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Introduction

In 2008 following the subprime crisis, financial markets have suffered the upheavals that have
affected the entire world economy. Since then, these markets were extremely volatile: this
situation could last a while and perhaps become the new standard. After many failures, the
gap between the different interest rates applied to different transmitters has become larger and
larger and a discussion on the identification of the risk-free rate is open. The ECB and the
Fed’s rates gradually declined, while the rate on sovereign debt increased gradually, and then
dropped.

For customers, it is difficult to balance risk and return. In this context, clients seek protec-
tion for their savings, and the ability to take advantage of the positive changes in the market.
With regard to social problematic, following the increase in life expectancy, annuities for retire-
ment dropped.

The mission of insurance companies is to answer the request for protection and compensation
of their customers. The solution is to provide the customer an investment account and cover its
value with guarantees. These products are called Variable Annuities. In the words of Frangois
Robinet, CEO of AXA Life Invest, “ These products, unit of account guaranteed will become a
solution to solve the long-term investment problems with security, and prepare for retirement”.
Variable Annuities are insurance life contracts in account units with guaranteed revenues or
capital. They were launched by AXA in the United States in 1995, and appeared in Italy
in 2008. Variable Annuities are mainly diffused in USA, Japan, and North Europe; they are
attractive products especially with the retirement reforms and the new sales may reach $22
billion by 2018, with a 57% increase from 2012 ( Think Advisor, 2014). Variable Annuities are
nevertheless exotic products with hidden options (the main one is the lapse one) and two kinds
of risk: the market risk and the actuarial risk. Because of these characteristics, it’s difficult to
price these new kinds of optional products, and manage the ingrained risks.

Among all the Variable Annuities types, there are two ones that are particularly relevant
because they are both the most required by the customers and, at the same time, the hard-
est to be priced: GLWB (Guaranteed Lifelong Withdrawal Benefit) and GMWB (Guaranteed
Minimum Withdrawal Benefit).

In this PhD. thesis I present my research results about Variable Annuities pricing and
hedging. I personally did a six months internship at AXA Life Invest (see [48]), and during
that time I worked in the Risk Management Team. In such a work place I could appreciate
how pricing and hedging problems are real problems daily solved by the employees. According
to this, research targets of my PhD. have been chosen thinking to practical relevance.
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The main contribution of my research has been the development of efficient numerical meth-
ods to extends GLWB and GMWB pricing and Greeks calculation to stochastic models including
stochastic volatility (the Heston model) or stochastic interest rate (the Black-Scholes Hull-White
model).

The thesis is based on two research papers (see [23] and [24]), available at arXiv website.
These papers are joint works with Professor Antonino Zanette (my thesis supervisor), and PhD.
Ludovic Goudenége (Féderation de Mathématiques de ’Ecole Centrale Paris).

In these papers, we priced GLWB and GMWB guarantees, and we found the no-arbitrage
fee, in the Heston model and the Black-Scholes with stochastic interest rate model. First, we
treated a static withdrawal strategy: the policy holder (hereafter PH) withdraws at the contract
rate. Then, taking the point of view of the worst case for the hedger, we priced the guarantees
assuming that the PH follows an optimal withdrawal strategy. We also used these methods
to calculate the Greeks for hedging and Risk Management. Moreover, in the GLWB case, we
performed a mortality shock useful in risk management framework.

To achieve these targets, we developed four numerical methods: a hybrid tree-finite differ-
ence method and a Hybrid Monte Carlo method (both introduced by Briani et al. [10]), an
ADI finite difference scheme (Haentjens and Hout [25]), and a Standard Monte Carlo method
with Longstaff-Schwartz least squares regression (Longstaff and Schwartz [33]).

The main results of our research papers are:

e We formulated the determination of the no-arbitrage fee (i.e. the cost of maintaining a
replicating hedging portfolio) in the Heston model and in the Black-Scholes Hull-White
model using different pricing methods;

o We presented the effects of stochastic volatility and stochastic interest rate on pricing and
Greeks calculation, and the sensitivity of the GLWB and GMWB fee to various modeling
parameters;

e We used different numerical methods to price the GLWB and GMWB contract;
e We presented numerical examples which show the convergence of these methods.
My personal contributions to these papers are:

e Concept and development of quadrinomial trees (important on long maturities products
to preserve convergence of hybrid methods);

e Improvement of MC Hybrid method (improvement of convergence through the introduc-
tion of a splitting method);

e Improvement of the PDE Hybrid method (improvement of convergence through the use
of quadrinomial trees and reduction of the computation time by cutting methods and
general remarks on the method);

e Use of splines for GMWB (useful to reduce the number of points used in the grid);

e Concept and development of the methods “ Regression by Lines” and “ Full Regression” to
price GMWB with Monte Carlo methods;
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e Use of “Similarity Reduction” property in GMWB pricing;
e C++ coding of the numerical methods (excepts ADI method).

I will now present a more detailed summary of the models and numerical methods introduced
in the thesis.

The GLWB and GMWB Variable Annuities

The Variable Annuity on which I focused my research work are of type GLWB and GMWB.
About this kind of products, a reference article is that of Bacinello and al. [5]: in this paper
they classified main GMxBs Variable Annuities, and they computed and compared contract
values and fair fee rates under “static” and “mixed” valuation approaches, via ordinary and
least squares Monte Carlo methods, respectively. We briefly see how these products work.

GLWB

These insurance products have been analyzed by several authors. among them, we cite the work
of Forsyth and Vetzal [13], that performed respectively pricing of GLWB and GMWB Variable
Annuities in Black and Scholes framework via PDE methods. They considered both “static”
and “dynamic withdrawals”, pricing different versions of the products.

The PH who buys a GLWB policy pays at time ¢ = 0 an initial gross premium GP from
which can be deducted some entry fees, resulting the net premium P. That amount is fully
invested in a Investment Fund, and its value is indicated by S;. The state parameters of the
policy are essentially two: the account value A; and the base benefit By. These parameters
are initialized in the following way: Ag = P, By = GP. The account value evolves over time
according to the Investment Fund

dAt = %dSt — OétotAtdt. (001)
t
The parameter oy, defines the amount (fees) that is subtracted from the account value and
continuously used by the insurance company to cover the guarantees of the product. Our goal
was to calculate the fair value of this parameter, that expresses the cost to guarantee coverage.
The contract defines a set of dates (usually at each anniversary of the start of the contract)
called event times, when the following procedure activates:

1. if the fees have not been taken continuously (variant of the standard contract) they are
picked;

2. if the insured died in the previous year, the heirs of the insured receives a guaranteed
capital (death benefits) usually defined as the residual value of the account value;

3. If the insured is alive, he (she) is entitled to withdraw a minimum guaranteed sum, defined
as a fixed percentage of the base benefits By;

4. The contract may provide for mechanisms (roll-up or ratchets) which, under certain cir-
cumstances, increase the base benefits.
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The activation or not of the previous mechanisms is subject to the fact that the insured is or is
not alive; the mortality of insured persons has been modeled according to a function of intensity
of mortality M : [0,7] — R such that the probability for a insured person to die in the time
lag [t,t + dt] is equal to M (t) dt.

In the static version of the product, the still alive PH withdraws at each event time ¢; a fixed
amount Wy, = GAt- Bff, where (G is a constant specified by the contract. In the dynamic case,
however, the withdrawn amount is characterized by a parameter ~; € [0,2] chosen by the PH
and it is worth Wy, = vGAt - Bff. In correspondence with a withdrawal of the PH, the state
parameters A; and B, change according to «;. We denote by the superscript (2+) the state
parameters before the withdrawal, and by the superscript (3+) after the withdrawal. Then:

e If ~; = 0 the withdrawal in fact does not take place and the contract may provide a bonus:
(457 Bi 1) = (A5 BT (L4 i) 1) -

o If 0 < <1 the PH withdraws at a lower rate than the standard rate, and the new state

variables are
(AZ*, BJ* t;) = (max (0, AT — W4,), BiH, i) .

o If v; € ]1,2] the PH withdraws more than the maximum admitted and some charges may
be applied. Moreover, the case v; = 2 corresponds to a total surrender. We define

A’ =max (0, A7t — GAt- B}1).
The withdrawn amount is
Wti = GAt- Bt22+ + (’71' — 1) A (]_ — /‘fti) .

where ¢, € [0,1] is a penalty for withdrawal above the contract amount. The new state
variables are

(APT,BY 1) = (max (0, ALT — GAt - BFT — (v — 1) A), (2 — ) B}t 1))
= ((2 — ’)/Z) A,, (2 — ’y@) Bt27;+7ti) .

GMWB

These insurance products have been analyzed by several authors; among them, we cite the
work of Chen et Forsyth [13] that performed pricing of GMWB Variable Annuities in Black and
Scholes framework via PDE methods. They considered both “static” and “dynamic withdrawals”,
pricing different versions of the products.

Another research article is that of Yang and Dai [46] that used a tree based model to price
GMWRB in Black and Scholes model. They considered both “static withdrawal” and “optimal
surrender”.

The products of Chen-Forsyth (GMWB-CF) and Yang-Dai (GMWB-YD) exhibit differences
and in my research I have analyzed both versions of these two products. Now let’s see the main
features of these contracts.
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At the beginning ¢ = 0 the customer pays an initial premium P to the insurance company.
The premium P is invested in a Investment Fund whose value is S;. For both the contract
types, we suppose that there exists a set of discrete times {t;,7 =1,... N}, called as in the
GLWRB case event times; at these moments, the customer can make withdrawals. Let’s suppose
At; = t;11 — t; constant e let’s denote it by At.

Both contracts could include a death benefit, as for GLWB, but for simplicity we have
neglected this aspect as they did in [21]. Both the two contract define an account value A; that
evolves as in equation (0.0.1)). We denote by the exponent minus (—) the value of the parameters
of state before the withdrawal, and the exponent plus (4) the value of these parameters after
that.

Now let’s see in detail the two contracts.

GMWB-CF The state parameters of the policy are:
e Account value: A;, Ag = P.
e Base benefit: B, By = P.

Both of these variables are initialized by taking the value of the initial premium. We define
T1 = 0 the time of the contract beginning, and 75 = ¢ the time of the last possible withdrawal.
Usually the first withdrawal takes place in t; =1 y or t; = 0.5 y.

At each event time t;, the PH withdraws a sum W, € [0, B{Z] In reality, the PH doesn’t
always receives the whole amount withdrawn: if W; exceeds the guaranteed amount a penalty
is applied. The sum actually received by the customer is:

Wi itw; <G

f(Wi) = {Wi—H(Wi_G) it W; > G,

while the new state variables are
(A}, B 1) = (max (A; — W;), By, — Wi, t;).
At time T = t9 the last withdrawals takes place and the PH gains a final payoff equal to

FP =max (Ar,, (1 — k) Bp,) .

GMWB-YD The policy state parameters are:
e Account value: A;, Ag = P.
e Guaranteed minimum withdrawal: G.

The state variable Ay is initially equal to the premium, while G isn’t defined up to time Ty. The
payments take place at time 77 + At up to T. To treat this type of products is not necessary to
define the Base Benefit, because its value is constant equal to the premium P until the contract
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ends. Usually, the contract sets a minimum rate of return 4 for the deferred period [0,73]. At
time T3 (if 71 > 0) the account value is reset and the value of G is set:

At
AE = max [P(l +i)h ,Ai] , G= T (TQTi Ty

For this type of product, the PH withdraws at the contract dates the amount guaranteed G for
the duration of the contract. The evolution of state parameters is the following:

(Af,G* ;) = (max (0, 4f — G7), G, 1),

In the case of the dynamic approach, the PH may terminate the contract early, let’s say in
t, collecting a final payoff equal to

FP=G+(1-k)max (0,47 —G).

The stochastic models for the fund S

We recap the two models for the investment fund S that we treated.

The Heston model

The Heston model [26] is one of the most important models for stochastic volatility. Its dynamics
is

dS; = rSydt + S S dZP So = So,
dvg = k(0 — vy) dt + w\/vidZy  vg = o,

where Z° and ZV are Brownian motions and d <Zts, Z§’> = pdt. We also define p = /1 — p?.

The Black-Scholes Hull White model

The Hull and White model [28] is one of the most important models used to describe the
stochastic interest rate process. The dynamics of the couple underlying-interest rate is

dS; = rySidt + UStdZtS So = So,
dX; = —kXdt + dZf Xo=0,
e =wX; + B (L),

where Z° and Z" are Brownian motions and d <Zf, Z[> = pdt. We also define p = /1 — p?.

Pricing methods

The pricing methods that we used are four: two Monte Carlo methods and two PDE methods.

Two of these methods are "Hybrid" as they combine trees and MC simulations or trees and
PDE. Before presenting a summary of these four methods it is worth spending a few words on
the trees used.
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Quadrinomial trees

Given the long maturity of the products studied, the classic trees presented in [35] or [4] are not
suitable to discretize the stochastic volatility and the stochastic interest rate. We have therefore
introduced new quadrinomial trees with the aim to combine exactly the first three moments of
the associated processes. In the thesis it is exposed in detail the procedure for the construction
of the trees.

The Hybrid Monte Carlo method

This method has been introduced by Briani and al, [IT].

The method involves the use of a tree to define a Markov chain for the volatility (respectively
the interest rate): using a discrete variable distributed according to the transition probabilities
of the Markov chain, a discrete process ¥ (resp. 7 and X) is defined in order to approximate

the volatility (resp. the interest rate). B
For the Heston model, let N ~ N (0,1) and B ~ B(0.5). The value of the process Siia;
that simulates the underlying is given by

3 Spexp |(r — 2kO) At+(2k — 1)(Z85) At+ 2 (B4 a0 — 00) /(1 — p?) At@t]\f] if B=0,
t+ At — - — —
T Seexp(r — 280) At (2k — 1)(U5E) At L (Bg a0 — 00) + (T pP) BoracN] i B =1.

For the Black-Scholes Hull-White model, we have

= = 2
Siin = Spexp [(THA;*” _ (’2> At+o ((X‘HN + X, (kAt—1)) p+ \/AtpN)] .

The Standard Monte Carlo method

The Standard Monte Carlo method is defined using the best methods to generate scenarios in
the two models that we considered. In the case of the Heston model, the reference method is
a third order scheme by Alfonsi [2]. For the Black-Scholes Hull-White model, we have made
reference to an exact discretization scheme presented in Ostrovski [39].

The Hybrid PDE method

This method has been presented in Briani [I0] and [II]. The method uses a tree to define a
Markov chain for the volatility (the interest rate). Then, a one variable PDE (in addition to
the time variable) is solved at the tree nodes.

To solve the problem of the correlation between the volatility (or the interest rate) and the
underlying, an initial transformation is required. For the Heston model we set

Y;E =1n(S;) — gvt, Y& =1n(Sp) — gvo.

Then

P = (r— 2= Lro - w) dt + py/udZy,
w
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The Y process can be used easily because it is not correlated with the process v. Freezing
the value of v at each node, it can be used to define a PDE that is going to be solved by the
tree.

Similarly, the Black-Scholes Hull-White we defined

YV =1n(S;) — po X, Y =1n(Sp),
that verifies

2
dyl = (n - % + Ukat) dt + opdZ.

The YV process can be used easily because it is not correlated with the process X. Freezing
the value of X and r at each node, it can be used to define a PDE that is going to be solved
by the tree.

Within the GLWB Variable Annuities, a couple of the PDEs for the two models is given by

Ve + fvEE +(r=5 =Lk ) —aw) VE =V +anR () exp (B + Lo) =0, (He2)

2
VEW 4 p VUU + <r - % + opkX — oztot> VEW — VIV 40, R (t) exp (Up + poX) = 0. (HW 2)

Hybrid PDE method has proved to be very powerful. It features greater simplicity of coding,
stability of results and good speed of convergence.

The PDE ADI method

The ADI method is a method introduced in the 1950s by Peaceman and Rachford (see [40]) to
solve parabolic PDEs. Since then, the method has been used in many sectors.

It can be proved that, in the Heston model, the value of an option V verifies the PDE

oV  vS?29%V WY 150% 0%y 5%

E—I— 5 852+ 5 8v2+ SaS+prvasav+k(9—v)%—rV—0,
while in the Black-Scholes Hull-White model

oV 02820%V w20V 152% R %

— — k(O —7r)— — =0.

ot T2 a5 T oo g TS gge, TR 5 mrY =0

Such multidimensional equations can be solved using the composition of two schemes that
discretize the pair (S,v) (respectively (S,r)) implicitly w.r.t a variable and explicitly to the
other.

In particular, for our applications, we used the Douglas scheme with 6 = 1/2.
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Results

All the four numerical methods have been implemented and used to calculate the fair value of
the parameter ay,:. The various numerical tests focused on different variations of both products
and they have been done fixing the computational time for all methods: working with a fixed
time, we were able to compare the quality of the results obtained by the different methods.

For both policies GLWB and GMWB, in the static case, the results were very good with all
methods: the values obtained are consistent and they differ from each other in small relative
differences. Things have been rather different in the dynamic case. Monte Carlo methods
have suffered from the problem of least squares regression: the difficulty of approximating
accurately the value function V' in multiple dimensions has meant that the values obtained by
Monte Carlo methods were lower than those obtained with the PDE methods (the withdrawal
strategy deducted by the MC methods is not fully optimal). These latter, however, proved
to be more stable and efficient to address problems of optimal withdrawal. In particular, the
Hybrid PDE method provided, in general, the best results.

All results of the several numerical tests are presented in the thesis, and they are often
accompanied by graphics that facilitate their reading.

The thesis is organized as follows.

Chapter 1 presents the main numerical methods: Monte Carlo, Trees, PDE, and finally
Hybrid methods. I widely used these methods to achieve Variable Annuities pricing and Greeks
calculation. Then, Chapter 2 presents the Variable Annuities products: the different types,
the products structure and mechanism, the guarantees and the fees. Chapter 3 and 4 are the
most relevant since they are devoted to the main research topic: pricing and hedging of GLWB
and GMWB in the Heston model and in the Black-Scholes Hull-White model. These two last
chapters contain conclusions where the main research targets achieved are pointed out.

To conclude T would thank my supervisor, Prof. Antonino Zanette, who encouraged and
guided me in research work. His suggestions and hints were very valuable to me. I would
also thank PhD. Ludovic Goudenége for his remarkable tips about LS MC methods and ADI
development.
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Chapter 1

Numerical Methods in Finance and
Insurance

In this Chapter, we describe the main numerical methods that we are going to use to perform
Variable Annuities pricing. These methods belong to different type: Monte Carlo, Trees, PDE
and finally Hybrid methods.

The purpose of this Chapter is not giving a detailed and rigorous description of the methods,
but briefly introduce the concepts that will be used to develop the research matter. The reader
interested in more detail will find in the bibliographic references more information and the
proofs of the propositions here stated.

1.1 Monte Carlo methods

This part is inspired by [I5], [29] and [31].

Monte Carlo methods are extensively used in financial institutions to compute European
options prices, to evaluate sensitivities of portfolios to various parameters and to compute risk
measurements. Let us describe the principle of the Monte Carlo methods on an elementary

example. Let
I= / f(z)dz
0.1}

where f (-) is a bounded real valued function.

We can represent I as E [f (U)], where U is an uniformly distributed random variable on
[0,1]%. By the Strong Law of Large numbers, if (Us,i > 1) is a family of uniformly distributes
independent random variables on [0, 1]d, then the average

LN
SN = N E I (Us) (1.1.1)
i1

converges to E[f (U)] almost surely when N tends to infinity. This suggests a very simple
algorithm to approximate I: call a random number generator N times and compute the average

1



2 Numerical Methods in Finance and Insurance

. Observe that the method converges for any integrable function on [0, 1}d: f is not
necessarily a smooth function.

In order to efficiently use the above mentioned Monte Carlo method, we need to know its
rate of convergence and to determine when it is more efficient than deterministic algorithms.
The Central Limit Theorem provides the asymptotic distribution of /N (Sy — I) where N
tends to 4+o0o. Various refinements of the Central Limit Theorem, such as Berry-Essen and
Bikelis Theorems, provide non asymptotic estimates. The preceding consideration shows that

the convergence rate of a Monte Carlo method is rather slow (1 /NN ) Moreover, the approx-

imation error is random and may take large values even if N is large (however, the probability
of such an event tends to 0 when N tends to infinity). Nevertheless, the Monte Carlo methods
are useful in practice, especially when the dimension of the integration domain is high. For
instance, consider an integral in a hypercube [0,1]%, with d large (d = 40, e.g.). It is clear that
the quadrature methods require too many points. A Monte Carlo method does not have such
disadvantages: it requires the simulation of independent random vectors (Xi,..., Xy), whose
coordinates are independent.

In addition, another advantage of the Monte Carlo methods is their parallel nature: each
processor of a parallel computer can be assigned the task of making a random trial.

To summarize the preceding discussion: probabilistic algorithms are used in situations where
the deterministic methods are inefficient, especially when the dimension of the state space is
very large. Obviously, the approximation error is random and the rate of convergence is slow,
but in these cases it is still the best method known.

1.1.1 On the convergence rate of Monte Carlo methods

In this Section we present results which justify the use of Monte Carlo methods and help to
choose the appropriate number of simulations N of a Monte Carlo method in terms of the
desired accuracy and the confidence interval on the accuracy.

Theorem 1.1 (Strong Law of Large Numbers). Let (X;,i > 1) be a sequence of independent
identically distributed random variables such that E [|X1|] < +o00. Then,

1
lim —(X;+---+X,)=FE[Xq1] as.

n——+oo N

Remark 1.2. The random variables X; needs to be integrable. Therefore the Strong Law of
Large numbers does not apply when X is Cauchy distributed, that is when its density is

1
m(1+z2)"
1.1.1.1 Convergence rate

We now seek estimates on the error

1

en = E[X] n(X1+---+Xn).

The Central Limit Theorem precises the asymptotic distribution of v Ney.
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Theorem 1.3 (Central Limit Theorem). Let (X;,7 > 1) be a sequence of independent identically
distributed random variables such that E [X}] < +oo. Let o*denote the variance of X1, that is

2=E [(X1 _E [Xl])Q] = E[X2] - E[x,)%.

(£

converges in distribution to G, where G is a Gaussian random variable with mean 0 and variance
1.

Then:

Remark 1.4. From this theorem it follows that for all ¢ < ¢9

lim P (Ucl <en < (’02) Y R
n—+o0 \/ﬁ - "= \/ﬁ c1 m
In practice, we can apply the following approximate rule: for n large enough, the law of ¢,
is a Gaussian random variable with mean 0 and variance o2 /n.
Note that it is impossible to bound the error, since the support of any (non degenerate)
Gaussian random variable is R. Nevertheless the preceding rule allows us to define a confidence
interval: for instance, observe that

P (|G| < 1.96) ~ 0.95.

Therefore, with a probability closed to 0.95, for n is large enough, we get:
o

NG

len| < 1.96

1.1.1.2 How to estimate the variance

The previous result shows that it is crucial to estimate the standard deviation o of the random
variable. Its easy to do this by using the same samples as for the expectation. Let X be a
random variable, and (X1, ..., X,,) a sample drawn along the law of X. We will denote by Xy
the Monte Carlo estimator of E [X] given by

A standard estimator for the variance is given by
1 al 2
_9 =
= — Xi—X
NTN-14 (% = Xx)

and this expression is often called the empirical variance of the sample. Note that 5]2\, can be

rewritten as N
N 1 _ 9
2 2
e (v - 7).
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On this last formula, it is obvious that Xy and &y can be computed using only ZZ]\L 1 X; and
X2

Moreover, one can prove that if F [X 2] < 400 then limy_ 400 6]2\, = o2, almost surely,
and that E [6%] = o (the estimator is unbiased). This leads to an (approximate) confidence
interval by replacing o by oy in the standard confidence interval. With a probability near to
0.95, F [X] belongs to the (random) interval given by

o 1960y - 1.960
Xy — 2N Xy +

So, with very little additional computations, (we only have to compute gy on a sample
already drawn) we can give an reasonable estimate of the error done by approximating F [X]
with X . The possibility to give an error estimate with a small numerical cost, is a very useful
feature of Monte Carlo methods.

1.1.2 Simulation methods of classical laws

The aim of this Section is to give a short introduction to sampling methods used in Finance.
Our aim is not to be exhaustive on this broad subject (for this we refer to, e.g., [41] or [42])
but to describe methods needed for the simulation of random variables widely used in Finance.
Thus we concentrate on Uniform and Gaussian random variables and Gaussian vectors.

1.1.2.1 Simulation of the Uniform law

In this Section we present basic algorithms producing sequences of “pseudo random numbers”,
whose statistical properties mimic those of sequences of independent and identically uniformly
distributed random variables. For a recent survey on random generators see, for instance, [20)]
and for mathematical treatment of these problems, see [37] and the references therein.

To generate a deterministic sequence which “looks like” independent random variables uni-
formly distributed on [0, 1], the simplest (and the most widely used) methods are congruential
methods. They are defined through four integers a, b, m and Up. The integer Uy is the seed of
the generator, m is the order of the congruence, a is the multiplicative term. A pseudo random
sequence is obtained from the following inductive formula:

Up = (aUy—1 +b) (mod m) .

In practice, the seed is set to Uy at the beginning of a program and must never be changed
inside the program.

Observe that a pseudo random number generator consists of a completely deterministic
algorithm. Such an algorithm produces sequences which statistically behaves (almost) like se-
quences of independent and identically uniformly distributed random variables. There is no
theoretical criterion which ensures that a pseudo random number generator is statistically ac-
ceptable. Such a property is established on the basis of empirical tests. For example, one builds
a sample from successive calls to the generator, and one then applies the Chi—square test or
the Kolmogorov—Smirnov test in order to test whether one can reasonably accept the hypoth-
esis that the sample results from independent and uniformly distributed random variables. A
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generator is good when no severe test has rejected that hypothesis. Good choice for a, b, m are
given in [32].

1.1.2.2 Simulation of the Gaussian law

The standard Gaussian law (mean 0 and variance 1) on R is the law with the density given by

1 ( z? )
—exp|—— .
V27 P 2
The most widely used simulation method of a Gaussian law is the Box-Muller method. This
method is based upon the following result:

Proposition 1.5. Let U and V be two independent random wvariables which are uniformly
distributed on [0,1]. Let X and Y be defined by

X =+v—2In(U)sin(27V),
Y =+/—2In(U)cos(2nV).

Then X and Y are two independent Gaussian random variables with mean 0 and variance 1.

Of course, the method can be used to simulate N independent realizations of the same real
Gaussian law. The simulation of the two first realizations is performed by calling a random
number generator twice and by computing X and Y as above. Then the generator is called two
other times to compute the corresponding two new values of X and Y, which provides two new
realizations which are independent and mutually independent of the two first realizations, and
S0 on.

1.1.2.3 Simulation of a Gaussian vector

To simulate a Gaussian vector
X = (Xl,...,Xd)
with mean zero and with a d x d covariance matrix C' = (¢; ;) with ¢; j = F [Xin] it’s
possible to proceed as follows.
The matrix C is a covariance matrix, so it is positive (since, for each v € RY, v.Cv =
E [(U.X)Q} > 0). Standard results of linear algebra prove that there exists a d X d matrix A,

called a square root of C such that

1<i,j<n

AA* = O,

where A* is the transposed matrix of A = (a;;,1 <4,j <n). Moreover one can compute a
square root of a given positive symmetric matrix by specifying that a;; =0 for i < j (i.e. Aisa
lower triangular matrix). Under this hypothesis, its easy to see that A is uniquely determined
by the following algorithm.
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Algorithm 1.6 (Cholevsky).
ai; = +/c11

For2<i¢<d

Then increasing i from 2 to d,

Qi = )
Forj <i<d
ay = 9 Zj;:ll ik
33
Forl<i<yj
a;j = 0.

This way of computing a square root of a positive symmetric matrix is known as the Cholesky
algorithm.

Now, if we assume that G = (Gl, e ,Gd) is a vector of independent Gaussian random
variables with mean 0 and variance 1 (which are easy to sample as we have already seen), one
can check that Y = AG is a Gaussian vector with mean 0 and with covariance matrix given by
AA* =C. As X and Y are two Gaussian vectors with the same mean and covariance matrix,
the law of X and Y are the same. This leads to the following simulation algorithm.

Algorithm 1.7 (Gaussian vector generation). Simulate the vector (Gl, ceey Gd) of independent
Gaussian variables as explained above. Then return the vector X = AG.

1.1.3 A wvariance reduction method: antithetic variates.

All the results of the preceding lecture show that the ratio o/v/N governs the accuracy of a
Monte Carlo method with N simulations. An obvious consequence of this fact is that one
always has interest to rewrite the quantity to compute as the expectation of a random variable
which has a smaller variance: this is the basic idea of variance reduction techniques. The use
of antithetic variates is widespread in Monte Carlo simulation. This technique is often efficient
but its gains are less dramatic than others.

We begin by considering a simple and instructive example. Let

I:/Olg(:z)dz:.

If U follows a uniform law on the interval [0, 1], then 1 — U has the same law as U, and thus

1
=5 [ @@+ -0)de=E | la) +50-V)
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Therefore one can draw n independent random variables Uy, ..., U, following a uniform law
on [0,1], and approximate I by

IQTL:%(Q(Uﬂ+g<1_U1)+"'+9(Un)+g(1_Un)>'

We need to compare the efficiency of this Monte Carlo method with the standard one with
2n drawings

B, = 5 (g (U) + 9 (U2) -+ 9 (Uan1) + 9 (Tan).

We will now compare the variances of Iy, and I9,. Observe that in doing this we assume
that most of numerical work relies in the evaluation of f and the time devoted to the simulation
of the random variables is negligible. This is often a realistic assumption. An easy computation
shows that the variance of the standard estimator is

Var (I3,) = %Var (9 (Uh)),

whereas
Var (Io,) = %Var <; (g(Uy) —g(1— U1))>
= ﬁ (Var (g (Ur) + Var (g (1 — Uy)) +2Cov (g (U1), g (1 — Uh))))

1

T2
Then, Var (I2,) < Var (I9,) if and only if Cov (g (U1),g (1 — Uy)) < 0. One can prove that if f
is a monotone function this is always true and thus the Monte Carlo method using antithetic
variates is better than the standard one. This ideas can be generalized in dimension greater
than 1, in which case we use the transformation

(Ul,...,Ud)%(1—U1,...,1—Ud).

(Var (¢ (U1)) + Cov (¢ (U1) ,9 (1 = Uh))).

More generally, if X is a random variable taking its values in R? and T is a transformation
of R% such that the law of T (X) is the same as the law of X, we can construct an antithetic
method using the equality

Elg(X)] = 5E[g(X) +¢(T (X))

Namely, if (X1,...,X,) are independent and sampled along the law of X, we can consider the
estimator

an = 5 (9 (X1) + g (T(X0) -+ g (X0) + 9 (T (X,)

and compare it to
1
Iy, = 5 (9 (X1) +9(Xa) + -+ g (Xon-1) + 9 (X20)).

The same computations as before prove that the estimator I, is better than the crude one if
and only if Cov (¢ (X),g(T(X))) <0.
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1.1.4 Stochastic differential equations
1.1.4.1 Existence and uniqueness, applications in finance

Let T'> 0 be a fixed time frame (an option maturity for example). Let’s consider a probability
space (2, A, P), provided with a filtration (F;),~,, and a n-dimensional F-brownian motion
defined in that space: W; = (th, ce Wtd). We also consider Y : 2 — R" a real-valued random
variable Fy-measurable, and two functions o : [0,T] x R?* — R™*4 p:[0,7] x R* — R". Our
attention focuses on the following SDE (stochastic differential equation)

{dXt =0 (t, Xt) dW; + b (t, X;) dt (1.1.2)

Xy, =Y

Definition 1.8 (SDE solution). We call solution of the SDE (1.1.2) a F;-adapted continuous
R"-valued process (Xt);e(o 7 such that

. fOT b (s, Xs)| + |o (s, X) > ds < +o0 as.,

o Ve [0,T],X; =Y + [0 (s, Xs) dWs + [1 (s, X,) ds.

The main result of existence and uniqueness for the SDEs is the stochastic version of the
Cauchy-Lipschitz theorem for the ODEs. They have similar hypothesis.

Theorem 1.9 (Itd). We suppose that

Ve e R", |o(t,z)|+|b(t,x)| < K (1+ |z|)

Lip) 3K > 0, € [0,T],
() [ ]{vxem o(t.) — 0 (t,9)| + b(t) — b (t,9)] < K |z — .

Then the SDE in has one and only one solution (Xt)te[o,T] (if X[ is another solution,
then ¥t € [0,T), X: = X[ a.s.). Moreover, if E “Y\Q} < 400, then

E |sup|X,[? gc(1+E[|Y|2D

t<T

where C' is a constant that doesn’t depend from Y .

The price of a Call option, having maturity 7" and strike K, defined over the underlying X,
is given by C = E [e”™ (X — K)+] In the Black-Scholes model, we know a closed formula
for such a type of options and we also know a way to perform exact simulations the underlying

2
X = XerWT+(T_%)T to estimate C' by the Monte Carlo method. But if the model complexity
increases a little bit, adding for example stochastic volatility, these pleasant properties get lost.
To calculate the price, then, we can discretize the SDE: this gives a way to simulate a random
variable X7 approximating X7. The Monte Carlo method consists then in approximating C by

1 M N
LN e T (% - K)
nps
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where the X7, variables are i.i.d.. The error over the result can be written as a sum of two
terms: a discretization error and a statistic error

M
C_]\Z—;Q_TT(X%_K)J’_:E[e_TT(XT_K)JF]_E[C_TT(XT—K)+:|+
T (X + 1 < —rT (i +
+E[e (X7 - K) }—Mze (Xp—K)".
i=1

The behavior of statistical egror term is well known and stems from the central limit theorem:
because of £ [((XT — K)+) } < +00, as M becomes bigger an bigger, this term behaves as

r Var ((X]\Z—K)Jr)G

where G ~ N7 (0,1) .

1.1.4.2 The Euler method

Let’s consider a partition of the time lag [0,7] in N sub lags, using N — 1 equispaced points in
(0,7): for all k € {0,...,N}, we define ¢, = % Then, all the subsets have the same length
equal to T'/N. Consider the SDE

dXt =0 (t, Xt) th + b(t, Xt) dt, XQ =y c R™.

The Euler method is based on the following discretization:

Xo =Y
{th+1 = th +o (t]m th) (Wtk+1 - Wtk) + b (tka th) (tk+1 - tk) .

We fix the coeflicient values at their value at the beginning of the time lapse to move to the next

time instant. To implement this scheme, it is enough to know the increments (Wtk o Wtk) O<h<N—1

that are i.i.d. following a Gaussian law Ny (O, %Id) where I; is the d-sized identity matrix. To
present the main results about convergence, it is useful to introduce the continue version of the
Euler method, defined by

X =Xi, + 0 (thy Xp) (W — Wy,,) +b (b, Xt,) (8 —tr), VO <k <N — 1,V € [tg, trga].
We present now two theorems showing some interesting results about the convergence of the
Euler method.
1.1.4.3 Strong rate

In the scheme, the coefficients b and ¢ are fixed at their value at the beginning of each time
step: we need to introduce some regularity hypothesis for these functions.
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Theorem 1.10 (Strong rate). Let’s suppose that the coefficient o,b verify the hypothesis (Lip)
(see theorem (1.9, and let’s also suppose that

Ja, K > 0,Vx € R",V (s,t) € [0,T], |0 (t,8) — o (s,2)|+]|b(t,z) — b(s,z)| < K (1+ |z]) (t —s)°.
Then for = min (a,1/2),

Vp>1,3C, > 0,Vy € R",YN € N, E

Cy (14 y)
_ 2p p
sup | X; — XN S N——
tgg‘ t t ‘ ] = N28p

Moreover if v < 8, N7 sup;<r ‘Xt — ng‘ converges almost surely to 0 as N moves to infinity.
As we have

1
2p
Sup‘Xt—XtN‘zp]> < °

o
op = 5, = (2 s -

we say that the strong rate of the Fuler method is in ﬁ. Particularly when the coefficients of
the SDE don’t depend on time or if a > %, the strong rate is in %

1.1.4.4 Weak rate

Let f be a Lipschitz function, with Lipschitz constant K, and let’s suppose we want to calculate
E[f (X7)]. The theorem ensures that

C
NF*

The first inequality consists in bounding from above the absolute value of the difference of
the expected values by the expected value of the absolute values of the difference: this is very
rough. Actually, our aim is to know if E [f (X})] is close to E [f (Xr)]: this is equivalent to
clarify if the law of X%V is close to the law of X7. So we focus on the problem of the convergence
of the law of the Euler scheme. The convergence in distribution is based on the analysis over
some tests functions as the function f introduced before. That’s why we speak about weak
rate. The following result was first proved by Talay and Tubaro [45].

B [f (Xr) - B (f (X7))]] <

Theorem 1.11 (Weak rate). Let b and o be two functions in C* over [0,T] x R™ with bounded
derivatives et let f : R™ — R be C'°° with derivatives having polynomial growth

garttan f

Ya = (al,...,an) GN",Hp,C>O,V:U€R", m(ﬁ?)

<O+ |zP).

Then, there exists a sequence (01)121 of real numbers such that for all L € N*, the error can be
developed as

L5 (6] - £l 0 = S+ L+ G +0 ()
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In particular this implies that ‘E [f (XN)] = E[f (Xp)]] < % whereas using the strong rate
results, we would bound from above

_ C
In fact the hypothesis of Theorem leads to have a = 1.

1.1.5 Longstaff-Schwartz algorithm for American option pricing

The computation of American option prices is a challenging problem, especially when several
underlying assets are involved. The mathematical problem to solve is an optimal stopping
problem. In classical diffusion models, this problem is associated with a variational inequality,
for which, in higher dimensions, classical PDE methods are ineffective.

Various authors introduced numerical methods based on Monte Carlo techniques. The
starting point is to replace the time interval of exercise dates by finite a subsets. This amounts
to approximate the American option by a so called Bermuda option. The solution of the
corresponding discrete optimal stopping problem reduces to an effective implementation of
the dynamic programming principle. The conditional expectations involved in the iterations of
dynamic programming cause the main difficulty for the development of Monte Carlo techniques.
One way of treating this problem is to use least squares regression on a finite set of functions as
a proxy for conditional expectation. This is the method used by Longstaff and Schwartz [33].

1.1.5.1 Description of the algorithm

As mentioned in the introduction, the first step in all probabilistic approximation methods is
to replace the original optimal stopping problem in continuous time by an optimal stopping
problem in discrete time. Therefore we will present the Longstaff-Schwartz algorithm in the
context of discrete optimal stopping.

We will consider a probabilistic space (€2, A, P), equipped with a discrete filtration (}—j)j:O,...,L'
Here the positive integer L denotes the (discrete) time horizon. Given an adapted payoff
(Zj)j:(),...,L process, where Zg, Z1, ..., Z1, are square integrable random variables, we are inter-
ested in computing

sup E[Z,],
TE%,L
where 7 1, denotes the set of all stopping times with values in {j,...,L} .

Following classical optimal stopping theory (for which we refer to [36], chapter 6), we intro-
duced the Snell envelope (Uj);_ ; of the payoff process (Z;);_, ;. defined by
Uj =ess sup.e7  E[Z:|F;], j=0,..., L.

The dynamic programming principle can be written as follows:

UL =7L
Uj = Imax (Zj,E[Uj+1|‘/—"j]), 0 S] < L—1.
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We also have U; = E [Z,,|F;], with
7j = min{k > j|U, = Zy} .

In particular £ [Ug] = sup, ¢, , £ [Z:] = E[Zy].
The dynamic programming principle can be written in terms of optimal stopping times 7;,
as follows:

{TL =L
T =IiYzspz, 7)) T Y z<Bz,,, 5]y TS LT

This formulation in terms of stopping rules (rather than in terms of value functions) plays an
essential role in the Longstaff-Schwartz method.

The method also requires that the underlying model be a Markov chain. Therefore, we will
assume that there is an (F;)-Markov chain (X}) .1, with state space (E, ) such that, for
j=0,...,L

§=0,..

2% ::!f(j’)(j)7
for some Borel function f(j,-). We then have U; = V (j, X;) for some function V (j,-) and
E [Z.,j+1 |]-"]] =F [ZTjH |Xj] . We will also assume that the initial state Xy = z is deterministic,
so that Up is also deterministic.

The first step of the Longstaff-Schwartz algorithm is to approximate the conditional ex-
pectation with respect to X; by the orthogonal projection on the space generated by a finite
number of functions of X;. Let us consider a sequence (ej (x)),~, of measurable real valued
functions defined on E and satisfying the following conditions:

Assumption 1. (A1)
For j =0 toj=L—1, the sequence (ey (X;)),~, is total in L* (o (X;)).

Assumption 2. (A2)
Forj=0toj=L—1andm>1,if Y "  Mek (X;) =0 a.s. then Ay =0 for k=1 to m.

Then, for j =1 to L — 1, we denote by P;™ the orthogonal projection from L? (Q) onto the

vector space generated by {e1 (Xj),...,en (X;)} and we introduce the stopping times Tj[»m]'
T][m} =L
7" =41 + 71 J<L—1
e} P o)
j+1 Jj+1

From these stopping times, we obtain an approximation of the value function:
Uy" = max (Zo, E [ZTl[m]]) .

Recall that Zy = f (0, z) is deterministic. The second step of the algorithm is then to evaluate
numerically F [ZT[m]] by a Monte Carlo procedure. We assume that we can simulate N inde-

pendent paths (X(.1)> ; (X(2)> e (X(N)

; ; ; ) of the Markov chain (X;) and we denote by ZJ(-n)
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the associated payoff for j =0to Land n =1 to N (Z](n) =f (j,X](-n)>). For each path n,

we estimate recursively the stopping times (Tj[m]> by:

n7m7N —

T =
n.m,N . n,m,N .

L =0l e o\ F T Ly e m\\J < L—1

L {Zj >alm M) em (Xj )} j+1 {Zj <a{m ). gm (Xj )}’

Here, z-y denotes the usual inner product in R™, e is the vector valued function (eq, ..., ey)
N) . .
and o™ is the least square estimator:

J

Remark that for j =1to L —1, a§m7N)

following approximation for Uj":

N
1
U = Zo, 32"y ]
0 max < 0, N — Tin,m,N

N

€ R™. Finally, from the variables 7", we derive the

In [15], the authors proved that for any fixed m, U}" N converges almost surely to Uj" as N
goes to infinity, and that Uj" converges to Uy as m goes to infinity.

1.1.6 Simulation of the Heston Model

In this Section we describe the most relevant method actually used to perform Monte Carlo
simulations for the Heston model: the Alfonsi’s third order scheme (see [2]).

1.1.6.1 The Model

The Heston model [26] is one of the most known and used models in finance to describe the
evolution of the volatility of an underlying asset and the underlying asset itself. In order to fix
the notation, we report its dynamics:

dS; = rSydt + oS dZ7 So = So, (1.13)
dvy =k (0 — v) dt + w\/vedZy vy = o, o

where Z° and ZY are Brownian motions, and d <Zts, Zy) = pdt.

1.1.6.2 The Alfonsi’s third order scheme

Alfonsi’s paper ([2]) presents weak second and third order schemes for the Cox-Ingersoll-Ross
(CIR) process, without any restriction on its parameters. At the same time, it gives a general
recursive construction method to get weak second-order schemes that extends the one introduced



14 Numerical Methods in Finance and Insurance

by Ninomiya and Victoir [38]. Combining these both results, this allows to propose a second-
order scheme for more general affine diffusions. Simulation examples are given to illustrate the
convergence of these schemes on CIR and Heston models. Algorithms are stated in a pseudo-
code language.

The main difficulty when discretizing the CIR process is located in 0, where the square root
is not Lipschitzian. Usual schemes such as the Euler scheme or the Milshtein scheme are in
general not well defined. They can indeed lead to negative values for which the square root is
not defined. One has therefore to modify them or to create ad-hoc schemes. A possible criteria
to chose the scheme may be its capacity to support large values of o (we mean here w? > 4k).
In finance, such large values do not occur when the CIR diffusion is used to represent the short
interest rate. They are instead often observed when the CIR stands for the default intensity
in credit risk or the stock volatility like in the Heston model. Heuristically, the larger is w,
the more the CIR process spends time in the neighborhood of 0 where the square-root is very
sensitive. This is intuitively why most of the schemes fail to be accurate for large w.

Now, we point out the main features of the paper in order to present the scheme.

Assumptions on the SDE and notations We consider a dyy-dimensional standard Brow-
nian motion (Wi, ¢ > 0) and we will denote in the sequel (Ft),s, its augmented associated
filtration that satisfies the usual conditions. Let d € N*, and D C R? a domain that we assume
for sake of simplicity to be a product of d intervals. Typically, we will consider D = Rflﬁ x R
with dy + da = d. For any multi-index o = (o, ..., aq) € N, we define 9, = ot ... 05" and
la| = 27:1 a;. We introduce the following functional space:

1 (D) = {f €C* (D,R),Ya € N',3C, > 0,eq € N*,Va € D, |0 f (2)] < Ca (1 + [2l|"*) }
where |-|| is a norm on R%. We will say that (Ca, €q), ey iS a good sequence for f € C°

if one has Vo € D, 0o f (z)| < Cqo (1 + ||2]|).
We do the following assumptions.

ol (0)

Assumptions 1.12. We assume thatb: D — R and o : D — Maxay, (R) are such that for
1 <i,j <d, the functions v € D = b; (z) and x € D (007), ; (z) are in C;Ool (D). For x €D,

we introduce the general R*-valued SDE:
t ¢
tzO,Xf:x—i-/ b(Xf)ds—F/ o (X7Y)dWs. (1.1.4)
0 0

We assume that for any x € D, there is a unique weak solution defined for t > 0, and therefore
P(VMt>0,X eD)=1.

The differential operator associated to the SDE is given by

d

d d
NS oik (@) 0ju (2) 00, (). (1.15)

1

S

l\D\»—t

feC*(DR),Lf (x) = bi(z)0:if (x) +

i=1 =1 j=1

B
Il
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If f e C;?)l (D), thanks to the reqularity assumptions made on b and o, all the iterated functions

LFf (x) are well defined on D and belong to C;ool (D) for any k € N.

Definition 1.13. We will say (for short) that the operator L satisfies the required assumptions
on D if it is defined by (1.1.5) for some functions b (x) and o () and satisfies all assumptions
above.

Now, let us turn to discretization schemes for the SDE (1.1.4]). Let us fix a time horizon
T > 0. We will consider in the whole Section the time interval [0,7] and the regular time
discretization tI' = iT/n for i = 0,...n.

Definition 1.14. A family of transition probabilities (p, (¢) (dz),t > 0,2 € D) on D is such
that p, (t) is a probability law on D for ¢t > 0 and z € D.

A discretizations scheme with transition probabilities (p,. (t) (dz),t > 0,2 € D) is a sequence
(Xﬁh 0<1< n) of D-valued random variables such that:

o for0<i<mn, X/Lisa ft;L—measurable random variable on D.
1

o the law of X7 is given by E [ f (ngz“) \J—};] = Jo J ()b, (T/n) (d=) and. thus only
depends on X7 and T/n .
For convenience, we will denote, for ¢ > 0 and =z € D, th a random variable distributed

according to the probability law p; (t) (dz). The law of discretization scheme (X[h, 0<i<n)
is thus entirely determined by its initial value and its transition probabilities.

Definition 1.15 (Weak v th-order scheme). Let us denote C7¥ (D, R) the set of C* real valued
functions with a compact support in D. Let z € D. A discretization scheme (Xﬁl, 0<i< n)
is a weak v th-order scheme for the SDE (X7*,t € [0,T]) if :

Vf € (D,R),3K > 0, )E[f (X2)] - E [f (X;z)] ‘ < K/n”.
The quantity E [f (X7)] — E [f (X;i)} is called the weak error associated to f.

The third order scheme We present now the Alfonsi’s scheme. A proof of its properties is
available in [2].
First we write the CIR process as

dX? = (a—kX?)dt+ o/ XFdW,
X5 ==

with parameters (a,k,0) € RY x R x Ry. We remember that it is a non-negative process.
Moreover, if 2 > 0 and 2a > ¢ the process (X;,t > 0) is always positive. We will exclude the
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trivial case ¢ = 0 and assume ¢ > 0 . This process has dyy = 1 and D = R;. We introduce its
operator

feC ®e,R), IO (2) = (a— ke) 0uf (x) + so*adlf (x)

that satisfies the required assumptions on D.
We define the following quantities:

K3 (1) = Y- (1) sa/3<0%<4a} ——a+

2 2
g g g g
+ -k (t) Laaco2y | — 0 E\/Z—a—kg 3+V6 ||+

+ Y- k()1{02<4a/3}\f a—o?/4 (1.1.6)

Let Y be a random discrete variable such that P [ } [ -3+ \/6] =
\/6_2, and P|Y =v/3—-V6| = P|lY =—-vV3-V6| =1 v6-2  This variable is useful
46 2 46

because it fits the first seven first moments of a standard Gaussian variable.
We consider the three following discretization schemes

XOCIR (t,z) = ze R 4 (a — 02/4) Y (t),

XCIR (4, 2) = ((\/EJr Ut>+)2

X (t,x) _x+t—,/

The first two operator are obtained applying Ninomiya-Victoir’s theorem (see [38]) and their
composition can define a second order scheme:

XETR (t/2, X PR (N, XFTE (t/2,2))) =

(D)o () ) (o= 2) o (5). w0

We can now state the scheme for those starting point = that are far enough from zero.
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Proposition 1.16. Let ¢ and ¢ be respectively uniform r.v. on {—1,1} and {1,2,3}, and Y be
sampled independently according to the previous definition. Then, for o2 < 4a (resp. o® > 4a),
the following scheme

X (et, X§1B (t, XCIB (ViY,2)))  (resp. X (et, XTIR (VEY, X§1E (t,a:)))) if ¢ =1,
XPE=0 = L XETR (¢, X (et, XCTR (VY. 2 resp. XO1 (VY X (et, X§TE (t, 2 if ¢ =2,
t 0 1 1 0 ( )
X§IR (¢, XCIR (ﬁY,X(d,x))) resp. XCTR (\/tY, X§TR (t,X(shx)))) if (=3,

is well defined and non-negative for t > 0 and x > K3 (t)t/y_ (t). Then, for x > Kz (t), the
scheme

ocr _ _—ktyva,k=0
Xy =e " Xy" 0

is a potential third-order scheme.

On z € [0, K3 (t)] we will approximate the CIR with a discrete random variable that matches
the three first moments of the CIR. we approximate the CIR near 0 and keep non-negativity.
We remember the moments of the CIR

pie =B [(X)'] = we™ + ayy (1)

W50 = B [(XE)2] = (u5.)" + 020k (8) [an (6) /2 + we ]
5= B[] = i+ o ) 202 40 (a+ 5 ) (e 0)]

We define )
B Wy — HT 11y - BT 15y — (“g,t
S = 2 b= 2
Mo = (uf,t) o~ (Mit)
s & 82—4]? M:ft_x—(t7x)
ve ()= SEVE TR Ly L
2 x4 (tyx) —x_ (t, )

Proposition 1.17. Let U ~ U ([0, 1]) and consider the scheme

th = T4 (tv l’) 1{U§7r(t,x)} + T (t7 J)) 1{U>7r(t,:1c)}'
This scheme is a positive potential third order scheme on x € [0, K3 (t)].
We can then conclude with the following

Theorem 1.18 (Alfonsi’s third order scheme). Let K3 (t) be defined as in , X7 the

scheme defined in Proposition (resp. Proposition for x > K3 (t) (resp. x < K3(t))
and Py (t) (dz) the law of XF . Then, P, (t) (dz) is a potential third order scheme for LCTE

on Ry .  Moreover, the scheme X%L,O < i< n) associated to the transition probabilities

(pz (t) (dz),t > 0) and starting from Xt% =x € Ry s a third order scheme:

Vfe C;‘;l(]RiJr),HK > 0,Vn € N*,

Blf(xp) - E[f (X2)]| < £/m®
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1.1.6.3 An efficient scheme for the Heston model

In this part, we are going to apply the ideas developed about CIR process to the Heston model
[26]. This approach has already been used by Ninomiya and Victoir [38], but the difference
here is that we have at our disposal a third-order scheme for the CIR, without restriction on
its parameters. Thus, we will use a different splitting of the Heston SDE that allows to use
directly our CIR discretization.

First, we rewrite the Heston model using Alfonsi’s notation. Let W and Z be two indepen-
dent Brownian motions. We would like to discretize the following SDE:

X} =X+ [y (a— kX)) ds+ o [} \/XLTdW,
X} = [y Xlds

XP = X fyrX3ds + Jy /XIXE (pdW, + /1= p2dZ,)
X} = [ X3ds

with X} >0, X§ > 0,7 € R, p € [-1,1] and (a,k,0) € R} x R x R% . The processes X! and
X3 are respectively the volatility process and the stock process, and X2 and X* their respective
integrals. From a financial point of view, it is common to assume moreover r > 0, k > 0, and
p < 0, but these assumptions are not required for what follows.

First, we have to say that there is no hope that the theory developed in the previous Section
works for the Heston model. Indeed, all that theory is thought to work when the discretization
scheme has uniformly bounded moments. Since the discretization scheme is supposed to stick
rather closely to the SDE, this roughly amounts to assume that the SDE has uniformly bounded
moments, which holds when the drift b(z) and the volatility function o (z) have a sub-linear
growth. In the Heston model the diffusion coefficient o (x) has not a sub-linear growth, and it is
proved indeed that the moments explode in a finite time. Therefore, the framework developed in
Alfonsi’s paper is not well suited to get a rigorous estimate of the weak error within the Heston
model. However, it is not meaningless to apply the results stated in the previous Section to
the Heston model. The recursive construction of third-order scheme is a way to cancel many
biased terms of order 1, and improve really the convergence.

We will then apply the results of the previous Section in a non rigorous manner. To do so,
we split the operator of the SDE L = LW 4 L?, where the two operators are associated to the
following respective SDEs:

X} = (a—kX})dst +o/X AW, dx;}

dX? = X}dt dx2 =0

dX? = rXPdt + /XIXPpdW, WA X = ST ) XX % dZ
dX} = X3ds dxt =o.

Here * denotes the Stratonovich integral. The second SDE is easy to integrate exactly.
Concerning the first SDE, we use the third order scheme described in this paper for CIR. To
discretize X7, we use the trapezoidal rule. Then, we observe that X? can be integrated exactly
in function of the increments of X' and X?:

1
X} = X3 exp [(r— Ba)t—i— [pk— 2] (th —Xg) + 2 (th —X&) ,
o o

g
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function XO0(x):
v x+ (a—0?/4) Yy (t)
function X1 (z):

i\ 2

x <<\/§+m/¢_k (t)Y/2) >
function Xt (z):
T+ % la — o2 /4|e_y (t)
function CIR3(x):

i£(z > K3 (1)) {

if (C=1){if (6% < 4a) {X1(2z) X0 (z) Xt ()} else {XO0 (z) X1 (z) Xt (2)}}
if (C=2){if (6% < 4a) {X1(z) Xt (z) X0 (z)}else {XO0 (z) Xt (z) X1 (2)}}
if (¢ =3){if (02 < 4a) {Xt(x) X1 (x) X0 (2)}else {Xt (z) X0 (z) X1 ()
r 4+ ze M) else {
s T g MBS V2 —dp, o 02

(U < ) (o (54 8) /2)
ilse {z + (s—0)/2}

Table 1.1: Algorithm computing the 3"¢ order scheme value at the next time-step, starting from
x with a time-step. Here, U is sampled uniformly on [0, 1] and &,( and Y as stated in Section

L1621

and we use this formula with the increments of the discretization. Last, we discretize X* like X2
using the trapezoidal scheme. Instead of writing the cumbersome formula or Alfonsi’s scheme,
we prefer to write here directly the algorithm that computes the discretization at the next
time-step. The function HW (resp. HZ) calculates the discretization of the SDE associated to

LW (resp. L?). See Table and .



20 Numerical Methods in Finance and Insurance

function HW (x1,x9,x3,24):

Az < —z1, CIR3 (1'1) , Az — Axq + 21

To < X2 + (1'1 + 0.5A1‘1) t

T4 < x4 + 0.523t

xg < x3exp [(r — pa/o)t + pAxi /o + (pk/o — 0.5) (x1 + 0.5Az) t]
x4 < x4 + 0.523t

Ty — 21+ A1y

function HZ (x1,x2,23,24) :

T3 ¢ T3exp (\/(1 —p?) :cltN)

function Heston (z1,x2,x3,14) :

if (B=1){HZ (z1,22,23,24), HW (21,22,23,24)}
else {HW (z1,x9,x3,24), HZ (z1,22,73,24)}

Table 1.2: Algorithm for the Heston model, B being a Bernoulli sample or parameter 1/2 and
N an independent standard Gaussian variable.

1.1.7 Simulation of the Black-Scholes Hull-White Model

The Hull-White model [28] is one of historically most important interest rate models, which
is nowadays often used for risk-management purposes. The important advantage of the HW
model is the existence of closed formulas to calculate the prices of bonds, caplets and swaptions.

1.1.7.1 The model

In order to fix the notation, we report the dynamics of the BS HW model:

dS; = 1Sydt + 0S:dZ? So = So,
th:k(et_rt)dt_‘_WdZ{fr ro = 70,

where Z° and Z" are Brownian motions, and d <Zf, Z7) = pdt.

The process r is a generalized Ornstein-Uhlenbeck (hereafter OU) process: here 6; is not
constant but it is a deterministic function which is completely determined by the market values
of the zero-coupon bonds (ZCBs) by calibration (see Brigo and Mercurio [12]): in this case the
theoretical prices of the ZCBs match exactly the market prices.

Let PM (0,T) denote the market price of the ZCB at time 0 for the maturity 7. The market
instantaneous forward interest rate is then defined by

Oln PM(0,T)
oT

It is well known that the short rate process r can be written as

e =wXe+ B (t),

fM(()?T):_

where X is a stochastic process given by

dX, = —kXdt + dZl, X, =0,
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and S (t) is a function
w2

(L exp (—k))?.

B(t)=fM(0,4) +
Then, the BS HW model is described by

dS; = rSidt + UStdZ,gg So = So,
dX; = —kXidt + dz] X9 =0, (1.1.7)
Tt:LUXt—FB(t).

A particular case is called flat curve. In this case, we assume PM (¢, T) = e~70(T=%) and

fM(0,T) = 7. Then
2

B(t)=70+ o exp(—kt))Q,

2k2 (1
and

2

0 =70+
t 7'0"‘2]{2

(1 —exp (—2kt)).

1.1.7.2 The exact scheme

For this model it is easy to define an exact scheme. We refer to [39], where an algorithm for
the rates generation is explained. First we recall the following theorem:

Theorem 1.19. Let 0 < s < t. The variables X; and fst X,du are bivariate normal distributed
conditionally on Fg with

E[X;|Fy] = Xe ™)
E :Xudu\]-"s: ]i o (1= k=)
Var[X,|F.) = ik (1 e72)
Var /S Xudu\]:s le (t — s+ z —k(t—s) _ ie*%(t*s) — 2?;€>
Cov [Xt, / t Xudu\]-"s_ - 2—11{2 (1 _ efkufs))?

Then, we observe that

t t
Var [ X;|Fs] = Var [/ —qudu+/ quZ]-"S]

t t t t
= Var [/ —qudu\]:s} + Var {/ dZ£|.7:s] + 2Cov [/ —k:Xudu;/ dZZ|.7:S}
S . S . st S
= k?Var [/ Xudu|]:s] + (t — s) — 2kCov [/ Xudu;/ dZZ;|.7:S] ,
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and then

k%Var [fst Xudu|.7-—s} + (t — s) — Var [ X;|F]
2k
e Rt L k(t—s) —1
k2 ’

t
Cov [/ Xudu, Z] — Zﬂ}—s] =

Moreover

t
Cov [X; — X,, Z — Z7|Fs] = Cov [/ dXy, 70 — Z{}

t t
= Cov [/ —kXydu, Z — Z[] + Cov [/ a7l 77 — Z{}

t
= —kCov [/ Xudu, Zy — ZZ] + Var [Z] — Z]]

—k(t—s) _ _
_ e —i—l]z(t s) 1+(t—s)

1— e—k(t—s)
k

Then, the variance-covariance matrix associated to the Gaussian vector

t
(Z{ -7, Xy — X, Xudu>
S
conditionally on Fjg is
t—s 1 (1—e k=) = (e7F0=9) ¢ k(t — 5)2— 1)
L (1 = e~k(t=9)) L= 6—2k(t—s))2 sy (1 — ek(t=9))
L (M=) fh(t—s5)— 1) Fy (1—e k=)7L (t— 54 2e=k(t=s) _ Le=2k(t=s) _ 3)

and it is possible to prove that its Cholesky decomposition is:

Vi—s _—lqekmt)  k(t—s)4elm 1

ky/t—s k2\/t—s
C = 0 ek (5= (t,5) . ek(s=t) (t,s)
V2k+/t—s V2k2\/t—s
0 0 0

where wy, (t,5) = \/k(s — t) + 4eF(=9) 4 e2k(E=9) (k(t — s) — 2) — 2.

In Table we report a pseudo-code for the generation of the Black-Scholes Hull-White
process. Similarly to the Heston case, we use the following variables: X} represents S;, X?
represents X; and Xf’ represents fst Xudu.
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function BSHW (z1,x2,x3):
x3  x- (1 — e_k(t_s)) [k + C13Go + Ca3Gy
Ty ¢ 19 - e F8) 4 Oy 5Go + Ca G,

T1 + T1exp [xg + fstﬁ(u) du—o?(t—s)/2+ o\t —s (pGo + MG;;)]

Table 1.3: Algorithm for the Black-Scholes Hull-White model, G1, G2, G3 being 3 independent
standard Gaussian variables.

1.2 Lattice methods

This part is inspired by [9].

Lattice methods are built to implement discrete models such as the Cox-Ross-Rubinstein
market model (CRR model, see [I7]). The CRR model is an example of a multi-period market
model of the stock price. This model known as the binomial model which has as a limiting
case the Black-Scholes formula. The binomial model assumes that the stock price at each time
moment can go either up or down by the multiplication of two factors called v and d.

1.2.1 The uniperiodal model

Consider a single time step of length At. We know the asset price Sy at the beginning of the
time step; the price S; at the end of the periods is a random variable. The simplest model we
may think of specifies only two possible values, accounting, for example for the possibility of
an increase and a decrease in the stock price. To be specific, let us consider Figure We
start with a price Sp; at next time instant we assume that the price may take either value Spu
or Sod, where d < u, with probabilities p,, and pg = 1 — p, respectively. This is a discrete-time
model as well, but it is also discrete-state. Now, imagine an option whose unknown value now
is denoted by Vj. If the option can only be exercised after At, it is easy to find its values f, and
fu corresponding to the outcomes. They are simply the option payoffs, which are determined
by the type of the contract. Exploiting the no-arbitrage principle, we can calculate the price of
the option. Let us set up a portfolio consisting of two assets: a riskless bond with initial price
By = 1 and future price B; = ¢!, and the underlying asset with initial value Sy. We denote
the number of stock shares in the portfolio by § and the number of bonds by ¥. The initial
value of this portfolio is

Iy =65y + ¥,

° uSo

/
\. aS,

Figure 1.2.1: Simple single-period binomial lattice.

So’
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and its future value, depending on the realized state, will be either
L, = 6Sou + Te™, or I, = §Sod + We ™.
Now let us try to find a portfolio which will exactly replicate the option payoff,
I, =V,
{Hd =V

Solving this system of two linear equations in two unknown variables, we get

o Vi —Va
= So(u—d)
u—d

But in order to avoid arbitrage, the initial value of this portfolio must be exactly Vy:

Vo=065)+¥
_ Vu —Va —TAtUVU_dVd
 u—d te u—d
rAt rAt
oA €0 —d u—e
= — Ve +—Vy ;. 1.2.1
‘ {u—dv+ u—d d} ( )

It is important to note that this relationship does not depend on the objective probabilities p,
and pg. In particular, the option price is not the discounted expected value of the payoff, which
could have been a seemingly reasonable guess; nevertheless, we can interpret equation
as an expected value. Indeed, if we set

At _ g u—e

wu—d T T =4

r—At
Ty =

we may notice that these probabilities define a risk neutral probability Q. The option price can
be interpreted as the discount expected value of the payoff under those probabilities:

Vo=e "MEg V1] = e " (Vi + maVa) (1.2.2)

where the notation Eg is used to point out that expectation is taken with respect to the
probability measure Q.

The previous model is also known as uniperiodal model because we consider only one time
lag, neglecting the middle values.

To allow for a better model of uncertainty, we should increase the number of states; to
replicate the option payoff, we can either use more assets or allow for trading at intermediate
dates. The second possibility is more practical and it is essential, for example, to price American
option, which allow for early exercise at any time during option life. In the limit this leads to a
continuous time model and to the Black-Scholes framework. When the Black Scholes framework
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® u350

S

U

\,
VA

° ° u2d50

So o/
\ e e ud250

S

/N

dQSO\A o &S,

Figure 1.2.2: Recombining binomial lattice.

does not lead to an analytical solution, we must resort to some discretization approach, which
can be sampling by Monte Carlo simulation, or setting up a grid and apply finite differences
methods to solve the corresponding PDE. A multistage binomial lattice, like the one shown in
Figure is an alternative discretization approach; we could also consider non-recombinant
trees, but recombination keeps computational effort to a manageable level.

A good way to simplify calculation is to adopt the convenient choice u = 1/d. This is not
necessary, but in this way, an up step followed by a down step yields the same initial price:

Soud = Sodu = S().
As we may see form the figure, not only we have recombination, but the lattice uses a limited
number of prices too. The selection of sensible values for 4 and d can be done with the aim of
approximating the underlying continuous-time process.
1.2.2 The multiperiodal model
The binomial lattice should be a good approximation of the risk-neutral process

dS =rSdt 4+ o Sdw.

Hence the parameters we need to set up the lattice should preserve some essential properties of
the continuous-time model. This process is called calibration. Starting from S, after a small
time interval At, the new random variable Sy ¢ is such that

In(Siyae) ~ N ((T - 02/2) At, 02At) .
Using properties of the log normal distribution we have
E[Siiat/Si] = et (1.2.3)

and ,
Var [S; a¢/S;] = e?At (e” At _ 1) . (1.2.4)
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A reasonable requirement on the discretized dynamics is that it should match these moments.
Note that these are two conditions, but we have three parameters: p,u and d. So we have one
degree of freedom, and we may choose u = 1/d. This is a convenient choice from a computational
point of view, but is not the only possibility.

On the lattice, we have

E[SH-At} = pu - St + (1 —p)d~ St,

which, together with (1.2.3)), yields

erAt —d

u—d
Note that p is the risk-neutral probability, which does not depend on the true drift. To match,
we see that, on the lattice,

p= (1.2.5)

Var [Serae] = S+ (pu® + (1 —p) d?) — S2e2rAt,

From ([1.2.4) we also see

Var [y ar] = 228 (78 1),

Using these two equations together, (1.2.5) and u = 1/d, we finally get

(1 B leAt+02At) n \/(1 N €2rAt+02At)2 _ 42t

u= 2erAt

Using a first-order expansion limited to the powers of order At, we may simplify the expression.
Hence

2
U~ 1+U\/At—|—%At.

But this expansion is the same expansion to the second order of e?2t. We end up with the

parametrization

At
e” —d
ea\/At7 d e oV At

u= iy
which is known as CRR (Cox, Ross, and Rubinstein).

Assuming that the risk-free interest rate and volatility are constant in time, the parameters
we have obtained apply to the entire lattice. To price an option, we should build (explicitly
or implicitly) a lattice for the underlying asset prices, and then we should proceed backward
in time. In fact, the option value is known at maturity, where it is given by the option payoff.
Then we should apply equation recursively, going backward one step at time, until we
reach the initial node.

1.2.3 Simple binomial processes as diffusion approximations

Nelson and Ramaswamy in their paper [35] presents an approach to obtain simple binomial trees
for several processes. A binomial approximation to a diffusion is defined as “computationally
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simple” if the number of nodes grows at most linearly in the number of time intervals. In the
paper, it is shown how to construct computationally simple binomial processes that converge
weakly to commonly employed diffusion in financial models. The convergence of the sequence
of bond and FEuropean option prices from these processes to the corresponding values in the
diffusion limit is also demonstrated.

1.2.3.1 Binomial diffusion approximations

Suppose we are given the stochastic differential equation
dys = p(y,t) dt + o (y, 1) dW; (1.2.6)

where {Wy,t > 0} is a standard Brownian motion, x (y,t) and o (y,t) > 0 are the instantaneous
drift and standard deviation of y, and yg is a constant. We wish to find a sequence of binomial
processes that converges in distribution to . We then tackle the problem of constructing
a sequence of binomial approximations, given a limit diffusion. To fix matters, take the interval
[0,T], and chop it into n equal pieces of length h = T'/n. For each h consider a stochastic
process {py:} on the interval [0, 7], which is constant between nodes and, at any given node,
jumps up (down) some specified distance with probability ¢ (resp. 1 — ¢q). For example, if we
set ¢ = 1/2 and the up and down size equal to v/h, it is well known that, as n — +oo, {ny:}
converges in distribution to a Brownian motion.

The probabilities of up or down jumps are specified as follows: define gy, (y, hk) 7YhJr (y, hk)
and Y, (y, hk) to be scalar valued functions defined in R x [0, 0o) satisfying

0<gqn(y,hk)<1

—o00 <Y, (y,hk) < Y,F (y, hk) < +o0,
for all y € R and all k£ € {0,...,n}. The stochastic process followed by py; is given by

nYo = Yo for all h, 1.2
nyt = ygp for all kh <t < (k+1)h,

P [wyg+in = Y5 (y, k) |hk, nyen| = an (nyrn, bk) | (1.2.8)
P [hysnn =Yy, (y, hk) [hk, nykn] = 1 — qn (nyrn, bk) |
P [hyes1yn = ¢| =0,
for c#Y, (y,hk), c# Yth (y, hk)

The stochastic process py: is a step function with initial value yo which jumps only at times
h,2h,3h,...(n —1)h. At each jump the process can make one of two possible moves: up to a
value YbJr or down to a value Y, . Yh+, Y,” and ¢ are allowed to depend on h, on the value of
the process immediately before the jump (rynk), and on the time index hk. By the statements
in the previous equations, the process described is a Markov chain.

We apply a result from Stroock and Srinivasa Varadhan ([44]) which states conditions under
which {,y:} converges weakly when h — 0 to the process in (|1.2.6)).
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To use this result we need assumptions about both the limiting stochastic differential equa-
tion and the sequence of Markov chains defined above. The first two assumptions ensure that
the limiting stochastic differential equation (1.2.6) is well behaved.

Assumption 1. The functions u (y,t) and o (y,t) are continuous, and o (y,t) is non-negative.

Assumption 2. With probability 1, a solution {y:} of the stochastic integral equation

t t
Yt :y0+/ H(ySas) d5+/ U(ysws) dWs,
0 0

exists for 0 < t < oo, and is distributionally unique.

Under Assumption 2, the distribution of the random process {y;}o<;,p is characterized by
four things:

1. The starting point yg
2. The continuity (with probability 1) of y; as a random function of ¢
3. The drift function p (y,t)

4. The diffusion function o (y,t)

If {ny:} is convergent in distribution to {y;} when h — 0, properties 1 — 4 must be matched in
the limit. Specifically, we require

1’. that pyo = yo, for all h
2’. that the jump size of py; become small at a sufficiently rapid rate as h — 0
3. that the drift of ,y; converges (in a sense to be made precise below) to (y,t)
4’. that the local variance of ,y; converges to o2 (y, 1)
Note that 1’ is assured by . To ensure 2’, we make the following assumption.
Assumption 3. For all 6 >0 and T > 0,
lim sup ’Yth (y,t) — y‘ =0,

h=0 1y1<s
0<I<T

lim sup |Y; (y,t) —y| =0.
B0 |y|<s i |
0<t<T

For 3’ and 4’, define for any h > 0 the local drift up (y,t) and the local second momentﬂ
o? (y,t) of the binomial process described above by

pn (y,t) = {an (v, 1) [V, (9, t) —y] + (L= an (v, 1) [V, (9,8 —y]} /R
of (0.6) = {an (0, Vi ) = 9] + (1= n (0, 0) [V (9.4 = 9]} /0

!This is not the local variance, because the moment is centered around y and not around the conditional
mean. As h — 0 however, the local variance and second moment approach the same limit.
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with t* = h - |[t/h|, where |t/h] is the integer part of ¢/h. The next assumption requires
that up and 0,2l converge uniformly to u and 2 on sets of the form |y| < 4§, 0 <t < T.

Assumption 4. For every T > 0 and every 6 >0

lim sup |un (y,t) — w1 (y,t)| =0,
h—0 ly|<é

0<t<T

and

lim sup ‘U}% (y,t) — o (v.t)] =0,
h=0 jy|<s
0<t<T

Theorem 1.20. Under assumptions 1-4, {ny:} = {y1}, where = denotes weak convergence
(i.e. convergence in distribution) and {y.} is the solution of

The intuition underlying the construction of a simple binomial sequence is uncomplicated.
Suppose, following the suggestion in Cox and Rubinstein [I8], we use the binomial jumps
described by Figure ([1.2.3)) as the basic building block for a binomial tree, where

Vb =y + Vho (y,t)
Y, =y—vVho(y,t)

an =5+ Vi (1) / (20 (4,).

In the previous equations, h is the time interval between jumps, and g is the probability of
a jump to Yb+. The total displacement is VA [—0‘ (y,t) + o (Yb_, t+ h)} if an up move follows
a down move, and it is VA [+0 (y,t) — o (YbJr, t+ h)] if a down move follows an up move. In
general, these are not equal, so the branches of the binomial tree do not reconnect and the
number of nodes doubles at each time step. However, whenever Assumptions 1-4 are satisfied
by this binomial sequence (which is often the case), weak convergence will follow. But such
a computationally complex tree is useless for purposes such as option pricing: after only 20
periods, the process could take more than a million different values, and after 40 periods,
more than a trillion values. A computationally simple binomial representation would allow the
process to take at most 21 and 41 values after 20 and 40 periods, respectively.

Note , however, that if o (y, t) is constant, then the displacements are equal-so computational
simplicity is retained. This suggests that a transformation that purges the original stochastic
differential equation of conditional heteroskedasticity will permit us to construct a com-
putationally simple tree.

1.2.3.2 Retaining computational simplicity:

To this end, consider a transformation X (y,t), which is differentiable twice in y and once in ¢.
We have, by It6’s lemma,

OX(yst) 1
dX (ys,t) = (M(Z/nt) g;t) + =0%(ys, 1)

82X(yt7 t) aX(yﬁ t) aX(yt7 t)

Oy?
(1.2.9)
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Figure 1.2.3: The simple binomial sequence.

Now choose X (y,t) to satisfy

X (y,t) =/ i (1.2.10)

on the support of . Then the term

0X (y,t)

in becomes dW; and the instantaneous volatility of the transformed process z; = X (yy, t)
is constant. In this case, we can develop a computationally simple binomial tree for = where
the second moment of the local change in x is constant at every node. To arrive at the sequence
of binomial processes on y, we transform from z back to y by defining

Y (x,t) ={y: X (y,t) = z}. (1.2.11)

It is easy to see that 0Y/dx = o (y,t) and, by Assumption 1, this means that Y (z,t) is weakly
monotone in x for a fixed £. Then we can use the transform in ((1.2.11]) to define a tree for y,
so that

YiF (a,t) :Y<x+\/ﬁ,t+h)
Y, (z,t) :Y(x—\/ﬁﬂH-h).

Note that the tree for y has inherited the computational simplicity that the tree for x displays.
Using the fact that
Y (z,t)
ox

a Taylor’s series expansion of YhJr and Y, around h = 0 yields

=0 (Y (z,t),1),

YE (2, t) =Y (2,8) £ 0 (Y (2,t),t) VR + O (h),
o2 (Y (2,8),8) = 0> (¥ (2,) ,£) + O (V).

This shows that the local second moment of ;,y; converges to the instantaneous variance o (y, t)
as h — 0. Finally, to get the local drift to match the drift of the limit diffusion, we need

pn (yst) = p(y,t)
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uniformly on {(y,t) : |y|,t < d}, for every § > 0. We tentatively choose

hp (Y (2,t) ,t) + Y (2,t) = Y, (2,t)
YV (z,t) =Y, (2,1)

an = (1.2.12)

which, if it is a legitimate probability (i.e., between 0 and 1) sets the local drift exactly equal
to the drift of the limiting diffusion [I.2.6] This device - the use of a transform, its inverse, and
the choice of the probability ¢, - enables one to turn to construct a computationally simple
binomial approximation. It turns out to be a useful device in many commonly employed diffusion
in finance, where a transformation like is readily available. A straightforward example
of this transformation is for the Lognormal diffusion, where p (y,t) = py and o (y,t) = oy. The
transformation is simple X (y) = o~ 'In (y), and the inverse transformation is Y (z) = e°®. This
was the transformation employed by Cox, Ross, and Rubinstein to obtain a computationally
simple tree. Such transformations can be made for other diffusions, even if their drift and
diffusion depend on t.

We must sometimes also allow z to jump up or down by a quantity greater than v/A in order
to maintain the drift rate. Furthermore, the diffusion may have a boundary at 0 (or some other
value). At such a boundary o (-,t) = 0 and the transformation may need to be modified.

1.2.3.3 Retaining computational simplicity: a general treatment

The principal complications that arise in implementing the strategy come from singularities in
o (+,-); for example, o (y*,t) = 0 for some y*. Such singularities are usually associated with
boundaries on the support of the process, and often arise in financial economics; for example,
with limited liability and in the absence of arbitrage, zero must be a lower boundary for stock
prices and nominal interest rates.

There is a large variety of possible boundary behaviors so it is necessary to confine our
attention to the cases likely to be most useful in finance. First, we consider the case in which
o (-,-) has no singularities on R x [0,00). Then, we consider the case in ¢ (0,¢) = 0 and
w1 (0,t) > 0, for all t, implying a lower boundary at zero on the support of the limiting diffusion.

Case 1. No singularities in o (y,t) As we did before, we define X (y,t) along with z values
corresponding to extreme values of y:

xwo - [ Sz
2V (t) = lim X (y,t),

y—r+0o0
P (t) = lim X (y,t). (1.2.13)
Y——00

The following assumption is convenient, and can be relaxed at the expense of simplicity.

Assumption 5. The values 2V (t) and x (t) are constants.
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The definition of the inverse transform is now modified to read

y: X (yt)=a, ifzt<az<aV
y(z,t) = { 400 if 2V < (1.2.14)
—00 if ¢ < a2l
We also set
qj, (z,t) = max [0, min [1, g, (x,t)]] . (1.2.15)

To verify Assumptions 1 and 2 for the current case, we employ Assumptions 6 and 7.

Assumption 6. The functions i (y,t) and o (y,t) are continuous everywhere. For every R > 0
and every T' > 0 there is a number Ar r > 0 such that

A < inf t 1.2.16
TR S OglgTU (y7 ) ( )
ly|<R

Relation ([1.2.16)) is a non-singularity assumption: it ensures that o (y,r) is bounded away
from zero except at t = oo and/or |y| = oco.
We must also ensure that the process for y does not explode to infinity in finite time.

Assumption 7. Analytical solutions of share the property that, for aoll T, 0 <T < o0,

Bli_I}IlooP (02§T |ye| > B) =0.
To state the following theorem, we need one last assumptions of regularity.
Assumption 8. The first and second order partial derivatives
UyaUtaO'ytyo-ttaYmsza}/h}/ttant
are well defined and locally bounded for all (y,t) € R x [0, 00).

Theorem 1.21. Let Assumptions 5-8 hold. For h > 0, define the x as a simple binomial tree
with o, = 1, with pxo = X (Y0,0), and the transition for the x process given by

nThi + Vh with probability gf (nwny, hk)
x =
PR T L — VI with probability 1-gF (naag, h)

Define the y-tree as a simple binomial tree whose state are obtained from those of the x-tree by
inverse transformation. That is, for h > 0, define py: =Y (hn Xpk, hk), for hk <t < h(k+1).
By construction, {py:} is computationally simple. Then {py:} = {y¢} as h — 0, where {y;} is
a solution on .

For the proof of this theorem, see [35].
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Case 2. A singularity at y = 0: 0 (0,¢) =0, (0,¢) > 0. In this case the diffusion coefficient
vanishes at the lower boundary (zero), but the drift rate might serve to return to the process
above it. The lower limit for x is redefined as

zE (1) = lim X (y, 1), (1.2.17)
y—0
and the inverse transform (which is now a weakly monotone function of x) defined as

y: X (y,t) =2 ifal <z<aV
Y (z,t) = { +o0 if 2V < (1.2.18)
0 if x <zl

As before we assume that 2 and zY do not depend on ¢.

An important aspect of Case 2 relates to the step sizes: thus far they are (approximately)
proportional to o (y,t). But if o (y,t) is very small near y = 0 and p (y, t) is not small, we may
need to take multiple jumps in this region in order to match the drift of the limit diffusion.

Choose % > 2z, and define the function J;" (z,t) as

the smallest, odd, positive, integer jsuch that
T () =Y (x+j\/ﬁ,t+h) Y () > (Y (2,0),8) - h ifa< 2B

1 if > 28

J;[ (x,t) is the minimum number of upward jumps that keeps the jump probability py, less
than 1 without censoring; and it is odd so that the jump moves the process to an existing
node on the tree. By permitting these multiple jumps in a restricted region near 0, we retain
computational simplicity; at large values of y we disallow multiple upward jumps, because
if Jh+ is unbounded it might increase the number of nodes at a rate rapid enough to affect
computational simplicity. Similarly, define J, (z,t) by

the smallest, odd, positive, integer jsuch that
Jh_ (.’E,t) = { either (a) Y(IE,t) -Y (.’IJ —j\/ﬁ,t—‘r h) < /L(Y(l’,t) 7t) -h
or (b) Y(x—j\/E,H—h) =0

Here, J; (z,t) is the minimum number of downward jumps that either keeps the probability g
positive (without censoring) or forces the down-state value for Y, to zero. The transitions in
the value for y are then restated as

YiE (2,t) :Y(m:Jhi (x,t)-\/ﬁ,wrh), (1.2.19)

and we retain the definition of ¢; given in (1.2.12)) and (1.2.15)).
Assumptions 7 and 8 need to be replaced by the following ones.
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Assumption 9. Let o (y,t) and p (y,t) be continuous on Rx[0,00). There exists an increasing,
non-negative function p (u) from [0,00) to [0,00) such that

p(u) >0, foru> 0,

. _92 .
lim j [p (w)] ™" du = <.

Further, for every R > 0 and T > 0, there exists a number Ar r > 0 such that

sup o (y",t) —o (v, 1) < Arrp(ly —y*]),
ly*|<R,|y|[<R
0<t<T

sup  |p(y',t) —p(y, )| < Arrly -y,
ly*|<R,|y|<R
0<t<T

Assumption 10. On every compact subset of {(y,t) : 0 <y < 00,0 <t < oo},0y,0, 0, and
ou exist and are bounded, and o (y,t) is bounded and bounded away from zero. There exists a
A > 0 such that for every T >0

inf oy, (y,t) > 0.

0<t<T
0<y<A

Furthermore, Yyr, Yy, Yy and Yy exist for all (y,t) € [0,00) % [0,00) and are bounded on bounded
sets. For allt >0, 0(0,t) =0 and p(0,t) > 0.

The theorem for Case 2 can now be stated.

Theorem 1.22. Let assumptions 5,7,9 and 10 hold, and assume yo > 0. Define pxpr and

nye as in Theorem replacing relations and (1.2.14) with relations and
, and using to define Y;E. Then {nyi} = {yi} as h — 0; and if 2P < oo, {nyi}

is computationally simple by construction. Further, O bounds the support of {ny:} and y; from

below:
P< inf yt<0>—P<inf <0>—0
0<t<ooh 0<t<oo

Theorems [1.21] and show how to construct computationally simple approximations
for diffusions encountered in many applications in finance. The proofs of these Theorems are
available in [35].

1.2.3.4 The Hull and White model

The Hull and White case is a well known model in finance to describe interest rates dynamics:
see Section [LLI.7
It is well known that the short rate process r can be written as

e =wXe+ B (t),
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where X is a stochastic process given by
dX; = —kXdt + dW; Xg =0,

and [ (t) is a deterministic function. The X; process is an example of Ornstein-Uhlenbeck

process,
dyt = B (a — yt) dt + odWy (1.2.20)

and for those processes we explain the tree construction. We define a sequence {,y;} of binomial
approximations to (|1.2.20) with common initial value yo and

Yh+ (ya t) = y + O-\/Ea
Y, (y,t) =y —oVh,

and let
S+ VhB(a—y)/(20) £0<1/2+VhB(a—y)/(20)<1
an =140, if 1/2+vVhp(a—y)/(20) <0
1 otherwise.

1.2.3.5 The Heston model

The Heston model is one of the most used model to represent stochastic volatility: for more
details see Section [L1.6l
The SDE for the volatility in this model is

dve = k(0 — vg) dt + w+/vedW, v = o,
with £ > 0, u > 0, and the initial value 7y is a non negative constant. The necessary transfor-
dz 2
Xw= [ 20
ovZ o

with zg = X (vg). Zero is a lower boundary for v. As outlined in previous Section, we define

the inverse transform
{02x2/4 ifx>0
0

mation is

Viz) =

otherwise.

Because the drift in (1.2.20) does not vanish as r — 0, the value 0 is not an absorbing state for
v unless either k or 6 equals zero. This illustrates why it was necessary to introduce multiple
jumps. We define

the smallest, odd, positive, integer jsuch that

T @) = 4hk0/o® + 22 (1 — kh) < (x +j\/ﬁ)2

the smallest, odd, positive, integer jsuch that
2
Ji7 (x) = { either 4hkB/o? + 22 (1 — kh) > (ac - j\/E)
or z — jvVh <0,
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Figure 1.2.4: The trees for Heston and Hull-White models.

ViE(2) =V (£ JE V)

|:hk(9—V(a:))+V(:c)—Vh_(a:)
qhn (.l') — Vh+(:v)—Vh_ (z)
0 otherwise.

} if Rf () >0

We choose Jhi () in order to guarantee that 0 < gp, (x) < 1, in such a way that the local
drift converges to the diffusion limit.

1.2.4 Quadrinomial trees

The trees for the Heston model and BS HW model can be obtained from Appolloni et al. [4] or
Nelson and Ramaswamy [35], as we described in the previous section. In this case, the trees are
simple binary trees: the node values, and the transition probabilities are set in order to match
an approximation of the first two moments of the process. This kind of tree perform well on
short maturity, but the approximation errors accumulate on long maturities. Because of this
error that accumulates, the convergence of the algorithm proved to be slow for long maturity
options. Therefore, it was necessary to rethink the trees: the main aim was to set up trees
which matched exactly some moments of the processes to be diffused. Here we present two
trees (see Figure , one for stochastic volatility and one for stochastic interest rate. They
are simple quadrinomial trees, and they are built to match the first 3 moments of the stochastic
processes.
We suppose to fix a number N > 0, and we define h = 7/n.

1.2.4.1 The General Case
Let Z be a Brownian motion, and let G be a Gaussian process, following
th =a (Gt) dt + bdZt,

with variance that depends only by the time lapse, i.e. Gips — Go|Fs ~ N (1 (t,Gs), 0% (1)).
We remark that (¢, Gs) is the expectation and o (¢) is the variance of the increment of the



1.2 Lattice methods 37

process:

t+s t+s t+s
w(t,Gs) =E[Gsyr — G5|Fs] = E {/ a(Gy)du —|—/ bdZu|]:s} =FE {/ a(Gy) du|.7-"s} ,

t+s t+s 2 t+s 2
(/ a(Gu)du—F/ bdZu) R] —EU a(Gu)dulfs] .

We show how to build a simple quadrinomial tree that can match the first three moments.

We define a quadrinomial tree. Let’s fix a maturity 7', and the number of steps N. Each
node will be denoted by G, ;) where n runs from 0 to N, and j from 0 to 3n. Let h = T/N.
The value of each node is

o® (t) = Var[Geyr — G4|FJ] = E

G(n,j) =Gy + (] - 1.5n) o2 (h)

We remember the first three moments of the process G:

My =E[Grin = GolFil = p(h,Gr), Mz =E [(Guyn — G0 |F| = 12 (1. Go) + 0% (B),

M;=E [(GM —Gy)? \ft] = 1% (h, Gy) + 3 (h, Gy) o2 (h).

Let’s fix a node Gy, ;). To be brief, yu will denote u (h, G(n,j)) and o will denote /o2 (h).
We suppose that the expected value p falls between the values of the nodes at time (n+ 1) h .
This hypothesis can be obtained assuming that the time step h is small enough.

We define
Go — p

o

jA(n,j):ceil[ +15(n+1)],

i.e. the first node in the next time step level whose value is bigger than the mean of the
process. This can be seen in Figure (both sides): the arrow points out to the expected
value of the process, and j4 (n,j) is marked on the Figure. Let

jB (TL,]) :jA (na]) - 17 jC (nvj) :jA (n7]) + 17 jB (TL,]) :jD (naj) -2

To be brief we will only write ja, jB,jc, jp, and G4 will be G4 = G(;,41,5,), and the same
for the other letters: this is clear in Figure [[.2.4] on the right side.
We can now define a Markovian discrete time process Gp, n = 0,..., N with Go = G(g )

and we suppose that if Gn = G( then it can move to G4, Gp, G¢, Gp, according to the

following probabilities

(Ga—p) ((Ga—0 —p)* +0?)
203 ’

pa=P [én+1 = GA|Gn = G(n,j)} =

(b= Ga+o0)((Ga—p)?+0°
203 ’

pp = P [Gu1 = GplGn = G| =

(n—Ga+0)((Ga—o0—p)*+20°)
603 ’

pe="F [énﬂ = GelGy = G(n,j)} -
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~ A 202(Ga—p) + (Ga—p)3

pp =P |Grir = GplGn = G(w)} _ 207 %)03 ( W

Since G4 — o < u < G4, we can easily show that these probabilities are well defined: all in
[0, 1], their sum is equal to 1, and the first three moments of the variable (énH\Gn = G(ﬂ,j))
are equal to the first three moments of the variable (GHh\Gt = G(nyj)).

Now, we approximate the process G by a discrete process G that is constant in each time
lapse, and is defined as G; = G ly/n|- The weak convergence of this tree can be proved as in
Nelson and Ramaswamy [35].

1.2.4.2 The Heston Model

The Heston process (3.3.1) for volatility has no constant variance and isn’t Gaussian. We
consider the process obtained by the square root:

Ak (9—\/73) —w?

We approximate it with a Gaussian process with variance %th. This approximation is
helpful to define the grid of states-space for the Markov chain: inspired by [35], we define

o)

Jn = max ((),ﬂoor <1.5n —

2
_ h
Vinj) = (max (o, Vo + (j + jn — 1.5n) ‘”“{)) .

for  =0,...,3n — j,. The shift due to j, helps to reject the many nodes with value equal
to zero: if j, > 0, then ‘7(7%0) =0 and 17(,171) >0.

We would remark that the process V; approximates V; and not v/V;: the moments matching
is done according to the moments of the process V.

We fix now the values of n and j. The discrete process V can jump from a node to another,

as in a Markovian chain. We show now how to find the possible upcoming nodes.
The first three moments for the Heston process can be found in Alfonsi [2]:

and we set

b (h) = (1="")/k, My =E[Viyn|Vi = v] = ve™™ + 0k (h),
My =E [(WHI,)Z Vi = v} = M{ 4w (h) [0kt (h) /2 + ve "],

Ms =E |(Vign) |V, = 11] = My My + w?y (h) [%Qe%h + 9 (h) (k@ + “;) (3ve " + 0ky (h))

Then, we can proceed as in the general case. Anyway, the grid we’re using is based on an
approximation: so the probabilities obtained solving the linear system may not be positive. If
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Figure 1.2.5: The possible combinations used to get positive probabilities in the Heston model
tree. The red points correspond to the used nodes.

we get a negative transition probability for a given node, we try another combination of out-
coming nodes, replacing one (or two) of the nodes A, B, C, D with one (or two) close to them.
The nodes A or C may be replaced by a node F defined as the first node bigger than C, and
the nodes B or D may be replaced with a node F', defined as the smallest before node D. This
gives rise to 9 combinations to be tested. If the starting node is small and the node D verifies
1D = jn we could not do this last change because there would be no F' node. In this case we
allow the node D to be replaced by the node E: see Figure[1.2.5]

If these attempts don’t give a positive result (negative probabilities), we give up trying to
match the first three moments, and we are content to match an approximation of the first two
as in [35], thus ensuring the weak convergence. In this case, we only use the nodes A, B, C, D:
we define

DAB = H = Gt gy , pBA=1—Dpag,
Gnt1,a — Gnt,jp
B = Gni1,jp
pcp = Gt — Gosron ppc =1 —=pcp,
and
5 5 3 3
pa = gpAB, PB = ngAa bc = épCDa PD = ngC-

It is possible to show that the first moment of this variable is equal to M;, and as h — 0
the second moment approaches to Ma, ensuring the convergence, as proved in [35].

In all our numerical tests, this last option (matching only two moments) has never been
necessary: changing the nodes, all moments were matched with positive probabilities.

1.2.4.3 The Hull-White Model

The process X in 1} is Gaussian. As shown in Ostrovski [39)] the variables X; and fst Xydy
are bivariate normal distributed conditionally on X, with well known mean and variance. We

define
1-— —2kh
X(n7j):<j—32n>\/ exgk(; ),n:O,...,Nandj:O,...,3n.

Let’s fix a node X, ;). We define

(—2kh)
k

1—
H = exp (<kh), Kz\/ = LMy =X H,
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M 3 1
ja = ceil [Kl + (n;— )

} » Xa = Xny1,54)

The transition probabilities are given by

2K3 2K3

pA:M<K2+(K+M1—XA)2>, pB:M<K2+(M1—XA)2),
po = YHI) (2K2 + (K + My - Xa)*), pp = S (22 + (My - Xa)?).

1.3 Partial differential equations methods

This part is inspired by [I] and [7].

Numerical methods based on partial differential equations (PDEs) in applied finance are not
very popular. Indeed, the models are therefore much more natural. Stochastic methods are also
often simpler to implement than the algorithms used for solving the related PDEs. However,
when it is possible to efficiently discretize the PDE (which is not always the case, the typical
counter example being high-dimensional problems), these algorithms are usually much more
efficient. Moreover, the solution to the partial differential equation gives more information. In
the context of options pricing with constant parameters, one obtains for example the price of the
option for all values of the maturity and for all spot prices, while the probabilistic formulation
typically gives the value of the option for fixed maturity and fixed spot prices. In particular,
this is useful for computing derivatives of the option’s price (the so-called “greeks”).

The PDEs obtained in Finance have several characteristics. First, they are posed on a
bounded domain in time [0, 7], with typically a singular final condition at the maturity ¢t = T,
and very often in an unbounded domain in the spot variable, which leads to impose suitable
“boundary conditions” at infinity to get well posed problems and to use appropriate numerical
approximations (truncation to a bonded domain and artificial boundary conditions). These
PDEs are usually of parabolic type, but often with degenerate diffusion. Because of operational
constraints, the numerical methods for discretization of the PDE must be sufficiently fast and
accurate to be useful in practice. These peculiarities of PDEs in Finance explain the need for
up-to-date, and sometimes involved, numerical methods.

1.3.1 The Black and Scholes PDE for European options

We adopt the standard Black and Scholes model with a risky asset whose price at time ¢ is Sy
and a risk free bond B; . The underlying security evolves in accordance with the Itd process

dS = pSdt + o SdW,
while the bond evolves in accordance with
dB = rBdt

where r is the risk free rate.
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The option value V at a given time depends on the underlying value . Then, by Ité’s Lemma,

(v, GOYV 150%Y )Y
dV—(at—i- HSg + 5078 5y | di+ (0S5 ) .

We have written S = S (t), B= B(t), V =V (t) and dW = dW (t) for notational convenience.
We also assume the portfolios are self financing, which implies that changes in portfolio value
are due to changes in the value of the three instruments, and nothing else. Under this setup,
any of the instruments can be replicated by forming a replicating portfolio of the other two
instruments, using the correct weights.

We set up a self-financing portfolio II that is comprised of one option and an amount A of
the underlying stock, such that the portfolio is riskless, i.e. that is insensitive to changes in the
price of the security. Hence the value of the portfolio at time ¢ is II(¢) = V (t) + AS (¢). The
self-financing assumption implies that dII = dV + AdS so we can write

dll = dV + AdS
oV o 1 2 262]) oV
<8t ,uSaS S 752 +AMS> dt + <GS(3S —i—AaS) dw. (1.3.1)

The portfolio must have two features. The first is that it must be riskless which implies that
the second term involving the Brownian motion dW is zero so that A = —5g Substltutlng for
A in equation (1.3.1) implies that the portfolio follows the process

(V1 0V
dH_<at 50 SaSQ>dt.

The second feature is that the portfolio must earn the risk free rate. This implies that the
diffusion of the riskless portfolio is dII = rIldt. Hence we can write

dll = rIldt

) G )Y
(8t+2 58S2>dt <v asS>dt

Dropping the dt from both sides and re-arranging yields the Black Scholes PDE:

OV 1 5007V oy B
S T T e trS g~V =0, (1.3.2)

The portion of share to be held, A, is delta, also called the hedge ratio. The derivation stipulates
that in order to hedge the single option, we need to hold A shares of the stock. This is the
principle of delta hedging.

Hereinafter we treat the Black Scholes PDE (1.3.2)). The payoff at maturity is usually
described by a function ¢ that depend only by the terminal underlying value. This gives a
terminal condition

D 1 3025288 + ST — 1V =0
VT.8) = 6(5)

This is a parabolic equation and can be solved by finite difference method.
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1.3.2 Numerical schemes for Black Scholes PDE

We introduce now the finite difference method on the simple PDE (1.3.2)).

We first concentrate on the discretization of ([1.3.2)) with respect to the variable S. The
principle is to divide the interval [0, Sp,qz] into I intervals of length AS = Sy4./1 (where Spax
has to be chosen large enough), and to approximate the derivatives by finite differences.

A possible semi-discretization of (1.3.2)) if: for i € {0,1,...,I},

(1.3.3)

63? + %02512 V¢+1—Z\gi2+V¢—1 1+ rS; Vi+21£;{i—1 — V=0
Vi(T) = ¢ (),

where S; = iAS denotes the i-th discretization point, and V; (t) is intended to be an
approximation of V (¢, 5;).

Now, (1.3.3) is a system of coupled ordinary differential equations (ODEs). The generaliza-
tion to the case of a time and spot dependent r or ¢ is straightforward. Notice that for S = 0,

Py can be solved independently (since Sp = 0): V (¢,0) = ¢ (0) exp (— ftT rds).

In order to obtain a solution of the whole system of ODEs, one needs to define an appropriate
boundary condition at S = Sy,4,. Indeed (1.3.3]) taken at ¢ = I involves Vyy; which is a priori
not defined.

There are basically two methods to define an appropriate boundary condition at S = Sy4z-
The first one consists of using some a priori knowledge on the values of V (¢,S5) when S is
large and making some approximations of V (f, Spqz)- In this case the value of Vr is given as
a data (this is a so-called Dirichlet boundary condition), and the unknowns are (V;)j<;<;_1-
For example, in the case of a put option (¢ (S) = (S — K) ™) (resp. a call option with gz;(tS’) =
(S — K)T), it is known that limg_ s oo V (£, S) = 0 (vesp. Vi (t) = Siaz — K exp <— ftT rds)).
The error introduced by these artificial boundary conditions can be estimated.

Another method is based on some knowledge on the asymptotic behavior of the derivatives
of V. For example, in the case of the put option, one can use the so-called homogeneous
Neumann boundary condition which writes 9V /35S (t, Smaz) = 0 at the continuous level, and
Vr41 (t) = Vr (1) at the discrete level. In this case, the unknowns are (V;)y<;<;-

For both methods, Spa: should chosen sufficiently large. In practice, the quality of the
method may be assessed by measuring how sensitive the result is to the value of Sy,q5.

Let us now consider the time discretization. Here again, the idea is to divide the time
interval [0,7] into N intervals of length At = T'/N and to replace the time derivative by a
finite difference. Three numerical methods are classically used:
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VZL+1*V,L-" 232 VZL+1_2V7L+1+VZL_+1 leH’l_VzH‘l +1
(EE){ -t Hag TSy YT =0 (1.3.4)
VN =0(5)
yrtloyr 0282 Vi -2V 4V V] v;l_
(IE) ot i1 agz TS H ForV =0 (1.3.5)
VY =¢(S)
yrtl_yn < 0282 VP =2V 4V ek
il z By Mgt ) 4
At 2 2 AS2 %
2 2 yyn+1 n+1 n—+1 n+1 _n+1
(CN) +% < 25' Vit QZSQ +Vi + T‘S V1+1AS)'}1—1 _ T‘VZ-nJrl) -0 (136)
VN =¢(S).

The variable V! is intended to be an approximation on V (ty,S;), with ¢, = nAt. Notice
that using the discretization scheme (|1.3.5)) (the so-called Explicit Euler scheme), the values of
(Vzﬁ)ogigl are explicitly obtained from the values of (VZ-”H)[KKI. On the contrary, in the two

other schemes 5) (implicit Euler scheme) or (Crank-Nicolson scheme), the values

of (V]")o<ics are obtalned from the values of (VZ”Jr )0<i<[ through the resolution of a linear
system, which is more demanding from the computational viewpoint.

Various numerical methods can be used for solving the linear system; here we don’t describe
them in details. Let us mention that basically, there exists two classes of methods: the direct
methods which are based on Gaussian elimination, and the iterative methods which consist of
computing the solution as the limit of as sequence of approximations and which requires matrix-

vector multiplications. The method of choice depends on the characteristics of the problem.

1.3.3 Notions of stability and consistency

In order to analyze the convergence of the three discretization schemes , , and
, and to understand the differences between these schemes, we need to introduce two
important notions. The first is the consistency. A numerical method is said to be consistent
if, when the exact solution is plugged into the numerical scheme, the error tends to zero When
the discretization parameters tend to zero. In our context, it consists of replacing V" in ,
(1.3.5), or (1.3.6) by V (tn,Si), and check that the remaining terms tend to Z€ero when At
and AS tend to zero. By using Taylor expansions, one can check that for { and -
(respectively for ), the reminder terms are bounded from above by C (At + ASQ) (resp.
C (At? + AS?)), Where C' denotes a constant which depends on some norms of the derivatives of
V. Therefore (1.3.4) and (L.3.5) (resp. (1.3.6)) are consistent discretization schemes of order 2 in
the spot variable, and of order 1 (resp. 2) in time. The second important notion is the stability.
A numerical scheme is said to be stable if the norm of the solution to the numerical scheme
is bounded from above by a constant (independent of the discretization parameters) times
the norm of the data (initial condition, boundary conditions, right-hand side). This property
is clearly satisfied if the numerical method is convergent, ¢.e. if the numerical approximation
converges to the solution of the PDE when the discretization parameters tend to zero. A general
result states that, conversely, a consistent and stable discretization scheme is indeed convergent.
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The estimate of convergence is given by the estimate of consistency error. For example, the
error for the EI scheme is bounded from above by C (At + ASQ). Notice that the constant C
in these estimates depends on the solution V: for high-order schemes, one needs more regularity
on V. For example, for some parameters, it may happen that the results obtained with the CN
scheme around ¢t = T" are not better than those obtained with an order one scheme (IE or EE)
since the solution is not sufficiently regular in time around ¢t = 7.

To give a precise meaning to all these results would require to specify the norms used to
measure the errors. Let us simply mention that two norms are used in practice: the stability
in L*-norm (the supremum of absolute values of the components) is related to a discrete
maximum principle; and the stability in L?-norm (the Euclidean of the vector) is related to an
energy estimate on the variational formulation.

Remark 1.23 (Discrete maximum principle). The discrete maximum principle is the counterpart
at the discrete level of the maximum principle at the continuous level. It states that if the
data for numerical schemes are positive, then the solution is positive. Such schemes are by
construction stable in L°°-norm. The numerical methods based on binomial to trinomial trees
can be interpreted as explicit finite difference methods to solve the PDE , which naturally
satisfy a discrete maximum principle.

Let’s discuss now the properties of the three discretization schemes. We already mentioned
that they are all consistent. On the other hand, it can be shown that the explicit scheme
is stable under an additional assumption (a so-called CFL condition, see [16]) of the form
At < CAS?, where C denotes a positive constant. The other two schemes @ and
are unconditionally stable. In conclusion, with the explicit scheme, the values of (V}*),.,.; can
be very rapidly obtained from the values of (V{‘H)O <<l but the time step must be sufficiently
small with respect to the spot step to guarantee stability and hence convergence. On the other
hand, the implicit schemes and require the resolution of a linear system at each
time-step, but converge without any restriction on the time-step. In terms of computational
costs, the balance is generally in favor of the implicit schemes, since the CFL condition appears
to be very stringent in practice.

Remark 1.24. As S is the price of the underlying and this quantity is always positive, we can
define its logarithm: we define L = In(S). This is a process adapted to the filtration induced
by S. We also write P (¢t,L) = V (t,exp (L)), the value of the option at time ¢ determined by
the variable L. Then, by It6’s Lemma, we obtain that P is the solution of the following PDE
with boundary conditions:

2 2
{%7;4-%022;;—% (r—%)g—f—wzo
P(T,L) = ¢ (exp (L))

This change of variables, let us get rid of the dependency in S of the advection and diffusion
terms in (1.3.3). It isn’t better to discretize the PDE after this change of variable, since it
corresponds to take a grid refined near S = 0, which is useless in this case. What actually
matters is to refine the grid around the singularity of V.
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Figure 1.3.1: A rectangular domain € discretized by the finite difference method. In case (a)
the grid points are numbered using lexicographic, while in case (b) grid points are numbered
using two indices.

1.3.4 PDE ADI methods

Let’s consider pricing in more complex model, such as the Heston model (see or the
Black-Scholes Hull-White model (see . Using an argument similar to the one used for the
Black and Scholes model, it is possible to prove that the value of the option V; is the solution
of a PDE defined in the domain RT x R? with d = 2 or d > 2 in more complex models.

For example, the PDE for the Heston model is

oV vS29%YV w3y 192% 0%y 15)%

E—F 5 852+ 5 (%2+TS£+/MSU78580+k(9_v)%_ﬂ)_0
while in the Black-Scholes Hull-White model it is

oV 02820%V w20V 150% 0%y

+7rS—= + pwSo +k(9t—r)8a—]:—rV:0

9t T2 852 T 2 a2 99 a50r

These PDE are particularly stiff because the increase of dimension creates problems in
applying implicit algorithms. In fact, an implicit algorithm would lead to a band matrix. A
way to solve such problems is ADI algorithm.

The Alternating Direction Implicit (ADT) method was first used by Peaceman and Rachfors
(see [40]) for solving parabolic PDEs in 1950s. Since then, it has been widely used in many
applications.

ADI algorithm

The solution process of the ADI algorithm can be best explained using the model equation

ou  0*u  J*u
u(z,y,t) =0 (z,y) € 02, t >0

u(x7y70) = Uo (:L‘,y) (:L‘,y) € Q,
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where () is a unit square as shown in Figure 09 is the boundary of Q. If the central finite
difference scheme with five-point stencil is used to discretize the spatial derivatives in equations
(1.3.7), we will have, at point (i, j), the following equation:

Ouij _ Wizt = Wiy +Uitry | Uit = Wiy + Ui
ot h2 h?

i=1,2,....N;, j=1,2,...,Ny.

(1.3.8)

Instead of treating both terms in the right side of equation (1.3.8) implicit, we can treat one
term implicit and the other term explicit, which gives rise to the following equations

i UG Mg T My Ty Yo T 2U0 (13.9)
1At h2 h2 ’
and
1 1 1 1

n+1 n—3 nty n+s3 n+3g n+1 n+1 n+1

Uig —Uig o Wioag T2yt Uy Uiy T 205 F Ui
. - J + . . (1.3.10)

AL h h

If we assemble all equations and consider the explicit relation between equations on different
vertical lines, we will have

At 1
(INI - 2‘4) uy? = Bul;_y + Dulj+ Full . (1.3.11)
j=1,2,...,Ny,

where I, is the identity matrix, and

T .

n n n n

U*JZ{ulyj,U2’j,...7uNI’j} , ]:1,2,7NJ
n — n —

u*70 - u*vN]J’_l - 07

n _ n —
Uy ; = U, 1,5 = 0,

-2 1
1 1
A= —
2 )
h 1
1 -2
h? — At
1
D:ﬁ 5

h? — At
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E=F=Iy,.

There are actually N; independent equation systems in equation with tri-diagonal
coeflicient matrices.

After finishing the first step described in equation , we need to continue to the second
step given by equation . If we still use the same ordering as was used for writing equation

(1.3.11)), then the assembled matrix equation system corresponding to equation (|1.3.10) is

At 1 1 1
(1, - 244) st = 8+ 7+ RS 112

i=1,2,...,Ny.

The matrices in (|1.3.12)) are the same as in ({1.3.11)), except than their order is Ny x Ny
rather than N; x Nj. A complete ADI step can now be given as the following algorithm.

Algorithm 1.25 (ADI).

1. Solve the N independent linear equation systems with tridiagonal coefficient matrices in
1

equation (|1.3.11 tOg@tU::;i,j:].,...,NJ.

2. Reorder the grid points.

3. Solve the Ny independent linear equation systems with tridiagonal coefficient matrices in

equation to get u?jl,j =1,...,Ny.

1.4 The Hybrid methods

The Hybrid methods were introduced in Briani et al. [I1]. They are called “Hybrid” because
the both use trees methods and PDE or MC methods. Here we present the two methods using
quadrinomial trees presented in section

1.4.1 The Hybrid Monte Carlo Method

This method is a simple and efficient way to produce MC scenarios for different models. This
method is called “hybrid” because it combines trees and MC methods. First, a simple tree
needs to be built: this can be done according to Appolloni et al. [4] and also [35], or as we did
in Section [[.2.4] Then, using a vector of Bernoulli random variables, we move from the root
through the tree, describing the scenario for the volatility or the interest rate. The values of
the underlying at each time step can be easily obtained using an Euler scheme.

The generations of the volatility process and of the interest rate process behaves in a similar
way: we start from the node (0, 0) of the tree and according to a discrete random variable and
to the node probabilities, we move to the next node and so on. Let R be a discrete random
variable that can assume value A, B,C, D with probabilities p4,pp,pc,pp: sampling such a
variable at each node, we get the values of the process at each time step.

We distinguish two cases for the two models.
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1.4.1.1 The Heston Model
We approximate the couple (S, v;) in [0,7] by a discrete process (gkAh@kAt)k:o AL with
(5‘0, 170) = (S0, v0). For each scenario, we generate the volatility.

Let N ~ N (0,1) and B ~ B(0.5). We deduce the value of Syya; by

_ S; exp (7‘ - gk@)At+(
Styar =

(r — 2k0) At+(

gt exp

)(BEEAER) A4 2 (54 ny — T0)+ /1 — p2) AwHAtN] if B=1.

According to (3.3.1]), we use the normal variable N to generate the Gaussian increment of
S, and the Bernoulli variable B to split the operator associated to the Heston process. This

scheme (without splitting) appears in Briani et al. [11] and the splitting method appears in
Alfonsi [2].

1
2
1
2

A Al
5 ol

1.4.1.2 The Black-Scholes Hull-White Model
We approximate the couple (Sy, X;) in [0, 7] by a discrete process (S’km, XkAt)k:O T/A with
(S0, X0) = (S0,0), and we deduce the interest rate by 7 = wX; + B (t). Let N ~ N (0,1). We
deduce the value of S;+a; by

TeAt + Tt 2

Syens = Siexp [(2 - "2> At 4o (Kiva + Ko (AL = 1)) p+ \/AtpN)] .

1.4.2 The Hybrid PDE Method

The Hybrid PDE Method is a new approach based both on tree and finite difference methods. It
can be used to perform pricing in several model such as the Heston model or the Black-Scholes
Hull-White model.

Roughly speaking, our method approximates the CIR type volatility process (or the Ornstein-
Uhlenbeck process) through a tree approach, which turns out to be very robust and reliable.
And at each step, we make use of a suitable transformation of the asset price process allowing one
to take care of a new diffusion process with null correlation w.r.t. the volatility process. Then,
by taking into account the conditional behavior with respect to the evolution of the volatility
process, we consider a finite difference method to deal with the evolution of the (transformed)
underlying asset price process. We stress that jumps may be allowed in the dynamics for the
underlying asset prices process, but this shall be the subject of a further work.

1.4.2.1 The Heston Model
Starting from the model in 1} we call p = /1 — p? and we write Z7 = pZ) + pZ7, where

7% is a Brownian motion uncorrelated with ZV. Then,

T d(z7,z) ) =0,

dS; = rSydt + /oSy (pdZ{ + pdZF) vy = o,
dvy =k (6 — vy) dt + w\/thdZtV So = So,
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we define the process
YiE =1 () — Lo, Y& =1n(So) — Lo,
w w

_ E_ P
S, = exp (yt +wvt), (1.4.1)
Then v
P = (r= 5 = Lr (- w) dt + p/uidZ{,

This process Y;” is important because it’s a process uncorrelated with V;, and we introduced
it as in [10]. We are going to use it to define a PDE to be solved along the tree.

1.4.2.2 The Black-Scholes Hull-White Model

Starting from the model 1} we call p = /1 — p? and we write Z; = pZ} + pZ;, where Z°
is a Brownian motion uncorrelated with Z". Then,

dS; = rSydt + oS, (pdZ} + pdZP)  So = So,
dX; = —kX,dt + dZ; Xo=0, d(Z.Z])=0,
e =wXe+ B (t),

we define the process
v = ($) - poXi, Y =1n(So),

Sy = exp (YtU + poXy) . (1.4.2)
Then )
vy = <rt — % + O'pk‘Xt> dt + aﬁdZtS.

This process Y,V is important because it’s a process uncorrelated with Xy, and we introduced
it as in [10]. We are going to use it to define a PDE to be solved along the tree.

1.4.2.3 Algorithm structure

The structures for this algorithm consist in a tree and a PDE solver. As described in Briani et
al. [10], [1I], we use a tree to diffuse the volatility (or the interest rate) along the life of the
product, and we solve backward a 1D PDE freezing at each node of the tree the volatility (or
the interest rate). The tree is built according to Section [1.2.4] (quadrinomial tree, matching the
first three moments of the process), and the PDE is solved with a finite difference approach.
We have to solve the PDE between event times, and at each event time we apply the changes
to the states to reproduce the effects of the events.

We remark that we solve the PDEs doing a single time step that requires only a linear
complexity because we have to solve a linear system with tridiagonal matrix. The computational
cost is low as observed in [10] and [11]. We observe that X; and V; processes are mean reverting.
Thanks to the way the trees are built, there are many nodes in the trees that cannot be visited
by the approximating Markov chain. Therefore their probability p, ; to be visited is worth 0
and they have no impact on the values at the root of the tree. There is no reason to do any
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operation for those nodes. So, to save time, we do the standard step (solve backward the four
PDEs and mix up the vectors according to the transition probabilities) only for those nodes
having p,, ; > 0. This curtailing technique reduces the computational time, and the convergence
of the method is preserved. A similar approach is used in [3].



Chapter 2

Variable Annuities

2.1 Introduction

In this Chapter we describe the main features of Variable Annuities. These products will be
our object of interest.

2.1.1 What is a Variable Annuity?

The term Variable Annuity (hereinafter, we will abbreviate it with VA) is used to refer to a
wide range of life insurance products, whose benefits can be protected against investment and
mortality risks by selecting one or more guarantees out of a broad set of possible arrangements.
Despite the unique characteristics can change, there are some common to all of them: a VA is
a long-term, tax-deferred investment, designed for obtaining a post-retirement income.
Formally, a VA is a contract between a policy holder (hereinafter, we will abbreviate it with
PH) and a insurance company, under which the insurer agrees to make periodic payments to
the PH beginning either immediately or at some future date. The holder buys a VA contract
by making either a single purchase payment (lump sum) or a series of purchase payments.
Variable Annuities were introduced in the 1970s in the United States and in the first years
of 2000 they became popular also in Europe (expecially Germany, UK, and France) and known
in Italy (see [8]). The cause of the success of these policies is that they offer a range of
investment options. The value of the investment will change depending on the performance of
the investment options chosen. The investment options for a VA are typically mutual funds
that invest in stocks, bonds, money market instruments, or some combination of the three.
Variable Annuities are designed to be long-term investments, to meet retirement and other
long-range goals. Variable annuities also involve investment risks, just as mutual funds do.

2.1.2 Differences between V.A. and other instruments

Although Variable Annuities are typically invested in mutual funds, they differ from mutual
funds in several important ways.

First, VAs may let the PH receive periodic payments for the rest of his life (or the life of
any other person designated). This feature offers protection against the possibility that, after

ol
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retire, the PH will outlive his assets.

Second, VAs may have a death benefit. If the PH dies before the insurer has started making
payments, the beneficiary is guaranteed to receive a specified amount—typically at least the
amount of the purchase payments. The policy beneficiary will also get a benefit from this
feature if, at the time of the death of the holder, his account value is less than the guaranteed
amount.

Third, VAs are tax-deferred. That means the PH pays no taxes on the income and invest-
ment gains from his annuity until he withdraws his money. He may also transfer his money from
one investment option to another within a VA without paying tax at the time of the transfer.
When the PH takes his money out of the VA, however, he will be taxed on the earnings at
ordinary income tax rates (for example, according to Italian Law, the financial return, equal
to the difference between the amount paid and the premiums paid, shall be subject to the
application of a substitute tax on income, at the time of payment of the benefit, according to
what provided by the D.L. August 13, 2011 n. 138, converted into Law 148 of 14 September
2011). For other information see [47].

2.2 How Variable Annuities work

A VA has usually two phases: an accumulation phase and a payout phase.

2.2.1 The accumulation phase

During the accumulation phase, the PH makes purchase payments, which he can allocate to a
number of investment options. For example, he could designate 40% of his purchase payments
to a bond fund, 40% to a U.S. stock fund, and 20% to an international stock fund. The money
he has allocated to each mutual fund investment option will increase or decrease over time,
depending on the fund’s performance. In addition, VA often allow the PH to allocate part of
his purchase payments to a fixed account. A fixed account, unlike a mutual fund, pays a fixed
rate of interest. The insurance company may reset this interest rate periodically, but it will
usually provide a guaranteed minimum (e.g., 3% per year).

During the accumulation phase, the PH can typically transfer his money from one investment
option to another without paying tax on his investment income and his accumulation phase, he
may have to pay “surrender charges,” which are discussed below.

2.2.2 The payout phase

At the beginning of the payout phase, the PH may receive his purchase payments plus invest-
ment income and gains (if any) as a lump-sum payment, or he may choose to receive them as a
stream of payments at regular intervals (generally monthly). If he chooses to receive a stream
of payments, he may have a number of choices of how long the payments will last. Under most
annuity contracts, he can choose to have his annuity payments last for a period that he sets
(such as 20 years) or for an indefinite period (such as his lifetime or the lifetime of him and his
spouse or other beneficiary). During the payout phase, holder’s annuity contract may permit
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him to choose between receiving payments that are fixed in amount or payments that vary
based on the performance of the mutual fund investment options.

The amount of each periodic payment will depend, in part, on the time period that the PH
selects for receiving payments. Some annuities do not allow to withdraw money from the account
once the holder has started receiving regular annuity payments. In addition, some annuity
contracts are structured as immediate annuities, which means that there is no accumulation
phase and the holder will start receiving annuity payments right after he purchases the annuity.

2.3 The Death Benefit and other features

A common feature of VA is the death benefit. If the holder dies, a person he selects as a
beneficiary (such as his spouse or child) will receive the greater of: (i) all the money in the
holder’s account, or (ii) some guaranteed minimum (such as all purchase payments minus prior
withdrawals). This second case is known as GMDB (Guaranteed Minimum Death Benefit).
Some VA allow the PH to choose a “stepped-up” death benefit. Under this feature, the guaran-
teed minimum death benefit may be based on a greater amount than purchase payments minus
withdrawals. For example, the guaranteed minimum might be the account value as of a spec-
ified date, which may be greater than purchase payments minus withdrawals if the underlying
investment options have performed well. The purpose of a stepped-up death benefit is to “lock
in” the investment performance and prevent a later decline in the value of the account from
eroding the amount that the holder expects to leave to his heirs. This feature carries a charge,
however, which will reduce account value.

Variable annuities sometimes offer other optional features, which also have extra charges.
The PH pays for each benefit provided by his VA. These charges are usually independent and
tied to the relative benefit.

The following are the most common optional features (for more details see [5]:

e GMAB (Guaranteed Minimum Accumulation Benefit): this features provides to guaran-
tees the minimum amount received by the annuitant after the accumulation period, pro-
tecting the value of the annuity and the annuitant from market fluctuations. The GMAB
will be used only if the market value of the annuity is below the minimum guaranteed
value.

e GMIB (Guaranteed Minimum Income Benefit): a common feature that guarantees a par-
ticular minimum level of annuity payments, even if the holder does not have enough money
in his account (perhaps because of investment losses) to support that level of payments.
When the annuity has been annuitized (start the paying of the annuities), this specific
option guarantees that the annuitant will receive a minimum value’s worth of payments.

e GMWB (Guaranteed Minimum Withdrawal Benefit): this specific option gives annuitants
the ability to protect their retirement investments against downside market risk by allow-
ing the annuitant the right to withdraw a maximum percentage of their entire investment
each year until the initial investment amount has been recouped. The GMWB is the real
novelty of Variable Annuities in respect of traditional life insurance contracts.
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These three options are also called GMxBs guarantees (namely, Guaranteed Minimum Benefits
of type ‘x’). Another VA adds to the previous three:

o GLWB (Guaranteed Lifelong Withdrawal Benefit): this option is similar to GMWB, but
this policy has no fixed maturity. The annuitants has the right to perform periodic
withdrawals, with a minimal guaranteed withdrawal, for all his life. A priori, there are
no limits on guaranteed withdrawals, and on the total guaranteed withdrawal. Usually, a
death benefit is always included.

These contracts may include other features such as long-term care insurance (LTC), which pays
for home health care or nursing home care if the PH becomes seriously ill. The most common
forms of guarantees associated with the growth of the benefit base are:

e Roll-ups: this is the simplest form of return guarantee. A roll-up provides guaranteed
appreciation of the benefits base at a specific interest rate. The guarantee may accrue on a
simple or compound interest basis. A 0 per cent roll-up is the same as a return-of-principal
guarantee.

e Ratchets: also called a “high watermark.” With a ratchet, the benefits base is set equal
to the highest of all values of the underlying funds throughout the accumulation phase,
evaluated at a pre-defined time interval (e.g. annually). At various frequencies the existing
benefits base is compared to the account value, and if the account value is higher, the
benefits base is “ratcheted” up to the new level.

o Resets: resets are triggered at the discretion of the PH. They involve a comparison of the
current account value to the original account value, and the benefits base is reset to the
higher level. Other policy provisions such as a waiting period may be reset as well.

e Some VA offer guaranteed appreciation of the benefits base that combines one or more
of the above forms of guarantees. For example, a common combination guarantee is the
maximum of a roll-up and a ratchet.

Example 2.1. A man owns a VA that offers a death benefit equal to the greater of account
value or total purchase payments minus withdrawals. He has made purchase payments totaling
€ 50000. In addition, he has withdrawn € 5000 from his account. Because of these withdrawals
and investment losses, his account value is currently € 40000. If he dies, his designated ben-
eficiary will receive € 45000 (the € 50000 in purchase payments he put in, minus € 5000 in
withdrawals).

2.4 Variable Annuities charges

A person who invests in a VA, pays several charges. These charges will reduce the value of his
account and the return on his investment. Often, they will include the following.
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Guarantee charges

These charges are used by the insurance company to cover the guarantees of the policy. They
are a fixed percentage of the account value, and are usually withdraws continuously. These
charges are active for the whole product life and are fixed at the beginning; finding the fair
value of these fees, consists in pricing the product.

Example 2.2. The guarantee charges of a VA are 2%. If the initial account value is € 100,
and the linked found increases of 5%, then the final value of the account value is € 100 - 1.05 -
(1-0.02) =€ 102.9.

Surrender charges

If the PH withdraws money from a VA within a certain period after a purchase payment
(typically within six to eight years, but sometimes as long as ten years), the insurance company
usually will assess a “surrender” charge, which is a type of sales charge. This charge is used
to pay a commission to his financial professional for selling the VA. Generally, the surrender
charge is a percentage of the amount withdrawn, and declines gradually over a period of several
years, known as the “surrender period.” For example, a 7% charge might apply in the first year
after a purchase payment, 6% in the second year, 5% in the third year, and so on until the
eighth year, when the surrender charge no longer applies.

Often, contracts will allow the holder to withdraw part of his account value each year (10%
or 15% of his account value, for example) without paying a surrender charge.

Example 2.3. A man purchases a VA contract with a € 10000 purchase payment. The contract
has a schedule of surrender charges, beginning with a 7% charge in the first year, and declining
by 1% each year. In addition, the holder is allowed to withdraw 10% of his contract value each
year free of surrender charges. In the first year, he decides to withdraw € 5000, or one-half of
his contract value of € 10000 (assuming that his contract value has not increased or decreased
because of investment performance). In this case, he could withdraw € 1000 (10% of contract
value) free of surrender charges, but he would pay surrender charge of 7%, or € 280, on the
other € 4000 withdrawn.

Mortality and expense risk charge

This charge is equal to a certain percentage of the account value, typically in the range of 1.25%
per year. This charge compensates the insurance company for insurance risks it assumes under
the annuity contract. Profit from the mortality and expense risk charge is sometimes used to
pay the insurer’s costs of selling the VA, such as a commission paid to the financial professional
for selling the VA.

Example 2.4. A VA has a mortality and expense risk charge at an annual rate of 1.25% of
account value. The average account value during the year is € 20000 so the holder will pay
€ 250 in mortality and expense risk charges that year.
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Administrative fees

The insurer may deduct charges to cover record-keeping and other administrative expenses.
This may be charged as a flat account maintenance fee (perhaps € 25 or € 30 per year) or as
a percentage of his account value (typically in the range of 0.15% per year).

Example 2.5. A VA charges administrative fees at an annual rate of 0.15% of account value.
The average account value during the year is € 50000. The PH will pay € 75 in administrative
fees.

Fees and charges for other features

Special features offered by some VAs, such as a stepped-up death benefit, a guaranteed minimum
income benefit, or long-term care insurance, often carry additional fees and charges.

Other charges, such as initial sales loads, or fees for transferring part of the account from
one investment option to another, may also apply.

2.5 Bonus credits

Some insurance companies offer VA contracts with “bonus credit” features. These contracts
promise to add a bonus to the contract value based on a specified percentage (typically ranging
from 1% to 5%) of purchase payments.

Example 2.6. A man purchases a VA contract that offers a bonus credit of 3% on each
purchase payment. He makes a purchase payment of € 20000. The insurance company issuing
the contract adds a bonus of € 600 to the account.

Variable annuities with bonus credits may carry a downside; higher expenses can outweigh
the benefit of the bonus credit offered.

Frequently, insurers will charge the holder for bonus credits in one or more of the following
ways:

Higher surrender charges

Surrender charges may be higher for a VA that pays a bonus credit than for a similar contract
with no bonus credit.

Longer surrender periods

The PH purchases payments may be subject to surrender charges for a longer period than they
would be under a similar contract with no bonus credit.
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Higher mortality and expense risk charges and other charges

Higher annual mortality and expense risk charges may be deducted for a VA that pays the
holder a bonus credit. Although the difference may seem small, over time it can add up. In
addition, some contracts may impose a separate fee specifically to pay for the bonus credit.

2.6 A few real examples

2.6.1 Italian market

We present in this section a few examples of VA available in the Italian market (see [49]).

These financial products are entering slowly in the Italian market through some companies
such as AXA, with the product of the Accumulator line, and Assicurazioni Generali, with
Generali Active.

The selection Accumulator of AXA offers a minimum return of 25% in 10 years or 13% in
five years in return for payment of an initial prize fund of at least € 2500. If the PH keeps the
investment after the expiry of the contract, it turns into a traditional unit-linked (so, by that
date, there is no guarantee of capital) in the event of early redemption in the first four years
instead the holder pays a penalty of 1%. So, this policy offers a GMAB optional feature.

Generali Active Savings, instead, consists of a scheduled program of recurring single premi-
ums, by installments, of the annual minimum of € 600. This product provides at the end of the
accumulation phase (minimum 15, maximum 25 years) a capital guaranteed total capitalization
for each installment paid, the premium invested at 2% per year for the period between the
commencement of single installment and the expiration of plan premiums, or the date of death,
in case of death before the expiry of the payment of premiums. So, that policy offers a GMAB
optional feature as AXA one.

2.6.2 Japanese market

An emblematic example of VA is the Yen VA+—+ sold by AXA in the Japanese market. It’s a
VA with GMIB and GMDB, with both roll-up (up to 10 times) and yearly ratchet.

There exist two versions of this product: a 25 years TC (time certain) and a whole life
(WL). The premium is paid as a unique solution (single premium). The PH can lapse anytime
with no surrender charges.

The ratchets take place yearly, every anniversary date throughout the contract. The initial
income benefit of the ratchet is equal to the initial gross premium, and each year during the
deferral period, it is updated as follows

IB_ratchet, = max (IB_ratchet;_y, AV;) (2.6.1)

For the annuity payment period the benefit is updated in two different ways for the two
product types. For the TC product we continue to use formula (2.6.1]), while for the WL product
we have
max (IB_mtchett,l, AV + Es<t Payouts) it AV; >0

IB_ratchet; = ) .
- IB_ratchet;_q if AV; =0
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The roll up benefit is calculated each year at the contract anniversaries, up to 10 years and
only during the deferral period. The roll up rate is equal to 1.5% for the TC, and 2.5% for the
WL. The initial roll up benefit is equal to the initial gross premium, and at each anniversary
we have

IB_rullup; = Initial _premium - (1 +t - rollup _rate) .

The GMIB is calculated as the max between the ratchet benefit and the roll-up benefit
IB, = max (IB_ratchet;, IB_rollup;)
At each anniversary, if the PH is still alive, he receives a sum equal to
Payout; = IB; x I BRate

where the I BRate is worth 3% for the WL, and 1/ (contrac_period — deferral _period) for
the TC.

The last of the deferral period is chosen by the PH at the beginning of the contract with
some duration limits.

The death benefit is calculated as

DB; = max (AVt, I1B; — Z Payouts> .

s<t

There are several charges: at the entry a 5% is calculated on the single premium paid.
Everyday throughout the contract life, mortality, expense, and fund management charges are
calculated as a percentage of the AV, and withdrawn.

In figure there is an example of the development of a YEN VA+4++ WL contract.

2.7 Structure

Unlike the with-profit or participating business, reference funds backing VA are not required to
replicate the guarantees selected by the PH, as these are hedged by specific assets. Therefore,
reference fund managers have more flexibility in catching investment opportunities.

The peculiarity of VA, and their distinctive compared to European products, is that the
guarantee is external to the fund and does not affect the asset allocation. For this reason, the VA
products, regardless of factors specific to individual products and/or individual guarantees, may
be defined multidimensional guaranteed products as opposed to guaranteed Italians products,
who can be considered one-dimensional.

Guarantees of performance associated with unit-linked products of the first generation are
normally made through the annexation of a guaranteed fund to the family of funds available
for the product concerned. The financial guarantee (of performance, capital etc ...) is then
“included” in specific funds with assets specifically chosen to cope with the guarantee offered
by the funds themselves. A typical unit-linked (guaranteed) Italian could be represented by a
one-dimengsional scheme. In the case, for example of a product with 5 funds 2 which guaranteed
it would be:
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Figure 2.6.1: An example of the development of a VA contract.

| Fund / Warranty | Percentage |

Not guaranteed Fund #1 0%
Not guaranteed Fund #2 25%
Not guaranteed Fund #3 15%
Guaranteed Fund #1 40%
Guaranteed Fund #2 20%

The return guarantees, associated with VAs, are real options associated contract, at the
option of the contracting party, in each of the funds available for the product. VA can be
represented by a double entry table. If, for example, it consists of 3 funds and 3 funds guarantees,
it would be:

| Fund | Percentage | Warranty #1 | Warranty #2 | Warranty #3 |
Fund #1 30%
Fund #2 20%
Fund #3 50%

At each fund (not guaranteed) and at each benefit is associated a cost: the total cost is
theoretically equal, for each fund selected by each insurance position, to the sum of the cost of
the fund and of the guarantees associated with it.
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2.8 Variable annuity risk management

There are generally three buckets of risk that exist with almost all life insurance products, VA
included. These are:

e insurance risk

e market risk

e behavioral or utilization risk.

For VA specifically:

e Longevity risk is the primary insurance risk due to the nature of the income guaran-

tees that are offered; some mortality risk exists due to the nature of the death benefit
guarantees that are offered.

Equity risk and interest rate risk are the primary market risks due to 1) the underlying
equity and fixed-income investments that drive the PH’s account value performance and
2) the long-term nature of the income guarantees. In addition, some credit risk also is
present in the fixed-income investments.

Persistence risk and benefit utilization risk are the primary behavioral or utilization risks
due to the nature of the product structure which generally has the insurer receiving
revenue over time and insurance claims being paid well into the future.

Primary “Lines of Defense”

Insurers use a number of lines of defense to manage the above buckets of risks. These are:

e product design and prudence in assumptions

risk pooling (“law of large numbers”)
natural hedges and a diverse balance sheet
asset liability management (ALM) and reinsurance

stress scenario analysis for single and combined shocks and the appropriate provision and
management of economic risk capital.

These lines of defense are employed to varying degrees in an insurer’s risk management strategy,
depending on the nature of the risk and the availability and effectiveness of each method. Not
all of the lines of defense listed are used with all risks or types of insurance. For instance,
reinsurance is generally not used as a primary risk management strategy due to the current
limited availability of reinsurance for VA guaranteed benefits.
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2.9 Pricing

As can be easily understood, many risks affect the Variable Annuity business; mortality /longevity,
financial, policyholder behavior risks are the most relevant. It is not fully known how these
risks interact, especially when referring to the post-retirement phase.

Among the different phases of the risk management process, the pricing and hedging of
guarantees, i.e. of the relevant financial options, should be a major concern for the insurer
when designing the contract. Appropriate evaluation techniques need to be developed in order
to account on one hand for the interaction between financial and mortality /longevity issues, on
the other for the PH behavior.
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Chapter 3

Pricing and Hedging GLWB 1in the
Heston and in the Black-Scholes with
Stochastic Interest Rate Models

3.1 Introduction

This Chapter presents the results about the research paper [23]. We consider a Guaranteed
Lifelong Withdrawal Benefit (GLWB) annuity. We restrict our attention to a simplified form
of a GLWB which is initiated by making a lump sum payment to an insurance company. This
lump sum is then invested in risky assets, usually a mutual fund. The benefit base, or guarantee
account balance, is initially set to the amount of the lump sum payment. The holder of the
policy (hereinafter, we will abbreviate it with PH) is entitled to withdraw a fixed fraction of
the benefit base for life, even if the actual investment in the risky asset (account value) declines
to zero. Upon the death of the PH, his (her) heirs receives the remaining amount in the risky
asset account. Typically, these contracts have ratchet provisions (step-ups), that periodically
increase the benefit base if the risky asset investment has increased to a value larger than
the guarantee account value, and roll up provisions, that periodically increase the benefit base
according to a deterministic function. In addition, the benefit base may also be increased if the
PH doesn’t withdraw in a given year (bonus). Finally, the PH may withdraw more than the
contractually specified amount, including complete surrender of the contract, upon payment of
a penalty. Complete surrender here means that the PH withdraws the entire amount remaining
in the investment account, and the contract terminates. In most cases, this penalty for full or
partial surrender declines to zero after five to seven years.

The hedging costs for this guarantee are offset by deducting a proportional fee from the
risky asset account. From an insurance point of view, these products are treated as financial
ones: the products are hedged as if they were pure financial products, and the mortality risk is
hedged using the law of large numbers. Therefore, it is very important for insurance companies
to be able to price quickly these products. Moreover these products have long maturities
that could last almost 60 years. The Black-Scholes model, with its constant interest rate and
volatility, seems to be unsuitable for these products: that’s why we present our pricing methods

63



64 Pricing and Hedging GLWB

in two frameworks, modeling stochastic volatility (Heston model [26]) and stochastic interest
rate (Hull-White model [2§]) .

There have been several recent articles on pricing GLWBs. In particular, we would remember
the Forsyth and Vetzal’s work [21]: they used a PDE approach in a multi regimes model to
price GLWBs contracts. This approach proved to be very fast and accurate, and we used it as a
reference for our work. Concerning the use of stochastic volatility, Kling et al. [30] used a Monte
Carlo approach to price products. We have made reference also to Bacinello et al. [5]: variable
annuities (including GLWBSs) are priced using a Monte Carlo approach. The PH’s behavior
is assumed to be semi-Static, i.e. the holder withdraws at the contract rate or surrenders the
contract.

In this Chapter, we price GLWBs guarantees, and we find the no-arbitrage fee, in the Heston
model and the Black-Scholes with stochastic interest rate model (BS HW model). First, we
treat a Static withdrawal strategy: the PH withdraws at the contract rate. Then, taking the
point of view of the worst case for the hedger, we price the guarantees assuming that the PH
follows an optimal withdrawal strategy. We also used these methods to calculate the Greeks
for hedging and Risk Management. Moreover we performed a mortality shock useful in Risk
Management framework. For this purpose we present four numerical methods: a hybrid tree-
finite difference method and a Hybrid Monte Carlo method (both introduced by Briani et al.
[10]), an ADI finite difference scheme (Haentjens and Hout [25]), and a Standard Monte Carlo
method with Longstaff-Schwartz least squares regression (Longstaff and Schwartz [33]).

We use the term no-arbitrage fee in the sense that this is the fee which is required to maintain
a replicating portfolio. A description of the replicating portfolio for these types of guarantees
is given in Chen et al. [14] and Belanger et al. [6].

The main results of this Chapter are the following ones:

We formulate the determination of the no-arbitrage fee (i.e. the cost of maintaining
a replicating hedging portfolio) in the Heston model and in the BS HW model using
different pricing methods;

o We present the effects of stochastic volatility and stochastic interest rate on pricing and
calculation of Greeks, and the sensitivity of the GLWB fee to various modeling parameters;

We use different numerical methods to price the GLWB contract;

We present numerical examples which show the convergence of these methods.

The Chapter is organized as follows: in Section 2, we describe the main features of the contract
such as mortality, withdrawals, and ratchets. In Section 3, we provide a brief review of the
stochastic models used afterward. In Section 4, we present the numerical methods, and how
to implement them to solve the GLWB contract pricing problem. In Section 5 we perform
numerical tests in order to show their behavior and we study the sensitivity of the no-arbitrage
fee to economic, contractual and longevity assumptions. Finally, in Section 6, we present the
conclusions.
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3.2 The GLWB contract

In the following, we will refer to the contract described in the paper of Forsyth [21], with some
variations useful to compare our results with other works. We make a brief summary of the
main features of the contract.

3.2.1 DMortality

We price the products in a risk-neutral measure, therefore in the following we assume that
mortality risk is diversifiable (Milevsky and Salisbury, [34]). When this assumption is not
justified, then the risk-neutral value of the contract can be adjusted using an actuarial premium
principle (Gaillardetz and Lakhmiri, [22]). Hereinafter, the time variable will be denoted by
the letter ¢, and we assume that the contract starts at ¢t = 0.

First we suppose that no policy holder can live longer than a given age. This age will be
denoted by 7 (usually 7 = 122). The age of the PH at the beginning will be denoted by ag
(usually ag = 65). So, the maturity of the contract is T'= 7 — ag (usually T' = 57): when the
time variable ¢ reaches T' all PHs are dead, and the contract is worth zero.

The effects of the mortality on the contract are described using two functions:

e M :[0,7] — Ris the probability density that describes the random variable M associated
to the death year of the PH. The fraction of the original owners who die in [¢,¢ + dt] is
equal to M (t) dt.

e R:[0,7] — R is the fraction of the original owners who are still alive at time ¢
t
R (1) :1—/ M (s) ds.
0

We remark that R (0) =1 and R (T') = 0. For seek of simplicity, we assume M to be constant
between contract anniversaries: if t € [k, k4 1], k € N then M (t) = M (k).

3.2.2 Contract state parameters

At time t = 0 the policy holder pays with lump sum the gross premium GP to the insurance
company. This may be reduced by some initial fees, giving a net premium P. The premium P
is invested in a fund, whose price is denoted by the variable S;. The state parameters of the
contract are:

e Account value: A;, Ag = P.

e Base benefit: B;, By = GP.

Both these two variables are initially set equal to the gross premium or to the premium.

We suppose that the acquisition charges are equal to GP — P aren’t used for hedging
purposes, but only to cover entry costs for management control. We suppose that there is a
set of discrete times t;, which we term event times. At these times, withdrawals, ratchets, and
bonuses may occur. Normally, event times are annually or quarterly. We first consider the
evolution of the value of the guarantee excluding these event times ¢;.
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3.2.3 Evolution of the contract between event times.

Let t € Jt;, tit1] € [0,T]. As we said before, S; denotes the underlying fund driving the account
value. The dynamics of S; will be described in the next Section. The account value A; follows
the same dynamics of S; with the exception of the fact that some fees may be subtracted
continuously:
Ay
dAt = gdSt - OétotAtdt. (321)
t
We suppose that the total annual fees are charged to the PH and withdrawn continuously from
the investment account A;. These fees include the mutual fund management fees o, and the
fee charged to fund the guarantee (also known as the rider) oy, so that

Qiot = Oy + Q.

The only portion used by the insurance company to hedge the contract is that coming from ay:
the other part of the fees has to be considered as a outgoing money flow as PH’s withdrawals
are.

Continuously withdrawn fees are typical of the contract described by Forsyth. Fees may
also be withdrawn at the end of each policy year ¢;: this is what Kling et al. do in [30]. In this
second case

dA; = édSt. (3.2.2)
St
When the PH dies, a death benefit usually equal to A, is paid out to the heirs of the PH.
According to formulation of the contract, this death benefit may be paid immediately or at the
upcoming event time. If it is paid immediately, the contract stops immediately and the account
value and the benefit base becomes equal to zero; otherwise the contract goes on up to the next
event time as if nothing has happened and then it ends.

3.2.4 Event times

An event time is a sequence of operations under the contract, which occur at fixed dates, usually
at each anniversary of the signing of the contract. The times these events take place are denoted
by t; = At -4 and usually At = 1. Let’s define I = T'/At; then, ¢ runs in {0,...I}.

When an event time occurs, we assume that the following events happen in this order:

1. Withdrawal of the fees by the insurance company (if it is not time continuous);
If the PH died, payment of the death benefits;

If the PH is still alive, he (she) is entitled to withdraw a certain amount of money;

- W N

If provided by the contract, a ratchet may increase the benefit base B;.

We denote with (A; By, ,ti) the state variables just before an event time that occurs at time

t; and with (AZJF, Bff, ti> the state variables just after the update due to the i-th point of the

previous numbered list.
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3.2.4.1 Fees

Fees may be withdrawn continuously by the account value, as supposed in Forsyth and Vetzal in
[21]. In this case, between two event times, the account value changes as prescribed by equation
(4.2.2), and nothing special happens:

(AL, BiT ) = (A, By ti) -

Otherwise, fees may be withdrawn at the end of the period, as supposed in Kling et al. [30]. In
this case, between two event times, the account value changes as prescribed by equation (3.2.2)),
and at the event time the state parameters become

(A%j’ Btli+’ ti) = (At:e_atOtAt» Bg, ti) .

It is important to be able to deduce the management fees F/"*" withdrawn by the account
value because they are not used to hedge the contract and therefore they have to be considered
as an outgoing money flow. If these fees are withdrawn continuously, we can calculate them

observing that their dynamics between two event times is
dthan = ap Ardt + rdt.

This ODE has the following solution
t t
than = / efs ruduamAst.
0

and can be used in a Monte Carlo approach.
If the fees are withdrawn at the end of the period, we can calculate management fees as a
fraction of the total fees withdrawn:

FttiOt = Fti(fl + Az(f]z (1 — e_atOtAt) ,

(6%
man __ man man tot tot
th' =Fbyo0 T+ (th‘ t¢71> )
Aot

3.2.4.2 Death Benefit

If the PH died at a given time ¢ € |t;_1,t;[, his (her) heirs will obtain a death benefit that
is usually equal to the account value. If the contract provides that the death benefit is paid
immediately, then the death benefit DBy is paid in  and is equal to A;. Otherwise, if the DB
is paid at the next event time, then DBy, = A%:’ and the contract is concluded (after the DB
payment it’s worthless):

(A?j_, Bi+ati) - (0,0,ti) .



68 Pricing and Hedging GLWB

3.2.4.3 Withdrawal, bonus, surrender event

According to the contract, if the PH is still alive at event time ¢;, then he (she) is entitled to
withdraw a certain amount W;, from his (her) policy, also if the account value is equal to 0.
This guaranteed amount is given by

Wy, = GAt- BY,

where G is a constant defined by the contract. In a Static framework, the PH is supposed to
withdraw exactly this guaranteed amount. Otherwise, in a optimization framework, he (she)
may withdraw a fraction ~; of the guaranteed withdrawn:

Wy, = v GAL - Bt2i+'

e The case 7; = 0 corresponds to no withdrawal. In this case, the contract may provide a
bonus (b, is specified by the contract):

(AT BiT 1) = (AZT BET (L4 b)) -

e If 0 < v; <1 the PH withdraws at a lower rate than the standard rate, and the new state
variables are

(A?:r’ B?;r’ ti) = (maX (07 A?f - Wtz) 7Bt2l-+7 ti) .

e A third case is possible: the PH may want to withdraw more than the maximum admitted.
In this case we suppose 7; € |1, 2], where the case v; = 2 corresponds to a total surrender.
We define

A’ =max (0, AjT — GAt- BfT).

The withdrawn amount is
Wi, = GAt- BiT 4+ (7 — 1) A/ (1 — ky,) -

where k¢, € [0,1] is a penalty for withdrawal above the contract amount. The new state
variables are

(AZF, BYT t;) = (max (0, AT — GAt- BfT — (vi — 1) A'), (2 —v) B/ T, t:)

3.2.4.4 Ratchet

If the contract species a ratchet (step-up) feature, then the value of the benefit base B is
increased if the investment account has increased. The guarantee account B can never decrease,
unless the contract is partially or fully surrendered:

(Af:r, Bf‘f, t;) = (A:tsf, max (Bf’f, Af’:r) i) -

Another feature that may be included in the contract is roll-up: for seek of simplicity we
won’t treat this mechanism.
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3.2.5 Similarity reduction

An important property of GLWB contract is the fact that these contract behave good under
scaling transformations. If V (A, B,t) denotes the value of a contract, it is possible to prove
that for any scalar n > 0
nV (A, B,t) =V (nA,nB,t). (3.2.3)
Then, we just have to treat the case B = B for a fixed B (for example B = P), and then,
choosing n = B/B, we can obtain

B. (B .
V(A,B,t)—gv (BA,B,t),

which means that we can solve the pricing problem only for a single representative value of
B. This effectively reduces the problem dimension. The similarity reduction was also
exploited from Shah et Bertsimas in [43]. We can observe how the reduction similarity works
both in the case of a contract that does not contain mechanisms for increasing the base benefits
(ratchet), both for contracts with these properties.

3.3 The stochastic models of the fund S

To understand the different impacts of stochastic volatility and stochastic interest rate over such
a long maturity contract, we price the GLWB VA according to two models: the Heston model,
which provides stochastic volatility, and the Black-Scholes Hull-White model, which provide
stochastic interest rate. As we said before, the process S represents the underlying fund driving
the account value A; of the product.

3.3.1 The Heston model

The Heston model [26] is one of the most known and used models in finance to describe the
evolution of the volatility of an underlying asset and the underlying asset itself. In order to fix
the notation, we report its dynamics:

{dSt = rSydt + /5 S,dZ8 So = 5o,

- (3.3.1)
dvg = k (0 — vy) dt + w\/vidZy v = T,

where Z° and ZV are Brownian motions, and d <Zt5, Zt“> = pdt.

3.3.2 The Black-Scholes Hull-White model

The Hull-White model [28] is one of historically most important interest rate models, which
is nowadays often used for risk-management purposes. The important advantage of the HW
model is the existence of closed formulas to calculate the prices of bonds, caplets and swaptions.
In order to fix the notation, we report the dynamics of the BS HW model:

{dSt = 7 Spdt + UStdZtS So = g(],

; (3.3.2)
dry =k (0 — ry) dt + wdZ] 1o = 7o,
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where Z° and Z" are Brownian motions, and d <Zts, Z]) = pdt.

3.4 Numerical methods of pricing

In this Section we describe the four pricing methods: a Hybrid Monte Carlo method, a Standard
Monte Carlo method, a Hybrid PDE method, and an ADI PDE method.

We remember that our aim is to find the fair value for ay: it’s the charge that makes the
initial value of the policy equal to the initial gross premium. To achieve this target, we price the
policy (with one of the following procedures) and then we use the secant method to approach
the correct value for ay. Therefore, the main goal is to be able to find the initial value for a
given value of ay: V (Ao, By, 0) (ag).

We remark that we want to calculate the value of the policy from the point of view of the
insurance company: the management fees are treated as a outgoing cash flows, and if we assume
that the policy holder follows a withdrawal strategy, we consider the worst one for the insurance
company.

3.4.1 The Hybrid Monte Carlo method

The value of a GLWB policy can be calculated through a Monte Carlo set of simulations. This
procedure is based on two steps: generation of a scenario (a sampling of the underlying values
along the life of the product), and projection of the product into the scenario. According to the
way we obtain the scenarios, we distinguish two Monte Carlo models: Hybrid MC (HMC) and
Standard MC (SMC).

The Hybrid MC method has been explained in Section [I.4]

3.4.1.1 Scenario generation

The generations is done according to [1.4.1.1|and [1.4.1.2]

3.4.1.2 Projection

Once we have generated the scenarios, we project the policy into them: it means we calculate
the initial value of the contract as the sum of discounted cash flows. This calculation depends
on whether we take an optimized strategy or not. Let V (A, B,t) be the value of a policy at
time t, having account value equal to A and base benefit equal to B. From now on, we fix
a specific scenario. Let V (A, B,t) be the value of a policy in that scenario at time ¢, having
account value equal to A and base benefit equal to B.

Constant withdrawal In this case the strategy of the PH is fixed: in each event time v; = 1
(for completeness we continue to write ;). A simple way to calculate the value of the policy is
calculating forward the cash flows, conditioning on the death time. As in Holz et al. [27], we
have:

I i
14 (on BO; 0) = Z M (tz) (Z e fgk TSdSWtk + e f(fz TstA%i-‘r) )

1=0 k=0
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Anyway, we developed another approach, useful for the optimal withdrawal case. First
we calculate the values (Af;r, Bff, ti) for all ¢; neglecting the effect of mortality (equivalently,
assuming the PH to die at the end), with a forward approach:

St
4 4 ti —oorA 4
At:r = max <O, Atilﬁle atot At _ 'YtiGAtBtfl) ’

B+ max (Bf: . Af:r) if ratchet,

ti .

Bf: . otherwise.
Then, we proceed backwards, calculating the value of the contract at each time ¢; just before
the withdrawal. The value of the contract at time ¢; can be written as the discounted value at

time ¢;41 plus the discounted value of the cash flows relating the period [t;“, tfj_ﬂ. The final
condition on the value of the contract is

V (A7H, B7Y,T) =0,
because all PHs are dead and all benefits have been paid. Then

tiv1? i1

174 (A?j_’ B;lf,ti) — e f{#l rsds [V (A4+ Bt ti+1> + R (ti+1) Wti+1 + DB+ MF,

where DB and MF stands for the discounted value in ¢; of the death benefit and management

fees paid in [th’, tﬁ'l]. We distinguish four cases depending on how the management fees and

the death benefit are paid. The proof of the following formulas is available in the Appendix.

CASE 1: DB paid at the end, fees withdrawn at the end

_ [t St _
DB = M(t;)e i “dSAff—Slﬂe dror At
t;

MF =R (t;) e " rads g4+ Stis (1 — emaemdity Sm
b Sti Aot

CASE 2: DB paid at the end, fees withdrawn continuously

DB =M (ti) e f:l’#l TSdSA?fhe_am‘At,
i Sti
ARt
MF =R (t;) om / o I reds g et gy
ti Jit;

CASE 3: DB paid immediately, fees withdrawn at the end

At [l
DB = M (t;) “/ e
t

ff: TSdSS e_atot(t_ti)dt
Sti t )

i

m A4+ bt — [t rydu
MF = M (t;) L;/ S, (1 _ efawt(tfti)) e~ e rudu gyt
Qor St t;
- fti+1 rsds g4+ St7,+1

TR (tigr)e i AL o

123

1 — e~ QtorAt %.
( ¢ ) Aot



72 Pricing and Hedging GLWB

CASE 4: DB paid immediately, fees withdrawn continuously
4+

A tit1
DB = M (t;) L / o
i t

Jiyreds g, e=anor(t=t:) gy
St L 7

i

A ptin ot
; / S Otor(t=t) o Ji, Tudu (tig1 —t) dt+
t; t

K i

MF =M (7‘;) (0779

+ R (tiv1) C%mi4;r /ti+1 e s g pmnon (t=t) gy
S,
Proceeding in this way, it is possible to calculate V (AéJr, BS‘+, 0). The initial value of the policy
) V (45, By,0) =V (457, By*,0),
if the first withdrawal takes place at time ¢ = ¢y, or
V (Ay,By,0) =V (457, Bit,0) + 1GAtP

if the first withdrawal takes place at time t = 0. Then we simply have to calculate the average
of V (Aa7 By, 0) among the simulated scenarios to approximate V (AO_, By, 0).

Optimal withdrawal In this case we suppose that at each event time ¢; the PH can withdraw
a fraction ~; of the regular amount. To price in this case, we suppose that the PH chooses the
value of v that causes the worst hedging case for the insurance company. As we did before, we
denote V (A, B, t) the expected value at time t of a generic policy whose state parameters are
A, B :

V(A,B,t) =E[V (A, B,t)].

So, we suppose that the PH chooses v; such that

vi = argmax [Wy, + V (A", B 1)] .
v€[0,2]
This expected value can be calculated with a Longstaff-Schwartz approach:

1. Simulate N random scenarios and price the policy into these scenarios using random
values for ;.

2. Fort=T tot=0:

(a) Approximate the function V (A, B, t) using the least squares projection into a space
of functions (usually polynomials).

(b) For each scenario find the optimal value of 4 .

(c¢) Recalculate the upcoming state variables from s = ¢ to s = T" assuming that the PH
chooses the best value for +.
3. Calculate the average of the initial value V (Ag, Bp,0) over all the scenarios.

The approximation of the function V (A4, B,t) can be improved by the similarity reduction
property.
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3.4.2 Standard Monte Carlo method

The Monte Carlo method is very similar to the Hybrid Monte Carlo one. The only different
thing, is the way we produce the random scenarios. The projection phase is the same as in
Hybrid Monte Carlo.

3.4.2.1 Scenario generation

We distinguish two cases for the two models.

The Heston model The generation of the scenarios (underlying and volatility) in this case
has been done using a third order scheme described in Alfonsi [2]. For more details, see Section

L1621

The Black-Scholes Hull-White model The generation of the scenarios (underlying and
interest rate) in this case has been done using an exact scheme described in Ostrovski [39], with
a few changes in order to incorporate the correlation between underlying and interest rate. For
more details, see Section [[.1.7]

3.4.3 PDE Hybrid method

The Hybrid PDE approach is different from the previous ones. In fact it’s a PDE pricing
method and it’s based on Briani et al. [10], [II] both for Heston and Hull-White case. Using a
tree to diffuse the volatility or the interest rate, we freeze these values between two tree-levels;
we mix the option values associated to the upcoming four nodes and then we solve one PDE
(for each tree node) using the mixed data as starting values. For more details, see Section m

We can resume the pricing methods in three features: model, algorithm structure and
pricing.

3.4.3.1 The Heston model

Starting from the model in (D we call p = /1 — p? and we write Z7 = pZ} + pZ;, where
Z% is a Brownian motion uncorrelated with Z?. Then,

d{Z?,z}) =0,

dSy = rSydt + \/viSt (pdZ} + pdZP)  So = So,
dvy = k (0 — v;) dt + w\/0;dZY Vo =W,

we define the process
E,=ln(A) — Evt, Ey =1n(Ap) — Evo,
w w

A; = exp (Et + gvt) . (3.4.1)

Then

AB = (r =2 = L1 (90— ) — aior) dt + py/iid 25,
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if fees are taken continuously, otherwise

dE; — (r - % - gk = vt)> dt + p/ordZy .

This process E; is important because it’s a process uncorrelated with V;, and we introduced
it as in [I0]. We are going to use it to define a PDE to be solved along the tree.

3.4.3.2 The Black-Scholes Hull-White model

Starting from the model 1 ., we call p = /1 — p? and we write Z; = pZJ + pZ7, where
Z% is a Brownian motion uncorrelated with Z”. Then,

dS; = riSydt + oSy (pdZ} + pdZS)  So = So,
dX; = —kXdt + dZ7 Xo=0, d{Z},7])=0,
re=wXy + B (1),

we define the process
Uy =1n(A) — po Xy, Up=1n(Ay),

A = exp (Uy + poXy) . (3.4.2)
Then )
dUt = <T‘t - % + O'p]{iXt — atot) dt + O'ﬁdZtS,

if fees are taken continuously, otherwise

2
AUy = <rt - % + apk:Xt> dt + opdZy .

This process Uy is important because it’s a process uncorrelated with X3, and we introduced
it as in [L0]. We are going to use it to define a PDE to be solved along the tree.

3.4.3.3 Algorithm structure

The structures for this algorithm consists in a tree and a PDE solver. As described in Briani
et al. [10],[I1], we use a tree to diffuse the volatility (or the interest rate) along the life of the
product, and we solve backward four 1D PDEs freezing at each node of the tree the volatility
(or the interest rate) and using different initial data. The tree is built according to Sectionm
(quadrinomial tree, matching the first three moments of the process), and the PDEs are solved
with a finite difference approach. We have to solve the PDEs between two event times, and at
each event time we apply the changes to the states to reproduce the effects of the events.

We remark that we solve the PDEs doing a single time step that requires only a linear
complexity because we have to solve a linear system with tridiagonal matrix. The computational
cost is low as observed in [10] and [11]. We observe that X; and V; processes are mean reverting.
Thanks to the way the trees are built, there are many nodes in the trees that cannot be visited
by the approximating Markov chain. Therefore their probability p, ; to be visited is worth 0
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and they have no impact on the values at the root of the tree. There is no reason to do any
operation for those nodes. So, to save time, we do the standard step (solve backward the four
PDEs and mix up the vectors according to the transition probabilities) only for those nodes
having p, j > 0. This curtailing technique reduces the computational time, and the convergence
of the method is preserved. A similar approach is used in [3].

3.4.3.4 Pricing

The PDE we have to solve at each node is essentially the same as in Forsyth and Vetzal [21].
We distinguish four cases as we did in Monte Carlo case. We denote with V (A, B, t) the value
of a contract at time ¢ whose account value is worth A and whose base benefit is worth B.
Consequently, we define

Ve (E . B,t)=V (exp (E+ th) ,B,t) ,

and
VEW (U, B,t) =V (exp (U + poX;) B, t).

The variables 7, X and V will denote the frozen values of 7, X; and V;. We solve the transformed
PDEs between two event times for each node of the tree four times: one for each of the possible
next nodes, using the initial data corresponding to these nodes. To reduce the run time, we do
this only for active nodes (p,; > 0): this cutting technique dramatically reduced calculation
times without compromising the quality of results. Then, using the inverse transformations

(3.4.1) and (3.4.2)), we apply the event times actions. In the next few paragraphs, we are going
to write 2 PDEs: one for the Heston model, and one for the BS HW model.

CASE 1: DB paid at the end, fees withdrawn at the end

The terminal condition is

V(A,B,T)=R(T - At) A (1 — (1 — et ) O‘g> :

ot

The associated PDEs are

,2‘7 —

thwLQ vgg+(r—g—£ (9—@))vge—rvHe=0, (He 1)
202 o2 _

VtHWﬂL72 Vggv+<F2+0PkX> VII]{W7FVHW:O' (HW 1)

For t; =T — 1 to t; = 0 we have to:
1. Solve the PDE backward from ¢;11 to t;;
2. Calculate the value of V from the value of VH¢ or VHEW:

3. In case of ratchet V (4, B,t:7) =V (A4, max (A, B) ,tf‘*);
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4. Withdrawal:

(a) if v, =0
V(A B t77) =V (A B1+b,).t5%);

(b) if vy, €[0,1] :
V (A, B, ;%) =V (max (0, A — v, GAtB) , B, t]%) + R (t;) v, GAtB;
(c) if v, €]1,2] :
V(A B,t;") =V (max (0, A — GAtB) (2 —,) , B (2 — ) , 1) +
+ R (t;) (GALB + (v, — 1) max (0, A — GAtB) (1 — ky,)) ;
5. Death benefit: V (4, B,t}7) =V (A4, B,t77) + (R (ti-1) — R (t:)) 4;
6. Fees: V (A, B,ti_) =V (Ae_a“’*At, B,tiH) + R (ti—1) anA (1 - e‘o‘fotm);

7. Calculate the value of V¢ or VHW from the value of V .

CASE 2: DB paid at the end, fees withdrawn continuously

The differences between this case and the case 1 are the following ones. The terminal condition
is

V(A,B,T) =R (T — At) A.
The associated PDEs are

_27 —
ﬂ He 7873 =) He He B— _
5 Vs + (r Lo ot ) VE =1V JramR(t)exp(Etanv)fO, (He 2)

yHe 4 5

2 2 2
VtHW—I—%V[I}'gV—&— <r— % +opkX — oztot) V[I}'W—fVHW—i—amR(t)exp (Ut —|—pa)_() =0. (HW 2)

Point 6 (fees step) becomes
V(A B,t7)=V (A B,tT).

CASE 3: DB paid immediately, fees withdrawn at the end

The differences between this case and the case 1 are the following ones. The terminal condition
is

V(A,B,T)=0.
The associated PDEs are

02 v
vﬁe+%v£§g+ (7‘— i

Aot

(He 3)

fk (6 - @))Vge—rvHeJrM (t:) exp (Eﬁff/) (1— (1_e*atot<t7t7:>) %> o,
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Qiot

(HW 3)

92 92 2
VtI{W_}%VUH[}/V_i_(T_ OQ—‘,—O’ka) V{]J{W_/FVHW_i_M (tz) exp (Ut+ng) (1— (1—6_041,0t(t—t7,)) %> =0.

Point 5 (death benefit step) and 6 (fees step) become:
e Death benefit: V (4, B,t;7) =V (4, B, 7).

o Fees: V (A, B,t]) =V (Ae ootAl B,tZH) + R (t;) 2 A (1 — e~ uetA)

Qtot

CASE 4: DB paid immediately, fees withdrawn continuously

The differences between this case and the case 1 are the following ones. The terminal condition
is

V(A,B,T)=0.
The associated PDEs are

_2_
VHe 4 %vﬁg + (7‘ - g - gk 0 —v) — am) VHe _pyHe | exp (Et + gv) (amR () + M () =0,
(He 4)

=2 2 2
VtHW—&—L; VEW + (r — % + opkX — atot> VW — VAW Lexp (U; + poX) (amR (£) + M (t;)) = 0.
(HW 4)
Point 5 (death benefit step) and 6 (fees step) become

V(A,B,t;) =V (A B,tjt) =V (A B, ;7).

This concludes the Static withdrawal case. In the optimal withdrawal case, we suppose the
PH to change the value of ; used in step n. 4 (withdrawal step). He (she) will choose the value
of v; € [0,2] in order to maximizes the value of V (A, B, t?*). This maximization can be done
using a grid of values for «; and choosing at each time the best value.

3.4.4 PDE ADI method

Consider the asset price process given by the system of stochastic differential equations described
in Section .2 We describe the ADI method only in the case 2, but the other cases can be easily
adapted. Moreover, we have chosen to not use the transformed PDE described in Section[4.4.3.4]
but the classical version of PDEs for the Black-Scholes, Heston and Black-Scholes Hull-White
model. The associated PDEs are

VA
2

2 2
Vhe 4 %VH + (1 — aor) AVE® 4+ pw AvVEE + k(0 — v) VEC — pVHe 4 0, R () A =0
(He 2b)

Ve ¢
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02 A2

VEW 5

2
i +‘%VTHTW+(T — agor) AVEW 4 po AcVEW 4 (0, — ) VEW VW Lo R (1) A =0
(HW 2b)
Because of the long maturity, solving a two-dimensional PDE is a very costly and slow
method. The idea is to use splitting schemes of ADI (alternating directional implicit) type.
In this Chapter, we only present the Douglas scheme, but various scheme are available in the
literature. In order to solve the PDE, we should address many numerical difficulties. The first
one is the mesh and we have chosen to use the meshes described in [25] with the parameters

Ajese = 0.850  Apigne = 1.250  Apaa = 100Sy  and dy = Sp/20,
for the mesh of variable A,
Rpax = 10Rg, ¢= Ry and da = Rpax/400
for the mesh of variable r in the Black-Scholes Hull-White model, and
Umax = MIN(MAX(100vg,1),5) and ds = vmax/500.

for the mesh of variable v in the Heston model. The second difficulty is the choice of the splitting
scheme. We have chosen the Douglas scheme with parameter § = 1/2 because it is the easiest
to implement, but of course some higher order schemes (in time) would be more optimal. The
last difficulty, but not the least, is the choice of boundary conditions. Since there is no closed
form solutions for the GLWB product, it is difficult to make the right choice for the boundary
conditions. Moreover the boundary conditions have a big impact on the solution, because of
the long maturity. Usually the choice of boundary conditions have no importance. Indeed since
there are many points in the mesh between Sy and Sy,4z, the system of equations does not
connect these distant values in a hard way. For example, choosing homogeneous Neumann,
non-homogeneous Neumann or Dirichlet conditions can lead to very closed prices. But, because
of the long maturity, the prices are really impacted by a bad choice of boundary conditions.
Actually the system (for one year) will be solved many times and it will connect every points
in the mesh in a very intricate manner. We now describe the boundary conditions in the
Heston and Hull-White models. The choice of homogeneous Neumann conditions is usually
done because it simplifies the system to solve (exactly it simplifies the finite difference scheme
at the boundary). In the context of GLWB, the boundary conditions for the Black-Scholes
Hull-White model will be given by:

HW
mj,;s (A,rt) =0, if A=0or A= Anax,
HW
alg (A’ T, t) =0, ifr = £ Rmax;
r
on the mesh [0, Apax] X [—Rmax, Rmax), and the boundary condition for the Heston model will
be given by:
He
81; (A,v,t) =0, if A=0or A = Apax,
s
Ve

v (A7vat) =0, if v = Vmax,
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on the mesh [0, Apax] X [0, ¥max], and with no condition at v = 0 since it is an outflow boundary.

3.5 Numerical results

In this Section we compare the numerical methods introduced in Section .4 Hybrid Monte
Carlo (HMC), Standard Monte Carlo (SMC), Hybrid PDE (HPDE), and ADI PDE (APDE).
In particular we compare pricing and Greeks computation in Static Case and Dynamic

Case [£.5.3]

We chose the parameters of the methods according to 4 configurations (A, B, C, D), with
an increasing number of steps and so that the calculation time for the various methods in each
configuration were close. The 4 configurations parameters are reported in Table with the
notation (time steps per year x space steps x vol steps) for the ADI PDE method, (time steps
per year X space steps ) for the Hybrid PDE method and (time steps per year x number of
simulations) for the MC’s one. In Monte Carlo for Dynamic case, we also add the degree of the
approximating polynomial. These values had been chosen to achieve approximately these run
times: (A) 30's, (B) 120 s, (C) 480 s, (D) 1900 s. To reduce the run time we did the secant
iterations using an increasing number of time steps for all the methods: the values in Table
are those used for the last 3 iterations.

We use the Standard MC both as a pricing method, both as a benchmark (BM). About
the benchmark, in the Static case we used 107 independent runs. In the Dynamic case we used
10% independent runs, arranged in 10 sub runs; in each sub runs the expected value has been
approximated by a 6 order polynomial. At each event time, the policy holder can chose between
vy=0,vy=1and y=2.

The search for the fair o, value has been driven by the secant method. The initial values
for this method were ay = 0 bp and «ay = 200 bp.

To achieve Delta calculation in Monte Carlo methods we used a 1%o shock in Static case
and 1% in Dynamic case.
We used the DAV 2004R mortality Table, 65 year old German male (see [2I] for the Table).

It contains the probabilities that a person aged t will die within the next year. It’s easy to get
the function M from these probabilities.

3.5.1 Static case

In the Static case we suppose the PH to withdrawal exactly at the guaranteed rate: v, = 1.
The Static tests 1 and 2 are inspired by [21]: in their article, Forsyth and Vetzal price
a GLWB contract in a Static framework, under the Black Scholes model with » = 0.04 and

o = 0.15. The contract parameters are reported in the Table the contract type corresponds
to case 2 in Section L. 4.1.2] and 1.4.3.4
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BS HW StaTIC HESTON STATIC
HMC SMC HPDE APDE HMC SMC HPDE APDE

A | 5x1.3-10° 1%2.7-10° 30 % 400 18 X 180 X 36 5%8.6-10% 5x7.4-10% 35 x 400 26 %260 x 13

B | 10x2.3-10° 1%9.8-10° 60 X 600 27X 270 X 54 10x1.6-10° 10x1.4-10° 70 X 600 40 X 400 X 20

C| 20x5.4-10° 1x4.9-108 100 X 1000 40 X 400 X 80 20%3.8-10° 20%3.5-10° 100 X 1000 64 X 640 X 32

D | 40x1.0-10° 1x%2.0-107 200 x 2000 62x620x124 40x7.3-10° 40x7.5-10° 200 x 2000 104x1040x52

BS HW DyNaAMIC HesToN DyNAMIC
HMC SMC HPDE APDE HMC SMC HPDE APDE

A | 5x3.310%x2 5%3.2:10° %2 30 x 400 16 X 160 X 32 5%3.2:10%x2 5%3.2:10% x2 35 x 400 22%220x 11
B | 10x1.610*x3 5x1.6:10%x3 60 X 600 24 x 240 X 48 10x1.510%x3 10x1.510%x3 70 X 600 36 x 360 x 18
C'| 20x5.210%x4 5x5.3-10% x4 100 X 1000 38 X 380X 76 20x4.910% x4 20x4.910%x4 100 x 1000 60 X 600 % 30
D | 40x1.410°%5 5x1.6:10°x5 200 x 2000 60x600x120 40%1.310°%5 40%1.310°x5 200 x 2000 100x1000x50

Table 3.1: Configuration parameters for the BS HW model and for the Heston model, Static
and Dynamic.

Initial age of PH 65 Gr. premium 100 DB payment next anniv.

G 0.05 Initial fees 0 Ratchet Off/On (annual)
Withdrawal rate 1perY Qam 0 Strategy Static (y = 1)
First withdrawal 1%¢ anniv. Fees taken cont.ly

Table 3.2: The contract parameters for Static tests (except Test 2B).

They treated two cases: no ratchet, and annual ratchet. In the first case they get oy = 35.51
bp and in the second case oy = 64.92 bp. In Test 1 and Test 2 we introduce respectively stochas-
tic interest rate and stochastic volatility to analyze the impact of these model developments on
the fair guarantee fee. The parameters for interest rate and volatility have been chosen to be
plausible.

To compare our results in the Heston model with Kling’s ones in [30] we performed test 2B.
In this case, product parameters are reported in Table[3.3] and correspond to case I in Section

M41.2 and £.4.3.4

Initial age of PH 65 Gr. premium 100 DB payment next anniv.

G 4.90%, 4.19% if ratchet || Initial fees 4% Ratchet Off/On (annual)
Withdrawal rate 1perY am 151 bp Strategy Static (y = 1)
First withdrawal 15! anniv. Fees taken at the end

Table 3.3: The contract parameters for Test 2B-Static.

3.5.1.1 Test 1-Static: the Black-Scholes Hull-White model

In this test we want to price a product according to BS HW model. We use the same corre-
sponding parameters as in test [2I]. Model parameters are shown in Table . Results are
available in Table .5
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All four methods behaved well and in the configuration D, gave results consistent with the
benchmark. HPDE proved to be the best: all configurations gave results consistent with the
benchmark. Then APDE and SMC, and HMC gave good results too. SMC performed a little
better than HMC: the first method simulates the underlying value and the interest rate exactly
and so it is enough to simulate the values at each event time. HMC matches the first three
moments of the BS HW r process, but doesn’t reproduce exactly its law: therefore it is right to
increase the number of steps per year. So, for a given run time, we can simulate less scenarios in
HMC than SMC: effectively, the confidence interval of HMC is larger than SMC one. Moreover,
SMC over performed the benchmark when using configuration D. Particularly, the correlation
between underlying and interest rate has a fundamental role, and its impact can be bigger than
impact of the ratchet: for example, case no ratchet with p = 0.5 gave a higher price than case
ratchet with p = —0.5 (111 bp vs 84 bp).

3.5.1.2 Test 2-Static: the Heston model

In this test we want to price a product according to the Heston model. Model parameters are
shown in the Table 3.6l Results are shown in Table 3.7

In this Test, MC methods had more problems; the values of PDE methods are close to the
benchmark, while values from MC methods were far, but compatibles with the benchmark (the
value of BM is inside MC confidence interval). Probably, in this case, the benchmark is not
very accurate: this is due to the fact we used SMC to calculate it. If we compare the two
MC approaches, in this case, they both use a third order approximation and than they become
equivalent: HMC proved to be faster than SMC when using few time steps (we could exploit
+16% simulations in configuration A), while SMC proved to be slightly faster in high time
steps simulations, because of more time needed to build the volatility tree (—3% simulations
in configuration D). HPDE showed to be very stable (case no ratchet, p = —0.5, a4 didn’t
change through configurations B-D), but APDE behaved well to (monotone convergence). In
the Heston model, correlation has a less important role than in BS HW case: among the different
values of p, the value of oy changes less then 5 bp in no-ratchet case, and less than 1.5 bp in
ratchet case.

3.5.1.3 Test 2B-Static: the Heston model

In this test we want to obtain the results shown in [30], where the contracts are priced with
MC techniques. The values given in [30] are 150 bp for both cases (no ratchet and ratchet).
Model parameters are given in Table 3.8l Results are available in Table [4.24]

In this Test, all methods gave the same results, but not the same results as in Kling et al. [30)].
One possibility is that we have misinterpreted some of the contractual specifications in Kling’s
paper, leading to some subtle differences in the contracts that we are considering as compared
to theirs, and these discrepancies result in different fees. Another potential explanation is that
a Monte Carlo method was used to determine the fee by Kling et al.; this may have introduced
a significant error when calculating the fee unless a very large number of simulations was used.
They didn’t report a confidence interval for their results, so it’s hard to understand the cause of
the gap. Moreover we can observe that, in this Test, our two MC methods gave larger confidence
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intervals than Test 2-Static: probably, the parameters used for Test 2B-Static shape a harder
pricing problem than the previous test, and more simulations should be performed to obtain
the same quality results. Also in this case, HPDE proved to be the most stable method.

3.5.1.4 Test 3-Static: Hedging

To reduce financial risks, insurance companies have to hedge the sold VA: to accomplish this
target they must calculate the Greeks of products.

In this test we want to show how the different methods can be used to calculate the main
Greeks. This can be done through finite differences for small shocks on the variables. In
general, the PDE methods are ahead w.r.t. MC methods: the price is computed through finite
differences and so the price under shock is already computed. For MC methods this is quite
harder because the pricing has to be repeated changing the inputs.

To start, we calculate the underlying greek Delta, for the products of Test 1-Static and
Test 2-Static. As in this case we don’t want to compute the fair fee oy, we fix it arbitrarily.
We choose two values for each model: one for no ratchet case, and one for ratchet case. The
values chosen are such as to cover the costs of the insurer regardless of the correlation, and
may be plausible on a real case. Results are available in Table (all values in Table must
be multiplied by 107%).

In this Test, we got very accurate results with all method. Anyway, HPDE proved to be
the best: it’s the more stable and accurate. We remark that despite fair fee changes a lot when
changing the correlation parameter p, the value of Delta changes much less. Delta calculation
proved to be harder in the Heston model case than in the BS HW model case.

3.5.1.5 Test 4-Static: Risk Management

Mortality and longevity risks are unhedgeable risks. Usually, the Risk Management Team has
to calculate the financial reserve taking into account these risks. Usually extreme scenarios
are chosen and policies are priced according to them. In this Test we analyzed how the dif-
ferent pricing methods behaved under mortality shocks: the mortality probabilities have been
increased by 10% except the last one who’s equal to 1. To be brief, we simply report the fair
fee for D case. Results are available in Table B.11l

In this Test, we got results similar to Test 1-Static and Test 2-Static, and mortality shocks
didn’t affect the convergence quality of the four methods. We observe that mortality shocks
reduce the value of oy (about minus 5 bp) and this means that an increase in mortality shouldn’t
be a source of losses for the insurer. Consequently, insurers should pay attention to longevity
risk.
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So r curve k w P o
100 | 0.04  flat 1.0 0.2 wariable | 0.15
Table 3.4: The model parameters about Test 1-Static.
no ratchet annual ratchet
p
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A| 45994+1.06 4558 £0.73  45.72 47.35 84.85+1.23  84.58+0.85  84.56 88.20
45.81 84.71
2 B| 45524079 45314038  45.71 46.09 84.35+£0.91  84.154+0.44  84.60 85.66
D' 0] 45584052 45714047 45.60 45.99 84.31+£0.60  84.65+0.20  84.63 85.36
+0.12 +0.14
D| 4585+038  4571+£0.08  45.72 45.81 84.68+£0.44  84.634+0.10  84.64 84.94
A| 82204139  81.4040.95 81.87 82.91 157.774£1.65  156.774£1.14  156.36  161.04
81.88 157.09
B 82.43 +£1.04 81.53 £+ 0.50 81.92 81.75 157.684+1.23 156.554+0.59 156.46 157.91
o
C| 81.6240.68  81.77 4+ 0.22 81.80 81.89 156.504£0.80  157.0540.27  156.87  157.70
+0.16 40.19
D| 81.994+050  81.83+0.11 81.79 81.81 157.164£0.59  157.07£0.13  156.96  157.27
A 111.75+1.76 110.30+1.20 111.14 109.23 224.19+2.15 222.14+41.48 221.78 227.14
111.05 222.83
2 B| 112734132 110.854£0.63  111.07  108.93 224.5941.60  222.264£0.77  222.32  223.44
T ¢ 110.8940.86  111.0840.28  111.05  109.93 222.1841.05  222.94£0.35  222.52  223.36
40.20 +0.24
D 111.2940.63 111.1140.14 111.02 110.42 222.97+0.77 222.94+0.17 222.67 222.96
2.5% Test 1-Static: Relative Errors (error/time) a
—eo—TIIMC
2.0% —B— SMC
HMC SMC HPDE APDE --¢--1IPDE
1.5% - APDE
A 30's 30 s 30 s 28's 5
B 119s 1205 128 s 184 s | "
1.0% \
c 472's 478 s 395 s 461 s // N
D | 1866s 1896 s 1903 s 1800 s 05% " e
4 LTI —— L
-~ W= === ==
— e
0.0%

1000 1500 2000 Time (s)

Table 3.5: Test 1-Static. In the first Table, the fair fee for the Black-Scholes Hull-White model,
with no ratchet or annual ratchet. In the second Table the run times for the no-ratchet case
(p = —0.5). Finally, the plot of relative error (w.r.t. BM value) for the four methods in the

case p = —0.5 with no ratchet. The parameters used for this test are available in Table [3.2] and
in Table [3.41
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So Vo 0 k w p r
100 | 0.152 0.152 1.0 0.2 wvariable | 0.04
Table 3.6: The model parameters about Test 2-Static.
no ratchet annual ratchet
p
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A| 3677+1.25  36.174+1.36  37.00 37.41 61.47+£1.23  60.90+£1.35  61.51 62.30
37.16 61.84
2 B 36744092  3640£0.99  37.01 37.26 61.20 £0.90  60.85+0.97  61.59 62.06
D' ¢ seroto0s0  s6.04+to062  37.01 37.11 61.36 £ 0.58  61.56+0.61  61.63 61.80
+0.12 +0.11
D| 37.47+£043 37334042  37.01 37.06 62.154+0.42  61.95+£0.42  61.66 61.77
A| 35674+1.56  34.0241.61  35.18 35.52 63.224£1.60  61.63+£1.65  62.56 63.43
35.22 62.64
B| 3453+£1.13  34484+1.22  35.18 35.39 61.88+1.17  61.64+1.25  62.55 63.11
=)
C| 35.05+074 35054077  35.15 35.24 62.30 £ 0.76  62.37£0.79  62.59 62.78
+0.15 +0.11
D| 35284054 35474053  35.15 35.19 62.47+£0.54  62.97+0.55  62.59 62.68
A| 33704202 32434214  32.58 32.76 61.44+2.06  63.26+£2.31  62.84  63.99
32.63 62.97
g B 31.45 £ 1.43 32.26 £+ 1.64 32.58 32.77 62.58 + 1.61 62.41 £ 1.72 62.90 63.62
T ¢ 3263+006 820440090  32.54 32.68 63.53+£1.02  62.94+1.06  62.88 63.22
+0.19 +0.20
D| 32.31£069  33.004£072  32.52 32.65 62.55+0.83  62.43+£0.86  62.89 63.09
25%  Test 2-Static: Relative Errors (error/time) o
\\ —e—INMC
2.0% R —m— SMC
\
HMC SMC HPDE APDE \ --o--1IPDE
5% \ -4~ APDE
A 30 s 30 s 32's 30 s o \
= \
B 122 s 119 s 131 s 114 s M o—. _
1.0% '\K-o- _____________
C | at7s  476s 410's 491 s N\ T —e
' b——
D 1915 s 1907 s 1755 s 1933 s 05% |oye e ——m—— -a
0.0%
0 500 1000 1500 2000 Time (s)

Table 3.7: Test 2-Static. In the first Table, the fair fee for the Heston model, with no ratchet or
annual ratchet. In the second Table the run times for the no-ratchet case (p = —0.5). Finally,
the plot of relative error (w.r.t. BM value) for the four methods in the case p = —0.5 with no
ratchet. The parameters used for this test are available in Table [3.2] and in Table [3.6]
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So Vo 0 k w P r
100 | 0.222 0.222 4.75 0.55 —0.569 | 0.04
Table 3.8: The model parameters about Test 2B-Static.
No ratchet Annual ratchet
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A 138.54 + 2.70 141.86 4+ 2.70 130.83 137.13 125.40 + 2.46 128.33 + 2.77 117.08 124.19
131.11 117.56
B 132.57 £+ 1.98 137.16 + 2.18 130.80 135.76 119.33 + 1.80 123.68 £ 2.00 117.18 122.78
C 131.10 + 1.28 135.79 4+ 1.32 130.80 133.85 117.74 + 1.17 124.49 + 1.20 117.23 120.09
+0.80 +0.71
D 130.22 £ 0.92 132.17 4+ 0.90 130.82 133.02 116.98 + 0.84 118.72 £ 0.82 117.19 119.62

Table 3.9: Test 2B-Static. Fair fee for the Heston model, with no ratchet or annual ratchet.
The parameters used for this test are available in Table and in Table [3.§
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no ratchet (ag = 150 bp) ratchet (ag = 250 bp)
P
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
Al 6055412 6060+ 8 6058 6034 7123+ 12 7119+ 8 7118 7128
© 6059 7121
£ 2 B|eoast 9 6054+ 4 6058 6050 7108+ 9 Tl154+ 4 7119 7126
=
' C|eosot 6 605+ 2 6058 6052 77T+ 6 71194+ 2 7120 7120
- +1 +1
= D| 6059+ 4 6057+ 1 6058 6055 71204+ 4 71194 1 7120 7120
jas
- A| 6057+13 6057+ 9 6060 6026 7300+ 13 7392+ 9 7380 7394
o 6059 7393
S B| 6052410 6057+ 5 6059 6044 7382410 7389+ 5 7387 7391
(=)
Q
N C| 6058+ 6 6057+ 2 6058 6050 7380+ 6 7392+ 2 7390 7389
4 +1 +1
g D| 6059+ 5 6058+ 1 6058 6055 7391+ 5 7392+ 1 7391 7390
=
m A| 6095+13 6093+ 9 6100 6002 7647414 7651+ 9 7636 7649
- 6097 7650
2 B|6101+£10 6097+ 5 6098 6041 7646+ 10 7648+ 5 7643 7644
T ¢l eoos+t 7 6096+ 2 6097 6063 7647+ 7 76514 2 7647 7644
+1 +2
D| 6099+ 5 6097+ 1 6097 6080 7650+ 5 7650+ 1 7649 7646
no ratchet (ag = 50 bp) ratchet (ag = 100 bp)
p
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A| 7870420 7856+23 7875 7867 8509+ 14 8499415 8502 8512
7875 8509
2 B| 7873415 7868416 7875 7873 8506 £ 10 8503+ 11 8506 8516
V' c| wsrat o msmrzi0 7sts 7874 8505+ 7 85114 7 8507 8512
+1 +1
D| 7888+ 7 7880+ 7 7875 7872 8513+ 5 8513+ 5 8508 8506
g
g A| 7803423 7181425 7797 7786 8405+ 16  8390+17 8395 8400
7 7897 8398
o B| 7792+16 7790+18 7797 7794 8398 +12 8391413 8397 8405
[e)
C| 7796 +11 7801411 7797 7797 8399+ 8 8398+ 8 8307 8401
+2 +2
D| 7803+ 8 7803+ 8 7797 7795 8402+ 6 8403+ 6 8398 8395
A| 7730431 7T19+31 7718 7699 8268 +22  8202+22 8281 8283
7718 8282
2 B| 7r03d20 TTITH22 77T 7712 8202416 8281416 8282 8290
T ¢l rmstis tret1a 717 7717 8283410 8484410 8282 8286
+3 +2
D| 74+ 9 7723411 7717 7715 8278+ 7 8287+ 7 8282 8279

Table 3.10: Test 3-Static. Delta calculation for the Black-Scholes Hull-White model and the
Heston model, with no ratchet or annual ratchet (these value must be multiplied by 10~%). The
parameters used for this test are available in Table[3.2] in Table and in Table [3.6]
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No ratchet Ratchet
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
41.89  41.75 41.75 41.85 41.84 75.96 75.91 75.92 76.20 76.00
—05 +0.37  40.08 4+0.12 +0.42  40.09 4+0.13
E 76.73 76.21 76.18 76.22 76.28 143.12  143.03  142.95 143.23  143.06
B 0 +0.48  40.11 +0.15 +0.56  40.12 +0.18
104.65  104.48  104.42 103.89  104.41 || 204.49  204.45  204.24  204.49  204.37
05 +0.61  40.13 +0.19 +0.73  40.16 +0.23
No ratchet Ratchet
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
34.48  34.19 33.88 33.92 33.88 56.03  56.83 55.54 55.61 55.56
—05 +0.43  £0.42 40.11 +0.42  £0.41 4+0.11
é 32.03  32.23 31.90 31.94 31.88 55.89  55.18 55.80 55.87 55.85
= 0 +0.53  +£0.53 4+0.14 || 4£0.55  +0.54 +0.15
28.97  29.67 29.25 29.32 20.26 55.11  55.93 55.40 55.53 55.39
05 +0.68  £0.71 +0.19 || +0.72  +0.72 +0.20

Table 3.11: Test 4-Static. Impact of +10% mortality shocks of fair fee. The parameters used
for this test are available in Table in Table [3:4] and in Table
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3.5.2 Dynamic case

In the Dynamic case, the policy holder is supposed to choose the worst strategy from an hedger
point of view, changing the value of 4. The PH can withdraw more (1 < v < 2) or less
(0 <~ < 1) than the standard rate (see for more details).

In this pricing framework, we refer to the prices in Forsyth and Vetzal [2I]: in their article,
the authors price a GLWB contract in a Static framework, under the Black Scholes model with
r = 0.04 and o = 0.15. The contract parameters are reported in the Table (Table 6.7 in
[21]). They treated two cases: no ratchet, and ratchet every 3 years; both of them corresponds
to case 4 in Section 4.4.1.2f and 4.4.3.4] In the first case they got oy = 63.1 bp and in the
second case ay = 70.7 bp. In Test 1 and 2 we introduce respectively stochastic interest rate and
stochastic volatility to analyze the impact of these model developments on the fair guarantee
fee. The parameters for interest rate and volatility models are the same as the Static case.

Here a brief summary of the numerical results for this Section.

3.5.2.1 Test 1-Dynamic: the Black-Scholes Hull-White model

Test 1-Dynamic is the Dynamic case of Test 1-Static. Model parameters are shown in Table
B4l Results are available in Table B.13

In this test PDE methods proved to be much more efficient than MC ones. In fact MC
ones use Longstaff-Schwartz method to find the optimal withdrawal: this method needs a lot
of scenarios to approximate through the least squares approach the value of the policy for
a given set of variable, and the regression is time demanding. Then, working at fixed time,
we could perform fewer scenarios than Static case (around 10%), while PDE methods used
almost the same parameters as in Static case. Moreover the regression problem proved to be
be hard: sometimes, excluding the value v = 0 among the possible values that the PH can
chose (therefore excluding no withdrawal case), we got higher values for ay. This means that
the regression isn’t very accurate, and sometimes we fail to find the optimal withdrawal: that’s
why, using MC methods we usually find smaller value for a4 than the right value. In particular,
we excluded the value v = 0 while using configurations A and B. We would remark that also
the benchmark is affected by these computation problems and in case no-ratchet with p = —0.5
we got a smaller value for benchmark than PDE methods (around 261bp vs 266 bp). Another
thing to remark is that MC methods behaved better while ratchets were considered: maybe in
this case in it easier to find the best strategy. The two MC methods proved to be equivalent:

Initial age of PH 65 Gr. premium 100 DB payment  cont.ly Strategy  Dynamic
G 0.05 Initial fees 0 Ratchet Off/On Bonus 5%
Withdrawal rate lperY om 0 Ratchet rate  every 3 Ys || x(t) see tab below
First withdrawal 15¢ anniv. Fees taken cont.ly
0<t<1 | 1<t<2 |2<t<3 |3<t<4|4<t<5|t>5
"0 Sy 4% 3% 2% 1% 0%

Table 3.12: The contract parameters used in the Dynamic case.
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the differences in scenarios generation run-time are negligible because most of the time is spent
in finding the best withdrawal. Both APDE and HPDE methods gave good and stable results,
but HPDE performed better in case A.

3.5.2.2 Test 2-Dynamic: the Heston model

Test 2-Dynamic is the Dynamic case of Test 2-Static. Model parameters are shown in Table
[B.6l Results are available in Table

In this test things are similar to Test 1-Dynamic, but the optimization problem seemed to
be easier than in Test 1-Dynamic: MC methods converged better, especially when using high
level configurations. PDE methods behaved good as usual, and HPDE method proved to be a
bit better than APDE method. The two MC methods proved to be equivalent. We note that,
in the Heston model case, Dynamic strategy increases the value of ay less than in BS HW case:
probably, playing on interest rate lets the PH to gain more than playing on volatility.

3.5.2.3 Test 3-Dynamic: Hedging

Test 3-Dynamic is the Dynamic case of Test 3-Static. Results are available in Table £.20]

In this test we got good results with all methods, but MC methods proved to be inaccurate
while using configurations A and B. The range of possible values for Delta increased with regard
to Test 3-Static. The two MC methods proved to be equivalent.

3.5.2.4 Test 4-Dynamic: Risk Management

Test 4-Dynamic is the Dynamic case of Test 4-Static. Results are available in Table [3.16]

In this test, we got similar results with regard to Test 4-Static: the fees reduced a little
(around 20 bp in the BS HW model case and around 6 bp in the Heston model case).

In Figure [3.5.1 we present, as an example, the optimal strategy at time ¢t = 1 in two different
cases. We can see how it is worth to lapse when the account value reaches high values, and
especially when the interest rate is high or the volatility is low. It’s more difficult to understand
when do no withdrawal: there must be a convenient mix of all the variables.
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no ratchet ratchet
p
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A| 79.71+9.68 66.5 + 10.1 85.50 81.92 98.5 + 16.1 90.24 + 10.5 96.57 92.80
- 84.35 96.37
= B 7ra2r+sa0 72.78 + 4.52 85.34 84.78 92.31 + 5.12 92.69 + 5.01 96.34 95.75
b ¢ re86+2.73 80.29 =+ 2.60 85.27 84.86 94.70 & 2.77 93.79 + 2.67 96.25 95.78
+0.66 +0.64
D | 81.66+1.58 81.58 + 1.46 85.23 84.54 93.66 + 1.62 94.78 + 1.62 96.19 95.40
A | 162.6 +18.5 148.4 + 13.2 172.55  167.86 182.3 + 13.2 179.5 + 14.3 186.44  181.96
169.05 186.53
B | 155.43+7.70 156.52+6.95  172.60  171.48 182.42+6.16  181.35+6.53  186.48  185.33
(=)
C| 161.53+4.39  164.884+4.41  172.57  171.61 184.214+3.70  183.84 +£3.58  186.54  185.45
+0.90 +0.86
D | 164.51+2.53 163.15+2.23  172.58  171.15 183.87 +£2.21  183.27+2.15  186.55  185.00
A| 256.6+15.6 238.6 +23.3  265.33  261.22 273.9 + 24.8 262.7+24.9  272.18  268.10
261.29 274.02
g B | 246.0 +10.4 248.5 4+ 10.9  266.66  265.71 268.37 +8.39  269.82+9.11  273.24  272.33
T | 253704596 253.3345.38  266.03  265.94 271.90 £ 5.51  271.60 £ 4.49  273.67  272.46
+1.23 +1.20
D | 259.00+3.38 254.06+3.11  267.29  265.38 272.24+2.95  270.35+2.86  273.99  271.94
12.0% Test 1-Dynamic: Relative Errors (error/time) o1
\ e W
\ —o—INMC
10.0% \
\ —B— SMC
HMC SMC HPDE APDE g0% NN --+--1IPDE
N - 4--APDE
A 30 s 31s 32 s 30 s = / N
26.0% |4 N
B 119 s 122 s 127 s 120 s M . .
B =
C 482's 487 s 463 s 466 s L.0% e S
~un
D 1911s  1942's 1732 s 1815 s "
2.0% |\
O-to-- -

2000 Time (s)

Table 3.13: Test 1-Dynamic. In the first Table, the fair fee for the Black-Scholes Hull-White
model, with no ratchet or annual ratchet. In the second Table the run times for the no-ratchet
case (p = —0.5). Finally, the plot of relative error (w.r.t. BM value) for the four methods in
the case p = —0.5 with no ratchet. The parameters used for this test are available in Table [3.12]
and in Table B4
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no ratchet ratchet
P
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 56.96 + 6.01 62.56 + 8.78 64.57 64.89 66.72 + 8.37 72.06 + 6.17 71.23 71.58
65.38 72.03
g B | 61.68+3.05 57.20 + 3.96 64.72 64.64 72.53 + 3.56 68.45 + 3.36 71.37 71.30
' ¢ 6468202 64.03 + 2.05 64.76 64.42 71.65 4 1.92 71.95 4 1.99 71.43 71.04
+0.45 +0.45
D | 63.85+1.28 64.67 + 1.28 64.81 64.35 70.39 + 1.22 71.33 £ 1.25 71.50 70.96
A | 58.83+11.0  58.68+19.68 61.92 61.92 65.95+9.04  79.17+10.36  68.97 68.98
62.32 69.54
B | 58954+ 4.01 54.34 4 4.08 61.91 61.67 69.14 + 4.53 65.30 + 4.25 68.95 68.69
(e}
C| 58.26+2.25 57.76 + 2.34 61.88 61.43 68.89 + 2.43 68.50 + 2.44 68.94 68.41
+0.56 +0.58
D | 59.16 +1.43 59.70 4 1.47 61.87 61.35 66.76 + 1.53 68.67 + 1.57 68.93 68.33
A | 52.66415.29  61.70 +13.04  57.25 57.50 63.67 +9.76  83.75+ 13.01 64.60 64.79
56.59 65.42
g B | 57.26 +5.06 51.95 + 6.09 57.33 57.26 68.21 + 6.30 60.31 + 5.94 64.66 64.53
T ¢l s223+3.01 51.47 4 3.50 57.36 57.01 63.78 + 3.13 64.06 + 3.25 64.68 64.25
+0.73 +0.74
D | 52.60+1.85 52.24 + 1.83 57.39 56.94 62.98 +1.87  61.86 & 1.97 64.71 64.16
12.0% | Test 2-Dynamic: Relative Errors (error/time) oI
N —c
—o—INMC
100% |
| —m— SMC
HMC SMC HPDE APDE 80% ) --¢--1IPDE
\ - 4A--APDE
A 30 s 31s 33 s 28 s 5 ' \
£6.0% P \
B 119 s 122 s 126 s 107 s M \ \
) \
C 481 s 493 s 418 s 460 s 4.0% \
D 1903 s 1844 s 1690 s 1896 s . \ \ _.e
2.0% -
o, S e— — === -
0.0%
0 500 1000 1500 2000 Time (s)

Table 3.14: Test 2-Dynamic. In the first Table, the fair fee for the Heston model, with no
ratchet or annual ratchet. In the second Table the run times for the no-ratchet case (p = —0.5).

Finally, the plot of relative error (w.r.t. BM value) for the four methods in the case p = —0.5
with no ratchet. The parameters used for this test are available in Table and in Table [3.6]
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no ratchet (ag = 300 bp) ratchet (ag = 350 bp)
p
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 8513+573 7951+557 8078 8097 8959 +542 8279+ 551 8148 8200
8078 8157
2|2 B | 82204347 83044305 8081 8091 79224324  8104+330 8151 8180
=
= 'C | soor+172 sac+161 sos2 8073 8155+ 173 8120+ 162 8152 8163
- +42 +38
= D | 80894108 8105+ 104 8082 8093 8164+ 101 8174+ 99 8152 8164
jus]
- A | 7898+£550 7697 +489 7516 7531 7733 £500 7379+ 667 7538 7539
2 7485 7517
E B | 76854257 7389+269 7517 7529 7640 +£ 250 7417 +249 7527 7539
5} [en)
7 C | 7488+139 7443 +150 7517 7514 7433+ 145 7604+ 137 7528 7530
3 +31 +29
Q
= D | 7428+ 90 7480+ 83 7517 7518 7523+ 87 7525+ 84 7528 7533
m
A | 74444470 76124491 7333 7342 7569 + 421 7202+ 500 7304 7314
7324 7309
2 B | 72574242 7368+£209 7337 7350 7386 +£207  7413+192 7308 7322
T ¢ | 73064116 7201+124 7339 7336 7469+ 116 7203+ 112 7309 7307
+28 +26
D | 7270+ 78 7302+ 78 7340 7339 72014+ 70 7298+ 68 7310 7310
no ratchet (ag =75 bp) ratchet (ag = 100 bp)
P
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 81814472  7794+524 8436 8429 8349 £ 203 83744324 8477 8474
8432 8481
2 B | s440£250 83834223 8436 8436 8304+ 174 8527+ 154 8479 8480
' ¢ | sa05+ 87 sa26+ 87 8437 8437 8535+ 80 8499+ 76 8479 8480
+19 +14
D | 8437+ 50 8472+ 53 8437 8438 8516+ 44 8501+ 43 8480 8480
c
S A | 8756+626  8304+58 8329 8319 8751+ 758 8440 4420 8341 8332
2 8297 8351
= B | 8080+283  8345+394 8330 8327 8466 + 251 8184 +217 8341 8339
[e)
C | 8313+148 81374185 8330 8329 8303+ 106 8398+ 101 8341 8340
+29 +18
D | 8330+ 75 8238+ 79 8330 8331 8343+ 52 8283+ 66 834l 8441
A | 730841145 7453+914 8217 8205 8244 £ 736 81924522 8191 8180
8242 8206
2 B | 82384623 79194416 8218 8215 8150 £276  8213+220 8191 8189
T ¢ | siast1as  TsTAL241 8218 8217 8216+ 133 8123+ 178 8102 8190
+46 +22
D | 81444119 8131+108 8218 8219 8123+ 66 8195+ 77 8102 8191

Table 3.15: Test 3-Dynamic. Delta calculation for the Black-Scholes Hull-White model and the
Heston model, with no ratchet or ratchet (once every 3 years); these value must be multiplied
by 104, The parameters used for this test are available in Table|3.12] in Table and in Table
2.0l
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No ratchet Ratchet

HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM

76.64 75.74 76.85 76.19 76.16 85.10 85.47 86.59 85.84 86.97

-0 +1.49 +1.37 +0.60 +1.53 +1.51 +0.61

E 149.80 149.34 155.47 154.11 155.97 168.14 167.94 169.78 168.26 170.32

?8 0 +2.38 +2.14 +0.96 +2.14 +2.00 +0.96

236.49 236.33 242.08 240.22 242.1 248.40 246.49 250.08 248.12 250.24

+O5 +2.84 +2.79 +1.2 +2.68 +2.48 +0.53
No ratchet Ratchet

HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM

57.74 58.77 58.78 58.32 58.56 63.73 64.50 64.74 64.22 64.59

—05 +1.26 +1.27 +0.46 +1.23 +1.27 +0.46

é 53.08 53.77 55.57 55.07 55.76 59.86 61.17 61.79 61.22 62.11

é 0 +1.45 +1.46 +0.58 +1.51 +1.59 +0.59

46.33 46.19 50.93 50.50 50.66 55.67 54.79 57.29 56.76 59.01

+05 +1.87 +1.77 +0.70 +1.85 +1.94 +0.76

Table 3.16: Tes
used for this tes

0.28

t 4-Dynamic. Impact of +10% mortality shocks of fair fee. The parameters
t are available in Table [3:12] in Table [3-4] and in Table [3:6]
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Figure 3.5.1: Optimal strategy at the first event time (¢ = 1) for the BS HW model and the

Heston model, assuming B%Jr = 100. Model parameters are available in Tables and
Product parameters are available in Table and ay = 135 bp for both cases.
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3.6 Conclusions

In this Chapter we have developed four methods to price GLWB contracts under different con-
ditions. Regarding the stochastic model, both stochastic interest rate and stochastic volatility
effects have been considered. Regarding the policy holder’s behavior, both Static and Dynamic
strategy have been considered.

Since GLWB variable annuities are such a long maturity products, the effects of stochastic
interest rate and stochastic volatility cannot be overlook. In particular, the impact of stochastic
interest rate seems to be more relevant. Also Forsyth and Vetzal in [21] used a regime switching
model having both stochastic interest rate and volatility, but our approach, based on SDE, is
more realistic, and suitable for hedging.

All four methods gave compatible results both for pricing and delta calculation. The fair
hedging fee (i.e. the cost of maintaining the replicating portfolio) is determined using a sequence
of parameters refinements. The PDE methods proved to be not very expensive, while MC
methods proved to be more expensive. The Hybrid PDE seemed to be the more performing
than the others for its convergence speed and stability of results. Also ADI PDE behaved very
well but the implementation was harder than Hybrid PDE one. In the BS HW model case,
Standard MC, thanks to its exact simulation, outperformed the hybrid method while, in the
Heston model case, the MC methods proved to be roughly equivalent, even if the Hybrid MC
was easier to be implemented.

As we said before, PDE methods proved to be much more efficient than MC methods,
especially in Dynamic case where it’s much more simple to implement the optimal withdrawal
choice. Similarity reduction reduces the dimension of the problem to two and therefore PDE
methods perform well. Anyway, we have to remark that MC methods offer a confidence interval
for results, they are useful in risk measures calculation (for example VAR or ES), and they are
preferred by insurance companies because of their attachment to the concept of scenario.

A future development that could be treated is to combine stochastic interest rate and
stochastic volatility: the combined model could be an element of greater realism.

We conclude by pointing out that our methods are quite flexible in that they can accommo-
date a wide variety of policy holder withdrawal strategies such as ones derived from utility-based
models.



Chapter 4

Pricing and Hedging GMWB in the
Heston and in the Black-Scholes with
Stochastic Interest Rate Models

4.1 Introduction

This Chapter presents the results about the research paper [24]. We consider a Guaranteed
Minimum Withdrawal Benefit (GMWB) annuity. We restrict our attention to a simplified form
of a GMWB which is initiated by making a lump sum payment to an insurance company. This
lump sumn is then invested in risky assets, usually a mutual fund. The benefit base, or guarantee
account balance, is initially set to the amount of the lump sum payment. The holder of the
policy (hereinafter, we will abbreviate it with PH) is entitled to withdraw a fixed sum, even
if the actual investment in the risky asset declines to zero. The withdrawal period may start
immediately or later: in this case the benefit base and the account value may be reset to the
maximum between their value and a fixed value. Finally, the PH may withdraw more than the
contractually specified amount, including complete surrender of the contract, upon payment of
a penalty. Complete surrender here means that the PH withdraws the entire amount remaining
in the investment account, and the contract terminates. In most cases, this penalty for full
or partial surrender declines to zero after five to seven years. During contract execution, a
death benefit may come with the PH’s death: in this case, his (her) heirs receive the remaining
amount in the risky asset account.

The hedging costs for this guarantee are offset by deducting a proportional fee from the
risky asset account. From an insurance point of view, these products are treated as financial
ones: the products are hedged as if they were pure financial products, and the mortality risk is
hedged using the law of large numbers. Therefore, it’s very important for insurance companies
to be able to price quickly these products. Moreover these products have long maturities that
could last almost 25 years. The Black-Scholes model, with constant interest rate and volatility
seems to be unsuitable for those products: that’s why we present our pricing methods in two
frameworks, modeling stochastic volatility (Heston model [26]) and stochastic interest rate
(Hull-White model [2§]) .

95



96 Pricing and Hedging GMWB

There have been several recent articles on pricing GMWBs. In particular, we would remem-
ber Chen and Forsyth [13] and Chen, Vetzal and Forsyth [I4]. In the first paper, the authors
used an impulse stochastic control formulation for pricing variable annuities GMWB, assuming
the PH to be allowed to withdraw funds continuously, or only at anniversaries. In the second
one, the authors analyzed the impact of several product and model parameters using the same
PDE approach. The use of PDEs proved to be very fast and accurate, and we used it as a
reference for our work.

Another research work about GMWB is Yang and Dai’s one [46]: they used a flexible tree for
evaluating GMWB contracts with various provisions. Yang-Dai’s product is slightly different
from Chen-Forsyth’s one: that’s why we treat the two apart.

We have made reference also to Bacinello et al. [5]: variable annuities (including GMWBs)
are priced using a Monte Carlo approach. The PH’s behavior is assumed to be semi-Static, i.e.
the holder withdraws at the contract rate or surrenders the contract.

In this Chapter, we price two types of GMWBs guarantees and we find the no-arbitrage fee
in the Heston model and the Black-Scholes with stochastic interest rate model (BS HW model).
First, we treat a Static withdrawal strategy: the PH withdraws at the contract rate. Then,
taking the point of view of the worst case for the hedger, we price the guarantees assuming that
the PH follows a Dynamic withdrawal strategy. We also used these methods to calculate the
Greeks for hedging and risk management. For this purpose we present four numerical methods:
a hybrid tree-finite difference method and a Hybrid Monte Carlo method (both introduced by
Briani et al. [10]) an ADI finite difference scheme (Haentjens and Hout [25]), and a Standard
Monte Carlo method with Longstaff-Schwartz least squares regression (Longstaff and Schwartz
[33).

We use the term no-arbitrage fee in the sense that this is the fee which is required to maintain
a replicating portfolio. A description of the replicating portfolio for these types of guarantees
is given in Chen et al. [13] and Belanger et al. [6].

The main results of this Chapter are the following ones:

e We formulate the determination of the no-arbitrage fee (i.e. the cost of maintaining
a replicating hedging portfolio) in the Heston model and in the BS HW model using
different pricing methods;

e We present the effects of stochastic volatility and stochastic interest rate on pricing and
Greeks calculation, and the sensitivity of the GMWB fee to various modeling parameters;

o We use different numerical methods to price the GMWB contracts;
e We present numerical examples which show the convergence of these methods.

The Chapter is organized as follows: in Section 2, we describe the main features of the contracts
such as event times, withdrawals and penalties. In Section 3, we provide a brief review of the
stochastic models used afterward. In Section 4, we present the numerical methods, and how to
implement them to solve the GMWB contract pricing problem. In Section 5 we perform tests
in order to show their behavior and we study the sensitivity of the no-arbitrage fee to economic
and contractual assumptions. Finally, in Section 6, we present the conclusions.
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4.2 The GMWB Contracts

In the following, we will refer to the contracts described in the paper of Chen and Forsyth [13]
and in the paper of Yang and Dai [46]. We are calling GMWB-CF the contract described in
[13] and GMWB-YD to the contract described in [46]. Now, we make a brief summary of the
main features of the two contracts.

4.2.1 Mortality

Similar to the work of Chen and Forsyth [13], Milevsky and Salisbury [34] and Dai et al. [19],
we will ignore mortality effects in the following. We plan to study the effects of mortality in a
future work.

4.2.2 Contract State Parameters

At time ¢ = 0 the policy holder pays with lump sum the premium P to the insurance company.
The premium P is invested in a fund whose price is denoted by the variable .S;.

For both the two contracts, we suppose that there is a set of discrete times {¢;,i = 1,... N},
which we term event times; at these times withdrawals may occur. We suppose At; = t;41 — t;
to be constant, and denoted by At. We also consider ty = t; — At, and to be consistent with
Yang Dai’s notation we will write T3 instead of to (171 = tp). Then, we write 71 < T1 + At =
t1 < to < -+ < ty = Ty; the time lag [T1,Ty] is called payout phase. We remark that no
withdrawals takes place in T7.

GMWB-CF

The state parameters of the contract are:
e Account value: A;, Ag = P.
e Base benefit: B;, By = P.

Both these two variables are initially set equal to the premium. We define T} = 0 the time of
the contract beginning, and 75 = ¢ the time of the last possible withdrawal. Usually, the first
withdrawal takes place in t; =1y or t; = 0.5y.

GMWB-YD

The state parameters of the contract are:
e Account value: A;, Ag = P.
e Guaranteed minimum withdrawal: G.

The variable Ay is initially set equal to the premium, while G is not defined until the beginning
of the withdrawal period at time Tj. For this type of contract we don’t need to define the
Benefit Base variable because its value is deterministic until the PH decides to lapse.
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For this product, there exist two time parameters, T7 and T5 that express the begin and the
end of the payout phase. Yang and Dai used integers values for T} and 75 and At = 1y in their
numerical tests. No withdrawals happen during the deferred time, i.e. for ¢t € [0,7}]: in that
period the account value evolves as explained in the next subsection (see Formula (4.2.2))). At
time 77 also the account value is reset to

AT1(+) = Imax C (Tl) ’ATff)] 5

and the value of GG is fixed as
A
G _ 1

= e EoTy (4.2.1)

where m denotes the number of withdrawals per year (usually m = 1), and C(7}) is a
contract specified value that can be interpreted as the lower bound of the total guaranteed
withdrawal. That value is specified as the return on the initial investment with a roll-up
interest rate guaranteed interest rate 4, as follows:

C(Ty) =P+,

If T1 = 0, the reset is trivial: AT<+> =Ay=P.
1

4.2.3 Evolution of the Contracts in the Deferred Time and between Event
Times.

We call deferred time the time between 0 and the beginning of the payoff phase T71: 0 <t < T1.
This time set is empty unless for deferred GMWB-YD products; the other products have 77 = 0
so there is no deferred time. We first consider the evolution of the value of the guarantee
excluding event times ¢;. Let ¢t € [0,T1[ C [0,T5] or t € |t;, tiy1] C [0,T5]. As we said before, Sy
denotes the underlying fund driving the account value. The dynamics of S; will be described
in the next Section. The account value A; follows the same dynamics of S; with the exception
of the fact that some fees may be subtracted continuously:

A
dAt = gtdSt — OétotAtdt. (422)
t

We suppose that the total annual fees are charged to the PH and withdrawn continuously from
the investment account A;. These fees include the mutual fund management fees o, and the
fee charged to fund the guarantee (also known as the rider) oy, so that

Qiot = Oy + Q.
The only portion used by the insurance company to hedge the contract is that coming from ay:

the other part of the fees has to be considered as an outgoing money flow as PH’s withdrawals
are.
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4.2.4 Event Times and Final Payoff

Let G be the withdrawal guaranteed amount: for a CF product type, this parameter is a
contract input, while for a YD type this value is determined at time T} according to formula

1211
We denote W; the withdrawal of the PH at time ¢;. As in [I3], we observe that W; is a
control variable.

GMWDB-CF
Usually the first event time takes place at time ¢t; = At = 1y or t; = At = 0.5y ; moreover
t; =i At.

We denote with (At(._)’Bt<,_)’ti> the state variables just before an event time that occurs

at time ¢; and with (At?“’Bt(*)’ti) the state variables just after it.

We distinguish two pricing frameworks: at each event time the PH can withdraw according
to the contract rate G (Static approach) or to a different rate (Dynamic approach). If W; < G,
then there is no penalty imposed; if W; > G there is a proportional penalty charge x (W; — G).
Anyway, the value of W; chosen by the PH cannot exceed the guaranteed withdrawal amount

Btg,): it must be W, € [O, Btg,)}.

As we said before, the PH may not receive all the money he (she) withdraws from the
account value. Let f; (W) : [O, Btf*)} — R be a function of W; denoting the rate of cash flow
received by the PH due to the withdrawal at time ¢;. Then,

Wi itw;, <G

fz(VVz): {Wi—H(Wi_G) it WwW; >G.

The new state variables are
(At(.“’Bt(.“’ti) = (maX (At(_—) - Wi,0> By — Wivti) (4.2.3)

At time ¢ = T3 the last event time takes place: the PH withdraws as in the previous event
times; then he (she) receives the final payoff which is worth

FP =max (A, (1 — k) Bp,) .

This final payoff is applied also in the static case.
It is possible to prove that the optimal withdrawal at time 75 is W = min (G, BT(_)>; in
2

this case, the value of the contract before the withdrawal is
V (AT2(7),BT2(7),T2> = max (ATQ’)’ (1-k) BT2<’) + kmin <G, BTQ(’))> .

Therefore, this remark simplifies the research of the optimal withdrawal in the Dynamic frame-
work.
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We notice that, if At(f) > BtH the contract can not be fully terminated in ¢;: if the PH
withdraws at the maximal rate, then W; = Bt<_) and (At(.+)’Bt(.+)’ti) = (At(_) — Btg_),O,ti).

In this case the PH won’t be able to make an§ withdrawal in following event times because of
B =0, but he will receive the final payoft FP = Ar, at time T5.

GMWB-YD

This kind of products can be deferred or not. If we set At = (T2=T1)/N, then t; = T + At - i for
t=1,...,N. Usually At = 1y.
We denote with <At(_>, G(*),ti) the state variables just before an event time that occurs

at time ¢; and with <At(+),G(+),ti> the state variables just after it.

According to [46], we distinguish two pricing frameworks: at each event time the PH can
withdraw according to the contract rate G (Static approach) or fully surrender (Dynamic ap-
proach). In the first case, he (she) receives G at all event times after Ty (Th — T} payments)
and the state change is given by

<At§+),G(+), ti> = <max (0, At§+) — G(_)> ,G(_), ti> . (4.2.4)
At time ¢t = T5, the PH receives G plus the final payoff:
FP — AT2(+) .

In the second case, the PH receives G until the surrender event, and the equation (4.2.4)
still holds. Let’s suppose that the PH decides to surrender at time the event time #;+; then

(At(_:r> ) G7 tl*) - (07 07 tl*) .
The final payoff is paid out at time ¢;«, and the contract becomes valueless:

FP =G+ (1 - k)max <0,At£*,) — G) .

4.2.5 Similarity Reduction

An important property of GMWB-YD contract is the fact that this contract behaves good
under scaling transformations as also GLWB variable annuities do. If V (A, G,t) denotes the
value of a contract, it is possible to prove that for any scalar n > 0

nV (A ,G,t) =V (nA,nG,t). (4.2.5)

Then, we just have to treat the case G = G for a fixed value G (for example G =
P/(Ty —T1)), and then, choosing = G/G, we can obtain

G.[G .
V( 7G7 ) GV<G ’G’ >7
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which means that we can solve the pricing problem only for a single representative value of
G. This effectively reduces the problem dimension.

The previous property can be applied at time 77 when A and G are reset. Some simple
calculations show that

V(Agw, G 1) = A?;(H v(P.6.m).

The similarity reduction (4.2.5) was also exploited from Shah et Bertsimas in [43]. We
would remark that Yang and Dai didn’t use this technique for their product: therefore, their
resolution of the problem of pricing is more complicated and computationally expensive.

According to GMWB-CF contracts, the similarity reduction can’t be applied directly. In
fact, we can prove that

nV (A, B,G,t) =V (nA,nB,nG,t) (4.2.6)

but in this case we have to scale also the guaranteed withdrawal amount G and therefore it
is not useful to reduce problem’s dimension.

4.3 The stochastic models of the fund S

To understand the different impacts of stochastic volatility and stochastic interest rate over such
a long maturity contract, we price the GMWB VA according to two models: the Heston model,
which provides stochastic volatility, and the Black-Scholes Hull-White model, which provide
stochastic interest rate. As we said before, the process S represents the underlying fund driving
the account value A; of the product.

The dynamics of the Heston model and of the Black-Scholes Hull-White Model are the same
as those fixed in Section and 3.3.21

4.4 Numerical methods of pricing

In this Section we describe the four pricing methods: a Hybrid Monte Carlo method, a Standard
Monte Carlo method, a Hybrid PDE method, and an ADI PDE method. These methods have
already been described in Chapter |3 but in this case problem dimension may change. In fact,
GLWB pricing problem has dimension equal to 2. GMWB-CF with Dynamic PH’s behavior
has dimension equal to 3, and all other cases 2.

We remember that our aim is to find the fair value for ay,: it’s the charge that makes the
initial value of the policy equal to the initial premium. To achieve this target, we price the
policy (with one of the following procedures) and then we use the secant method to approach
the correct value for ay. Therefore, the main goal is to be able to find the initial value for a
given value of ag: V (Ao, By, 0) (eg).

We remark that we want to calculate the value of the policy from the point of view of the
insurance company: the management fees are treated as a outgoing cash flows, and if we assume
that the policy holder follows a withdrawal strategy, we consider the worst one for the insurance
company.
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4.4.1 The Hybrid Monte Carlo method

The value of a GLWB policy can be calculated through a Monte Carlo set of simulations. This
procedure is based on two steps: generation of a scenario (a sampling of the underlying values
along the life of the product), and projection of the product into the scenario. According to the
way we obtain the scenarios, we distinguish two Monte Carlo models: Hybrid MC (HMC) and
Standard MC (SMC).

The Hybrid MC method has been explained in Section [I.4]

4.4.1.1 Scenario generation

The generations is done according to [1.4.1.1|and [1.4.1.2]

4.4.1.2 Projection

Once we have generated the scenarios set S = {sx,k =1,...,ns}, we project the policy into
all of it’s scenarios: this means we calculate the initial value Vi of the contract as the sum of
discounted cash flows determined according to each scenario s € §. Then, the initial value of
the contract V can be approximates as the average of the initial values among all scenarios:

Ns
V%E Vi
n
k=1 %

This calculation depends on whether we take an optimized strategy or not.

Constant Withdrawal In this case the strategy of the PH is fixed. For a GMWB-CF
product, the value of the base benefit By, is certain: B,) = P—G (i — 1) and B,+) = B,-)—G.

We can just write Vi = V; (A, t) to denote the value of the GMWB having account value equal
to A at time t. This fact sets the problem dimension to 2. In this case, GMWB-CF and
GMWB-YD collapse in the same product.

For each scenarios s, first we calculate the values A L) for all t;:

Ay = P
_ St; —aot At
Atg_) - Atit)l St;_4 €

Atﬁ” = max (0, At§,> — G) .

Then we set
Vs (AT2<+>7T2) = AT2<+>;

for all Ty < t; < Ty we have

) = e ftt-Hl Tsds .
Ve (Ao, ti) =e Tt Vs [ Ay tivr | + G,
[ 141



4.4 Numerical methods of pricing 103

and finally
-t
V; (AleTl) = B_JTi rsds |:V:g (At(+),t1) =+ G:| .
1
If we're price a deferred product, (i.e. 77 > 0), then we set

P
G=—7
m(Tg—Tl)

and we use similarity reduction to obtain

max (P, Sp, e~ tetT1)
P

Vi (A9, 0) = ¢~ o' medsy (P ) -

Optimal Withdrawal The Optimal Withdrawal is a case of Dynamic Withdrawal and it
applies only to GMWB-CF product. In their articles, Chen and Forsyth suppose the PH to
be entitled to do optimal withdrawals, i.e. chose at each event time how much withdraw. In
this case we suppose that at each event time ¢; the PH can withdraw a fraction of the regular
amount. To price in this case, we suppose that the PH chooses the value of W; that causes the
worst hedging case for the insurance company. In this case, we denote V (A, B, t) the expected
value at time t of a generic policy whose state parameters are A, B :

V (A, B,t) =E[Vs (A, B,t)].
So, we suppose that the PH chooses W; such that

W; = argmax V (max (At(_) — Wy, 0) ’Bt(._) — Wy, ti) + fi (w;) .

w; € |:07Bt§7):|
This expected value can be calculated with a Longstaff-Schwartz approach:

1. Simulate N random scenarios and price the policies into these scenarios.
2. For i =N toi=0 (from ty =T to tg =T = 0):

(a) Approximate the function V (A, B, t;) using the least squares projection into a space
of functions (usually polynomials).

(b) For each scenario s find the optimal withdrawal W; (if ¢; > 0).

(c) Recalculate the upcoming state variables from 7 = ¢; to 7 = T5 assuming that the
PH chooses the best value for W.,.

3. Calculate the average of the initial value V; (P, P,0) over all the scenarios s to obtain an
approximation of V (P, P,0).

The search for the optimal withdrawal for this type of product is a stiff purpose. The approx-
imation of the function V (A, B,t) with polynomials is hard: this is due to the fact that this
function is very curved when the account value A; is close to By, and is very straight otherwise.

We developed the projection algorithm in two different ways, to improve the computational
time or the convergence to the right value. We call the fast algorithm “Full Regression” and the
accurate one “Regression by Lines”.
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Full Regression In this case, the regression at each event time t; is done using two
polynomials with 3 variates: QZP (A, B,u) and inw (A, B,u) where u is r in the BS HW model
and v in the Heston model. Here the most important remarks

e Create a grid of constant points G = A x B = {(ax,b,),0< k< K,0<h<H} to be
used as initial values to diffuse the couple (A, B) using random scenarios. This grid lets
us be sure that at each event time, the set of initial values is well distributed and useful
for polynomial regression. In our tests we used B as a set of Chebychev nodes from 0 to
P, and A as a set of uniform nodes from 0 to 3P. See Figure [4.4.1]

e Separate the space in two regions U = {(a,b) |a > b} and D = {(a,b) |a < b} and perform
regression using Q;” (Ay,, By, , uy;) for the first set, and in“’ (Ay;, By, ug,) for the second.

e Use shift and scaling technique to improve regression.
e Ag remarked before, the optimal withdrawal at last event time t; = T5, is always equal to
min (G, BT2<7)).

e To find the best value for the withdrawal amount W;, numerical tests proved that, if G
divides exactly P, then it’s enough to search among the multiples of G.

Here a pseudo code:

Full_regression(){

int ETs= T2*WD_rate;

Scenario_generation_step();

Forward_initial_step();

for(int ti= ETs-1;ti>0;ti--){
Backward_step_GMWB(ti) ;
Least_Squares_step_GMWB(ti);
Forward_Dynamic_step_GMWB(ti) ;

}

Backward_step_GMWB(0) ;

The functions that we used are the following ones:
e Scenario generation step(). Generate the scenarios: S and v or r .

e Forward initial step(). For all the scenarios s, chose a node (a,b) of the grid G (covering
all the grid as s changes), and set (Af, Bf) = (a,b) for all t;.

e Backward step GMWB(ti). For all the scenarios, calculate the value of the policy at
the event time ¢; as the sum of discounted future cash flows V.

e Least_Squares_step_ GMWB(ti). Perform polynomial regression. Calculate Q;” (4, B,u)
using the value (Ay;, By,, u,, V4,) such that A;, > By,. Calculate inw (A, B,u) using the
value (Ati, Bti, U, , sz) such that Ati < Bti-
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e Forward Dynamic_step GMWB(ti). Keeping fixed the value of A;, and By, as stated
by the Forward initial step function, calculate the state parameters of the policy at all
the event times ¢; after ¢;, using at each time the best withdrawal. As we are proceeding
backward and ¢; > ¢;, we can find the best withdrawal using the polynomial Q?jp (A, B,u)

and Qf}” (A, B,u) calculated at the previous steps.

Regression by Lines In this case, the regression at each event time t; is done using 3

polynomials with 2 variates for each value of base benefit B and event time t;: Q;'p (4, u),

?Z’% (A, u) and Qtde (A, u) where u is 7 in the BS HW model and v in the Heston model. These
polynomials are supposed to have all the same degree d. Here the most important remarks

e Create a grid of constant points G = A x B = {(ay,b;),0 <k < K,0 <1< L} to be used
as initial values to diffuse the couple (A, B) using random scenarios. This grid lets us
be sure that at each event time, the set of initial values is well distributed and useful
for polynomial regression. In our tests we used B as set of uniform nodes from 0 to P
with L = P/G : B = {0,G,2G,...,P}. The set A is more complicated. It contains
points from A,in = 0 to Apee = 3P; we also tried other values for Az, and 3P gave
the best results. For each level of B € B, we divide the interval [0,3P] in 3 subsets:
DWpg = [0, %B], MDp = [%B, %B] and UPp = [%B,?)P]. In each of these subsets we
define d + 1 Chebychev nodes. These nodes defines the grid. See Figure [4.4.1]

e For each level B, the polynomials Q;" (A, u), Q"% (A, u) and Q"5 (A,u) are obtained
by regression, diffusing the state parameters of the policy from the nodes in the sets DWp,
AJI)B anﬁll]fk;

e As remarked before, the optimal withdrawal at last event time t; = T5, is always equal to
min <G , B;Q).

e To find the best value for the withdrawal amount W;,, numerical tests proved that, if G
divides exactly P, then it’s enough to search among the multiples of G. This means that
when we search the best withdrawals, the possible value of B are those of B.

Here a pseudo code:

Regression_by_lines(){

int ETs= T2*WD_rate; int H=P/G;

Scenario_generation_step();

for(int ti= ETs-1;ti>0;ti--){

for(int 1=0;1<L+1;1++){
for(sector_1= DW_1, MD_1, UP_1){
if (sector_1 is not empty){

Forward_Dynamic_step(ti,1l,sector_1);
Backward_step_GMWB(ti);
Least_Squares_step(ti,l,sector_1);

i 3333

Last_Forward_Dynamic_step();

Backward_step(0) ;
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Figure 4.4.1: The grids used in the Full Regression method and in the Regression by Lines for
a GMWB with T = 10 and annual withdrawals. In the first picture, violet points are used
in both the two regions. In the second picture, for each B level, the gray points border the
different sectors and they are shared. The degree of the polynomials for this last case is 4.

The functions that we used are the following ones:

Scenario_generation step(). Generate the scenarios: S and v or 7 .

Forward Dynamic_step(ti,],DW). For all the scenarios, setting By, = by = |- P/G, and
choosing A, in the node set DWsp,, calculate the state parameters of the policy at all
the event times ¢; after ¢;, using at each time ¢; the best withdrawal. This functions does
the same for the the sectors M Dp, and UPp,, .

Backward step GMWB(ti). For all the scenarios, calculate the value of the policy at
event time t; as the sum of discounted future cash flows V;,.

Least Squares_step(ti,],DW). Perform polynomial regression. Calculate Qlfl:’B (A, u) us-
ing the value (Ay,, By,,u;, Vi) diffused. This functions does the same for the the sectors
MDg,, and UPp,, .

Last _Forward Dynamic_step(). For all the scenarios, compute the state parameters of
the policy, starting from ¢ = 0 and Ag = By = P.

Optimal surrender This case concerns GMWB-YD products. In their articles, Yang and
Dai suppose the PH to be entitled to surrender when optimal.

In this case we suppose that at each event time t; € {t1,...,ty} the PH can withdraw the
contract amount, or fully surrender. As we did before, similarity reduction let us fix the value

of G.

We denote V (A, t) the expected value at time ¢ of a generic policy whose state parameter

is A (similarity reduction let us use only A as variable) :

V(A t) =E[Vs(A1)].

So, we suppose that the PH surrenders at time #;« if

(1 — k) max (Ati_* — G,O) >V (max (Ati_* — G,O) ,t) .



4.4 Numerical methods of pricing 107

The expected value V can be calculated with a standard Longstaff-Schwartz approach:

1. Simulate N random scenarios and price the policy into these scenarios assuming that the
PH follows a static approach.

2. For t;, =ty tot; = 1t1:

(a) Approximate the function V (A, ;) using the least squares projection into a space of
functions (usually polynomials).

(b) For each scenario evaluate if ¢; is the good stopping time.

3. Use at time 7T} similarity reduction to include account value’s reset.

4. Calculate the average of the initial value V; (P,0) for all the scenarios to obtain an ap-
proximation of V (P, 0).

4.4.2 Standard Monte Carlo method

The Monte Carlo method is very similar to the Hybrid Monte Carlo one. The only different
thing, is the way we produce the random scenarios. The projection phase is the same as Hybrid
Monte Carlo one.

4.4.2.1 Scenario generation

We distinguish two cases for the two models.

The Heston model The generation of the scenarios (underlying and volatility) in this case
has been done using a third order scheme described in Alfonsi [2].

The Black-Scholes Hull-White model The generation of the scenarios (underlying and
interest rate) in this case has been done using an exact scheme described in Ostrovski [39], with
a few changes in order to incorporate the correlation between underlying and interest rate.

4.4.3 PDE Hybrid Method

The Hybrid PDE approach is different from the previous ones. In fact it’s a PDE pricing
method and it’s based on Briani et al. [I0], [II] both for Heston and Hull-White case. Using a
tree to diffuse volatility or interest rate, we freeze these values between two tree-levels and we
solve a Black Scholes PDE for each node of the tree, using as initial data a weighted mix of the
data of the upcoming nodes.

We can resume the pricing methods in three features: model, algorithm structure and
pricing.

We start describing the model between the event times.
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4.4.3.1 The Heston Model

Starting from the model for the found S; in QD we call p = /1 — p? and we write Z! =
pZy + ﬁZ{l, where Z4 is a Brownian motion uncorrelated with Z¥. Then,

{dAt = (1= onot) Agdt + /0 Ay (pdZ{ + pdZ{t) vo =10, (Zp, 77 =0,

d’l)t =k (9 — ’Ut) dt + w\/vﬁdZtV AO = AQ,
covering the behavior of A; between two event times, we define the process
P E P
ViE =In(4;) — Zvp, YE =1In(4g) — &
= (Ay) — ~v, Yo7 =1n(Ao) — o

Then,
Ay = exp (YtE + th) (4.4.1)
w

and
dy;E = (7’ — ot — % ~Pre- vt)) dt + py/odZA.
w
This process Y is important because it’s a process uncorrelated with the volatility process
v, and we introduce it as in [10]. We are going to use it to define a PDE to be solved along the
tree.
We define V¢ (t,Y,F) =V (t, Ay).
If, in a small time lag [r, T + A7), we approximate the process Y,” by the process Y, whose
dynamics is given by
vr P

av;F = (r — Qtot = 5 ak‘ (60— UT)) dt + p\/vo-dZ{.

Then, V¢ (¢,Y,F) verifies the following PDE

aszeJr(r v p (0—1))) ovHe  pPo. 9?pHe

ot ettt T, ovE T 2 ovE

4.4.3.2 The Black-Scholes Hull-White Model

Starting from the model for the found S; in 1' we call p = /1 — p? and we write Z* =
pZ§ + pZ{, where Z4 is a Brownian motion uncorrelated with Z". Then,

dA; = Ay (T‘ — atot) dt + oA (deZ‘ + ﬁdZtA) Ay = Ao,
dX; = —kXdt + dZ} Xo=0, d(zZ}z])=0.
Ty =wX; + B (1),
We define the process
YV =1n(Ay) — po X, YV =1n(A)
Then,
Ay = exp (Y; + poXy) (4.4.3)
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and

2
dYtU - <7"t — ot — % + O’kat> dt + UﬁdZ;‘.

This process YV is important because it’s a process uncorrelated with the mean-reverting
process X, and we introduce it as in [I0]. We are going to use it to define a PDE to be solved
along the tree.

We define VW (t, Y;U) =V (t, A). If, in a small time lag [7,7 + A7], we approximate the
process YU by the process Y,V whose dynamics is given by

2
dY;U = (7“7 — Qitot — % + UkaT> dt + opdZy,

and the interest rate process by r;, then, PHW (t, YQU) verifies the following PDE

2

oVHW o
T {7 — Qtot —

ot

8]>HW N p202 82]>HW
a}_/tU 2 aQYtU

—r, VAW — . (4.4.4)

2 + kaXT>

4.4.3.3 Algorithm structure

The structures for this algorithm consist in a tree and a PDE solver. As described in Briani et
al. [10], [II], we use a tree to diffuse the volatility (or the interest rate) along the life of the
product, and we solve backward a 1D PDE freezing at each node of the tree the volatility (or
the interest rate). The tree is built according to Section m (quadrinomial tree, matching the
first three moments of the process), and the PDE is solved with a finite difference approach.
We have to solve the PDE between event times, and at each event time we apply the changes
to the states to reproduce the effects of the events.

We remark that we solve the PDEs doing a single time step that requires only a linear
complexity because we have to solve a linear system with tridiagonal matrix. The computational
cost is low as observed in [10] and [I1]. We observe that X; and V; processes are mean reverting.
Thanks to the way the trees are built, there are many nodes in the trees that cannot be visited
by the approximating Markov chain. Therefore their probability p,; to be visited is worth
0 and they have no impact on the values at the root of the tree. There is no reason to do
any operation for those nodes. So, to save time, we do the standard step (mix up the vectors
according to the transition probabilities and solve backward a PDE) only for those nodes having
Pn,j > 0. This curtailing technique reduces the computational time, and the convergence of the
method is preserved. A similar approach is used in [3].

4.4.3.4 Pricing

We distinguish 3 cases.

Static case

This case is common to both GMWB-CF and GMWB-YD products. Problem’s dimension is 2:
about GMWB-CF, at each event time the value of the the base benefit By, is equal to P — G -¢
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and thus it’s not a problem’s variable; about GMWB-YD similarity reduction reduce problem’s
dimension to 2.

For each node of the tree we have to solve one PDE using the mixture of the the data of
the upcoming nodes: the mixture is done according to transition probabilities. The PDE to be
solved are those in (4.4.2) and (4.4.4)) where [7, 7 + A7] denotes the time lag between two tree’s
node.

The variables 7, X and ¥ will denote the frozen values of 7y, X; and v; using the data
of the actual node. We used a finite differences approach using equally spaced nodes for Y;
processes. To reduce the run time, we do this only for most relevant nodes: this cutting
technique dramatically reduced calculation times without compromising the quality of results.
Then, using the inverse transformations (4.4.1) and (4.4.3]), we apply the event times actions in

(4.2.3) or equivalently (4.2.4).

Optimal Withdrawal

This case is about GMWB-CF products. This is the hardest to be treated because the problem’s
dimension is 3. We solve the same PDE as in Static case, but this time we have to solve them
for different values of B; and chose the best withdrawal W; at each event time. Numerical
test showed that it’s enough to search the best withdrawal between multiples of G equal or
smaller than the base benefit. Then we decided to solve the problem for all B; values of which
are multiples of G and are smaller than the initial premium P: B = 0, B = G, B; = 2G,
...B = nG = P. Then, we solve n 2-dimensional problems rather then one 3-dimensional
problem. This approach is similar to “Regression by Lines” defined for MC methods.

Best withdrawal’s search is performed searching among permissible withdrawals which are
multiples of G: W =0, W = G,...W = mG = B. The estimate of V (A, B) for those values of
A that aren’t on the grid, is done using splines.

In Figure we can see a scheme that represents what happens for a product with G = 20:
for example, a 5 years maturity GM with annual withdrawal rate and P = 100 (G = 20). Nodes
are exponentially distributed (uniformly for Y process) and for each B value, we add a node that
represents A = 0 (blue nodes). For each node, first we mix the data vectors of the upcoming
nodes according to transition probabilities. Then we solve a PDE backward starting from the
mixture of the data. Then we apply withdrawal step: for each node we consider admissible
withdrawals of the type W = kG and we chose the value that maximize PH’s benefit: cash flow
plus policy’s value. This research is shown in the Figure (see yellow nodes that corresponds to
possible withdrawals).

Optimal surrender

This case is about GMWB-YD products. It’s much more simpler than optimal withdrawal. In
fact, the PH can only chose between withdrawal at the contract rate and fully surrender.
Withdrawal step at event time ¢; consists into replacing V (A, t;) by

max [G + V (max (A — G,0),t);G+ (1 — k) (A—-G)].
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Figure 4.4.2: The scheme for PDE optimal withdrawal for a given node.

4.4.4 PDE ADI Method

We propose a PDE pricing method with alternative direction implicit scheme which has been
already successfully used for European financial product (see [25]) and for an insurance GLWB
product (see [23]). This method permits to treat the Heston model and the Black-Scholes Hull-
White model. This method is fast and accurate. Moreover it is easy to take into account the
similarity reduction and the optimal behavior. For this method, we followed the same principles
of HPDE method about taking in account the event times.

The PDEs to be solved are

VA2
Ve 4 —VAA + 2 VVV + (1 — ogor) AVEE + pwAVVEE + k(0 — V) Ve —rVHe =0 (He 2b)

2A
VAW T2 pHW 2 vHW +(r = apor) AVEV 4 pw Ao VEW 4k (6, — ) VEW VAW — (0 (HW 2b)

There are multiple numerical parameters which have to be carefully chosen. We have to
choose the grids for the benefit base, the account value, the rate in the Hull-White model and
the volatility in the Heston model. We have chosen to use the meshes described in [25] with
the parameters

At = 0850 Apight = 1.250  Apae =1000-72- Sy and dy = Sp/20,
for the mesh of variable A,
Rmax =08, c¢=Rop and da = Rpyax/400
for the mesh of variable r in the Black-Scholes Hull-White model, and

Vinax = MIN(MAX(100Vp,1),5) and d3 = Vinax/500.



112 Pricing and Hedging GMWB

for the mesh of variable V' in the Heston model. Some grid are uniform, or based on hyperbolic
grid. Moreover the boundary conditions are completely unknown, and an asymptotic study
would be necessary to chose them. We have chosen homogeneous Neumann boundary condi-
tions, and we have chosen very large grids to avoid that this choice impacts the results. We
have only used the Douglas scheme, but other schemes are possible to have better order of
convergence in time. Thus many possibilities are possible to improve the ADI scheme, but the
easier is already enough to obtain good results.

4.5 Numerical results

In this Section we compare the numerical methods used in Section 4.4 Hybrid Monte Carlo
(HMC), Standard Monte Carlo (SMC), Hybrid PDE (HPDE), and ADI PDE (APDE). In
particular we compare pricing and Greeks computation in Static Case and Dynamic Case for
both the two product types.

We chose the parameters of the methods according to 4 configurations (4, B, C, D), with
an increasing number of steps and so that the calculation time for the various methods in
each configuration were close. The 4 configurations are in Table and in Table with
the notation (time steps per year x space steps X vol steps) for the ADI PDE method, (time
steps per year X space steps ) for the Hybrid PDE method approaches and (time steps per
year X number of simulations) for the MC ones. In Monte Carlo for Dynamic case, we also
add the degree of the approximating polynomial. These values have been chosen to achieve
approximately these run times: (A) 30 s, (B) 120 s, (C) 480 s, (D) 1920 s. To reduce the run
time we do the secant iterations using an increasing number of time steps for all the methods:
the values in Table [L.1] are those used for the last 3 iterations.

We use the Standard MC both as a pricing method, both as a benchmark (BM). About
the benchmark, in the Static case we used 10® independent runs. In the Dynamic case we used
10% independent runs; in each sub runs the expected value has been approximated by a 4 order
polynomial.

The search for the fair o, value has been driven by the secant method. The initial values
for this method were ay = 0 bp and a4 = 200 bp.

To achieve Delta calculation in Monte Carlo methods we used a 1% shock in Static case
and 1% in Dynamic case.

4.5.1 Static Withdrawal for GMWB-CF

In the Static Withdrawal case we suppose the PH to withdrawal exactly at the guaranteed rate.

The Static Tests 1 and 2 are inspired by [13]: in their article, Chen and Forsyth price
a GMWB contract according to an optimal withdrawal framework, under the Black Scholes
model. First we priced their product for different maturities and withdrawal rates, assuming
Static withdrawals in Black and Scholes model to get a reference price in this model; we got
the a value using both a standard Monte Carlo method and a standard PDE method. As we
easily got the correct values for the simple Black-Scholes model, then we add stochastic interest



4.5 Numerical results 113
BS HW StaTicC HESTON STATIC

HMC SMC HPDE APDE HMC SMC HPDE APDE
A | 4x9.2.10° 1x1.7-108 260 x 250 25%250% 505 4x5.8-10° 4%5.2-10° 270 x 250 25%250% 505
B| 8x1.8-10° 1x5.7-100 420 x 500 40 X 400 X 85 8x1.2-10° 8x1.2-10° 520 X 500 40 x 400 X 80
C| 12x6.3-10° 1x%2.9-107 780 x 1000 60x620% 125 12x3.9-10° 12x3.4-10° 850 x 1000 60%620% 120
D| 16x1.9-107 1x1.2-108 1200 x 2000 100x103x 215 16x1.2-107 16x1.1-107 1400 x 2000 100x10%x 200

BS HW DynNaMmic HesTON DYNAMIC

HMC SMC HPDE APDE HMC SMC HPDE APDE
A | 4x6.010%x1  1x6.5:10%x1 70 X 250 8% 95X 30 4x%5.1-10%x1  4x5.5.10%x1 88 X 250 10x 125 25
B | 8x8.710*x2  1x9.5.10%x2 160 x 500 14X 150 x 48 8x1.2:10%x2  8x1.3-10%x2 160 x 500 15 % 200 X 40
C| 12x1.810°x3  1x1.9-10°x3 270 x 1000 22%250% 75 12x2.310°x3  12x2.510°%3 266 x 1000 25 % 320 X 60
D | 16x3.5105x4  1x3.5:10°x4 360 x 2000 35x400% 120 16x4.210%%4  16x5.010%x4 350 x 2000 40 x 500 X 90

Table 4.1: Configuration parameters for the BS HW model and for the Heston
and Dynamic for the GMWB-CF product with 75 = 10 and WF = 1.

model, Static

BS HW StaTiC HESTON STATIC

HMC SMC HPDE APDE HMC SMC HPDE APDE
A | 4x3.2.10° 1x6.0-10° 130 % 250 10 X 245 X 50 4%2.3-10° 4%2.0-10° 120 X 250 10 % 250 X 50
B | 8x6.4-10° 1x%2.3-108 215 x 500 15x 375 % 80 8x4.6-10° 8% 3.8-10° 220 x 500 15 % 380 X 80
C| 12x2.2-10 1x1.2-107 415 x 1000 35%x520% 110 12x1.6-10° 12x1.3-10° 425 %1000 36x530% 110
D | 16x6.8-106 1x4.5-107 480 x 2000 55x880% 180 16x4.8-10° 16 x4.0-10° 480 x 2000 55x890x 180

BS HW DynNaMiIc HesTON DYNAMIC

HMC SMC HPDE APDE HMC SMC HPDE APDE
A | 4x6.810%x1  1x8.110%*x 1 130 % 250 10X 245 x 50 4%5.510%x 2 4x5.810%x 2 120 % 250 10X 250 X 50
B | 8x2.510°x2  1x3.410°x2 215 x 500 15X 375 % 80 8%2.210°x 3 8%2.0-105x 3 220 x 500 15 % 380 X 80
C| 12x6.910°x3  1x9.7-10°x 3 415 %1000 35%x520% 110 12x5.910°x4  12x5.610°x4 425 %1000 36x530x 110
D | 16x1.810%4  1x1.810%x4 480 x 2000 55x880% 180 16x1.5109%5  16x1.510%x5 480 x 2000 55x890% 180

Table 4.2: Configuration parameters for the BS HW model and for the Heston model, Static
and Dynamic for the GMWB-YD product with (71,7%) = (10, 25)
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rate and stochastic volatility. Model parameters are available in Table [4.3] and the values of
oy that we got in the Black-Scholes case are given in Table [4.4]

4.5.1.1 Test 1: Static GMWB-CF in the Black-Scholes Hull-White Model

In this test we want to price a GMWB-CF product according to BS HW model. We use the
same corresponding parameters as in the Black Scholes model. Model parameters are shown in
Table Results are available in Table

All the four methods behaved well and in the configuration D they gave results consistent
with the benchmark. HPDE proved to be the best: all of its configurations gave results con-
sistent with the benchmark. Then APDE and SMC, and HMC gave good results too. SMC
performed a little better than HMC: the first method simulates the underlying value and the
interest rate exactly and so it is enough to simulate the values at each event time. HMC
matches the first three moments of the BS HW r process, but doesn’t reproduce exactly its law:
therefore it is right to increase the number of steps per year. So, for a given run time, we can
simulate less scenarios in HMC than SMC: effectively, the confidence interval of HMC is larger
than SMC one. Moreover, SMC over performed the benchmark when using configuration D.
The two PDE methods returned stable results, and they often converged in a monotone way.

With regard to the numerical results, we observe that the o, values decrease with increasing
maturity, just as in the Black-Scholes case, and increase a little, with increasing withdrawal
frequency.

4.5.1.2 Test 2: Static GMWB-CF in the Heston Model

In this test we want to price a GMWB-CF product according to the Heston model. Model
parameters are shown in the Table Results are shown in Table [£.8

In this Test, MC methods had more difficulties; all the values of PDE methods were close
to the benchmark, while some values from MC methods were less accurate, but compatibles
with the benchmark (the value of BM is inside the MC confidence interval). If we compare
the two MC approaches, in this case they are equivalent: HMC proved to be faster than SMC
when using few time steps (we could exploit +11% simulations in configuration A), while SMC
proved to be slightly faster in high time steps simulations, because of more time needed to build
the volatility tree (—8% simulations in configuration D). HPDE shows to be very stable (case
Ty =10, WF = 2, oy didn’t change through configurations B-D), APDE behaved well to (often
monotone convergence).

With regard to the numerical results, we observe that the o, values decrease with increasing
maturity, just as in the Black-Scholes case, and increase a little, with increasing withdrawal
frequency.

4.5.1.3 Test 3: Hedging for Static GMWB-CF

To reduce financial risks, insurance companies have to hedge the sold VA: to accomplish this
target they must calculate the Greeks of products.
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In this test we want to show how the different methods can be used to calculate the main
Greeks. This can be done through finite differences for small shocks on the variables. In
general, the PDE methods are ahead w.r.t. MC methods: the price is computed through finite
differences and so the price under shock is already computed. For MC methods this is quite
harder because the pricing has to be repeated changing the inputs.

To start, we calculate the underlying greek Delta, for the products of Test 1 and Test 2. As
in this case we don’t want to compute the fair fee oy, we fix it arbitrarily: see Table and
Table[d.11] The values chosen are such as to cover the costs of the insurer, and may be plausible
on a real case. Results are available in Table (all values in Table must be multiplied by
1074).

In this Test, we got very accurate results with all method. Anyway, HPDE and APDE
proved to be the best: they both gave stable and accurate results; in this Test, the two PDE
methods were equivalent. We remark that despite fair fee changes a lot when changing the
maturity of the policy, the value of Delta changes much less. Delta calculation proved to be
slightly harder in the Heston model case than in the BS HW model case: see confidence intervals.
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Expiry Time T 5, 10, 20 Years GMW G 100.0/(T-WF)
Withdrawal Frequency WF 1 or 2 per Year Initial Premium 100.0
Initial account value Ag 100.0 So 100.0
Initial base b. value By 100.0 T 0.05
Withdrawal penalty x 0.10 o 0.20
Management fees ayy, 0

Table 4.3: Parameters used by Chen and Forsyth in [13].

WF =1 WF =2
PDE MC PDE MC
5 | 235.24 235.11+£0.42 | 243.96 243.80+0.42
10 | 9241 92.28 £ 0.30 94.62 94.84 £ 0.30
20 | 27.64 27.79+£0.24 28.09 28.39+0.24

Ty

Table 4.4: Fair bp values of a4 in Black Scholes model, for Static GMWB-CF with the same
parameters as in [13].



4.5 Numerical results 117
So r curve k w p
100 | 0.05 flat 1.0 0.2 -0.5 | 0.20
Table 4.5: The model parameters about Test 1
T WF =1 WF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 191.0540.83 190.81+0.66 191.03 191.16 196.87 £0.88  196.79£0.94  196.39  196.50
191.34 196.77
B | 191.79+0.59 191.25+£0.33 191.18  191.58 196.88 £ 0.62  197.0240.47  196.55  196.60
5
C | 191344032 191.26+0.15 191.25  191.47 196.72 4+ 0.34  196.6440.21  196.62  196.88
+0.11 4+0.11
D | 191.2040.18 191.25+0.07 191.27 191.38 196.55+0.19  196.67£0.10 196.65  196.68
A | 79714084  79.264£0.66  79.41  79.33 81.38£0.88  81.13+£0.94  80.98 81.32
79.44 80.97
B | 79.80+0.60  79.43+0.33  79.39  79.41 80.95 £ 0.63  81.424+0.47  80.98 80.64
10
C | 79.61+£032  79.56+0.15  79.39  79.41 81.12+0.34  81.12+0.21  80.98 81.01
4+0.08 40.08
D | 79.35+0.18  79.44+0.07  79.38  79.40 80.90 £0.19  80.98+£0.10  80.99 81.01
A | 26.33+£0.98 25044077 2490  24.90 25.04 +£1.07  25.72+1.06  25.27 25.20
24.81 25.16
B | 25924069 25234039  24.86  24.67 25.914+0.75 2559+ 0.54  25.23 25.16
20
C | 25164037 2491+0.17  24.84  24.81 25.16 £ 0.41  25.35+0.24  25.21 25.18
40.07 40.07
D | 24994021  24.81+£0.09  24.84  24.82 25.40 £0.23  25.134+0.12  25.20 25.18
1.0% Test 1: Relative Errors (error/time) o1
—e—HMC
0.8% —m— SMC
HMC SMC HPDE APDE --¢--HPDE
0.6% - 4--APDE
A 31s 30 s 30 s 30 s 5
B 121s 121 s 120 s 118 s & ».
04% | 2N\,
C 482 s 484 s 464 s 481 s ' N,
N
D | 1920s 1899 s 1893s 1909 s 0.9% N
\ /EF - T T e— 2
9. == =
LY . - === = oo
0.0% & ——a

1000

2000 Time (s)

Table 4.6: Test 1. In the first Table, the fair fee ay in bp for the Black-Scholes Hull-White
model, with annual or six-monthly withdrawal. In the second Table the run times for the case
WF =1, Ty = 10. Finally, the plot of relative error (w.r.t. BM value) for the four methods in
the same case of run-times Table. The parameters used for this test are available in Table [£.3]
and in Table .5




118

Pricing and Hedging GMWB

So
100

Vo

0.202

0 k
0.20° 1.0

w p

0.2 -0.5| 0.05

Table 4.7: The model parameters about Test 2.

WF =1 WF =2
T
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 232.30+£0.97 232.83+1.03 231.20  231.62 239.824+1.00  240.88+1.05  239.34  239.51
231.38 239.54
B | 231.72+£0.68 231.734+0.75  231.37  231.55 240.41+£0.71  239.76 £0.77  239.52  239.38
5
C | 231.39+£0.37 231.56£0.41  231.43 231.48 239.84 £0.38  239.76 £0.41  239.59  239.72
+0.10 +0.11
D | 231.4240.21  231.56£0.23  231.45  231.47 239.48 £0.20  239.71£0.23  239.61  239.64
A | 97.13+£1.10 97.55 £ 1.07  95.86  95.91 98.29 & 1.05 99.50 & 1.10 97.99  98.25
95.81 97.98
B | 96.23+0.73 97.07 £0.78 95.86  95.88 98.58 £ 0.74 98.62 £ 0.78 98.01 98.78
10
C | 95.65+£0.39 95.81 & 0.42 95.87  95.89 98.12 & 0.40 97.78 £ 0.43 98.01 98.01
+0.08 +0.09
D | 95.8840.23 95.84 £ 0.24 95.87  95.86 97.93 £ 0.23 97.95 £ 0.24 98.01 98.00
A | 31.84+1.17 31.84 £1.23 30.71 30.68 31.39 £ 1.20 32.06 £1.27  31.18  31.26
30.57 31.05
2 B | 3142+0.84 31.78 £ 0.90 30.64  30.60 31.69 £ 0.85 31.12 4 0.90 31.11 31.13
C | 30.53+0.45 30.99£0.47  30.63  30.63 31.02 £ 0.45 31.04 £ 0.50 31.10  31.09
+0.06 +0.07
D | 30.73+£0.26 30.614£0.27  30.63  30.63 31.47 £ 0.26 31.104£0.27  31.09  31.08
LO% (| Test 2: Relative Errors (error/time) a
) —e —HMC
0.8% | \\ —8— SMC
HMC SMC HPDE APDE P --¢--HPDE
, : \ - 4A--APDE
C
A 30 s 30s 30s 31s S00% 11 \
B 122 s 118 s 121 s 120 s & ‘\ \\
0.4% :
C 486 s 477 s 483 s 479 s N, \
AN
D | 1951s 1924s 1956 s 1939 s 0.2%

0.0%

1000

2000 Time (s)

Table 4.8: Test 2. In the first Table, the fair fee oy in bp for the Heston model, with annual
or six-monthly withdrawal. In the second Table the run times for the case WF =1, T = 10.
Finally, the plot of relative error (w.r.t. BM value) for the four methods in the same case of
run-times Table. The parameters used for this test are available in Table [£.3] and in Table [4.7]
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T, | WF=1 WF =2
5 200 200
10 100 100
20 50 50

Table 4.9: The a4 values used for Delta calculation in the Static BS HW case (bp).

T WF=1 WEF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 62124+ 4 6214+ 3 6213 6212 6178 & 4 6180+ 4 6181 6180
6213 6180
B | 6213+ 3 6213+ 1 6213 6213 6180+ 3 6180+ 2 6180 6180
5
C | 6211+ 1 62134 1 6213 6213 6179+ 1 6180+ 1 6180 6180
+1 +1
D | 6213+ 0 6213+ 1 6213 6213 6179+ 1 6180+ 1 6180 6180
A | 7153+ 7 71544 6 7155 7153 7138+ 7 7129+ 8 7133 7127
7154 7132
B | 71554+ 5 7152+ 3 7154 7154 7134+ 5 7132+ 4 7132 7131
10
C | 71524+ 3 7153+ 1 7154 7154 7132+ 3 7131+ 2 7132 7131
+1 +1
D | 7157+ 2 71544 1 7154 7154 7133+ 2 7131+ 1 7132 7131
A | 801816 8010+ 13 8017 8008 8010 £20 8005 = 20 8005 7995
8016 8004
B | s023+11 8016+ 7 8017 8014 8014 + 14 8005 =+ 10 8005 8002
20
C | 8025+ 6 8013+ 3 8016 8015 8013+ 7 8002+ 4 8004 8003
+1 +1
D | 8020+ 3 8015+ 1 8016 8015 8007+ 4 8001+ 2 8004 8003

Table 4.10: Test 3. Delta calculation for the Static BS HW case. All results must be multiplied
by 10~%. The parameters used for this test are available in Table and in Table .
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T | WF=1 WF=2
5 250 250
10 100 100
20 50 50

Table 4.11: The a4 values used for Delta calculation in the Static Heston case (bp).

T WF=1 WE =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 6132+ 4 6141+ 5 6132 6131 6101+ 5 6107+ 5 6099 6098
6131 6098
B | 61344+ 3 6136+ 3 6131 6131 6101+ 3 6104+ 3 6098 6098
5
C | 6131+ 2 6131+ 2 6131 6131 6099+ 2 6097 + 2 6098 6098
+1 +1
D | 6131+ 1 6131+ 1 6131 6131 6098+ 1 6098+ 1 6098 6098
A | 7287+ 8 72974 9 7286 7284 7277+ 9 7273+ 9 7263 7261
7285 7262
B | 72804+ 6 7287+ 6 7285 7284 7266 £ 6 7269+ 6 7262 7263
10
C | 7287+ 3 7287+ 3 7284 7284 7264+ 3 7262+ 3 7262 7262
+1 +1
D | 7285+ 2 7287+ 2 7284 7284 7263+ 2 7264+ 2 7262 7262
A | 8051+£19 8084+ 19 8059 8058 8048 £ 19 8053 & 19 8048 8045
8056 8047
B | 8067+ 13 8074+ 14 8058 8056 8055+ 13 8072 =+ 14 8047 8045
20
C | 8060+ 7 8068+ 7 8057 8056 8050+ 7 8047+ 8 8046 8045
+1 +1
D | 8060+ 4 8063+ 4 8057 8056 8051+ 4 8048+ 4 8046 8045

Table 4.12: Test 3. Delta calculation for the Static Heston case. All results must be multiplied
by 10~%. The parameters used for this test are available in Table , and in Table .
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4.5.2 Static Withdrawal for GMWB-CF

In the Static Withdrawal case we suppose the PH to withdrawal exactly at the guaranteed rate.

The Static Tests 1 and 2 are inspired by [13]: in their article, Chen and Forsyth price
a GMWB contract according to an optimal withdrawal framework, under the Black Scholes
model. First we priced their product for different maturities and withdrawal rates, assuming
Static withdrawals in Black and Scholes model to get a reference price in this model; we got
the o value using both a standard Monte Carlo method and a standard PDE method. As we
easily got the correct values for the simple Black-Scholes model, then we add stochastic interest
rate and stochastic volatility. Model parameters are available in Table and the values of
oy that we got in the Black-Scholes case are given in Table {4.14]

4.5.2.1 Test 1: Static GMWB-CF in the Black-Scholes Hull-White Model

In this test we want to price a GMWB-CF product according to BS HW model. We use the
same corresponding parameters as in the Black Scholes model. Model parameters are shown in
Table 15l Results are available in Table 16l

All the four methods behaved well and in the configuration D they gave results consistent
with the benchmark. HPDE proved to be the best: all of its configurations gave results con-
sistent with the benchmark. Then APDE and SMC, and HMC gave good results too. SMC
performed a little better than HMC: the first method simulates the underlying value and the
interest rate exactly and so it is enough to simulate the values at each event time. HMC
matches the first three moments of the BS HW r process, but doesn’t reproduce exactly its law:
therefore it is right to increase the number of steps per year. So, for a given run time, we can
simulate less scenarios in HMC than SMC: effectively, the confidence interval of HMC is larger
than SMC one. Moreover, SMC over performed the benchmark when using configuration D.
The two PDE methods returned stable results, and they often converged in a monotone way.

With regard to the numerical results, we observe that the o, values decrease with increasing
maturity, just as in the Black-Scholes case, and increase a little, with increasing withdrawal
frequency.

4.5.2.2 Test 2: Static GMWB-CF in the Heston Model

In this test we want to price a GMWB-CF product according to the Heston model. Model
parameters are shown in the Table Results are shown in Table

In this Test, MC methods had more difficulties; all the values of PDE methods were close
to the benchmark, while some values from MC methods were less accurate, but compatibles
with the benchmark (the value of BM is inside the MC confidence interval). If we compare
the two MC approaches, in this case they are equivalent: HMC proved to be faster than SMC
when using few time steps (we could exploit +11% simulations in configuration A), while SMC
proved to be slightly faster in high time steps simulations, because of more time needed to build
the volatility tree (—8% simulations in configuration D). HPDE shows to be very stable (case
Ty =10, WF = 2, oy didn’t change through configurations B-D), APDE behaved well to (often
monotone convergence).
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With regard to the numerical results, we observe that the o, values decrease with increasing
maturity, just as in the Black-Scholes case, and increase a little, with increasing withdrawal
frequency.

4.5.2.3 Test 3: Hedging for Static GMWB-CF

To reduce financial risks, insurance companies have to hedge the sold VA: to accomplish this
target they must calculate the Greeks of products.

In this test we want to show how the different methods can be used to calculate the main
Greeks. This can be done through finite differences for small shocks on the variables. In
general, the PDE methods are ahead w.r.t. MC methods: the price is computed through finite
differences and so the price under shock is already computed. For MC methods this is quite
harder because the pricing has to be repeated changing the inputs.

To start, we calculate the underlying greek Delta, for the products of Test 1 and Test 2. As
in this case we don’t want to compute the fair fee oy, we fix it arbitrarily: see Table and
Table The values chosen are such as to cover the costs of the insurer, and may be plausible
on a real case. Results are available in Table (all values in Table must be multiplied by
1074).

In this Test, we got very accurate results with all method. Anyway, HPDE and APDE
proved to be the best: they both gave stable and accurate results; in this Test, the two PDE
methods were equivalent. We remark that despite fair fee changes a lot when changing the
maturity of the policy, the value of Delta changes much less. Delta calculation proved to be
slightly harder in the Heston model case than in the BS HW model case: see confidence intervals.
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Expiry Time T'
Withdrawal Frequency W F

5, 10, 20 Years
1 or 2 per Year

Initial account value Ag 100.0
Initial base b. value By 100.0
Withdrawal penalty s 0.10
Management fees a, 0

GMW G

Initial Premium

So
T

(o

100.0/(T - WF)
100.0

100.0

0.05

0.20

Table 4.13: Parameters used by Chen and Forsyth in [13].

WF=1 WF =2
| ppE MC PDE MC

5 | 23524 235114042 | 243.96 243.80 «+ 0.42
10 | 9241  92.28+0.30 | 94.62  94.8440.30
20 | 27.64 27.79+0.24 | 28.09  28.39+0.24

Table 4.14: Fair bp values of oy in Black Scholes model, for Static GMWB-CF with the same

parameters as in [13].
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So r curve k w p
100 | 0.05 flat 1.0 02 —-0.51 0.20
Table 4.15: The model parameters about Test 1
T WF =1 WF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 191.054+0.83 190.814+0.66 191.03  191.16 196.87+0.88  196.794+0.94  196.39  196.50
191.34 196.77
B | 191794059 191.2540.33  191.18  191.58 196.88+£0.62  197.02+0.47  196.55  196.60
5
C | 191.3440.32 191.26+0.15  191.25  191.47 196.724+0.34  196.64+0.21  196.62  196.88
+0.11 +0.11
D | 191.20+0.18  191.25+0.07 191.27  191.38 196.55+£0.19  196.67+0.10  196.65  196.68
A | 79.7140.84  79.26+0.66  79.41  79.33 81.38 +0.88  81.134+0.94  80.98  81.32
79.44 80.97
10 B | 79.804+0.60  79.43+0.33  79.39  79.41 80.95+0.63  81.4240.47  80.98  80.64
C | 79.61+0.32  79.56+0.15  79.39  79.41 81.1240.3¢  81.124+0.21  80.98  81.01
+0.08 +0.08
D | 79.35+0.18  79.4440.07  79.38  79.40 80.90 +0.19  80.984+0.10  80.99  81.01
A | 26334098 25044077  24.90  24.90 25.04 +1.07  25.724+1.06  25.27  25.20
24.81 25.16
B | 25924069 25234039  24.86  24.67 25.914£0.75  25.59+0.54  25.23  25.16
20
C | 25.16+0.37  24.91+0.17  24.84  24.81 25.16 + 0.41  25.354+0.24  25.21  25.18
+0.07 +0.07
D | 24.99+0.21  24.814+0.09  24.84  24.82 25.40 +0.23  25.134+0.12 2520  25.18
LO% Test 1: Relative Errors (error/time) a
—o —H\IC
0.8% —B— SMC
HMC SMC HPDE APDE --¢---HPDE
0.6% -4~ APDE
A 31s 30 s 30 s 30 s P
B | 1215 1215 1205 1185 s .
04% [\,
C 482 s 484 s 464 s 481 s d N
N
D | 19205 1899 s 1893s 1909 s 0.2% | N
\ e T Trme—e— Y
prEs SR sEoTT &
0.0% L = =—a

2000 Time (s)

Table 4.16: Test 1. In the first Table, the fair fee oy in bp for the Black-Scholes Hull-White
model, with annual or six-monthly withdrawal. In the second Table the run times for the case
WF =1, T, = 10. Finally, the plot of relative error (w.r.t. BM value) for the four methods in
the same case of run-times Table. The parameters used for this test are available in Table [£.13|
and in Table .15l
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So Vo 0 k w p
100 | 0.202 0.20° 1.0 0.2 —0.5] 0.05
Table 4.17: The model parameters about Test 2.
T WF =1 WF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 232.30+£0.97 232.834+1.03 231.20 231.62 239.82 4+ 1.00  240.88+£1.05 239.34  239.51
231.38 239.54
B | 231.72+0.68 231.73+0.75 231.37 231.55 240.414+0.71  239.76 £0.77  239.52  239.38
5
C | 231.39+0.37 231.56£0.41 231.43 231.48 239.84 +0.38  239.76 £ 0.41  239.59  239.72
+0.10 +0.11
D 231.42 +0.21 231.56 4+ 0.23 231.45 231.47 239.48 4+ 0.20 239.71 +0.23 239.61 239.64
A | 97.13+1.10  97.55+1.07  95.86  95.91 98.29 +£1.05  99.50 +£1.10  97.99  98.25
95.81 97.98
10 B | 96.23+0.73  97.07+0.78  95.86  95.88 08.58 £0.74  98.62+0.78  98.01  98.78
C | 95.65+0.39  95.81+0.42 9587  95.89 98.12+0.40  97.78 +£0.43  98.01  98.01
+0.08 +0.09
D | 95.88+0.23  95.84+0.24 9587  95.86 97.93+0.23  97.95+0.24  98.01  98.00
A | 31.84+1.17  31.8441.23  30.71  30.68 31.39+1.20  32.06+1.27  31.18  31.26
30.57 31.05
B | 31.42+0.84  31.784+0.90  30.64  30.60 31.69 +£0.85  31.12+0.90  31.11  31.13
20
C | 30.534+0.45  30.99+0.47  30.63  30.63 31.02+0.45  31.04+0.50  31.10  31.09
+0.06 +0.07
D | 30.73+0.26  30.61+0.27  30.63  30.63 31.47+£0.26  31.10+0.27  31.09  31.08
LO% 1y Test 2: Relative Errors (error/time) a
P\ —e —HMC
0.8% | \\ —B— SMC
HMC SMC HPDE APDE [ --¢--HPDE
: \ - 4--APDE
A 30's 30 s 30 s 31s 5 06% 11 \
B 122 s 118 s 121 s 120 s = l !
4% N
C 486 s 477 s 483 s 479 s N, \\
AN
D 1951s 1924 s 1956 s 1939 s 907, N
0.2%
Ve —
E— S St = >
O-P--m=m=m==" === - =g
0.0% ——————————— =

Table 4.18: Test 2.

417

2000 Time (s)

In the first Table, the fair fee ay in bp for the Heston model, with annual
or six-monthly withdrawal. In the second Table the run times for the case WF =1, T, = 10.
Finally, the plot of relative error (w.r.t. BM value) for the four methods in the same case of
run-times Table. The parameters used for this test are available in Table [£.13] and in Table
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T | WF=1 WF=2
5 200 200
10 100 100
20 50 50

Table 4.19: The «, values used for Delta calculation in the Static BS HW case (bp).

T WF =1 WF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 6212+ 4 6214+ 3 6213 6212 6178 £ 4 6180+ 4 6181 6180
6213 6180
B | 6213+ 3 6213+ 1 6213 6213 6180+ 3 6180+ 2 6180 6180
5
C | 6211+ 1 6213+ 1 6213 6213 6179+ 1 6180+ 1 6180 6180
+1 +1
D | 6213+ 0 6213+ 1 6213 6213 6179+ 1 6180+ 1 6180 6180
A | 7153+ 7 71544 6 7155 7153 7138+ 7 7129+ 8 7133 7127
7154 7132
B | 71554+ 5 71524 3 7154 7154 7134+ 5 7132+ 4 7132 7131
10
C | 71524+ 3 7153+ 1 7154 7154 7132+ 3 7131+ 2 7132 7131
+1 +1
D | 7157+ 2 71544 1 7154 7154 7133+ 2 7131+ 1 7132 7131
A | 8018+ 16 8010+ 13 8017 8008 8010 £20 8005 = 20 8005 7995
8016 8004
B | 8023+ 11 8016+ 7 8017 8014 8014 + 14 8005 =+ 10 8005 8002
20
C | 8025+ 6 8013+ 3 8016 8015 8013+ 7 8002+ 4 8004 8003
+1 +1
D | 8020+ 3 8015+ 1 8016 8015 8007+ 4 8001+ 2 8004 8003

Table 4.20: Test 3. Delta calculation for the Static BS HW case. All results must be multiplied
by 10~%. The parameters used for this test are available in Table 4.13] and in Table .
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T, | WF=1 WF =2
5 250 250
10 100 100
20 50 50

Table 4.21: The a4 values used for Delta calculation in the Static Heston case (bp).

T WF =1 WF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 61324+ 4 6141+ 5 6132 6131 6101+ 5 6107+ 5 6099 6098
6131 6098
B | 61344+ 3 6136+ 3 6131 6131 6101+ 3 6104+ 3 6098 6098
5
C | 6131+ 2 61314+ 2 6131 6131 6099 £ 2 6097 £ 2 6098 6098
+1 +1
D | 6131+ 1 6131+ 1 6131 6131 6098+ 1 6098+ 1 6098 6098
A | 7287+ 8 7207+ 9 7286 7284 7277+ 9 7273+ 9 7263 7261
7285 7262
B | 72804+ 6 7287+ 6 7285 7284 7266+ 6 7269+ 6 7262 7263
10
C | 7287+ 3 7287+ 3 7284 7284 7264+ 3 7262+ 3 7262 7262
+1 +1
D | 7285+ 2 72874 2 7284 7284 7263+ 2 7264+ 2 7262 7262
A | 8051+£19 8084+ 19 8059 8058 8048 19 8053 & 19 8048 8045
8056 8047
B | 8067+ 13 8074+ 14 8058 8056 8055 + 13 8072+ 14 8047 8045
20
C | 8060+ 7 8068+ 7 8057 8056 8050+ 7 8047+ 8 8046 8045
+1 +1
D | 8060+ 4 8063+ 4 8057 8056 8051+ 4 8048+ 4 8046 8045

Table 4.22: Test 3. Delta calculation for the Static Heston case. All results must be multiplied
by 10~*. The parameters used for this test are available in Table and in Table .
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WF =1 WF =2
PDE MC Ch.Fo. PDE MC Ch.Fo.
5 | 248.33 247.75+1.39 n.c. 258.20 257.32£1.42 n.c.
10 | 129.18 128.58 £1.08 129.10 | 133.60 133.09+1.11 133.52
20 | 66.42 66.20 £ 0.89 n.c. 68.59 68.52 £1.29 n.c.

T,

Table 4.23: Fair bp values of a4 in Black Scholes model, for Dynamic GMWB-CF with the
same parameters as in [I3]. The values that aren’t available in [13] (not computed) are denoted
by “n.c.” .

4.5.3 Dynamic Withdrawal for GMWB-CF

In the Dynamic withdrawal case we suppose the PH to chose at each event time how much
withdraw, in order to maximize his (her) gain (optimal withdrawal).

The Static Tests 4 and 5 are inspired by [I3]: in their article, Chen and Forsyth price a
GMWB contract in a optimal withdrawal framework, under the Black Scholes model. First we
priced their product for different maturities and withdrawal rates, assuming optimal withdrawals
in Black and Scholes model to get a reference price in this model; we got the « value using both
a Regression by Lines Monte Carlo method and a standard PDE method. As we got the good
values for the simple Black-Scholes model, then we add stochastic interest rate and stochastic
volatility. Model parameters are available in Table , and the values of o that we got are
given in Table £.23]

We remark that we used the Full Regression algorithm for the calculation of the MC prices
(case A, B, C, D for SMC and HMC): this method is quite fast, however the results quality is
low.

Conversely, we used the Regression by Lines algorithm to calculate the benchmarks (BM):
this algorithm is much more time demanding than the Full Regression, but its results are higher,
proving that the regression performs better and the PH, using this approach, can have a better
payoff. Moreover, this method performed very well in the Black-Scholes model, and we used it
to fill Table We tried to use Regression by Lines algorithm also for cases A, B, C, D but
we didn’t get good results, because of the short run time available (max 30 mins).

For benchmarks calculation, we used 4 degree polynomials with 105 scenarios (doubled by
the antithetic variables technique), excluding the case To = 20, WF = 2 where we used half
scenarios: the time needed to perform these calculations (two secant steps around the value of
case D of HPDE) varies from 30 minutes (case 7o =5 , WF = 1) to 38 hours (case Ty = 20,
WEF =2).

We would remark that, using PDE method for the Black Scholes model, we obtained the
same values as in [13] (only two values are available in Chen and Forsyth’s paper), but MC
method (Regression by Lines) had a few problems (lower values): the least squares regression
doesn’t work very well and this problem is stiff for MC methods (see Table . We can
therefore imagine that the MC methods will have difficulties also in the following tests, in
which a dimension is added.
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4.5.3.1 Test 4: Dynamic GMWB-CF in the Black-Scholes Hull-White Model

Test 4 is the Dynamic case of Test 1. Model parameters are shown in Table Results
are available in Table In this test PDE methods proved to be much more efficient than
MC ones. In fact MC methods use a least-squares regression approach to find the optimal
withdrawal: this method needs a lot of scenarios to approximate through the regression the
value of the policy for a given set of variable, and this is time demanding. Then, working at
fixed time, we could perform fewer scenarios than the Static case. PDE methods felt another
problem: the increase of problem dimension forced us to reduce the number of time steps wrt
Static case. Using MC methods, we always got lower values with regard to PDE methods, and
moreover MC values increased by several bps when moving from configuration A to D.

The two MC methods proved to be equivalent: the differences in scenarios generation run-
time are negligible because most of the time is spent in finding the best withdrawal. The
HPDE method gave good and stable results, while APDE had more troubles, with results
floating around the good values. Then, the HPDE method proved to be the best one according
to the results of this test.

The case (To, WF') = (20,2) proved to be very insidious: the long maturity and the large
number of withdrawal dates (40 event times) made the problem hard also for PDE methods. In
this case MC methods in configuration A also gave lower values than Static approach (18.64 bp
vs 25.20 bp): due to the few scenarios considered, the least squares regression failed to increase
PH’s gain.

4.5.3.2 Test 5: Dynamic GMWB-CF in the Heston Model

Test 5 is the Dynamic case of Test 2. Model parameters are shown in Table £.17] Results are
available in Table

In this test things are similar to Test 4, but the optimization problem seemed to be easier
than in Test 4: MC methods converged better, especially when using high level configurations.
PDE methods behaved good as usual, and in this case they proved to be almost equivalent:
they both gave good results except for the case (T, WF) = (20,2) where the initial results
of APDE were too high. The two MC methods proved to be equivalent. We note that, in
the Heston model case, Dynamic strategy increased the value of o, less than in BS HW case:
probably, playing on interest rate lets the PH gain more than playing on volatility.

The case (T2, WF') = (20, 2) is still the most insidious, but this time we didn’t get any value
lower than the Static value of ay.

4.5.3.3 Test 6: Hedging for Dynamic GMWB-CF

Test 6 is the Dynamic case of Test 3. Results are available in Table {.27]

In this test we got good results with PDE methods: values of HPDE are very regular despite
the high dimension of the problem. Results from APDE are good, but a bit worse than HPDE
especially in BS HW case (see for example case (T>, WF) = (20,2)). Monte Carlo methods
suffered the few scenarios performed and sometimes the confidence interval is very large. In the
case (To, WF') = (20,2) we also got some convergence problems in the BS HW model.
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4.5.3.4 Optimal Withdrawal Strategy Plots for Dynamic GMWB-CF

In Figure and [4.5.2] we calculated the optimal withdrawal for the GMWB-CF product with
(To, WF) = (10, 1) for both the BS HW model and Heston model. We used HPDE methods to
obtain these plots: we chose three nodes of the tree around the initial value at time ¢ = 1 and
we used the best withdrawals to get these plots.

We remark that these plots are very similar to those proposed in [13]: we note the same
structure around the bisector and the wide region of regular withdrawal.
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WF =1 WF =2
Ts
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 226.224+3.04 223.884+2.73 282.19 278.25 244.75+5.85  242.09+£5.78  320.54  313.90
282.00 319.00
5 B 255.42 + 2.36 256.27 + 2.25 282.24 276.29 277.53 £ 5.15 275.53 £ 5.12 320.44 320.59
C | 266.97+1.71 265.12+1.65 282.28  280.55 310.22 +3.58  308.76 £3.67  320.35  320.14
+1.54 +1.69
D | 275.834+1.31 272.62+1.23  282.32  282.63 312.12+2.82  311.16+2.72  320.33  320.73
A 128.40 4+ 4.58 130.58 +4.01 163.54 160.38 142.01 + 141.73 + 194.56 192.57
162.51 186.42
11.54 10.55
10
B | 144.1243.81 145.35+3.71  163.03  157.76 146.20 + 5.09  149.63 +£4.95  190.76  190.90
C | 155.56+2.72 155.54+£2.80 162.92 159.72 165.58 +3.97  169.64 +3.87  189.66  188.87
+1.23 +1.39
D | 156.97+1.99 155.34 £2.02  162.86  157.37 182,37 +3.31  180.42+3.16  189.47  188.24
A | 65.58 +4.45 65.77 + 5.52 90.67  62.10 92.16 +24.50  18.64+21.96  109.26  13.72
84.01 98.96
B | 65.50+3.13 67.69 &+ 3.57  86.92 87.53 80.34 +£12.31  79.69+19.48  106.77  31.67
20
C | 75.87+2.72 76.31 +£2.67  86.11 86.42 84.79 + 6.22 83.28 +5.10  106.04  71.80
+1.03 +1.64
D | 78.89+214 81.15+2.44  85.73  85.75 89.68 + 4.30 92.43 +4.15  104.49  95.82
12.0% * Test 4: Relative Errors (error/time) o
]\ —e—INIC
10.0% W e S\
\ -
HMC SMC HPDE APDE 8.0% \. --¢--HPDE
) . - 4--APDE
A 29 s 31s 31s 30 s 5 \
26.0% X
B 121 s 124 s 121 s 123 s =
) A S I -
c 484 s 484 s 489 s 474 s 0% | T T = S
———e
D | 1881s 1927s 1899 s 1901 s , =~ N emmmmmm T
2.0% St e
AT T—
0.0% B
0 500 1000 1500 2000 Time (s)

Table 4.24: Test 4. In the first Table, the fair fee oy in bp for the Black-Scholes Hull-White
model, with annual or six-monthly withdrawal. In the second Table the run times for the case
WF =1, T, =10. Finally, the plot of relative error (w.r.t. BM value) for the four methods in
the same case of run-times Table. The parameters used for this test are available in Table [£.13]
and in Table [4.15]
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WF =1 WF =2
T
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A | 238.42+2.36 238.87+2.38  246.27  246.33 242.33 +4.37  245.93+4.46  255.51  256.10
246.45 255.20
5 B | 237.80+£1.49 24029+ 1.50  246.58  246.44 244.68 +2.93  246.49 £2.96  256.62  256.43
C | 242.33+1.09 242.95+1.08 246.62  246.66 248.81 +2.21  250.94+2.21  256.67  256.27
+1.07 +1.10
D | 243.4240.79  243.08 £0.77  246.64  246.68 253.06 + 1.56  251.79 4+ 1.58  256.70  256.31
A | 125.77+£4.03 123.424+4.05 133.70  133.92 132.71 4 12.0 119.84 + 137.85  146.61
133.72 137.00
11.10
10
B | 126.16+2.47 126.92+2.51 133.89  133.91 118.80 +4.59  122.60 +£4.57  138.12  139.39
C | 129.474+1.76 130.41+1.73  133.98  133.96 125.17 £3.07  124.11+2.97  138.29  138.36
+0.86 +0.87
D | 132804+ 1.21 132.36+1.22  134.02  133.99 130.63 +2.25  130.27 £2.32  138.41  138.35
A | 37.68+11.94 37.46+9.74  72.25  74.11 82.48 +26.34  61.22+28.49  74.54  99.35
69.35 71.82
B | 64.51+3.84 69.22 +2.44  71.05  72.30 70.71 4+ 7.75 67.08 +£8.48  73.00  86.01
20
C | 66.85+3.19 66.13 +2.47  71.12  T7T1.57 65.25 + 3.40 66.50 & 4.05  73.12  77.08
+0.72 +1.05
D | 64.18+2.55 66.88 +2.18  71.15  71.69 61.27 + 2.56 62.16 +2.77  73.24  74.60
12.0% Test 5: Relative Errors (error/time) o
—e —HMC
9
10.0% —m SMC
HMC SMC HPDE APDE 8.0% -~ &--HPDE
: R - A~ APDL
A 32's 32's 29 s 30 s 5 \
26.0% e
B 123s 1245 1225 118s R N
NN
C 483 s 475 s 474 s 495 5 1.0% NG
N
e . _
D | 1903s 18825 1923 s 1947 s =
2.0% TT s
===
A e
0 500 1000 1500 2000 Time (s)

Table 4.25: Test 5. In the first Table, the fair fee oy in bp for the Heston model, with annual
or six-monthly withdrawal. In the second Table the run times for the case WF =1, Tb = 10.
Finally, the plot of relative error (w.r.t. BM value) for the four methods in the same case of
run-times Table. The parameters used for this test are available in Table [£.I3] and in Table

AI17
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T, | WF=1 WF =2
5 350 350
10 200 200
20 150 150

Table 4.26: The ay values used for Delta calculation in the Dynamic BS HW case (bp).

T WF =1 WF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A 4986 + 311 4790 + 310 4474 4465 4753 £ 537 4117 + 429 4191 4187
4514 4181
B 4455 + 171 4443 + 179 4477 4469 4220 + 182 4362 + 222 4196 4191
5
C 4385 + 130 4420 + 122 4478 4473 4057 £ 196 3987 £ 170 4198 4195
+62 +68
D 4319 + 103 4432 + 94 4478 4476 4158 + 167 4235 + 170 4198 4198
A 4734 + 656 5152 + 543 4630 4625 4612 4+ 946 3881 + 817 4270 4325
4593 4291
10 B 4577 £ 320 4367 + 307 4636 4616 4628 + 460 3846 + 362 4296 4316
C 4665 + 259 4548 + 240 4639 4631 3898 + 310 4122 + 303 4304 4300
+112 +123
D 4517 £ 178 4537 £ 175 4639 4635 4492 + 329 4201 + 276 4306 4304
A 4053 + 302 4223 + 112 4129 4149 4152 £ 150 4037 + 144 3639 4062
4083 3857
B 4370 + 105 4253 + 108 4153 4118 4095 + 74 4039 + 68 3752 3924
20
C 4046 + 332 4011 + 326 4157 4150 4078 £ 72 4049 £ 60 3766 3803
+143 +211
D 3980 + 268 3857 + 242 4157 4145 3434 + 294 3659 + 332 3780 3798

Table 4.27: Test 6. Delta calculation for the Dynamic BS HW case. All results must be
multiplied by 10™*. The parameters used for this test are available in Table |4.13] and in
Table .17



134 Pricing and Hedging GMWB

T, | WF=1 WF=2
5 300 300
10 150 150
20 100 100

Table 4.28: The ay values used for Delta calculation in the Dynamic Heston case (bp).

T WF =1 WF =2
2
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
A 5732+ 40 5727 &+ 26 5629 5631 5878 &+ 97 5803 + 62 5571 5577
5637 5599
B 5715 + 28 5699 + 27 5628 5630 5678 & 88 5603 + 78 5570 5572
5
C 5614 + 49 5668 & 66 5628 5629 5674 + 122 5635 + 78 5570 5570
+26 +25
D 5607 + 44 5653 + 55 5628 5628 5695 4+ 103 5618 + 63 5569 5570
A 6082 + 179 6103 4+ 157 6007 6009 6918 + 712 6083 + 392 5938 5915
5983 5914
10 B 5949 + 133 5886 + 125 6006 6007 6225 + 263 6058 + 142 5936 5942
C 5909 + 117 6062 + 136 6005 6006 5779 4+ 151 6026 + 116 5936 5939
+58 +55
D 6008 + 113 6059 &+ 97 6004 6005 5980 £ 121 5840 + 114 5936 5937
A 5604 + 480 5658 1 383 5636 5644 4162 + 987 5886 + 831 5540 5122
5635 5343
B 5428 + 405 5855 + 433 5635 5642 5056 + 362 5543 4 437 5540 5382
20
C 5410 + 297 5571 4 206 5635 5640 5421 £ 306 5297 + 369 5542 5543
+126 +174
D 5734 + 213 5571 4+ 199 5635 5638 5379 + 226 5416 + 198 5543 5550

Table 4.29: Test 6. Delta calculation for the Dynamic Heston case. All results must be
multiplied by 1074, The parameters used for this test are available in Table and
in Table E17
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Figure 4.5.1: Plots of the optimal withdrawals at time ¢t = 1 for the BS HW model according
to different values of r1: from the top to the bottom r; = 0.03, 1 = 0.05 and r; = 0.07. The
parameters used to obtain these plots are the same as for Delta calculation for case To = 10,

WDF = 1: see Tables [£.13] [£.15] and [.26] .
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Figure 4.5.2: Plots of the optimal withdrawals at time ¢ = 1 for the Heston model according
to different values of the volatility vi: from the top to the bottom vy = 0, v1 = 0.04 and

v1 = 0.16. The parameters used to obtain these plots are the same as for Delta calculation for
case Ty = 10, WDF = 1: see Tables [£.13] .17 and [.28]
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Contract times (T1,Tb) (0,25) or (10,25) auw ¢ mePin]
Withdrawal Frequency W F 1 Year m 1.0
Initial account value Ag 100.0 So 100.0
Initial Premium 100.0 r 0.0325
Withdrawal penalty 0.10 o 0.30
PH’s behavior Static or Surrendering Mortality OFF
Table 4.30: Parameters used by Yang and Dai in [46].
Static surrendering
(T, Tz)
PDE MC YD PDE MC YD
(0,25) 102.02 101.954+0.21 102 | 158.28 157.33£0.41 158

(10,25) | 254.01 253.994+0.16 170 | 305.35 305.26 +0.50 248

Table 4.31: Fair bp values of oy in Black Scholes model, for GMWB-YD with the same param-
eters as in [13].

4.5.4 Static Withdrawal and Optimal surrender for GMWB-YD

In the Static Withdrawal case we suppose the PH to withdrawal exactly at the guaranteed rate,
while in Optimal surrender case, the PH can stop the contract at each event time.

The Tests 7 and 8 are inspired by [46]: in their article, Yang and Dai price a GMWB
contract both in Static and Dynamic (optimal surrender) framework, under the Black Scholes
model. First we priced their products for different maturities and withdrawal rates, in Black
and Scholes model to get a reference price in this model and to compare our results with the
author’s ones. We used a standard Monte Carlo method and a standard PDE method for the
Black Scholes model. Then, we add stochastic volatility and stochastic interest rate. Model
parameters are available in Table and the values of oy that we got are given in Table [d.31]

We dealt with four numerical cases: deferred or not and Static behavior or Surrendering.

We note that using different methods (a simple Monte Carlo approach, and a PDE method
for the Black-Scholes model) we didn’t obtain the same results of Yang and Dai in the case
(Th,T2) = (10,25). Probably we misunderstood some contract specifications about the deferred
case. We priced those products both using similarity reduction (see Section and without,
obtaining the same results. We would remark that Yang and Dai didn’t use this technique for
their product.

4.5.4.1 Test 7: GMWB-YD in the Black-Scholes Hull-White Model

In the conclusion of their paper [46], Yang and Dai proposed themselves to evaluate their
contract including stochastic interest rate. That’s what we do in this Chapter, and in Test 7 we
present some numerical results about GMWB-YD pricing. Contract specifications are shown
in Table model parameters in Table and the fair values of o in Table .33

All four numerical methods behaved well in the Static case, but PDE methods outperformed
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the others. Thing are different in the surrendering case: the Longstaff Schwartz method showed
its limits: in the BS HW model the underlying and thus the account value can diffuse so much
in 25 years and the regression over such a wide set of values is stiff. PDE methods proved to
be reliable and stable, especially in case (T1,72) = (0,25) where 25 regressions are required.

4.5.4.2 Test 8 GMWB-YD in the Heston Model

After pricing the GMWB-CF product in the BS and BS HW model, then we did it in the
Heston model. Contract specifications are shown in Table [4.30] model parameters in Table {.34]
and the fair values of a4 in Table

Like the previous test, all four numerical methods behaved well in the Static case; HPDE
and APDE outperformed the others and proved to be equivalent in that framework. In this test,
numerical results of MC methods for the surrendering case are good: probably, the least square
regression is easier in the Heston case. Moreover, results in the (77, 7) = (10, 25) case are very
good: in this case, the Longstaff-Schwartz algorithm requires only 15 numerical regressions and
we can simulate more scenarios than in the other case.
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So r curve k w p o
100 | 0.0325 flat 1.0 0.2 -0.5 | 0.30
Table 4.32: The model parameters about Test 7.
Static Surrendering
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM
(T1,T2) = (0,25)

A 83.11 £ 3.55 81.30 + 2.70 80.79 80.62 94.94 + 5.28 89.98 4+ 4.34 96.04 95.98
80.65 92.95

B 83.06 4 2.48 80.05 4+ 1.28 80.71 80.71 89.12 4+ 2.20 91.75 + 1.84 95.50 96.04

C 82.49 + 1.69 80.62 + 0.57 80.71 80.72 89.55 + 1.45 91.79 + 1.34 95.52 96.08
+0.20 +0.78

D 81.48 + 0.75 80.80 4 0.28 80.70 80.72 89.60 4+ 1.10 90.22 £ 1.11 95.53 96.09

(T1,T2) = (10, 25)

A 213.24 + 3.05 210.58 + 2.28 210.40 210.91 242.15 + 6.44 233.16 + 5.58 242.38 242.86
210.76 241.41

B 212.68 +£2.13 210.47 £1.11 210.67 210.99 244.06 + 3.38 239.25 + 2.86 242.83 243.12

C 212.45 + 1.44 210.72 £+ 0.49 210.74 210.89 238.66 + 2.02 239.37 + 1.67 242.94 243.07
+0.17 +0.93

D 211.49 + 0.66 210.73 £ 0.25 210.75 210.84 241.61 £+ 1.29 239.75 + 1.27 242.97 243.04

Table 4.33: Test

7. The fair fee a4 in bp for the BS HW model, with Static withdrawal or

Surrendering option. The parameters used for this test are available in Table and in Table

4.2
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So Vo 0 k w p r
100 | 0.30> 0.30° 1.0 0.2 —0.5 | 0.0325

Table 4.34: The model parameters about Test 8.

Static Surrendering
HMC SMC HPDE APDE BM HMC SMC HPDE APDE BM

(Ty,T») = (0,25)

A | 104194343 104.494+3.64 101.17  101.10 14275 £4.67 14041 £4.60 145.58 145.86

100.71 143.71
B | 101.04£2.36 102.43+£2.62 101.07 101.07 139.92 £2.97 138.92£2.82 14548  145.80
C | 101.494+1.30 102.19+1.42 101.07  101.08 141.57 £ 1.55  140.22+1.61  145.61  145.78

+0.52 +0.57
D | 101.454£0.75 101.0540.80 101.07 101.08 142,04 £1.05 142.41£1.08 145.62 145.77

(T1,T2) = (10,25)

A | 24657+£2.70  248.46£2.90  244.67  244.45 280.93£5.33  286.79£5.31  286.20  286.11

244.52 286.39
B | 24551£1.90 248.0442.11 244.76  244.68 285.72£2.73  286.46 £2.88  286.46  286.42
C | 245.314£1.03  245.75+£1.14  244.80  244.78 286.67+1.70  285.034+1.72  286.56  286.52

+0.41 +0.65
D | 245424060 24518 40.65 244.81  244.80 286.54 +1.01  286.41+1.01  286.57  286.60

Table 4.35: Test 8. The fair fee oy in bp for the Heston model, with Static withdrawal or
Surrendering option. The parameters used for this test are available in Table and in Table
434
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4.6 Conclusions

In this Chapter we have developed four numerical methods to price two versions of GMWB con-
tracts under different conditions. Regarding the stochastic model, both stochastic interest rate
and stochastic volatility effects have been considered. Regarding the policy holder’s behavior,
both static and dynamic strategy have been considered.

Since GMWB variable annuities are such a long maturity products, the effects of stochastic
interest rate and stochastic volatility cannot be overlook. In particular, the impact of stochastic
interest rate seems to be more relevant.

All four methods gave compatible results both for pricing and delta calculation. The fair
hedging fee (i.e. the cost of maintaining the replicating portfolio) is determined using a sequence
of parameters refinements. The PDE methods proved to be not very expensive, while MC
methods proved to be more expensive. The Hybrid PDE seemed to be the more performing
than the others for its convergence speed and stability of results. Also ADI PDE behaved very
well but the implementation was a little harder than Hybrid PDE one; moreover the choice
of the good parameters for ADI PDE was a source of troubles. In the BS HW model case,
Standard MC, thanks to its exact simulation, outperformed the hybrid method while, in the
Heston model case, the MC methods proved to be roughly equivalent, even if the Hybrid MC
was easier to be implemented.

As we said before, PDE methods proved to be much more efficient than MC methods,
especially in Dynamic case where it’s much more simple to implement the optimal withdrawal
choice. In the GMWB-YD case, similarity reduction reduces the dimension of the problem to
two and therefore PDE methods perform very well. In the GMWB-CF case similarity reduction
cannot be applied and therefore pricing is an harder task, especially in the case of six-monthly
withdrawal and 20 years maturity. Anyway, we have to remark that MC methods offer a
confidence interval for results, they are useful in risk measures calculation (for example VAR or
ES), and they are preferred by insurance companies because of their attachment to the concept
of scenario.

The use of special numerical techniques (splines, improved LS convergence) allowed to ensure
the convergence containing the computational time.

A future development that could be treated is to combine stochastic interest rate and
stochastic volatility: the combined model could be an element of greater realism.

We conclude by pointing out that our methods are quite flexible in that they can accommo-
date a wide variety of policy holder withdrawal strategies such as ones derived from utility-based
models.
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Appendix A

Proof of the formulas in 3.4.1.2

We remark that DB and MF denote the average (w.r.t. the death year) value of the discounted
death benefit and management fees paid in [t;, t;+1], and discounted in ¢;.

CASE 1: DB paid at the end, Fees withdrawn at the end The death benefit is
paid at the end of the period and so it is equal to A%{tl. The fraction of the original PHs who
dies in [t;, ti+1] is equal to M (t;), so we get

ti
DB = M (t) e i rods g Stess s
-

Management fees are paid only by PHs still alive at time ¢;: this fraction is equal to R (¢;).
These fees are calculated on the account value at the end of the period. Therefore we get

MF =R (t;)e i ”dsAf*—S““ (1 — emaonddty Zm.
P8y, Qiot

CASE 2: DB paid at the end, Fees withdrawn continuously The formula for death
benefit is the same as before

DB = M (1) e K et e S i
i Sti

In this case the management fees are withdrawn continuously. We have shown that in this
case the value of the management fees paid in [¢;, ] follows the equation

t
t
F; :/ els rudue, - A.ds
t;

then we can easily get

A4+ tit1
MF=TR (tz) Oém% e fti TstStefOétot(tfti)dt
ti Jit;
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CASE 3: DB paid immediately, Fees withdrawn at the end If the death benefit
is paid immediately, then we can get its mean by integrating from ¢; to ;41

4+

DB = M()S

+1 .
[ e gt
t

To calculate the value in ¢; of the average management fees we have to distinguish two cases:
if the PH has die in [t;, t;11] or not. If he has died before t; , he pays no fees. If he is still alive in

. . — [t S
ti+1 the value of his fees is equal to e L TSdSA{Jr ;’t“ (1 — emwotAt) Qm gt a5 we computed

Qtot

—e
in case 1. Otherwise, if he has died in [t;, t;41], we have to integrate on the continuous density
of the death random variable the benefit paid at the death. We remark that we suppose that,
in this case, if the PH doesn’t survive, the fees are taken before the payment of the death ben-

A4+ ) ot
efit. Therefore, in this case we get M (t;) Qm i [fit1 g, (1 — emaerlt=t)) ¢ Joy e gy Finally,

atot St; Jt;

adding together the two parts, we get

A4+ tit1
MF = M(t;) Qi L/ S, (1 _ e—atot(t—ti)) e fw Tu dudt+
Qiot St Jy

i

Stz+1 (1 _ e_atotAt Om

R (t; - j},:Hl rads g4+ Zlits

+ ( +1)€ t; St,, Qtot

CASE 4: DB paid immediately, Fees withdrawn continuously The formula for
death benefit is the same as before

A4t iy e
DB =M (tz) ;T’-/t e ’;7 Tsdsste—awt(t_ti)dt

To calculate the value in ¢; of the average management fees we have to distinguish two cases:
if the PH has die in [t;,t;11] or not. If he has died before ¢; , he pays no fees. If he is still alive

ALt _
in t;41 the value of his fees is equal to o, <+ S ft”l ft s SSte_am(t_ti)dt , as we computed

in case 2. Otherwise, if he has died in [t;, tz+1] we have to integrate on the continuous density
of the death random variable the benefit paid at the death.We remark that we suppose that, in
this case, if the PH doesn’t survive, the fees are taken up to his death, and then no more. The
contribution from this case is equal to

bit1 - ['t rudu
/ Sie Jti "M (tz) dt =
t;

[ (o

= am U

ti Sti
i+1 )

Stz / / S, e Ctor(v=ti) o~ I i T ot

t
e ) T“d“Sue_a“’t(”_t")dv> e I, rudu p g (t;) dt

:am
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This is an integral of the following type

b x
|| rwayas
and it can be rewritten as

/;/ybf@)dxdy:/abf(y)(b—y) dy

tit1 s
o M (ti)/ Syeeor(s=ti) g Ji Tk (tiv1 —s)ds
t

%

Therefore

Finally we get

4+
Ay

tit1 ot ea
/ Stefatot(titi)e Jt,i T AU (ti+1 _ t) dt+
t.
AR e
+ R (tig1) m ; / e I reds G, e ator (t=t:) gy
ti Jt

i
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