5.1 The Model and its Fluctuation Algebra

The model we shall study consists of two infinite quantum spin-1
2

chains (namely two
one-dimensional bi-infinite lattice systems, supporting on each site a spin-1

2
system),

whose spins do not directly interact, but are immersed into a same environment and
therefore behave as an open quantum system; in the regime of weak coupling, the two
chains undergo a microscopic dissipative quantum dynamics described by a semi-group
with a generator in Kossakowski-Lindblad form. As discussed in the previous Chapter,
this induces a dissipative dynamics of the level of fluctuations; we shall show that,
solely because of its statistical mixing properties, this dynamics may induce mesoscopic
entanglement between the two spin chains.
Let us describe the system in more detail. At each site of both chains we attach the
algebra M2(C) of complex 2 × 2 matrices generated by the identity and the Pauli
matrices σ1,2,3 satisfying the algebraic rules

[σi , σj] = 2iεijk σk .

We shall pair sites from the two chains so that the single site algebra isA(k)
4 , represented

by the matrix algebra M4(C) = M2(C) ⊗M2(C) supported by the k-th sites of the
double chain. The quasi-local algebra A describing the double chain will then be the
tensor product of the quasi-local algebras of the single chains, with a ⊗ 1 and 1 ⊗ a
denoting operators pertaining to the first, respectively the second chain. We consider
on A the microscopic thermal tensor product state at inverse temperature β, such that
the only non-vanishing single-site expectations are

ωβ

(
σ

(j)
3 ⊗ 1

)
= ωβ

(
1⊗ σ(j)

3

)
= −ε , (5.1)

ωβ(σ
(j)
3 ⊗ σ

(k)
3 ) = ε2 . (5.2)

where ε = tanh (βη/2), with η a positive constant. Namely, each site of the two chains
is equipped with a Gibbs state at inverse temperature β defined by the Hamiltonian

H =
η

2

(
σ3 ⊗ 1 + 1⊗ σ3

)
. (5.3)

Such a state does not support correlations between the two spin chains and manifestly
obeys the clustering condition (2.15) of Definition 2.6.

In the following, we shall focus on observables in the real linear span K generated
by the set {xj}8

j=1 consisting of the following 4× 4 Hermitian matrices

x1 = σ1 ⊗ 1 , x2 = σ2 ⊗ 1 , x3 = 1⊗ σ1 , x4 = 1⊗ σ2 (5.4)

x5 = σ1 ⊗ σ3 , x6 = σ2 ⊗ σ3 , x7 = σ3 ⊗ σ1 , x8 = σ3 ⊗ σ2 . (5.5)
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One easily sees that ωβ(xj) = 0 for all j = 1, . . . , 8, and that the condition (3.31) in
Definition 3.3 is satisfied; indeed,

∞∑
k=−∞

∣∣∣ωβ(x
(0)
i x

(k)
j )− ωβ(xi)ωβ(xj)

∣∣∣ =
∣∣∣ωβ(xixj)

∣∣∣ . (5.6)

Using the notation of the previous Chapters, in the case of N -site chains the local
fluctuation operators corresponding to the observables xj are given by

FN(xj) =
1√
NT

N∑
k=−N

(
x

(k)
j − ω(xj)

)
=

1√
NT

N∑
k=−N

x
(k)
j . (5.7)

Notice that the matrices x1,2 and x3,4 refer to single sites belonging to different spin
chains: their fluctuations will provide collective degrees of freedom associated to the
first, the second chain, respectively.2 The matrix C(ωβ) that in the large N limit gives
the correlations of fluctuations corresponding to the operators {xj}8

j=1 is the matrix
with entries

C
(ωβ)
ij = lim

N→∞
ωβ

(
FN(xi)FN(xj)

)
. (5.8)

Such an 8×8 matrix can be expressed as a three-fold tensor products of 2×2 matrices:

C(ωβ) = (1− ε σ1)⊗ 1⊗ (1 + ε σ2) . (5.9)

In computing tensor products, we adopt the convention in which the entries of a matrix
are multiplied by the matrix to its right. According to Chapter 3, the algebraic relations
among the emerging mesoscopic bosonic operators F (xj), to which FN(xj) tend in the
mesoscopic limit, are described by the symplectic matrix with entries

σ
(ωβ)
ij = −iωβ

(
[xi , xj]

)
,

σ(ωβ) = −2iε(1− εσ1)⊗ 1⊗ σ2 ,
(5.10)

while the covariance matrix of these bosonic degrees of freedom is

Σ
(ωβ)
ij =

1

2
ωβ
( {
xi , xj

})
,

Σ(ωβ) =
1

2

(
C(ωβ) + (C(ωβ))tr

)
= (1− εσ1)⊗ 1⊗ 1 .

(5.11)

The inverse of the symplectic matrix σ(ωβ) can be computed and one explicitly finds:

(σ(ωβ))−1 =
1

2c2ε
(1 + εσ1)⊗ 1⊗ iσ2 , c =

√
1− ε2 . (5.12)

As discussed in Chapter 3, it is useful to introduce pre-Weyl operators (3.29),

WN(r) = eiFN (qr) = ei(r , FN ) (5.13)

(r , FN) =
8∑
j=1

rj FN(xj) = FN(qr) , (5.14)

2There are 16 single site independent observables of the form σµ ⊗ σν , µ, ν = 0, 1, 2, 3, σ0 = 1. It
turns out that fluctuations corresponding to the chosen subset {xj}8j=1 give rise to a set of mesoscopic
bosonic operators, whose Weyl algebra commutes with the one generated by the remaining eight
elements.
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where FN = {FN(xj)}8
j=1 is the vector of local fluctuations and the vector r is now 8-

dimensional, r ∈ R8. In the mesoscopic, large N limit, they define the Weyl operators
W (r), forming the fluctuation algebra W(K, σ(ωβ)). Thanks to the regularity of the
quasi-free state (see Theorem 3.2), one has the representation

π (W (r)) = eiF (qr) = ei
∑8
j=1 rj F (xj) = ei(r , F ) , qr =

8∑
j=1

rj xj , (5.15)

where F is the eight-dimensional operator valued vector with components F (xj), 1 ≤
j ≤ 8. From (3.15) and (5.10), one also finds:

π (W (r)) F (xi) π
(
W †(r)

)
= F (xi) + i

[
(r, F ) , F (xi)

]
= F (xi) +

8∑
j=1

σ
(ωβ)
ij rj . (5.16)

The Weyl algebraic structure associated with the chosen set K of local observables and
the thermal state ωβ allow for the mesoscopic description to be formulated in terms

of four-mode bosonic annihilation and creation operators a#
i ≡ (ai, a

†
i ), 1 ≤ i ≤ 4,

satisfying the canonical commutation relations

[ai , a
†
j] = δij , [ai , aj] = [a†i , a

†
j] = 0 . (5.17)

Indeed, introducing the following four-dimensional complex vectors fi ∈ C4,

f1 =
√
ε


1
0
0
0

 , f3 =
√
ε


0
0
1
0

 , (5.18)

f5 =
√
ε


−ε√
1− ε2

0
0

 , f7 =
√
ε


0
0
−ε√

1− ε2 ,

 (5.19)

and f2j = −if2j−1, j = 1, 2, 3, 4, one can obtain the commutation relations of the
bosonic degrees of freedom as

[
F (xi) , F (xj)

]
= 2 i Im ((fi, fj)) , (fi, fj) = εΣ

(ωβ)
ij +

i

2
σ

(ωβ)
ij , (5.20)

thus showing that these can be written in terms of the four modes a#
i , 1 ≤ i ≤ 4,

F (xi) = a(fi) + a†(fi) , a†(fi) =
4∑
j=1

[fi]j a
†
j , 1 ≤ i ≤ 8 . (5.21)

Setting

Bi = (ai, a
†
i )
tr , A = (B1, B2, B3, B4)tr , (5.22)

one has

F =MA , (5.23)
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where

M =
√
ε


M1 0 0 0

0 0 M1 0
−εM1 cM1 0 0

0 0 −εM1 cM1

 , (5.24)

M1 =

(
1 1
i −i

)
.

The 8× 8 matrix M can be inverted and used to write A =M−1F :

M−1 =


1

2
√
ε
M†

1 0 0 0
√
ε

2c
M†

1 0 1
2c
√
ε
M†

1 0

0 1
2
√
ε
M†

1 0 0

0
√
ε

2c
M†

1 0 1
2c
√
ε
M†

1

 . (5.25)

From the structure of M−1, one notices that the creation and annihilation operators
a#

1 , respectively a#
3 come from single site operators x1,2, respectively x3,4, pertaining

to the first, respectively the second chain. Then, a#
1 and a#

3 describe two independent
mesoscopic degrees of freedom emerging from different chains. Instead, a#

2 and a#
4

result from combinations of spin operators involving both chains at the same time.

Remark 5.1. If the temperature vanishes, i.e. ε = 1, c = 0, the matrix M becomes
singular, thus showing that the representation in terms of bosonic creation and annihi-
lation operators can be reduced. Indeed, in such a degenerate case, only the following
two bosonic modes can be accommodated:

a†1 =
F (x1) + i F (x2)

2
, a†2 =

F (x3) + i F (x4)

2
. (5.26)

This degeneracy is due to a so-called coarse graining effect [31] that prevents distin-
guishing the mesoscopic limits of distinct fluctuation operators. In other terms, it may
happen that

lim
N→∞

ω
([
FN(qr1)− FN(qr2)

]2)
= 0 ,

even when qr1 6= qr2.

In the creation and annihilation operator formalism, the Weyl operators become
displacement operators D(z) labelled by complex vectors z ∈ C4.
Let Zi = (zi, z

∗
i )
tr, and Z = (Z1,Z2,Z3,Z4)tr ∈ C8 and Σ3 denote the diagonal 8 × 8

matrix diag(−1, 1,−1, 1,−1, 1,−1, 1); then,

D(z) := e(Z,Σ3 A) = exp

(
4∑
j=1

(
zj a

†
j − z∗j aj

))
. (5.27)

Lemma 5.1. Given the creation and annihilation operators a#
i , 1 ≤ i ≤ 4, Weyl and

displacement operators are related by

W (r) = ei(r,F ) = D(zr) , Zr =

(
zr
z∗r

)
= −iΣ3M† r (5.28)

D(z) = W (rz) , rz = i(M†)−1Σ3 Z . (5.29)
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According to Theorem 3.2, the mesoscopic algebra W(K, σ(ωβ)) inherits a regular
quasi-free state from the microscopic state ωβ.

Proposition 5.1. The quasi-free state Ωβ on the Weyl algebra of quantum fluctuations
W(K, σ(ωβ)) is such that

Ωβ(W (r)) = exp
(
− 1

2
(r ,Σ(ωβ) r)

)
, (5.30)

with covariance matrix Σ(ωβ) given by (5.11). In the creation and annihilation operator
formalism, it amounts to the expectation functional Ωβ(W (r)) = Tr(RβW (r)), where

Rβ =
e−β Ĥ

Tr
(

e−β Ĥ
) , Ĥ = η

4∑
j=1

a†jaj , (5.31)

namely to a Gibbs state at inverse temperature β with respect to the quadratic Hamil-
tonian Ĥ.

Proof. The tensor product structure and translation-invariance of ωβ yield

ωβ (WN(r)) =
(
ωβ

(
ei/
√
N

∑8
j=1 rj xj

))N
=

(
1− 1

2N

8∑
i,j=1

rirjωβ(xi xj) + o

(
1

N

))N

,

whence, since r ∈ R8,

lim
N→∞

ωβ
(
WN(r)

)
= lim

N→∞
ωβ
(
ei(r , FN )

)
= exp

(
− 1

2
(r ,Σ(ωβ) r)

)
.

On the other hand, writing W (r) as a displacement operator D(zr), from (5.28), its
expectation with respect to the state Ωβ reads

Ωβ(W (r)) = exp
(
− ‖Zr‖

2

4ε

)
= exp

(
−
∑8

i,j=1 rirj (fi, fj)

2ε

)
.

Then, the result follows from (fi, fj) = εΣ
(ωβ)
ij + i

2
σ

(ωβ)
ij of (5.20), and noticing that r

is a real-valued vector and σ(ωβ) an anti-symmetric matrix.

5.2 Dissipative Dynamics of Gaussian Fluctuations

and Entanglement

We shall focus upon dissipative dynamics of the type studied in the previous Chap-
ter; therefore, given our set {xi}8

i=1, we assume the dynamics to be generated by a
Lindblad map of the type (4.15),(4.16),(4.17) obeying assumptions (4.19),(4.20). The
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previous Theorem 4.2 shows that, when the linear space K of selected single-site op-
erators is stable under the action of the local Lindblad generator, then the emergent
mesoscopic irreversible dynamics maps Weyl operators into themselves: it corresponds
to a semigroup of unital, completely positive maps on the Weyl algebra W(K, σ(ωβ)).
Since in the present case the matrix σ(ωβ) is invertible, one is able to provide a general
form of the bosonic Lindblad generator, at most quadratic in the fluctuation operators
F (xi), that implements such dynamics.

Corollary 5.1. The maps W(K, σ(ωβ)) 3 W (r) 7→ Φt[W (r)] = Wt(r) = efr(t) W (rt)
with rt ∈ R8 and fr(t) given by (4.27), respectively (4.28), satisfy the time-evolution
equation ∂tWt(r) = L[Wt(r)], where the generator L is given by

L[Wt(r)] =
i

2

8∑
i,j=1

H
(1)
ij

[
F (xi)F (xj) , Wt(r)

]
(5.32)

+
8∑

i,j=1

D
(1)
ij

(
F (xi)Wt(r)F (xj) −

1

2

{
F (xi)F (xj) , Wt(r)

})
, (5.33)

with H(1) a Hermitian 8× 8 matrix and D(1) a positive semi-definite 8× 8 Hermitian
matrix, given by

H(1) = −i(σ(ωβ))−1
(
LC(ωβ) − C(ωβ) Ltr

)
(σ(ωβ))−1 , (5.34)

D(1) = (σ(ωβ))−1
(
LC(ωβ) + C(ωβ)Ltr

)
(σ(ωβ))−1 . (5.35)

In the creation and annihilation operator formalism, using the notation introduced in
(5.22), the generator reads

L[Dt(z)] =
i

2

8∑
i,j=1

H
(2)
ij

[
A†i Aj , Dt(z)

]
(5.36)

+
8∑

i,j=1

D
(2)
ij

(
A†i Dt(z)Aj −

1

2

{
A†iA

† , Dt(z)
})

, (5.37)

where Dt(z) is the time-evolved displacement operator (5.29) corresponding to the time-
evolved Weyl operator Wt(r) and H(2) and D(2) are 8× 8 matrices, given by

H(2) =M†H(1)M , D(2) =M†D(1)M , (5.38)

where M is the matrix in (5.24).

Proof. Using Lemma 4.3, the explicit expressions for ṙt, fr(t) and the relation

C(ωβ) = Σ(ωβ) +
i

2
σ(ωβ) ,

one computes

∂tWt(r) =
(
ḟr(t) + i(ṙt, F ) − 1

2

[
(rt, F ) , (ṙt, F )

])
Wt(r)

=

(
i(rt,LF ) + (rt,LΣ(ωβ)rt) +

i

2
(rt,Lσ(ωβ)rt)

)
Wt(r)

=
(
i(rt,LF ) + (rt,LC(ωβ)rt)

)
Wt(r) .
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In order to show how to match this time-derivative with the action on Wt(r) of a linear
map as in the statement of the Corollary, it is useful to recall (5.16), which gives

Wt(r)F (xi) =

(
F (xi) +

8∑
j=1

σ
(ωβ)
ij rtj

)
Wt(r) .

It is then straightforward to derive that

L[Wt(r)] =
i

2

( (
rt, σ

(ωβ)
(
H(1) + (H(1))tr

)
F
)

+
(
rt, σ

(ωβ) H(1) σ(ωβ)rt
) )

Wt(r)

+
1

2

( (
rt, σ

(ωβ)
(
D(1) − (D(1))tr

)
F
)

+
(
rt, σ

(ωβ)D(1) σ(ωβ)rt
) )

Wt(r) .

By equating the operatorial, respectively the scalar contributions, from the time-
derivative and the generator action, one obtains

L =
1

2
σ(ωβ)

(
H(1) + (H(1))tr

)
− i

2
σ(ωβ)

(
D(1) − (D(1))tr

)
LC(ωβ) = σ(ωβ) iH

(1) + D(1)

2
σ(ωβ) ,

whence, by the invertibility of σ(ωβ) (see (5.12)), the hermiticity of C(ωβ) and the the
fact that L† = Ltr (since it is a real matrix), the result follows from

LC(ωβ) ± C(ωβ)Ltr = σ(ωβ)

(
iH(1) + D(1)

2
∓ iH(1) − D(1)

2

)
σ(ωβ) .

The second part of the corollary follows from using (5.23) and inserting it into (5.32)
and (5.33)

F (xi) = F †(xi) =
8∑

k=1

M∗
ik A

†
k , F (xj) =

8∑
`=1

Mi`A` .

5.2.1 Quasi-Free States

The mesoscopic dissipative dynamics Φt obtained in the previous Chapter is quasi-
free as it maps Weyl operators into Weyl operators. The dual maps Φ∗t acts on the
states ρ on the Weyl algebra W(K, σ(ωβ)), sending them into ρt = Φ∗t [ρ] according to
the duality relation

ρt(W (r)) = ρ
(
Φt[W (r)]

)
, ∀W (r) ∈ W(K, σ(ωβ)) . (5.39)

Particularly useful states onW(K, σ(ωβ)) are the Gaussian ones ρG which are identified
by their characteristic functions being Gaussian, i.e. by the following expectations of
Weyl operators3

ρG
(
W (r)

)
= ρG

(
ei(r,F )

)
= exp

(
−1

2
(r,G r)

)
, ∀r ∈ R8 , (5.40)

G = [Gij] , Gij =
1

2
ρG

({
F (xi) , F (xj)

})
, i, j = 1, 2 . . . , 8 . (5.41)

3For simplicity we limit the discussion to Gaussian states with zero averages.
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These states are completely identified by their covariance matrix G; in particular, as
already observed in Chapter 3, positivity of ρG is equivalent to the following condition
on G [56, 75]:

G+
i

2
σ(ωβ) ≥ 0 , (5.42)

where σ(ωβ) is the symplectic matrix in (5.10). Clearly, the maps Φ∗t transform Gaussian
states into Gaussian states:

Φ∗t [ρG](W (r)) = ρG

(
Φt[W (r)]

)
= efr(t) ρG

(
W (rt)

)
= exp

(
fr(t) −

1

2
(rt, G rt)

)
= ρGt

(
W (r)

)
, (5.43)

with the time-dependent covariance matrix Gt obtained recalling (4.36) of Theorem
4.2, together with (4.26)–(4.28):

Gt = Σ(ωβ) − etLΣ(ωβ) etL
tr

+ etLG etL
tr

. (5.44)

It follows that the mesoscopic state Ωβ in (5.30) is Gaussian with covariance matrix
G = Σ(ωβ) and thus, as the microscopic state ωβ is invariant under the local dissipative
dynamics ΦN

t , Ωβ is invariant under the mesoscopic dissipative dynamics Φ∗t , i.e. Gt =
Σ(ωβ).

A useful equivalent expression for the covariance matrix can be obtained by pass-
ing to the language of creation and annihilation operators. The expectation of the
displacement operator D(z) with respect to a Gaussian state ρG reads

ρG (D(z)) = exp

(
−1

2
(Z, G̃, Z)

)
, (5.45)

with the new covariance matrix G̃ explicitly given by

G̃ =


G̃11 G̃12 G̃13 G̃14

G̃21 G̃22 G̃23 G̃24

G̃31 G̃32 G̃33 G̃34

G̃41 G̃42 G̃43 G̃44

 , (5.46)

where

G̃ij =
1

2

 ρG

({
ai, a

†
j

})
−ρG

({
ai, aj

})
−ρG

({
a†i , a

†
j

})
ρG

({
a†i , aj

})
 , i, j = 1, 2, 3, 4 . (5.47)

The 2×2 matrices along the diagonal represent single-mode covariance matrices, while
the off-diagonal ones account for correlations among the various modes.

5.2.2 Entanglement Measure in Bipartite Gaussian States

Using the previous results, and in particular the quasi-free property of the maps Φt,
we want now to study: 1) whether it is possible to generate mesosocopic entanglement
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between different chains entirely by means of the dissipative microscopic dynamics and
further 2) investigate the fate of the generated entanglement in the course of time and
of its dependence on the strength of the coupling with the environment and on the
temperature of the given microscopic invariant state.

By mesoscopic entanglement we mean the existence of mesoscopic states carrying
non-local, quantum correlations among the fluctuation operators pertaining to differ-
ent chains. More precisely, we shall focus on the creation and annihilation operators
a#

1 and a#
3 that, as observed before, are collective degrees of freedom attached to the

first, second chain, respectively. We shall then study the time-evolution of two-mode
Gaussian states ρ(13), obtained by tracing a full four-mode Gaussian state over a#

2

and a#
4 . In the case of two-mode Gaussian states, the presence of entanglement can

be ascertained using the partial transposition criterion, i.e. by looking at their be-
haviour when a1 and a†1 are exchanged while keeping a†1a1 and a1a

†
1 unchanged and

without touching a3 and a†3. If under this substitution, ρ(13) does not remain a positive
functional, then it carries quantum correlations between the modes 1 and 3 and thus
results entangled. Vice versa, a Gaussian state with respect to these two modes that
remains positive under the above substitution is for sure separable. This is the content
of the so-called Simon entanglement criterion [76]. Notice that the state Ωβ in (5.30),
besides being time-invariant, is separable with respect to all its four modes; indeed,
its density matrix representation Rβ in (5.31) can be written as a product of four in-
dependent density matrices one for each of the modes. The corresponding covariance
matrix Σ̃(β) results diagonal when expressed in the representation (5.45), (5.46), thus
showing neither quantum nor classical correlations between the different modes. In
order to obtain a non-trivial mesoscopic dynamics, we shall consider initial states that
are obtained from Rβ by the action of suitable squeezing operators in the modes 1 and
3, i.e. Gaussian states of the form

ρ(β)
r1r3

= S1(r1)S3(r3)Rβ S
†
3(r3)S†1(r1) , (5.48)

where Sj(rj), rj ∈ R, are single-mode squeezing operators such that

S†j (rj) a
†
j Sj(rj) = cosh(rj) a

†
j − sinh(rj) aj , j = 1, 3 .

The squeezing operators map displacement operators D(z) in (5.27) into displacement
operators

D(z′) = S†3(r3)S†1(r1)D(z)S1(r1)S3(r3) ,

where z′ = (z′1, z2, z
′
3, z4) with z′1,3 = cosh(r1,3)z1,3 − sinh(r1,3)z̄1,3. Further, the modes

are not mixed by the squeezing so that ρ
(β)
r1r3 is also a separable Gaussian state relatively

to all four modes. In particular, after squeezing, the 8 × 8 covariance matrix Σ̃(β) of
the thermal state Rβ is mapped into the following one:

Σ̃(β)
r1,r3

=
1

2ε

(
S(r1) 04

04 S(r3)

)
, S(r) =


cosh(2r) − sinh(2r) 0 0
− sinh(2r) cosh(2r) 0 0

0 0 1 0
0 0 0 1

 , (5.49)

where 04 is the null matrix in four dimensions; the block diagonal form, again shows
that also these squeezed states do not carry correlations between the modes.
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Moreover, a state ρ(13) on the Bose algebra generated by a#
1,3 can be obtained

from ρ
(β)
r1r3 by restricting its action on displacement operators of the form D(z13) with

z13 = (z1, 0, z3, 0). Namely, ρ(13) is completely defined by the expectations

ρ(13)
(
D(z13)

)
= Tr

(
ρ(β)
r1r3

D(z13)
)

= Tr
(
RβD(z′13)

)
, (5.50)

and then inherits the Gaussian character of Rβ as these expectations are Gaussian
functions of z1,3. Finally, the same argument shows that the mesoscopic, dissipative
time-evolution Φt transforms it in a Gaussian state at all times t ≥ 0:

ρ
(13)
t (D(z13)) = Tr

(
ρ(β)
r1r3

Φt

[
D(z13)

])
. (5.51)

In practice, the covariance matrix of interest, that involves only the modes 1, 3, can be
retrieved from the total matrix in the form (5.46) by discarding the blocks relative to
modes 2, 4. Explicitly,

G̃red(t) =


ρ

(13)
t (a†1a1) + 1

2
−ρ(13)

t (a2
1) ρ

(13)
t (a1a

†
3) −ρ(13)

t (a1a3)

−ρ(13)
t (a†21 ) ρ

(13)
t (a†1a1) + 1

2
−ρ(13)

t (a†1a
†
3) ρ

(13)
t (a†1a3)

ρ
(13)
t (a†1a3) −ρ(13)

t (a1a3) ρ
(13)
t (a†3a3) + 1

2
−ρ(13)

t (a2
3)

−ρ(13)
t (a†1a

†
3) ρ

(13)
t (a1a

†
3) −ρ(13)

t (a†23 ) ρ
(13)
t (a†3a3) + 1

2


G̃red(t) ≡

(
Σ1 Σc

Σ†c Σ2

)
.

(5.52)

For two mode-Gaussian states, the already mentioned Simon’s criterion not only
provides an exhaustive entanglement witness, but it also offers a means to quantify
it [76]. It is nevertheless convenient to formulate the criterion in terms of the previous

covariance matrix [77]. Consider the block structure of G̃red(t) and define:

I1 = det(Σ1) , I2 = det(Σ2) I3 = det(Σc) ,

I4 = Tr
(

Σ1σ3Σcσ3Σ2σ3Σ†cσ3

)
.

(5.53)

Then, the necessary and sufficient condition for a state to be separable is:

S ≡ I1I2 +
(1

4
− |I3|

)2

− I4 −
(I1 + I2)

4
≥ 0 . (5.54)

Further, the amount of entanglement in two-mode Gaussian states can be measured
through the so-called logarithmic negativity of the state:

E = max

{
0,−1

2
log2 (4 I)

}
, (5.55)

where

I =
I1 + I2

2
− I3 −

([
I1 + I2

2
− I3

]2

−
(
I1I2 + I2

3 − I4

))1/2

. (5.56)
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5.3 Witnessing Environment Induced Mesoscopic

Entanglement

In the following we shall apply the theoretical tools developed so far to the study of
the dissipative generation of mesoscopic entanglement in two different models: in the
first one, the microscopic Lindblad generator contains contributions involving single-
site operators from both chains, while in the second one all terms contain single-site
operators from one chain only.

Model 1 We shall consider a Lindblad generator of the form (4.15), with Hamiltonian
term

HN [X] = i
[
HN , X

]
, HN =

η

2

N∑
k=−N

h(k) , h(k) = σ
(k)
3 ⊗1(k) + 1(k)⊗σ(k)

3 , (5.57)

and dissipative contribution of the generic form (4.17),

DN [X] =
1

2

N∑
k,`=−N

Jk`

4∑
µ,ν=1

Dµν

(
v(k)
µ

[
X , (v†ν)

(`)
]

+
[
v(k)
µ , X

]
(v†ν)

(`)
)
, (5.58)

with the following single-site Kraus operators

v1 = σ+ ⊗ σ− , v2 = σ− ⊗ σ+ , v3 =
1

2

(
σ3 ⊗ 1

)
, σ4 =

1

2

(
1⊗ σ3

)
, (5.59)

where σ± = (σ1 ± i σ2)/2, while the 4× 4 matrix D is given by

D =


δ 0 γ γ
0 δ γ γ
γ γ δ 0
γ γ 0 δ

 ; (5.60)

by choosing |γ| ≤ δ/2, D results positive semi-definite. In this case, one can recast DN

in a double commutator form:

DN [X] =
1

2

N∑
k,`=−N

Jk`

4∑
µ,ν=1

Dµν

[ [
v(k)
µ , X

]
, (v†ν)

(`)
]
. (5.61)

In the following we shall study the emergent mesoscopic dynamics corresponding to
the microscopic dissipative dynamics locally generated by LN [X] = HN [X] +DN [X] as
given above.
The thermal state ωβ reduces on the local algebra A[−N,N ] to

ρ
(β)
N =

N⊗
j=−N

1

4 cosh2(ηβ/2)
e−βηh

(k)/2 , (5.62)

that evolves according to the master equation involving the dual generator L ?
N :

∂tρN(t) = L?N [ρN(t)] = −i
[
HN , ρN(t)

]
+ DN [ρN(t)] . (5.63)
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The microscopic thermal state ρ
(β)
N is left invariant by the dissipative dynamics; indeed,

L?N [ρ
(β)
N ] = 0, as it follows from

[σ3 ⊗ 1 + 1⊗ σ3 , vµ] = 0 ∀µ = 1, 2, 3, 4 .

Further, since spin operators at different sites commute, given the Lindblad gen-
erator LN , its action on the self adjoint element x

(k)
i from the set {xj}8

j=1 at site k is
given by:

LN
[
x

(k)
i

]
= i

η

2

[
σ

(k)
3 ⊗ 1 + 1⊗ σ(k)

3 , x
(k)
i

]
+ J0

4∑
µ,ν=1

Dµν

2

[[
v(k)
µ , x

(k)
i

]
, (v†ν)

(k)
]
.

This action maps the linear span K in itself; indeed, LN
[
x

(k)
i

]
=
∑8

j=1 Lij x
(k)
j , with

the 8× 8 matrix L = H +D, where

H = η

(
S 04

04 S

)
, D =

(
−δ14 Γ

Γ −δ14

)
(5.64)

S =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , Γ = γ


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

Then, the generator of the mesoscopic dissipative dynamics as given in Corollary
5.1 is completely determined by the 8 × 8 matrices H(1) and D(1) in (5.34), (5.35) or
H(2) and D(2) in (5.38). Here, we give the form of the generator with respect to creation
and annihilation operators.

Proposition 5.2. In terms of annihilation and creation operators a#
i , i = 1, 2, 3, 4,

the mesoscopic Lindblad generator acts on displacement operators D(z) as L = H + D,
with H and D given by

H[D(z)] = iη
[ 4∑
j=1

a†jaj , D(z)
]

(5.65)

D[D(z)] =
8∑

i,j=1

K
(β)
ij

(
A†i D(z)Aj −

1

2

{
A†i Aj , D(z)

})
, (5.66)

where A = (a1, a
†
1, a2, a

†
2, a3, a

†
3, a4, a

†
4)tr and Kossakowski matrix

K(β) =
J0

ε

(
Aβ Bβ

Bβ Aβ

)
, Aβ = δ


1 + ε 0 0 0

0 1− ε 0 0
0 0 1 + ε 0
0 0 0 1− ε

 (5.67)

Bβ = γ


ε(1 + ε) 0 −(1 + ε)c 0

0 ε(1− ε) 0 −(1− ε)c
−(1 + ε)c 0 −ε(1 + ε) 0

0 −(1− ε)c 0 −ε(1− ε)

 , (5.68)

where ε = tanh(ηβ/2) and c =
√

1− ε2 as before.
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Proof. The expressions of the 8 × 8 matrices H(1) and D(1) in (5.34) and (5.35) that
define the action of the mesoscopic dissipative generator in (5.32)-(5.33) can be readily
computed by means of the following quantities

LC(β) − C(β) Ltr = −2iη (1− εσ1)⊗ 1⊗ (ε+ σ2)

LC(β) + C(β) Ltr = −2J0

(
δ (1− εσ1)⊗ 1 − γ (σ1 − ε)⊗ σ1

)
⊗ (1 + εσ2) .

From (5.34), i.e.

H(1) = −i(σ(β))−1
(
LC(β) − C(β)Ltr

)
(σ(β))−1 ,

one derives that the Hamiltonian coupling among the F (xi) is given by

H(1) =
η

2c2ε2
(1 + εσ1)⊗ 1⊗ (ε+ σ2) =

η

2c2ε2

(
E ε E
ε E E

)
, (5.69)

with

E =


ε −i 0 0
i ε 0 0
0 0 ε −i
0 0 i ε

 .

Similarly, the Hamiltonian contribution expressed in terms of creation and annihilation
operators in (5.38) gives rise to the matrix H(2) =M†H(1)M, explicitly given by

H(2) =
1

ε


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ (1 + ε 0
0 1− ε

)
. (5.70)

Inserting such a diagonal matrix in the expression (5.36) and using the commutation
relations [ai, a

†
i ] = 1 one recovers the Hamiltonian generator in (5.65).

For what concerns the dissipative part, from (5.35), i.e.

D(1) = (σ(β))−1
(
LC(β) + C(β)Ltr

)
(σ(β))−1 ,

one derives the explicit expression of the Kossakowski matrix:

D(1) =
J0

2c2ε2

(
δ (1 + εσ1)⊗ 1− γ (ε+ σ1)⊗ σ1

)
⊗ (1 + εσ2)

=
J0

2c2ε2


D1 εD2 εD1 D2

εD2 D1 D2 εD1

εD1 D2 D1 εD2

D2 εD1 εD2 D1

 ,

D1 = δ

(
1 −iε
iε 1

)
, D2 = −γ

(
1 −iε
iε 1

)
.

Using the transformation (5.38), one can rewrite it in the language of creation and
annihilation operators, thus obtaining the expression (5.67),(5.68).
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Remark 5.2. From the above expression of the Lindblad generator there emerge two
main features of the mesoscopic dissipative dynamics: 1) the unitary contribution H to
the collective dynamics of the Boson degrees of freedom shows no interactions among
them. The mesoscopic Hamiltonian is proportional to the number operator and as
such it does commute with the dissipative contribution: D ◦ H = H ◦ D. In fact,
D is gauge-invariant, it does not change by sending ai into eiφai and a†i into e−iφa†i ,
i = 1, 2, 3, 4. Furthermore, 2) were it not for the off-diagonal blocks Bβ in (5.68) in
the Kossakowski matrix, the dissipative dynamics would correspond to decaying process
affecting independently the various bosonic degrees of freedom. For instance, in absence
of off-diagonal terms in the Kossakowski matrix, one would have

L[ai] = − (iω + J0δ) ai .

Instead, the presence of Bβ 6= 0 statistically couples the collective operators, a#
1,3, a#

2,4

referring to different chains.

Model 2 While the Lindblad operators v’s of the first model involve contributions
from both chains (c.f. (5.59)) and different sites are statistically coupled by the coef-
ficients Jk`, in this second case we shall consider a Lindblad generator with the same
Hamiltonian term as in (5.57), and a diagonal dissipative contribution of the form:

DN [X] =
N∑

k=−N

D(k)[X] , D(k)
N [X] =

6∑
µ,ν=1

Dµν

(
v(k)
µ X v(k)

ν −
1

2

{
v(k)
µ v(k)

ν , X
})

,

(5.71)
with self-adjoint Lindblad operators,

v1,2,3 = σ1,2,3 ⊗ 1 , v4,5,6 = 1⊗ σ1,2,3 , (5.72)

and 6× 6 Kossakowski matrix D given by

D =

(
M M
M M

)
, M =

1 −iε 0
iε 1 0
0 0 ξ

 , (5.73)

where the conditions ξ ≥ 0 and ε = tanh(ηβ/2) ≤ 1 guarantee D ≥ 0. Because of
the symmetry of the Kossakowski matrix, each single site contribution to the Lindblad
generator can be recast in the simpler form:

D(k)
N [X] =

3∑
µ,ν=1

Mµν

(
w(k)
µ X w(k)

ν −
1

2

{
w(k)
µ w(k)

ν , X
})

(5.74)

=
1

2

( [
w

(k)
1 ,

[
X , w

(k)
1

]]
+
[
w

(k)
2 ,

[
X , w

(k)
2

]]
+ γ

[
w

(k)
3 ,

[
X , w

(k)
3

]] )
− i

ε

2

{
w

(k)
1 ,

[
X , w

(k)
2

]}
+ i

ε

2

{
w

(k)
2 ,

[
X , w

(k)
1

]}
(5.75)

with operators wµ = σµ ⊗ 1 + 1⊗ σµ obeying

[wj , wk] = 2iεjk`w` (5.76)

{wj , wk} = σj ⊗ σk + σk ⊗ σj + iεjk` (σ` ⊗ 1− 1⊗ σ`) . (5.77)
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In the Schrödinger picture, the local spin states ρN evolve in time according to the

dual generator L?N =
(
H ?
N + D ?

N

)
where

H ?
N [ρN ] = −iη

N∑
k=−N

[
w

(k)
3 , ρN

]
, D ?

N [ρN ] =
N∑

k=−N

(
D(k)

)?
[ρN ] ,

(
D(k)
N

)?
[ρN ] =

3∑
µ,ν=1

Mµν

(
w(k)
ν ρN w

(k)
µ −

1

2

{
w(k)
µ w(k)

ν , ρN
})

=
1

2

2∑
µ=1

[
w(k)
µ ,
[
ρN , w

(k)
µ

]]
+ γ

[
w

(k)
3 ,
[
w

(k)
3 , ρN

]]
+i
ε

2

{
w

(k)
1 ,
[
ρN , w

(k)
2

]}
− i ε

2

{
w

(k)
2 ,
[
ρN , w

(k)
1

]}
− 2ε {w3, ρN} .

In terms of the operators wµ, the microscopic state ρ
(β)
N in (5.62) is the tensor product

of N density matrices of the form

1

4 cosh2(ηβ
2

)
exp

(
−ηβ

2
w3

)
.

Expanding the exponential and using (5.77) with j = k = 3 one gets:

ρ
(β)
N =

N⊗
k=−N

1

4

(
1 − ε w

(k)
3 + ε2σ

(k)
3 ⊗ σ

(k)
3

)
, ε = tanh

(
βη

2

)
.

By explicit computation one then checks that L?N
[
ρ

(β)
N

]
= 0, whence the microscopic

local states are left invariant by the microscopic dissipative dynamics. This fact is
one of the two conditions for applying the results of the previous Chapter. The other
condition is that the action of the local generator LN maps into itself the linear span
K; it is possible to show that

LN
[
x

(k)
i

]
=

8∑
j=1

Lijx(k)
j ,

with L = H +D, H being as before, and

D = −2

(
(1 + ξ)14 −B(ε)

2ε14 +B(ε) (3 + ξ)14 + C

)
, (5.78)

14 being the 4× 4 identity matrix and

B(ε) =


0 0 ε 0
0 0 0 ε
ε 0 0 0
0 ε 0 0

 , C =


0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

 .

Finally, as for the first model, it is sufficient to explicitly write the generator of the
quasi-free mesoscopic semigroup emerging from the above microscopic dissipative dy-
namics in the language of creation an annihilation operators:
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Proposition 5.3. In terms of annihilation and creation operators a#
i , i = 1, 2, 3, 4,

the mesoscopic Lindblad generator reads L = H + D, where the action of H and D on
displacement operators D(z) is as in (5.65) and (5.66), where the Kossakowski matrix
is now

K(β) =
2

ε

(
Aβ Bβ

Bβ Aβ

)
,

Aβ =


(1 + ε)(1 + ξ) 0 0 0

0 (1− ε)(1 + ξ) 0 0
0 0 (1 + ε)(3 + ξ) 0
0 0 0 (1− ε)(3 + ξ)

 ,

Bβ =


ε2(1 + ε) 0 −cε(1 + ε) 0

0 ε2(1− ε) 0 −cε(1− ε)
−cε(1 + ε) 0 (ε+ 1)(1− c2) 0

0 −cε(1− ε) 0 (1− ε)(1− c2)

 ,

again with ε = tanh(ηβ/2), c =
√

1− ε2.

The proof follows the same steps as the ones discussed for the previous model.

Though the details are different, the structure of the Kossakowski matrix is similar
to the one in Model 1, so that again the Hamiltonian contribution H to the mesoscopic
Lindblad generator commutes with the dissipative one. Moreover, also in this case, the
off-diagonal elements of the Kossakowski matrix statistically couple the mesoscopic
operators a#

1,3, a#
2,4 referring to different chains.

Given the results of the previous Section, one can now study whether the mesoscopic
dissipative time-evolutions in Model 1 and 2 can give rise to mesoscopic entanglement
between the two independent chains, and, if yes, analyze the fate of the generated
entanglement in the course of time.

5.3.1 Entanglement Dynamics: Model 1

In this case the entanglement criterion (5.54) can be studied analytically: we will
show that the two spin chains can indeed become mesoscopically entangled, and relate
the behaviour of these bath-induced quantum correlations to the squeezing parameters,
the parameter γ and the temperature associated to the initial microscopic state. For
sake of simplicity, we shall further set δ = J0 = η = 1, since these parameters do not
play any role in the discussion that follows.

The criterion for Model 1 In this model for initial symmetrically squeezed states
r1 = r3 = r, or one-mode squeezed initial state, r1 = r, r3 = 0, an explicit analytic
formula for the criterion in (5.54) can be derived. The first step is to find the evolution
of the reduced covariance matrix at every time t, in the language of creation and
annihilation operators. Theorem 4.2 and Lemma 5.1 gives:

Φt [D(z)] = e−
1
2

(Z,ỸtZ) D(zt) , (5.79)
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with:

Zt = etL̃
tr

Z̃ , etL̃
tr

= Σ3M†etL
tr

(M†)−1Σ3 , Ỹt = Σ̃
(β)
0,0 −

(
etL̃

tr
)†

Σ̃
(β)
0,0 etL̃

tr

,

and

etL̃
tr

= e−t


cosh(γt) 0 −ε sinh(γt) c sinh(γt)

0 cosh(γt) c sinh(γt) ε sinh(γt)
−ε sinh(γt) c sinh(γt) cosh(γt) 0
c sinh(γt) ε sinh(γt) 0 cosh(γt)

⊗ (eiωt 0
0 e−iωt

)
.

As a result, the evolution of the covariance matrix for the four modes reads as follows:

G̃(t) =
(

etL̃
tr
)†

Σ̃(β)
r1,r3

etL̃
tr

+ Σ̃
(β)
0,0 −

(
etL̃

tr
)†

Σ̃
(β)
0,0 etL̃

tr

.

In order to construct the reduced matrix for the two relevant modes under investiga-
tion, it is sufficient to look at the block structure of formula (5.46) and to collect the
corresponding entries:

G̃red(t) =

(
G̃11(t) G̃13(t)

G̃13(t) G̃33(t)

)
,

where one has G̃13 = (G̃13)†. All the four matrices are diagonal in the same basis,
thus the criterion depends just on their eigenvalues. For the two mentioned cases
of symmetrically squeezed or one-mode squeezed initial state, the quantity in (5.54)
signalling separability takes the following explicit form:

SS(t) =
(ε2 − 1)

2

16ε4
+ sinh2(r)

[(
1

2ε2
− 1

2

)(
yε(t)

ε
− y2

ε (t)

)
− 2

(
1 +

1

ε2

)
y2

3(t)

]
+

+ sinh4(r)

[(
yε(t)

ε
− y2

ε (t) + 4y2
3(t)

)2

− 4
y2

3(t)

ε2

]
, (5.80)

SA(t) =
(ε2 − 1)

2

16ε4
+ sinh2(r)

[(
1

4ε2
− 1

4

)(
y1(t)− y2

1(t)

ε2
+ y2(t)− ε2y2

2(t)

)
+

− y2
3(t)

(
1

2
+

1

2ε2

)]
, (5.81)

where

y1(t) =
e−2t

2
(cosh(2γt) + 1) , y2(t) =

e−2t

2
(cosh(2γt)− 1) , (5.82)

y3(t) =
e−2t

2
sinh(2γt) , yε(t) =

y1(t)

ε
+ εy2(t) . (5.83)

The behaviour in time of the logarithmic negativity E, introduced in (5.55) can
similarly be computed; its behaviour is shown in Fig.5.1 for different values of the
dissipative parameter γ appearing in the Kossakowski matrix and fixed initial temper-
ature T = 1

β
. Since similar results hold for both symmetrically squeezed and one-mode
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Figure 5.1: Model 1: behaviour in time of the logarithmic negativity E for different values
of γ at fixed temperature T = 0.1, for a symmetrically squeezed initial state with r1 = r3 =
r = 1.

squeezed initial states, only the graphs relative to the former case are shown. From
the behaviour of E, one clearly sees that the two infinite spin chains get entangled by
the dynamics. Since the Hamiltonian does not contain coupling terms, this entangle-
ment is solely due to the mixing effects of the environment within which the two spin
chains are embedded. Moreover, the amount of created entanglement increases as the
dissipative parameter γ gets larger, while a non-zero entanglement appears earlier in
time.

r =0.1

r =0.7

r =1

r =2

0 2 4 6 8 10
t

0.02

0.04

0.06

0.08

0.10

0.12

0.14
E ( t )

Figure 5.2: Model 1: behaviour in time of the logarithmic negativity E for different values of
the squeezing parameter r = r1 = r3, at fixed temperature T = 0.1 and dissipative parameter
γ = 1/2.

Also the amount of squeezing plays an essential role; while a non-vanishing squeez-
ing appears necessary to create quantum correlations, too much squeezing decreases
the maximum value of E. It also influences the time at which entanglement is first
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Figure 5.3: Model 1: behaviour in time of the logarithmic negativity E for different values
of the temperature T , at fixed dissipative parameter γ = 1/2 and squeezing r1 = r3 = r = 1.

generated. Further, for fixed T and γ, there is a value of the squeezing parameter r
allowing for a maximal value of E. All this is explicitly shown in Fig.5.2. Finally, the
effect of the temperature is displayed in Fig.5.3, for fixed dissipative and squeezing pa-
rameters. One sees that increasing the temperature, the maximum of the logarithmic
negativity E decreases, indicating that there exists a critical temperature TC , above
which no entanglement is possible. The explanation of this result can be traced to the
behaviour of the quantity S appearing in the separability criterion in (5.54). Looking
at the expressions (5.80)), and (5.81), for large temperatures, i.e. for ε small, all terms
but those proportional to 1/ε4 can be neglected, obtaining in the two cases:

SS(t) ∼ 1

16ε4
(
1 + 8 sinh2(r)

(
y1(t)− y2

1(t)
))

,

SA(t) ∼ 1

16ε4
(
1 + 4 sinh2(r)

(
y1(t)− y2

1(t)
))

,

with y1(t) still given by (5.82). Notice that since y1(t) < 1 for t > 0, these two
quantities are always positive; therefore, there must be a finite “critical temperature”
TC beyond which entanglement is no longer present.

This result is further illustrated by Fig. 5.4, where the points in the (r, T ) plane
with non-vanishing mesoscopic entanglement are highlighted. These figures show two
regions, the dark ones associated with a non-vanishing maximal value of E, the brighter
ones with vanishing maximal value of E and therefore no entanglement. The line
separating the two regions determines the “critical temperature” TC , above which
entanglement among the two chains is not possible, as a function of the squeezing
parameter; it is defined implicitly by the condition max

(
E(r, T )

)
= 0, where the

maximization is over all times.
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Figure 5.4: Model 1: entanglement phase diagrams for the symmetrically squeezed state
r = r1 = r3 (left) and one-mode squeezed state r = r1, r3 = 0 (right), with γ = 1/2; the line
separating the two regions gives the behaviour of the critical temperature TC as a function
of r.

Entanglement Sudden Birth and Sudden Death

The time behaviour of the logarithmic negativity E reported in Fig.’s 5.1,5.2,5.3
shows the phenomena of the so-called “sudden birth” and “sudden death” of entangle-
ment [78], i.e. the sudden generation of entanglement only after a finite time since the
starting of the dynamics, and the abrupt vanishing of it at a later, finite time. These
two effects can be analyzed in detail as function of the temperature T of the initial
state.

Let us first consider the phenomenon of sudden death and accordingly look at the
large t behaviour of the evolved initial Gaussian state. The asymptotic state of the
dynamics generated by (5.65) and (5.66) is thermal, with a reduced covariance matrix
in the modes a1, a3 given by:

G̃∞red := lim
t→∞

G̃red(t) =
1

2ε
14 .

Positivity of the asymptotic state requires (c.f. (5.42)):

G̃∞red +
i

2
σ̃ ≥ 0 , σ̃ = −i

(
σ3 0
0 σ3

)
, (5.84)

where σ̃ is the symplectic matrix in the reduced a1, a3 representation. This condition
assures also the positivity of the partially transposed state, since G̃∞red is left invariant by
this transformation. In fact, the large time asymptotic limit of the lowest eigenvalue
λmin(t) of the covariance G̃red(t) is given by λ∞min = 2−1 (1/ε− 1), which is always
strictly positive, except at zero temperature (ε = 1) when it vanishes. Therefore, when
T > 0, the bath generated entanglement must always vanish in finite times, since
λmin(t), from being negative, should become strictly positive for t → ∞. Only at
T = 0 the created entanglement may vanish asymptotically.

In order to study the phenomenon of sudden birth of entanglement, one has to
analyze the behaviour of the logarithmic negativity E in a right neighborhood of t = 0.
Let us consider first the case of the symmetrically squeezed initial state. Using (5.80),
one checks that

lim
t→0+

SS(t) =
(1− ε2)2

16ε4
≥ 0 .
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This result already shows that only at zero temperature (ε = 1) there is the possibility
of having generation of entanglement as soon as the dynamics starts. In fact, at T = 0
one has:

ST=0
S (t) = sinh4(r)

(
e−8t − 2e−6t cosh(2γt) + e−4t

)
− e−4t sinh2(2γt) sinh2(r) . (5.85)

Since its first derivative with respect to t vanishes at t = 0, one needs to study the
behaviour of its second derivative:

d2

dt2
ST=0
S (t)

∣∣∣
t=0

= 8
[

sinh4(r)(1− γ2)− sinh2(r)γ2
]
.

Since ST=0
S (t) = 0, there can be entanglement generation as soon as t > 0 only if this

quantity is negative, i.e. only when sinh2(r) < γ2/(1 − γ2). In the opposite case, as
well as for T > 0, entanglement generation can occur only through the sudden creation
phenomenon.

Similarly, in the case of a single mode squeezed initial state, r1 = r, r3 = 0, from
(5.81), we have:

lim
t→0+

SA(t) =
(1− ε2)2

16ε4
≥ 0 .

Therefore, also in this case, the system may become entangled as soon as t > 0 only
at zero temperature. Indeed, one has

ST=0
A (t) = − sinh2(r)

e−4t sinh2(2γt)

16
, (5.86)

which is always negative, vanishing only at t = 0, so that indeed entanglement is
created as soon as t > 0. On the other hand, the phenomenon of sudden creation of
entanglement always occurs for T > 0.

Concerning the behaviour of the critical temperature TC for large squeezing pa-
rameter r, the first graph of Fig. 5.4 suggests a vanishing value for TC , while that on
the right a constant value, independent from r. Indeed, in the first case, recalling the
result (5.85) above, one sees that for T = 0 and γ = 1/2, i.e. the largest admissible
value for the dissipative parameter γ, one gets for large r:

ST=0
S (t) ' e4(r−t)

(
1− e−3t

)(
1− e−t

)
, (5.87)

which is always non negative. This means that in the limit r →∞, no entanglement is
created at any time when T = 0. The critical temperature TC must therefore approach
zero in the same limit.

Instead, in the other case one finds that for large squeezing parameter:

SA(t) ' e2r g(t, T ) , (5.88)

where g(t, T ) is the function multiplying sinh2(r) in (5.81). One can show that this
function takes negative values for some t, i.e. entanglement is generated, only for
temperatures below a certain fixed value T̄ , which can be computed only numerically.
As shown by the graph in the right part of Fig.4, the critical temperature is thus always
non vanishing, reaching the asymptotic value T̄ for large squeezing.
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5.3.2 Entanglement Dynamics: Model 2

While in Model 1 the microscopic dynamics is generated by a Lindblad term involv-
ing contributions from both chains and also different sites, the dissipative generator
(5.71) of Model 2 contains only single chain Lindblad operators, and further without
any statistical coupling between different sites. This model is the many-body gener-
alization of a two-qubit system studied in [79], where entanglement between the two
qubits was shown to occur through a purely mixing mechanism induced by the presence
of off-diagonal contributions of the form (σµ⊗1) · (1⊗σν) in the dissipative generator
D[·]. In fact, the entangling power of the model depends entirely on the strength of
the statistical coupling of the otherwise independent qubits.

Similarly, in Model 2, mesoscopic entanglement can be dissipatively generated
among the two chains in the large N limit. Unfortunately, in this case manageable
analytic expressions for the logarithmic negativity are not available, so that the be-
haviour of E can be studied only numerically. For simplicity, in the following discussion
we have set η = 1, since this parameter can be reabsorbed into a redefinition of the
temperature.

As in Model 1, some initial squeezing is necessary in order for the dynamics to
generate entanglement; further, the amount of created entanglement decreases as the
dissipative parameter ξ entering the Kossakowski matrix (5.73) gets larger. This is
explicitly shown by the behaviour of the graphs in Fig.5.5 and Fig. 5.6, where the
phenomena of sudden birth and sudden death of entanglement are also visible as in
Model 1.
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Figure 5.5: Model 2: behaviour in time of the logarithmic negativity E for different values
of the dissipative parameter ξ, at fixed temperature T = 0.1 and squeezing r = r1 = r3 = 1.

These graphs (and the ones below) refer to the choice of a symmetrically squeezed
initial state; similar results hold also in the case of one-mode squeezed initial states.

The dependence on the initial state temperature T is instead depicted in Fig. 5.7,
for fixed ξ and squeezing parameter. Also in this case, one sees that increasing the
temperature, the maximum of the logarithmic negativity E decreases, indicating that
there exists a critical temperature TC , above which no entanglement is possible; the
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Figure 5.6: Model 2: behaviour in time of the logarithmic negativity E for different values
of the temperature T , for ξ = 1/2 and squeezing r = r1 = r3 = 1.

behaviour of TC as function of the squeezing parameter r is given by phase diagrams
very similar to those in Fig. 5.4.
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Figure 5.7: Model 2: behaviour in time of the logarithmic negativity E for different values
of the temperature T , for ξ = 1/2 and squeezing r = r1 = r3 = 1.

However, unlike in Model 1, asymptotic entanglement is now possible. Indeed,
setting the parameter ξ = 0 and decreasing the initial temperature T , one sees that
the two chains not only get mesoscopically entangled at finite time, but remarkably, the
generated mesoscopic entanglement persists for longer times. This behaviour is clearly
shown by the plots in Fig. 5.8, where the time behaviour of the logarithmic negativity
is reported for a symmetrically squeezed initial state: in the case of zero temperature,
one sees that the generated mesoscopic entanglement persists for arbitrary long times.
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Figure 5.8: Model 2: behaviour in time of the logarithmic negativity E for different values
of the temperature T , for ξ = 0 and squeezing r = r1 = r3 = 1.

In this Chapter, we studied the quantum dynamics of the fluctuation operators in
a many-body system composed by two, non-interacting spin-1/2 chains, immersed in a
common, weakly coupled external environment. This model can be thought as describ-
ing two one-dimensional lattice systems immersed in a common bath, where at each
site of the lattices one has equal atoms, that, for low temperatures, can be described
as two-level systems, considering just their ground state and first excited state.
The system behaves as an open quantum systems, so that noise and dissipation are
expected to occur. Nevertheless, even with large number of particles, these phenomena
are not able to spoil the quantum character of suitable chosen, two-chain fluctuation
operators. Actually, despite the decohering and mixing-enhancing effects usually in-
duced by the presence of the environment, the two chains can get entangled by the
emergent, open mesoscopic dynamics, through a purely dissipative mechanism.

We have studied in details the fate of the generated entanglement in the course of
time and of its dependence on the strength of the coupling with the environment and
on the temperature of the starting microscopic many-body state: despite its inevitable
dissipative action, the environment can nevertheless sustain non vanishing quantum
correlations among the two chains even for very large times, provided the temperature
of the initial state is sufficiently low.
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Chapter 6

Outlook

Thanks to nowadays technology, experimental control of many-body quantum sys-
tems has become feasible, together with the possibility of exploiting this kind of systems
in mesoscopic quantum devices or protocols. However, this asks for a theoretical de-
scription and a mathematical control of the dynamics of the relevant degrees of freedom
of such systems. Because of the large amount of microscopic constituents, these de-
grees of freedom can only consist in coarse-grained collective observables, that provide
a statistical description of the many-body system as a whole.
Among these, macroscopic averages, though giving relevant information, are not able
to capture quantum collective behaviours and provide a classical description of the
system. In order to pinpoint quantum features in large systems, the focus must be
turned to fluctuations; indeed, it is in these deviations from the average that many-
body systems retain signatures of their microscopic quantum character.
In actual experiments, based on mesoscopic devices involving many-body systems, due
to the large number of particles, a complete isolation of the system from its surrounding
seems hardly achievable. This thesis work has focused upon more realistic descriptions
of the dynamics of these large systems, adding, to the usual Hamiltonian evolution,
noise and dissipation caused by the presence of an external environment.
In particular, the dynamics of an open lattice system with Gaussian fluctuations has
been derived, in the case of dissipative Markovian evolution with clustered mixing-
effects, showing that the emerging dissipative dynamics of fluctuations consists in a
semi-group of completely positive unital maps, that preserve the collective Gaussian
character of the mesoscopic system.
Equipped with this result, it has been possible to show that the collective fluctuations
of two non-interacting spin-1

2
chains can become entangled through a noisy mechanism

induced by the presence of a common environment, usually responsible for decoher-
ence and mixing-enhancing effects. Remarkably, for sufficient low temperatures, these
peculiar quantum collective correlations among two mesoscopic systems, survive for ar-
bitrarily long times. Similar results have also been shown to hold for cold atoms in two
one-dimensional optical lattices immersed in a common environment [80], systems that
are nowadays experimentally accessible, and can be theoretically modelled as chains of
harmonic oscillators.
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The mechanism of environment induced entanglement generation has been previously
known only for systems involving few qubits or oscillator modes; the thesis shows that
this phenomenon is at work also in the case of many-body systems provided that the
correct collective observables are considered. Very importantly, thanks to nowadays
technology, these results could be experimentally tested and verified.
Generalization of the presented results are possible and worth to be studied: for in-
stance, the existence of similar results as in of Chapter 4 could be investigated for
wider classes of dissipative short-range dynamics than the one studied there. Further-
more, also of interest is the formulation of general assumptions and conditions for the
dissipative dynamics of fluctuations to exist and to be of Gaussian type.
From a different point of view, the presence of long-range mixing effects among parti-
cles, induced by the presence of an external environment, represents an open problem,
and some interesting results were obtained in the mean-field approximation [66, 67].
Unitary mean-field dynamics has been widely studied and shown to provide qualita-
tive and quantitative good descriptions of some many-body features, as, for instance,
in the case of BCS model for superconductivity [81, 82]. More precisely, considering
a lattice supporting at each site a d-level system, a (two-body interaction) mean-field
unitary dynamics is the large N limit of the dynamics generated by a Hamiltonian of
the following type

Hmf
N =

d2−1∑
µ,ν=1

1

NT

N∑
k,h=−N

Cµνv
(k)
µ v(h)

ν ,

where {vµ}d
2

µ=1 is a Hermitian basis of the single-site algebra, with vd2 = 1, and C a
Hermitian matrix. As it can be seen in the above equation, this dynamics accounts
for site-to-site interaction that does not depend on the distance between the sites; all
microscopic constituents of the many-body system interact among themselves with the
same strength, which is vanishing in the large N limit. Such a structure mimics the
presence of long-range interaction in a large system, giving, in many instances, good
approximations of its dynamical behaviour.
Especially in view of practical applications, the extension of such a mean-field ap-
proximation from the purely reversible Hamiltonian dynamics to the dissipative one
generated by Lindblad type master equations should provide more physically grounded
descriptions. In order to describe long-range environment induced mixing-effects one
extends the structure of Hmf

N above, to dissipators in the following way:

Dmf
N [·] =

d2−1∑
µ,ν=1

Dµν
1

NT

N∑
k,h=−N

([
v(k)
µ , ·

]
v(h)
ν + v(k)

µ

[
·, v(h)

ν

])
,

with D ≥ 0. In analogy with the Hamiltonian case, this generator models statistical
coupling effects among couples of sites of the lattice system, due to the presence of the
environment, that do not depend on the distance between sites, and whose strength is
vanishing in the large N limit.
A relevant advantage of such simplified generators is that they allow for a full analyti-
cal treatment of the limiting dynamics as carried out in [66,67]; there, the assumption
of time-invariance of the reference state ω was relaxed, so that the system is free
to change its collective phase (in the sense of Chapter 2), exhibiting new interesting
features. For instance, the time-evolution of microscopic operators, like a single site
operator, loses its dissipative character, converging, in the large N limit, to a state-
dependent automorphism αωt (even if no Hamiltonian contribution is present in the
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generator of the microscopic dynamics), without, in general, the semi-group composi-
tion law of microscopic dynamics. Indeed, while for any finite N the dynamical maps

obey e(t−s)DmfN ◦ esD
mf
N = etD

mf
N ,∀ t ≥ s ≥ 0, in the large N limit one has αωt−s ◦αωs 6= αωt .

Such a peculiar effect is strictly related to the interplay between the presence of long-
range mixing-effects and the time-dependence of macroscopic observables. They give
rise to memory effects that manifest themselves in the time non-locality of the gener-
ator [83] of the collective dynamics, as seen by local observables.
Instead, from the point of view of non-local, collective fluctuations, the large N limit
of the microscopic dynamics is richer and retains more information about the initial
generator Dmf

N . From a physical point of view, the higher sensitivity of these operators
to the microscopic generator shows the existence of weak but far reaching dynamical
correlations between microscopic constituents. These are so weak that can not be de-
tected by any local measure on the many-body system, but still have non-negligible
effects on collective observables; their existence is uniquely revealed by fluctuation op-
erators.
Since in absence of a time-invariant microscopic state, macroscopic observables are
time-evolving degrees of freedom, the definition of fluctuation operators also becomes
time-dependent. It follows that the emerging collective bosonic degrees of freedom obey
commutation relations evolving with time, leading to complicated structures where the
algebraic and dynamical features intertwine.
This dissipative extension of mean-field evolutions can be considered in all those in-
stances where the many-body system is showing long-range correlations; in particular,
an interesting model is the already cited BCS model. A Josephson junction between
two superconductors making a ring may be described by a Hamiltonian coupling that
leads to a macroscopic Josephson current [84]. Remarkably, a current can be established
without any Hamiltonian, by embedding the superconductors in a suitably engineered
environment that results in an appropriate mean-field dissipative dynamics. Cooper
pairs can indeed pass from one superconductor to the other, just because of environ-
ment induced mixing effects.

The main purpose of this thesis work has been to show the possibility of collective
quantum correlations to be generated, in infinite systems, by means of environment
induced noisy mechanisms. Nevertheless, more in general, this work has also aimed
at motivating the fact that, whenever mesoscopic quantum features are involved, as
when clouds of cold atoms get entangled, coherent superpositions of Bose-Einstein
condensate are established and so on, there, quantum fluctuations and their dynamics
provide the most natural and sensible physical description.
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Appendix A

Useful Tools

Proposition A.1. Given Definition 3.2, one has, ∀r, s ∈ Rn,

lim
N→∞

‖[FN(qr),WN(s)]− i [FN(qr), FN(qs)]WN(s)‖ = 0 .

Proof. Because of Definition 3.2, one has

[FN(qr),WN(s)] = FN(qr)e
iFN (qs) − eiFN (qs)FN(qr) ,

that, collecting an exponential on the right, can be written as

[FN(qr),WN(s)] =
(
FN(qr)− eiFN (qs)FN(qr)e

−iFN (qs)
)
eiFN (qs) .

Using

ex y e−x =
∑
n=0

1

n!
Kn
x[y] , Kn

x[y] =
[
x , Kn−1

x [y]
]
, K0

x[y] = y , ∀x , y ∈ A , (A.1)

the content of the round brackets is reshaped in the following way

(
FN(qr)− eiFN (qs)FN(qr)e

−iFN (qs)
)

= −
∞∑
n=1

in

n!
Kn
FN (qs)[FN(qr)] ;

all terms n > 1 are vanishing in the large N limit because of the fact that

Kn
FN (qs)[FN(qr)] =

N∑
k=−N

1√
Nn+1
T

[
q(k)
s ,

[
q(k)
s , · · ·

[
q(k)
s , q(k)

r

]]
· · ·
]
,

since operators at different lattice sites commute, and the sum n ≥ 2 is bounded in
norm by ∥∥∥∥∥

∞∑
n=2

in

n!
Kn
FN (qs)[FN(qr)]

∥∥∥∥∥ ≤ ‖qr‖√NT

∞∑
n=2

2n‖qs‖n

n!
≤ ‖qr‖√

NT

e2‖qs‖ ,
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which is indeed vanishing in the N →∞ limit.
Only the first term of the series is relevant and one has

[FN(qr),WN(s)] ∼ i [FN(qr), FN(qs)]WN(s) ,

the error vanishing in norm, thus proving the thesis.

Proposition A.2. Given an operator MN(x) as in Definition 3.1, and WN(r) as in
equation (3.29), one has

lim
N→∞

∥∥[eiMN (x),WN(r)
]∥∥ = 0 ,

∀ r ∈ Rn.

Proof. Using twice the algebraic relation

[
eiA, B

]
=

∫ 1

0

dy
d

dy

(
eiyABei(1−y)A

)
= −i

∫ 1

0

dy eiyA [B,A] ei(1−y)A ,

one has [
eiA, eiB

]
= −i

∫ 1

0

dy eiyA
[
eiB, A

]
ei(1−y)A =

= −
∫ 1

0

dy

∫ 1

0

dz eiyAeizB [A,B] ei(1−z)Bei(1−y)A .

Therefore, considering the norm and the fact that the exponential operators are uni-
taries for A = A† and B = B†, one obtains the following norm-bound∥∥[eiA, eiB]∥∥ ≤ ‖[A,B]‖ .

Recalling Definitions 3.1, 3.2, with A = MN(x) and B = FN(qr), one gets

lim
N→∞

∥∥[eiMN (x),WN(r)
]∥∥ ≤ lim

N→∞
‖[MN(x), FN(qr)]‖ .

Because of the locality of the algebra, one has that

[MN(x), FN(qr)] =
1

N
3/2
T

N∑
k=−N

[
x(k), q(k)

r

]
,

and therefore, the following norm-bound holds

‖[MN(x), FN(qr)]‖ ≤
1√
NT

2‖x‖‖qr‖ ,

showing that in the limit N → ∞ the commutator goes to zero, being, ∀ r ∈ Rn,
‖x‖, ‖qr‖ <∞.
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Proof of Lemma 4.3

We shall prove that, given a time-dependent Hermitean matrix Mt and its expo-
nential Nt = eiMt , then

Ṅt :=
dNt

dt
= OtNt , Ot :=

∞∑
k=1

ik

k!
Kk−1
Mt

[
Ṁt

]
, (B.1)

where
Kn
A [B] :=

[
A , Kn−1

A [B]
]
, K0

A [B] = B .

Indeed, given matrices A and B, one has

eiAB e−iA =
∞∑
n=0

in

n!

[
A
[
A , · · ·

[
︸ ︷︷ ︸

n times

B , A
]
· · ·
]]

=
∞∑
n=0

in

n!
Kn
A [B] .

Then, [Nt , Mt] = 0 and NtN
†
t = N †tNt = 1 imply NtMtN

†
t = Mt and ṄtN

†
t = −Nt Ṅ

†
t .

Therefore,

Nt ṀtN
†
t − Ṁt = − ṄtMtN

†
t − NtMt Ṅ

†
t =

[
Mt , Ṅt

]
N †t .

Furthermore, since, for n ≥ 1, Kn
A[B] =

[
A , Kn−1

A [B]
]
, it follows that

Nt ṀtN
†
t − Ṁt =

∞∑
n=1

in

n!
Kn
Mt

[Ṁt] =
[
Mt , Ot

]
=
[
Mt , Ṅt

]
N †t ,

where Ot =
∑∞

k=1
ik

k!
Kk−1
Mt

[Ṁt]. Then, using again that [Nt , Mt] = 0, one obtains[
Mt , OtNt

]
=
[
Mt , Ṅt

]
.

In order to show that Ṅt = OtNt, consider the orthogonal eigenvectors |ma(t)〉 of Mt

with eigenevalues ma(t). Then, if ma(t) 6= mb(t), the previous equality yields

〈ma(t)|OtNt|mb(t)〉 = 〈ma(t)|Ṅt|mb(t)〉 .
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On the other hand if |ma(t)〉 and |mb(t)〉 correspond to a same (real) eigenvalue m(t),
then one uses that

0 =
d

dt

(
〈ma(t)|mb(t)〉

)
= 〈ṁa(t)|mb(t)〉 + 〈ma(t)|ṁb(t)〉 ,

to deduce that also in such a case

〈ma(t)|OtNt|mb(t)〉 = i 〈ma(t)|Ṁt|mb(t)〉 eim(t) δab = iṁ(t) eim(t) δab

= 〈ma(t)|Ṅt|mb(t)〉 .



Appendix C

The Lindblad Generator on the
Algebra of Fluctuations

C.1 Action of the Lindblad Generator on Finite N

Fluctuations

The first step that has to be taken for the analysis of the dissipative dynamics of
Weyl operators W (r) is the study of the action of the local Lindbald generators satisfy-
ing (4.20), on the pre-Weyl operators in (3.29) of Definition 3.2; such characterisation
is contained in the following Proposition.

Proposition C.1. Given the real linear span K, consisting of single-site Hermitian
operators and a generator LN satisfying (4.20), the action of the latter on WN(r) =
ei(r,FN ) is such that

lim
N→+∞

∥∥∥∥∥LN [WN(r)]−

(
i√
NT

N∑
k=−N

n∑
i,j=1

ri (Hij +Dij) xj

)
WN(r) (C.1)

+
1

2

[
(r, FN) , (r, (H +D)FN)

]
WN(r) − S(r;N)WN(r)

∥∥∥∥∥ = 0 , (C.2)

where

S(r;N) = 1
2

(
LN [(r, FN)] (r, FN) + (r, FN)LN [(r, FN)] − LN [(r, FN)2]

)
(C.3)

LN [(r, FN)] = 1√
NT

∑N
k=−N

∑n
i,j=1 ri(Hij +Dij)x(k)

j (C.4)

=
(
r, (H +D)FN

)
+
√
NT

(
r, (H +D)xω

)
, (C.5)

with xω ∈ Rn a real vector with components ω(xi), xi ∈ K.

The proof is subdivided in two lemmas concerning the large N approximation of
the Hamiltonian and the dissipative terms of the Lindblad generator.
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Lemma C.1. For large N , the Hamiltonian action of the Lindblad generator can be
approximated as follows:

i [HN , WN(r)] '

(
i

1√
NT

N∑
k=−N

n∑
i,j=1

riHijx
(k)
j −

1

2

[
(r, FN) , (r,HFN)

])
WN(r) ,

(C.6)
the error vanishing in norm.

Proof. Using the notation of Definition 3.2 and the unitarity and factorisation of
WN(r),

[
z(k),WN(r)

]
=

(
z(k) − e

i
q
(k)
r√
NT z(k)e

−i q
(k)
r√
NT

)
WN(r) = −U

q
(k)
r

[z(k)]WN(r)

U
q
(k)
r

[z(k)] =
∞∑
n=1

in

n!
(√

NT

)n Kn

q
(k)
r

[
z(k)
]
,

with z any single-site operator and Kn
qr [vµ] the multi-commutator defined by

Kn
qr [z] =

[
qr,Kn−1

qr [z]
]
, K0

qr [z] = z . (C.7)

Notice that U †
q
(k)
r

[z(k)] = U
q
(k)
r

[(z†)(k)].

Consider the commutator with the Hamiltonian:

i [HN , WN(r)] = −i
N∑

k=−N

U
q
(k)
r

[h(k)]WN(r) .

In the series expansion of U
q
(k)
r

[h(k)], the relevant contribution is

Ũ
q
(k)
r

[h(k)] =
i√
NT

[
q(k)
r , h(k)

]
− 1

2NT

[
q(k)
r ,

[
q(k)
r , h(k)

]
.

Indeed, the remaining infinite series vanishes in norm when N → +∞ as∥∥∥∥∥
∞∑
n=3

in

n!
(√

NT

)n Kn

q
(k)
r

[
h(k)
]∥∥∥∥∥ ≤ ‖h‖

∞∑
n=3

2n‖qr‖n

n!
(√

NT

)n ≤ 1

N
3/2
T

e2‖qr‖‖h‖ .

Then, in the limit of large N , the quantity
∑N

k=−N Uq(k)r
[h(k)] behaves as

N∑
k=−N

Ũ
q
(k)
r

[h(k)] =
N∑

k=−N

(
i√
NT

[
q(k)
r , h(k)

]
− 1

2NT

[
q(k)
r ,

[
q(k)
r , h(k)

])
, (C.8)

for ∥∥∥∥∥
N∑

k=−N

(
U
q
(k)
r

[h(k)] − Ũ
q
(k)
r

[h(k)]
)∥∥∥∥∥ ≤ 1

N
1/2
T

e2‖qr‖‖h‖ ,

and the upper bound vanishes when N → +∞.
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Using Definition 3.2 and (4.21), the first term contributing to (C.8) scales as a
fluctuation. Since operators at different sites commute, it can be rewritten as

i√
NT

N∑
k=−N

[
q(k)
r , h(k)

]
= − i√

NT

N∑
k,`=−N

[
h(k) , q(`)

r

]
= (C.9)

= − 1√
NT

N∑
k=−N

n∑
i,j=1

riHijx
(k)
j (C.10)

= −(r,HFN) −
√
NT (r,Hxω) , (C.11)

where H is the matrix with entries Hij and xω ∈ Rn has components ω(xi).

Instead, the second term in (C.8) scales as a macroscopic observable; since operators
at different sites commute, it can be rearranged as follows:

N∑
k,`,j=−N

1

2NT

[
q(j)
r ,
[
q(`)
r , h(k)

]]
=
i

2
[(r, FN) , (r,HFN)] . (C.12)

Notice that, unlike in the first term, because of the commutators, the scalar term√
NT (r,Hxω) in (C.11) does not contribute and the second term can be written in

terms of the fluctuation vector FN = (FN(x1), . . . , FN(xn))tr, only.

Lemma C.2. For large N , the action of the dissipative part of the Lindblad generator
can be approximated as follows:

DN

[
ei(r,FN )

]
∼

(
i

1√
NT

N∑
k=−N

n∑
i,j=1

riDijx(k)
j −

1

2

[
(r, FN), (r,DFN)

]
+ S(r;N)

)
ei(r,FN ),

(C.13)
where

S(r;N) =
1

2

(
LN [(r, FN)] (r, FN) + (r, FN)LN [(r, FN)] − LN

[
(r, FN)2

] )
,

the error vanishing in norm.

Proof. The same strategy as in the proof of Lemma C.1 applied to the dissipative
contribution to the Lindblad generator first yields

DN [WN(r)] =
N∑

k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2

(
v(k)
µ U

q
(k)
r

[(v†ν)
(k)] − U

q
(k)
r

[v(k)
µ ] (v†ν)

(`) +

− U
q
(k)
r

[v(k)
µ ]U

q
(k)
r

[(v†ν)
(k)]
)
WN(r) .

Then, by considering the expansions of the two terms in the last contribution, one
shows that, apart from the first summands in each series, the rest can be estimated in
norm by:∥∥∥∥∥∥

N∑
k,`=−N

Jk`
∑

n+m>2

in(−i)m

n!m!

Kn

q
(k)
r

[v
(k)
µ ]Km

q
(`)
r

[(v†ν)
(`)]√

N
(m+n)
T

∥∥∥∥∥∥ ≤ 1

N
3/2
T

N∑
k,`=−N

|Jk`| e4‖qr‖‖vµ‖‖vν‖.
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Because of the assumption (4.19) on the coefficients Jk`, it then follows that

lim
N→+∞

∥∥∥∥∥
N∑

k,`=−N

Jk`
NT

(
i
[
q(k)
r , v(k)

µ

]
i
[
q(`)
r , (v†ν)

(`)
]
− U

q
(k)
r

[v(k)
µ ]U

q
(`)
r

[(v†ν)
(`)]
)∥∥∥∥∥ = 0.

Using similar arguments as before, one can also show that the other two contributions
essentially amount to the first two terms in the series expansion; indeed,

lim
N→+∞

∥∥∥∥∥
N∑

k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2

(
1√
NT

v(k)
µ i

[
q(`)
r , (v†ν)

(`)
]

− 1

2NT

v(k)
µ

[
q(`)
r ,

[
q(`)
r , (v†ν)

(`)
]]
− v(k)

µ U
q
(k)
r

[(v†ν)
(k)]

)∥∥∥∥∥ = 0

lim
N→+∞

∥∥∥∥∥
N∑

k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2

(
1√
NT

i
[
q(k)
r , v(k)

µ

]
(v†ν)

(`)

− 1

2NT

[
q(k)
r ,

[
q(k)
r , v(k)

µ

]]
(v†ν)

(`) − U
q
(k)
r

[(vµ)(k)] (v†ν)
(`)

)∥∥∥∥∥ = 0 .

Thus, for large N , the action of the dissipative part of LN can be approximated by

DN [WN(r)] '
N∑

k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2
√
NT

(
i
[
v(k)
µ , q(k)

r

]
v†(`)ν + (C.14)

+ i v(k)
µ

[
q(`)
r , v†(`)ν

] )
+ (C.15)

+
N∑

k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2NT

([
q(k)
r , v(k)

µ

] [
q(`)
r , v†(`)ν

]
+ (C.16)

− 1

2
v(k)
µ

[
q(`)
r ,
[
q(`)
r , v†(`)ν

]]
+

1

2

[
q(k)
r ,
[
q(k)
r , v(k)

µ

]]
v†(`)ν

)
. (C.17)

Using Definition 3.2 and (4.21), the term in (C.14) and (C.15) that scales as 1/
√
NT

can be written as:

i

2
√
NT

N∑
k,`=−N

Jk`

p∑
µ,ν=1

Dµν

( [
v(k)
µ , q(k)

r

]
(v†ν)

(`) + v(k)
µ

[
q(`)
r , (v†ν)

(`)
] )

= (C.18)

= iD[(r, FN)] = i (r,DFN) + i
√
NT (r,Dxω) , (C.19)

where as in (C.11) xω ∈ Rn is a real vector with components ω(xi).

Concerning the term in (C.17), by using the notation in Definition 3.2 and the fact
that operators at different sites commute, it can be recast in the form

p(k,`)
µν (r,N) := − 1

2NT

v(k)
µ

[
q(`)
r ,

[
q(`)
r , (v†ν)

(`)
]]

+
1

2NT

[
q(k)
r ,

[
q(k)
r , v(k)

µ

]]
(v†ν)

(`)

= −1

2
v(k)
µ

[
(r, FN) ,

[
(r, FN) , (v†ν)

(`)
]]

+

+
1

2

[
(r, FN) ,

[
(r, FN), v(k)

µ

]]
(v†ν)

(`) .
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Since, by standard algebra,

−a
[
b ,
[
b , c

]]
+
[
b ,
[
b , a

]]
c =

[
b ,
(
a [b , c] + [a , b] c

)]
,

one can finally write

N∑
k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2
p(k,`)
µν (r;N) = −1

2
[(r, FN) , DN [(r, FN)]] .

Using again (4.21) and the fact that D[1] = 0, one gets

DN [(r, FN)] =
1√
NT

N∑
k=−N

DN

[
q(k)
r

]
=

1√
NT

N∑
k=−N

n∑
i,j=1

riDijx(k)
j .

Further, since DN [(r, FN)] appears inside a commutator, the scalar quantity in (C.19)
does not contribute, whence

N∑
k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2
p(k,`)
µν (r;N) = −1

2
[(r, FN) , (r,DFN)] .

Let us now consider the contribution in (C.16). A similar argument as before recasts
it as

s(k,`)
µν (r;N) =

1

NT

[
q(k)
r , v(k)

µ

] [
q(h)
r , (v†ν)

(h)
]

=
[
(r, FN) , v(k)

µ

] [
(r, FN) , (v†ν)

(`)
]
.

Using the algebraic relation

b
(
a [d , c] + [a , d] c

)
+
(
a [b , c] + [a , b] c

)
d − a [bd , c] − [a , bd] c = −2 [a , b] [d , c] ,

we get:

S(r;N) :=
N∑

k,`=−N

Jk`

p∑
µ,ν=1

Dµν

2
s(k,`)
µν (r;N)

=
1

2

(
DN [(r, FN)] (r, FN) + (r, FN)DN [(r, FN)] − DN

[
(r, FN)2

] )
.

Moreover, since the Hamiltonian term of the Lindblad generator is such that

HN

[
(r, FN)2

]
= HN [(r, FN)] (r, FN) + (r, FN)HN [(r, FN)] ,

one can write S(r;N) using the full Lindblad generator:

S(r;N) =
1

2

(
LN [(r, FN)] (r, FN) + (r, FN)LN [(r, FN)] − LN

[
(r, FN)2

] )
.
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C.2 Time-Invariant Microscopic State

In Section 4.3, we solve the time-evolution equation (4.14) under the assumption
that the microscopic state ω be left invariant under the local microscopic dissipative
dynamics generated by LN and formally represented by the semigroup of local maps
ΦN
t = exp(tLN), t ≥ 0. Namely, we shall assume

ω
(

ΦN
t (X)

)
= ω(X) ⇔ ω

(
LN [X]

)
= 0 , (C.20)

for all X in local algebras A[−N,N ].
The consequences of a time-invariant ω can be appreciated by considering the expecta-
tion of the action of the Lindblad generator on a fluctuation operator. Putting together
(C.9), (C.11) and (C.18), (C.19), one gets

LN [(r, FN)] =
(
r, (H +D)FN

)
+
√
NT

(
r, (H +D)xω

)
,

where the last quantity is a scalar multiple of the identity operator. Therefore, since
fluctuation operators have vanishing mean values, ω(FN(xi)) = 0, time-invariance of ω
yields

ω
(
LN [(r, FN)]

)
= 0 =

√
NT

(
r, (H +D)xω

)
(C.21)

LN [(r, FN)] =
(
r, (H +D)FN

)
, ΦN

t [(r, FN)] =
(
r, et(H+D) FN

)
. (C.22)

Furthermore, consider the quantity S(r;N) in (C.3); from (C.20) it follows that

ω(S(r;N)) =
1

2
ω
(
L[(r, FN)] (r, FN)

)
+

1

2
ω
(

(r, FN)L[(r, FN)]
)
.

Using the (C.22) and (C.5), one gets

ω
(
L[(r, FN)] (r, FN)

)
=

n∑
i,j,k=1

rirj

(
Hik +Dik

)
ω
(
FN(xk)FN(xj)

)
,

ω
(

(r, FN)L[(r, FN)]
)

=
n∑

i,j,k=1

rirj

(
Hik +Dik

)
ω
(
FN(xj)FN(xk)

)
.

Then, in the limit N → +∞

lim
N→+∞

ω(S(r;N)) =
(
r, (H +D) Σ(ω) r

)
, (C.23)

where Σ(ω) is the fluctuation covariance matrix (3.39).
The proof of Proposition C.1 shows that S(r;N) is the only operator involving products
of operators from more than one site produced by the action of a Lindblad generator
with the property (4.20) on local fluctuations. It is of the form

RN =
1

NT

N∑
k,`=−N

Jk` a
(k)
α b

(`)
β , (C.24)
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with a and b suitable single-site operators.
Despite the fact that S(r;N) does not possess the shape of a macroscopic observable
as those studied in (3.1), the fast decaying of |J(k − `)| when |k − `| → ∞, makes
such an observable behave as a multiple of the identity in the large N limit. The
time-invariance of ω implies the existence of the average ω(RN) for large N , and the
following lemma exhibits further properties of this kind of observables.

Lemma C.3. Given a set of coefficients Jk` such that

Jk` = J(k − `) = J∗`k ,

∞∑
`=−∞

|Jk`| =
∞∑

r=−∞

|J(r)| <∞ ,

and a translation invariant clustering state ω, then

lim
N→+∞

‖[WN(r) , RN ]‖ = 0 and lim
N→+∞

ω
(

(RN −R)† (RN −R)
)

= 0

for all local Weyl-like operators as in Definition 3.2 and RN as in (C.24) such that
R := lim

N→+∞
ω(RN) exists.

Proof. From the algebraic relation
[
eiA , B

]
=

∫ 1

0

dy
d

dy

(
eiyAB ei(1−y)A

)
it follows that

‖[WN(r) , RN ]‖ ≤ ‖[(r, FN), RN ]‖ .

From

[(r, FN), RN ] =
1

N
3/2
T

n∑
i=1

ri

N∑
k,`=−N

Jk`

([
x

(k)
i , a(k)

]
b(`) + a(k)

[
x

(`)
i , b(`)

])
, (C.25)

the upper bound

‖[(r, FN), RN ]‖ ≤ 4n max
1≤i≤n

{|ri|‖xi‖} ‖a‖‖b‖
1

N
3/2
T

N∑
k,`=−N

|Jk`| ,

follows. It vanishes when N → +∞; indeed, the hypothesis on the coefficients Jk`
yields

lim
N→+∞

1

N
3/2
T

N∑
k,`=−N

|Jk`| = lim
N→+∞

1

N
3/2
T

N∑
k=−N

k+N∑
p=k−N

|J(p)|

≤ lim
N→+∞

1

N
3/2
T

N∑
k=−N

+∞∑
p=−∞

|J(p)|

≤ lim
N→+∞

1√
NT

+∞∑
p=−∞

|J(p)| = 0 .

This proves the first result of the Lemma, the second one amounts to showing that

lim
N→+∞

ω
(
R†NRN

)
= |R|2, where

ω
(
R†NRN

)
=

1

N2
T

N∑
k1,`1=−N

N∑
k2,`2=−N

J∗k1`1 Jk2`2ω
(
b†(`1) a†(k1) a(k2) b(`2)

)
.
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Using the translation invariance of ω we write

ω
(
b†(`1) a†(k1) a(k2) b(`2)

)
= ω

(
τ (`1−`2)

(
b† a†(k1−`1)

)
a(k2−`2) b

)
.

Then, by setting p1 = k1 − `1 and p2 = k2 − `2, we estimate

∣∣∣ω (R†NRN

)
− ω

(
R†N

)
ω (RN)

∣∣∣ ≤ 1

N2
T

N∑
`1,`2=−N

N−`1∑
p1=−N−`1

N−`2∑
p2=−N−`2

|J(p1)| |J(p2)| ×

×

∣∣∣∣∣ω (τ (`1−`2)
(
b† a†(p1)

)
a(p2) b

)
− ω

(
b† a†(p1)

)
ω
(
a(p2) b

) ∣∣∣∣∣
≤ 1

NT

NT∑
h=−NT

∞∑
p1,p2=−∞

|J(p1)| |J(p2)| ×

×

∣∣∣∣∣ω (τ (h)
(
b† a†(p1)

)
a(p2) b

)
− ω

(
b† a†(p1)

)
ω
(
a(p2) b

) ∣∣∣∣∣ .
The two infinite sums converge uniformly in the summation index h because∣∣∣∣∣ω (τ (h)

(
b† a†(p1)

)
a(p2) b

)
− ω

(
b† a†(p1)

)
ω
(
a(p2) b

) ∣∣∣∣∣ ≤ 2 ‖a‖2 ‖b‖2 ,

and because of the assumptions on the coefficients Jk`; therefore, the Cesàro mean (see
footnote 2 of Chapter 3) yields

lim
N→+∞

∣∣∣ω (R†NRN

)
− ω

(
R†N

)
ω (RN)

∣∣∣ ≤ ∞∑
p1,p2=−∞

|J(p1)| |J(p2)| ×

× lim
h→∞

∣∣∣∣∣ω (τ (h)
(
b† a†(p1)

)
a(p2) b

)
− ω

(
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)
ω
(
a(p2) b

) ∣∣∣∣∣+
+
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|J(p1)| |J(p2)| lim
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∣∣∣∣∣ω (τ (h)
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)
a(p2) b

)
− ω

(
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)
ω
(
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) ∣∣∣∣∣ .
The result follows since the clustering properties of ω give

lim
h→±∞

∣∣∣∣∣ω (τ (h)
(
b† a†(p1)

)
a(p2) b

)
− ω

(
b† a†(p1)

)
ω
(
a(p2) b

) ∣∣∣∣∣ = 0 .



Appendix D

Properties of the Dynamical Maps
on the Algebra of Fluctuations

Proposition D.1. The maps Φt : W
(
K, σ(ω)

)
→ W

(
K, σ(ω)

)
, are linear and unital.

In particular, this means:

Φt [αW (r) + β W (s)] = αΦt [W (r)] + βΦt [W (s)] , ∀α, β ∈ C , (D.1)

Φt [W (r)W (s)] = Φt [W (r + s)] e−
i
2(r,σ(ω) s) , (D.2)

Φt [1] = 1 (D.3)

Proof. All these properties must be proved starting from the mesoscopic limit of (4.22).
The first one (D.1) is trivial and comes from the fact that α, β are scalar and from the
result of theorem 4.2.
The second one amounts to show that the macroscopic observables generated by the
composition of pre-Weyl operators as shown in lemma 3.1, are not time-evolving under
the action of the map ΦN

t in the large N limit.
In particular, recalling the definition of mesoscopic limit for the maps ΦN

t (4.22) and
the implications of theorem 4.2, one has to show that, ∀ s1, s2, r1, r2 ∈ Rn

lim
N→∞

ω
(
WN(s1)ΦN

t [WN(r1)WN(r2)]WN(s2)
)

=

e−
i
2(r1,σ(ω) r2) lim

N→∞
ω
(
WN(s1)ΦN

t [WN(r1 + r2)]WN(s2)
)
.

Recalling the proof of Lemma 3.1, and using the fact that the maps ΦN
t are norm-

contraction, one finds that:

lim
N→∞

ω
(
WN(s1)ΦN

t [WN(r1)WN(r2)]WN(s2)
)

=

lim
N→∞

ω
(
WN(s1)ΦN

t

[
WN(r1 + r2)e−

i
2

(r1,TN r2)
]
WN(s2)

)
,

with TN as in (3.35). Summing and subtracting in the exponential the expectation of
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matrix TN on the state ω, which is given by σ(ω) of (3.36), one gets

lim
N→∞

ω
(
WN(s1)ΦN

t [WN(r1)WN(r2)]WN(s2)
)

=

lim
N→∞

ω
(
WN(s1)ΦN

t

[
WN(r1 + r2)

(
e−

i
2

(r1,TN r2) − e−
i
2(r1,σ(ω) r2)

)]
WN(s2)

)
+

+e−
i
2(r1,σ(ω) r2) lim

N→∞
ω
(
WN(s1)ΦN

t [WN(r1 + r2)]WN(s2)
)

;

If the second term on the right-hand side of the equality converges to zero, then the
second relation (D.2) is proved since the last term in the above equation is exactly
what is needed. Therefore, we focus just on the second term; using the relation

eiA − eiB = i

∫ 1

0

dx eixA (A−B) ei(1−x)B ,

and the fact that σ(ω) is a multiple of the identity, one gets(
e−

i
2

(r1,TN r2) − e−
i
2(r1,σ(ω) r2)

)
= i

∫ 1

0

dx e−
ix
2

(r1,TN r2)e−
i(1−x)

2 (r1,σ(ω) r2)×

×
(
− i

2

(
r1,
[
TN − σ(ω)

]
r2

))
.

Substituting this in the term under investigation, using the Cauchy-Schwarz inequality,
the Schwarz positivity, and the fact that all operators involved, but

Z =
(
r1,
[
TN − σ(ω)

]
r2

)
,

are unitary, one finds the bound∣∣∣ω (WN(s1)ΦN
t

[
WN(r1 + r2)

(
e−

i
2

(r1,TN r2) − e−
i
2(r1,σ(ω) r2)

)]
WN(s2)

)∣∣∣ ≤
≤
√
ω
(
W †
N(s2)ΦN

t [Z2]W (s2)
)

;

thus, it is left to show that

lim
N→∞

ω
(
W †
N(s2)ΦN

t

[
Z2
]
W (s2)

)
= 0 .

Since Z is made of sums of average operators as those in (3.1), then it can be written
as

Z =
1

NT

∑
α

N∑
k=−N

o(k)
α ,

with oα proper single-particle operators. Thus, one can use a similar argument as the
one used for the term in (4.37), in the proof theorem 4.2, to show that

lim
N→∞

ω
(
W †
N(s2)ΦN

t

[
Z2
]
W (s2)

)
= lim

N→∞
ω
(
ΦN
t

[
Z2
])
,

and, furthermore, given the time-invariance of the state

lim
N→∞

ω
(
ΦN
t

[
Z2
])

= lim
N→∞

ω
(
Z2
)
.
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Now, because of Theorem 3.1 on the strong convergence of macroscopic observables,
and the definitions (3.35),(3.36), one has

lim
N→∞

ω
(
Z2
)

= 0 ,

proving the validity of relation (D.2).
In order to show (D.3), it is sufficient to substitute r = 0, in the action of the map
(4.23), with the definitions (4.27),(4.28).

Theorem D.1. The family of linear maps Φt :W
(
K, σ(ω)

)
→W

(
K, σ(ω)

)
, such that

W
(
K, σ(ω)

)
3 W (r)→ Φt [W (r)] = W (rt)e

fr(t) , (D.4)

with rt = X tr
t r, as in (4.27), and fr(t) = −(r,Yt r) as in (4.28), forms a semi-group

of completely positive unital dynamical maps.

Proof. The semi-group property has already been shown in (4.29), and considering the
previous proposition, what is left is the proof of complete positivity.
By definition, considering any m level system, whose algebra is represented by the
m×m square matrices Mm (C), we need to show that

Φt ⊗ 1m
[
X†X

]
≥ 0 , ∀m ∈ Z,

where X is any operator X ∈ W
(
K, σ(ω)

)
⊗Mm (C). Considering an Hermitian basis

{Eµ}m
2

µ=1 of Mm (C), any operator X can be decomposed as

X =
∑
α,β

cαβW (rα)⊗ Eβ ,

with cαβ suited coefficients. Therefore the positive element

X†X =
∑
α,β,γ,δ

c̄αβcγδW
†(rα)W (rγ)⊗ EβEδ ,

is mapped by Φt⊗1m, using the composition relation for Weyl in (3.15), and the action
of the map (D.4), into

Φt ⊗ 1m
[
X†X

]
=
∑
αβγδ

c̄αβcγδ F (α, γ)W †(X tr
t rα)W (X tr

t rγ)⊗ EβEδ

with

F (α, γ) = e
i
2

(rα,σ̂t rγ) exp
(
−
(

(rα − rγ),Yt(rα − rγ)
))

,

σ̂t =σ(ω) −Xtσ(ω)X tr
t .

(D.5)

The matrix σ̂t is an anti-symmetric matrix, thus we can construct the Weyl algebra

V
(
K, σ̂

(ω)
t

)
, such that

V (r1)V (r2) = V (r1 + r2)e−
i
2

(r1,σ̂t r2)
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with V (ri) ∈ V
(
K, σ̂

(ω)
t

)
, and consider the functional ϕYt on such algebra, giving

ϕYt (V (r)) = e−(r,Ytr) .

Putting the two things together one has

F (α, γ) = ϕYt
(
V †(rα)V (rγ)

)
,

and defining
Xαβ = cαβW (X tr

t rα)⊗ Eβ ,
one can write

Φt ⊗ 1m
[
X†X

]
=
∑
α,β,γ,δ

X†αβXγδ ϕYt
(
V †(rα)V (rγ)

)
,

or extracting the action of the functional and considering the algebra W
(
K, σ(ω)

)
⊗

Mm(C)⊗ V
(
K, σ̂

(ω)
t

)
, with Xαβ ∈ W

(
K, σ(ω)

)
⊗Mm(C),

Φt ⊗ 1m
[
X†X

]
= ϕYt

( ∑
α,β,γ,δ

X†αβXγδ ⊗ V †(rα)V (rγ)

)
.

If ϕYt is a positive functional on the algebra V
(
K, σ̂

(ω)
t

)
, then the operator Φt ⊗

1m
[
X†X

]
is a positive operator ∀m ∈ Z, proving the complete positivity of maps Φt.

Given the quasi-free character of the functional ϕYt , positivity is given by

2Yt +
i

2
σ̂t ≥ 0 . (D.6)

Because of equations (4.28), one has

2Yt +
i

2
σ̂t = Σ(ω) +

i

2
σ(ω) −Xt

(
Σ(ω) +

i

2
σ(ω)

)
X tr
t ; (D.7)

Following a similar argument, used in the proof of Lemma 4.2, and recalling equations
(3.39),(3.36), one has that(

λ,Σ(ω) +
i

2
σ(ω) λ

)
=

n∑
i,j=1

λ∗iλj lim
N→∞

ω

(
FN(xi)FN(xj)

)
,

and because of the assumption ω ◦ ΦN
t = ω, also(

λ,Σ(ω) +
i

2
σ(ω) λ

)
=

n∑
i,j=1

λ∗iλj lim
N→∞

ω ◦ ΦN
t

(
FN(xi)FN(xj)

)
=

= lim
N→∞

ω ◦ ΦN
t

(
FN(q†λ)FN(qλ)

)
.

being FN(qλ) =
∑n

i=1 λi FN(xi), λi ∈ C. Because of Schwartz positivity it is also true
that (

λ,Σ(ω) +
i

2
σ(ω) λ

)
≥ lim

N→∞
ω

(
ΦN
t

[
FN(q†λ)

]
ΦN
t

[
FN(qλ)

])
;
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using the second relation in (C.22), one has

lim
N→∞

ω

(
ΦN
t

[
FN(q†λ)

]
ΦN
t

[
FN(qλ)

])
=

(
λ,Xt

(
Σ(ω) +

i

2
σ(ω)

)
X tr
t λ

)
,

thus showing that(
λ,Σ(ω) +

i

2
σ(ω) λ

)
≥
(
λ,Xt

(
Σ(ω) +

i

2
σ(ω)

)
X tr
t λ

)
,

enforcing equation (D.6), and proving the complete positivity of the maps Φt.
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