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Triple negative breast cancers (TNBC) are an aggressive group of tumors prone to 

recurrence, metastasis and become resistant to chemotherapy - therefore finding novel 

targets for possible treatment is crucial. Interesting hallmark of these neoplasms is high 

mutation rate in TP53 loci reaching more than 50% of cases.TP53 is the most frequently 

mutated gene in human cancers. Mutations of TP53 have been established to contribute 

to carcinogenesis by causing the loss of the tumor suppressor activities and exerting 

dominant negative effects over the wild type allele as well as arming the mutant p53 

with novel oncogenic gain-of-function (GOF) properties. Until now, no universal 

mutant p53 gain-of-function program has been defined. 

 In this thesis I describe the identification of proteasome machinery as a common 

target of p53 missense mutants by multi-omic analyses (proteome, DNA-interactome 

and transcriptome). I show how the pathway is regulated at the transcriptional level by 

the cooperation of mutant p53 with transcription factors (TFs) among which NRF2 

(NFE2L2) - the master regulator of oxidative stress response - was discovered as the 

common interactor of all investigated p53 mutant variants. Upregulation of proteasome 

activity by p53 GOF mutants allows the TNBC cells to foster the chemoresistance to 

proteasome inhibitors. Aiming the p53 mutant proteins with mutant p53 targeting drugs 

(APR-246) gives the opportunity to blunt the activity of NRF2-mediated mechanism of 

an induced transcription of proteasome encoding genes in response to the treatment with 

proteasome inhibitors - known as the “bounce back response”.  

In summary, results of this thesis suggest that the combination of mutant p53 

targeting drugs together with proteasome inhibitors might be a promising therapeutic 

solution tailored for treating TNBC and other tumors where p53 is mutated. 
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Breast Cancer 

 

Cancer is a one of the leading cause of death worldwide, accounting for 8.2 million 

deaths in 2012 (World Cancer Report 2014). This multistep process of progressive 

changes leads to deregulation of various biological pathways in a normal cell and its 

subsequent tumor transformation. Six essential steps for sustaining tumor growth and 

metastatic capabilities must be achieved to allow the cancer cell to survive, proliferate 

and disseminate. These steps, termed “the hallmarks of cancer” consist of sustained 

proliferative signaling, evading growth suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis and activating invasion and metastasis 

(Hanahan & Weinberg 2000). In addition to these six hallmarks, tumor formation may 

benefit also from the inflammatory microenvironment (Mantovani 2009) and from 

changes in cell metabolism to sustain deregulated cell proliferation (Hanahan & 

Weinberg 2011).  

IARC (International Agency for Research on Cancer) pinpoints breast cancer as 

the most frequently diagnosed human cancer and as the disease that leads to the most 

women deaths worldwide. In recent years the decline in the death rates of breast cancer 

patients (especially women below the age of 50) is striking. This positive trend can be 

linked to an increased awareness, earlier and more precise detection and description as 

well as more advanced therapeutic approaches. The clinicopathological characteristics 

like: histopathological grade, size of the tumor, the involvement of lymph node and the 

expression of the estrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2) reported during the diagnosis allow to 

estimate an overall progression of the disease. However despite improved therapies and 

better diagnosis there are still challenges in the treatment of this complex and 

multilayered disease – mainly the resistance of various types of cancer to the therapies 

as well as difficulties in the detection and curing of the distant metastasis. At the 

molecular level, several distinct subtypes of breast cancer have been identified based on 

the gene expression profiling (Perou et al. 2000; Curtis et al. 2012) The most commonly 

used classification divides the breast cancer in six subtypes: luminal A, luminal B, 

http://www.iarc.fr/en/publications/books/wcr/wcr-order.php
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Her2, claudin low, basal-like breast cancer and normal (Perou et al. 2000; Prat et al. 

2010). More recently however analysis of large numbers of tumor samples as part of the 

METABRIC study identified 10 pathologically distinct subtypes of breast cancer 

(Curtis et al. 2012) . Representing about fifteen percent of total number of breast cancer 

cases the triple negative breast cancer (TNBC) (Oakman et al. 2010) is a rough target 

for the molecular biomedicine studies due to its aggressive biological characteristics and 

poor prognosis arising from absence of a standard therapy available for treatment 

(Gusterson 2009). TNBC is a heterogeneous group of aggressive tumors of mammary 

epithelial tissue that is characterized by the absence of three growth factors receptors: 

estrogen (ER), progesterone (PR) and EGF (HER2/ERBB2) (Turner et al. 2013).  

Interestingly the mutation in TP53 gene locus which - according to recent genome-wide 

studies - occurs in 50-60% of all TNBC cases and up to 80% of basal-like TNBCs 

making it a distinctive thus potentially targetable genomic trait of this type of tumor 

(Curtis et al. 2012; Shah et al. 2012). Basal-like and triple negative breast cancer are 

often considered synonymous, TNBC however represent most but not all cases of basal-

like breast cancer (Lehmann et al. 2011). In well-differentiated and hormone receptor 

positive subtypes TP53 mutations are usually uncommon unlike the HER2 and basal-

like tumors where they tend to be more prevalent (Rivlin et al. 2011).  

 

The p53 tumor suppressor pathway 

 

Deregulation of tumor suppressive genes is a common hallmark of cancer, 

hallmark in which p53 plays the central role. p53 is a potent transcription factor (TF) 

that in order to maintain the genetic stability on both transcriptional and non-

transcriptional levels, becomes activated in response to a wide range of stress stimuli as 

various as: γ-rays, UV light, DNA damage, hypoxia, ribonucleotide depletion or 

deregulated oncogenes (Murray-Zmijewski et al. 2008) (Fig. 1). Upon its activation and 

stabilization by intra- or extra- cellular factors, p53 coordinates complex response 

through a combination of post-translational modifications and interacting protein 

partners leading to the DNA repair, senescence, cell-cycle arrest, or apoptosis (Vousden 

& Prives 2009). Under unstressed conditions activities of p53 are blunted by 

degradation mechanism mediated mainly by MDM2 E3-ubiquitine ligase as well as 
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MDM4 (MDMX in humans) - protein belonging to the same E3 ligase family. Post-

translational modifications of both p53 and its E3 ligases MDM2/MDM4 induced by 

stress abolish interaction between p53 and MDM2/MDM4 leading to p53 accumulation 

and the enhancing its transcriptional activity (Toledo & Wahl 2006; Vousden & Prives 

2009).  

The family of p53 related factors contains two other proteins important for 

cellular homeostasis, p63 and p73 (Joerger et al. 2009). p63 and p73 that play a vital 

role in the development and  both possess tumor suppressive activities in human tumors 

(Murray-Zmijewski et al. 2008). Due to a partial structural homology, p53 family 

members have some overlapping functions mediated by the transactivation of common 

targets (Stiewe 2007). 

 

Gain of function of mutant p53 

 

Mutations in the TP53 loci occur with different frequency in various types of 

cancer, starting with 10% in hematopoietic malignancies, up to 96% in high grade 

ovarian serious carcinoma (Rivlin et al. 2011) overall making it the most commonly 

mutated tumor suppressor gene in human cancers (Kandoth et al. 2013). Majority of 

studies associate bad prognosis in various cancer types with the presence of mutated 

variant of p53. TP53 mutations are known mostly for their abilities to inactivate the 

oncosuppressive transcription factor properties of wild-type p53 protein - loss of 

function activities (LOF) (Walerych et al. 2015). Since p53 acts as a tetramer, an 

expression of p53 mutant variants allows them to exert a dominant negative (DN) effect 

over their wild-type counterpart, additionally arming cancer cells with novel oncogenic 

gain-of-function (GOF) activities (Freed-Pastor & Prives 2012; Walerych et al. 2012; 

Muller & Vousden 2013) (Fig. 2c). TP53 mutations in about 70% of cases are missense, 

most frequently they occur within the region encoding for the core DNA binding 

domain of the p53 protein (Petitjean et al. 2007) (Fig. 2a). Interestingly, although the 

range of missense mutations in TP53 counts more than 1,500 different amino-acid 

changes (Soussi 2011) some of the point mutations (termed: hotspot TP53 mutations) 

particularly targeting residues R273, R248, R175, and G245 of the p53 protein,  occur 

with a frequency higher in both sporadic tumors (together over 21% of total missense 
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mutations) as well as in individuals with the Li–Fraumeni syndrome (Walerych et al. 

2015) (Figure 2b). Li-Fraumeni syndrome (LFS) is a genetic disorder caused by 

inherited TP53 mutations that predispose carriers to an early-onset development of 

various cancers (Malkin 2011). In LFS wild-type TP53 allele is usually present, 

however in tumors it is likely to be inactivated (40-60% of the cases) (Varley 2003).  

This loss of heterozygosity (LOH) is a phenomenon occurring through various 

mechanisms of wild type p53 inactivation in humans and LFS mice models alike (Olive 

et al. 2004; Varley 2003). Interestingly, it was reported recently that in the embryonic 

stem cells from LFS mice it is the mutant allele that is lost, suggesting that a bi-

directional TP53 LOH process plays a role of cell-fate checkpoint and that there exists a 

selective pressure against the heterozygous TP53 state (Shetzer et al. 2014) . 

Hotspot changes in p53 are traditionally divided in two groups: “conformational 

mutants” - which disturb the correct folding of the core domain of p53, not allowing the 

p53 protein to bind the promoters of its target genes and the “DNA contact” mutations 

in residues that are responsible for directly binding DNA, with a near-native core 

domain structure (Bullock et al. 2000; Cho et al. 1994). As previously mentioned, the 

wild-type p53 is a short-lived protein whose levels are kept low in non-stressed 

conditions by the action of E3 ligase MDM2 leading to the wild type p53 protein 

ubiquitination and its subsequent degradation, however this negative feedback is 

abrogated in a tumor microenvironment and mutant p53 proteins are protected from 

degradation which results in their increased protein levels (Terzian et al. 2008). 

Importance of the accumulation of mutant p53 protein variants was underlined by the 

Li-Fraumeni mouse models where R172H KI mice (equivalent of human R175H p53 

missense mutant) crossed with MDM2
-/-

 mice resulted in a drastic shortening of mice 

survival and significant increase of mutant p53 protein levels (Lukashchuk & Vousden 

2007). Since the mutant p53 proteins are not intrinsically resistant to degradation, it is 

possible that tumor-associated stress which normally stabilizes wild-type p53 provokes 

a futile accumulation of mutant protein as well (Muller & Vousden 2013). Despite the 

fact that mutant p53 variants can still be ubiquitinated by MDM2 as well as other E3 

ligases and subsequently degraded by the proteasome, ubiquitination-dependent 

degradation can be counteracted in tumor cells by several mechanisms such as: 

stabilization of GOF p53 mutant proteins by binding to Hsp90 (Muller et al. 2008) or 
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the activities of upregulated p16INK4 (Zhang et al. 2006). Moreover, mutant p53 like 

its wild-type counterpart undergoes several post-translational modifications, that can 

affect its stability and function. For example the mutant p53 phosphorylation at Ser 392 

effects in its enhanced MDM2-mediated degradation and reduced transforming activity 

(Gillotin et al. 2010; Yap et al. 2004), while phosphorylation by JNK or PLK2 enhances 

mutant p53 oncogenic potential (Valenti et al. 2011; Girardini et al. 2011). The loss of 

tumor suppressive functions of the wild-type p53 counterpart is not the only advantage 

that the cancer cell acquires from the missense mutation in core domain of p53. GOF 

p53 mutants were linked to be the cause for an aberrant regulation of several cancer-

relevant pathways that include: DNA repair (Song et al. 2007), integrin recycling 

(Muller et al. 2009) regulation of mevalonate pathway and steroid synthesis (Freed-

Pastor et al. 2012), inactivation of tumor suppression mediated by p73/p63 (Agostino et 

al. 2008; Adorno et al. 2009), activation of the cell cycle drivers (Javier E Girardini et 

al. 2011; Di Agostino et al. 2006), the vitamin D3 receptor signaling (Stambolsky et al. 

2010), nucleotide biosynthesis (Kollareddy et al. 2015) or inhibition of oncosuppressive 

miRNA biogenesis (Garibaldi et al. 2016) (Fig. 3). Most of these tumorigenic activities 

of GOF p53 mutant variants are exerted by their direct impact on proteins through the 

interplay with a broad repertoire of interactors in the nucleus that significantly impact 

on the change of the gene expression (Girardini et al. 2014) and through some particular 

activities in the cytoplasm (Di Minin et al. 2014).   

 

Target binding site of mutant p53, similar to the one of wild-type p53, was not 

determined in any of available mutant p53 ChIP-sequencing data. Thus the 

transactivation of mutant p53 in the nucleus most likely occurs through the interaction 

with the help of other transcription factors like: NF-Y family members, SREBP 1 and 2, 

and ETS2 (Freed-Pastor et al. 2012; Di Agostino et al. 2006; Martinez 2016). The 

cytoplasm specific activities of GOF p53 mutant variants are somehow less 

investigated: their activities however are relevant for tumor progression and include 

regulation of the DAB2IP protein which affects TNFα- dependent signaling (Di Minin 

et al. 2014) as well as the regulation of activity of PARP and its localization (Polotskaia 

et al. 2015). 
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Mutant p53 knock-in (KI) mice studies underlined the significance of GOF p53 

mutant activities in tumor progression.  Presence of mutated protein p53 variants 

promotes the growth of the tumor with higher metastasis rate, moreover the tissue 

spectrum of these tumors is different than the one observed in the absence of wild-type 

p53 (Olive et al. 2004; Lang et al. 2004). These in vivo studies proved the initial 

observations of cell line models suggesting that mutant p53 missense variants may 

actively foster the cell transformation (Dittmer et al. 1993; Halevy et al. 1990). 

However Chen and colleagues in a study of KI mice with the R246S p53 mutant 

(R249S GOF p53 mutant in human that had been demonstrated to induce growth, 

chemoresistance, and a specific mutant p53 transcriptional program in several studies of 

human cell line based experiments (Yan & Chen 2010; Zhu et al. 2015)), showed no 

clear indication of its GOF oncogenic activities in vivo (Lee et al. 2012). This 

particularity indicated that mouse models despite being very informative may possess 

their own specific limitations and require a careful validation of their significance in 

human systems. 

 

GOF p53 mutant variants - one oncoprotein with shared, common program 

or various oncoproteins with unique activities? 

 

Only a minority of studies that would help to determine a common GOF 

program of different p53 mutant variants is based on mutant p53 KI mouse models. 

However  some major discoveries in the field were made with their help as for example: 

human TP53 KI “HupKI” mouse model that demonstrated the inhibitory role of mutant 

p53 on MRE11 protein and the induction of genomic instability (Song et al. 2007);  

mutant p53 dependent - transcription-based activation of PDGFRβ signaling in 

pancreatic cancer model (Weissmueller et al. 2014); the transcriptional activation of 

oncogenic Pla2g16 phospholipase by p53 mutant variants (Xiong et al. 2014), and the 

confirmation of previous cell-based observations of a mutant p53-mediated inhibition of 

the p63/p73 oncosuppressive activities (Olive et al. 2004; Lang et al. 2004). The LFS 

mouse-model-based studies underlined differences between GOF properties of different 

p53 mutants and among the consequences of TP53 mutations in human and in mouse.  
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Studies comparing the R270Hand R172H p53 proteins in KI mice and human 

counterparts of these p53 mutant variants – R273H and R175H – in patients with LFS 

reported however different tumor spectra confirming the notion that the GOF of p53 

mutants may in fact differ (Olive et al. 2004; Malkin 2011). 

Vast data collected through the 25 years of studies using single initial in vivo and 

in vitro models that led to the discovery of numerous pathways controlled by p53 

mutant variants, did not clarify whether these pathways have the same central role in 

diverse cellular contexts and are exerted by different GOF p53 mutant proteins in 

similar manner. Despite being profoundly investigated, the significance of oncogenic 

activities related to GOF p53 mutant variants are still concerned arguable by some 

researchers. Relevance of this issue is high - the lack of definition of the common gain-

of-function molecular mechanism rendered it difficult to propose a universal therapeutic 

approach tailored to the presence of mutant p53. Many studies that aimed at 

determining the common or specific GOF program of p53 mutants were based on an 

overexpression of multiple mutant p53 variants in a p53-null or wild-type p53 

background. Experiments performed in H1299 - p53-null background of non-small lung 

carcinoma cells demonstrated the role of mutant p53 variants in integrin recycling 

(Muller et al. 2009),  NF-κB signaling (Scian et al. 2005), and in the Warburg effect 

(Zhang et al. 2013) as well as a role of TopBP1 in the upstream regulation of mutant 

p53 (Liu et al. 2011). Interestingly Neilsen and colleagues showed that genes activated 

by mutant p53 largely overlap between overexpressed different p53 mutant variants in 

H1299 and, moreover, they often share promoter sequences with p63 and wild-type p53 

indicating that the promoter activation mediated by mutant p53 may be an aberrant 

representation of the interaction of wild-type p53 with transcription factors in normal 

cells (Neilsen et al. 2011). 

Overexpression of mutant p53 variants in cells of wild-type p53 background (as for 

example MCF10A - the normal breast epithelium cells) led to the dissection of a mutant 

p53 dependent regulation of the epithelial-to-mesenchymal transition (EMT) phenotype 

(Zhang et al. 2011) as well as the cooperation of mutant p53 with the Ras oncogenic 

program in WI-38 human embryonic lung fibroblasts (Solomon et al. 2012). Over the 

course of transformation, cell lines carrying endogenous TP53 mutations become 
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addicted to the presence of mutant p53 variants and its GOF activities. Frequently their 

growth or the abilities of migration and invasion are compromised upon mutant p53 

depletion (Bossi et al. 2006; Girardini et al. 2011; Di Minin et al. 2014; Zhu et al. 

2015). Conversely, p53-null and wild-type p53 cell lines are able to survive and 

proliferate without the presence of mutant p53, suggesting that likely the GOF program 

observed under such conditions only partially resembles the cancer-related one. 

The answer to the limitations of in-vivo/in-vitro systems may be the approach of initial 

analysis of different p53 mutants in their endogenous backgrounds. By comparing the 

downstream programs on both molecular and the phenotypic level it would be possible  

to address the question to what extent do the p53 mutants share one “core” oncogenic 

program, or if some of the mutants possess unique mode of actions.  

The existence of a common oncogenic program exerted by various GOF p53 mutant 

proteins has been suggested by a recent study of Zhu and colleagues which describes a 

DNA interaction pattern common for three distinct p53 GOF mutants endogenously 

present in different breast cancer cell lines: (Bt-549, HCC70, MDA-MB-468) by 

comparing it with the one obtained from two cell lines bearing wild-type p53 (MCF7 

and MDA-MB-175VII) (Zhu et al. 2015). Common DNA – mutant p53 interaction 

pattern pointed out the chromatin regulatory genes (MLL1 and MLL2) as the ones 

regulated by different mutants in their respective cellular backgrounds through their 

interplay with the transcription factor ETS2 - a well-established mutant p53 interactor 

(Martinez 2016). The relevance of  mutant p53/ETS2 cooperation has been confirmed 

as a general feature in several mutant p53 expressing cell lines and thanks to the 

transcriptional program perturbed, as a critical modulator of the chromatin modification 

(Zhu et al. 2015). 

Apparently this is only the beginning of a deeper understanding of both specific and 

general picture of mutant p53 GOF in cancer. In ordered to properly distinguish specific 

vs the common GOF p53 mutant program, the multiple cellular/cancer models have to 

be studied simultaneously in an unbiased, large-scale manner, by comparing the wider 

spectrum of mutant p53 variants, also including the non-hotspot mutations. Another 

important issue is how these discoveries could be transferred into clinical applications 
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Targeting the oncogenic GOF p53 mutants for cancer therapy 

 

The fact that the accumulation of mutant p53 proteins is observed in various 

tumors at high level and that TP53 is being one of the most frequently mutated genes in 

cancer creates a tempting opportunity to target it for more precise cancer therapy. 

Reactivation of oncosuppressive properties of wild-type p53 while blunting or 

eliminating the GOF activities of the mutant p53 could be an instrumental tool in the 

treatment of thousands cancer patients worldwide in more personalized clinical 

approach.  

First drugs developed in order to target mutant p53 proteins were the inhibitors 

of Hsp90, a molecular chaperone that plays role in creation of a multiprotein complex 

stabilizing the conformational GOF p53 mutant variants. Geldanamycin was the first 

Hsp90 inhibitor demonstrated to reduce the levels of p53 mutants as well as its nuclear 

translocation (Blagosklonny et al. 1996; Dasgupta & Momand 1997). Recently, a 

geldanamycin derivative 17-DMAG and a new generation of Hsp90 inhibitors – 

ganetespib were both shown to significantly increase the survival of mutant p53 KI 

mice (Alexandrova et al. 2015). Of note, other drugs like sodium butyrate (NaB) (Yan 

et al. 2013),  histone deacetylase inhibitor SAHA (Li et al. 2011) or arsenic compounds 

(Yan et al. 2014) were demonstrated to impinge on the stability of the mutant p53 

proteins in various cancer models. 

Another approach of targeting the oncogenic activities of GOF p53 mutant variants is to  

aim at the upstream oncogenic activators of p53 mutant proteins like ToBP1 (Liu et al. 

2011) or Pin1 (Girardini et al. 2011). By blocking the activities of mutant p53 upstream 

activators for example - Pin1 with ATRA (Wei et al. 2015) or TopBP1 with Calcein 

(Chowdhury et al. 2014) the GOF properties of p53 mutant variants are suppressed. 

Third and most clinically advanced strategy to specifically target, blunt and deactivate 

the oncogenic properties of GOF p53 mutant variants is the treatment with small 

molecules that reactivate the oncosuppressive potential of the wild-type p53 counterpart 

by restoring its proper folding and conformation and upregulating its transcriptional 

targets. A number of small peptides were reported to directly and efficiently target 

mutant p53 proteins (Guida et al. 2008; Selivanova et al. 1997). Although the promising 



15 

 

results in inhibiting the tumorigenic GOF activities of p53 mutants were reported, 

clinical potential of these peptide aptamers is not profoundly investigated. CP-31398 

was the first reported mutant p53 targeting micromolecule (Foster 1999) and after 15 

years from initial description is still considered to be a promising drug candidate (He et 

al. 2015). Recently Tal and coworkers reported the synthetization of a number of novel 

peptides that are able to restore the proper p53 folding and activity. Treatment of cancer 

cells with chosen peptides lead to a dramatic regression of aggressive tumors in mouse 

breast and ovarian xenograft models (Tal et al. 2016). 

 Among compounds restoring the wild type p53 activities like STIMA-1, MIRA, 

RITA-1 and others (Parrales & Iwakuma 2015) the best described and most studied 

mutant p53 reactivating drug however is PRIMA-1 (Bykov et al. 2002) and its more 

potent and less toxic derivative PRIMA - 1MET/APR-246 (Bykov & Wiman 2014). 

This molecule is able to bind directly and modify the thiol residues in mutant p53 

transforming it into a wild-type-like protein conformation (Lambert et al. 2009), thus 

allowing it to activate wild-type p53 transcriptional targets, such as NOXA, GADD45B, 

or CDKN1A (p21) inducing in vitro and in vivo cell cycle arrest or apoptosis in human 

cancer cells (Zache et al. 2008; Lambert et al. 2010).  

An important and surprisingly underscored strategy of mutant p53 targeting is 

the treatment based on the drugs that downregulate oncogenic pathways activated 

downstream of GOF p53 mutants. Mainly, by tailoring the therapy to target the 

pathways dependent on mutant p53, it is possible to induce apoptosis in cells bearing 

specifically mutant and not wild- type p53 variant. Examples of drugs that take 

advantage of cancer cell dependency to mutant p53 induced pathways are statins that 

inhibit the mevalonate pathway (Freed-Pastor et al. 2012), Imatinib targeting the 

PDGFRβ (Weissmueller et al. 2014), or COMAPSS complex inhibitors (Zhu et al. 

2015). The problem with application of the therapies based on mentioned drugs is that 

despite the results of their work are promising the limited knowledge of their 

performance in various mutant p53 context as well as the context of different genetic 

backgrounds contexts is making them difficult to apply.  

Another important drawback of mutant p53 tailored therapies is their long time 

before they could be used in clinics due to the fact that most of the therapies are still in 

an early stage of development (Parrales & Iwakuma 2015). Treatment of the TNBC 
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cells with mutant p53 or p53 deficiency status by Chk1 inhibitors gave promising 

results in both in vitro and in mice cells (Origanti et al. 2013; Ma et al. 2012), however 

they failed to show a significant improvement in human patients (Ma et al. 2013). 

Meanwhile some of the drugs that could potentially benefit patients bearing mutant p53 

variant like HDAC or Hsp90 inhibitors and statins, are currently involved in already 

ongoing clinical trials in cancer where mutant p53 status is not known or considered 

(Gonyeau 2014; Sidera & Patsavoudi 2014; West & Johnstone 2014). The only drug 

that directly targets GOF p53 mutant variants that reached the clinical stage is PRIMA-

1MET/APR-246. APR-246 successfully went through phase I/II clinical trial in 

hematological malignancies and prostate cancer involved patients bearing mutant p53.  

By combining drugs targeting mutant p53 directly and the ones that are able to 

downregulate pathways regulated by p53 mutant variants in cancer it is conceivable that 

the combination of the drugs might have an additional, beneficial effect in killing the 

cancer cells by decrease their responses involved in the compensation to the effects of 

the drugs and dosage toxicity. This synergistic or additive effects are observed in 

number of studies reporting combination of PRIMA-1 and APR-246 with 

chemotherapeutics like cisplatin (CDDP) and doxorubicin (andramicin) in effectively 

killing the mutant p53 bearing cancer cells (Bykov et al. 2005; Mohell et al. 2015) 

suggesting that also other compounds are worth being tested together with mutant p53 

targeting drugs, such as PRIMA-1MET/APR-246 (Fig. 4) 
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Proteasome 

 

The loss of the cell cycle checkpoint control is one of the hallmarks of tumor 

cells. Tumors lose their DNA replication fidelity and acquire an increased rate of 

genomic mutations as a result of enhanced lifespan and eventual immortality. This leads 

to an accumulation of large quantities of misfolded or aberrantly overexpressed proteins 

which potentially may be highly toxic to the cells. In order to respond to these 

microenvironmental challenges, tumors cells are able to upregulate their expression of 

proteasomes in order to get rid of misfolded, damaged or tumor-suppressor proteins 

(Grigoreva et al. 2015) (Fig. 5). Main role in maintaining the cellular homeostasis plays 

the ubiquitin-mediated targeting of misfolded proteins for 26S proteasomal degradation 

(UPS - ubiquitin-proteasome degradation system) (Ciechanover 2005). However 

degradation of tumor suppressors is not entirely controlled by polyubiquitination – there 

is a growing number of known cancer-relevant proteasome substrates that are degraded 

by the 20S proteasome without the necessity of being ubiquitinated (Ben-Nissan & 

Sharon 2014). Some studies indicate that even 20% of total cell protein content may be 

degraded without polyubiquitination (Baugh et al., 2009). The 26S proteasome is a 

complex protein degradation machinery with fourteen subunits constituting its catalytic 

20S core (encoded by genes PSMA1-7 and PSMB1-7), twenty subunits forming a 

regulatory 19S cap (encoded by PSMC/Rpt1-6 and PSMD/Rpn1-14) and three 

alternative core subunits defining an antigen peptide-processing immunoproteasome 

(Gu & Enenkel 2014) (Fig. 5). Unlike the yeast, where all the proteasome subunits 

encoding genes are controlled by protein Rpn-4 (Shirozu et al. 2015), the mammal 

proteasome transcriptional regulation is controversial. The regulation of the 

transcription of 19S and 20S proteasome was implied to be regulated by several 

transcription factors to different extent: like NF-YA (Xu et al. 2012), STAT3 (Vangala 

et al. 2014), NF-kB (Arlt et al. 2009) or CNC bZIP family of TFs NRF1/TCF11 (Koch 

et al. 2011) and NRF2 (Höhn & Grune 2014) (Fig. 6). It is now widely established that 

the UPS plays a critical role in regulating a wide variety of cellular pathways, including 

cell growth and proliferation, apoptosis, protein quality control, DNA repair, 

transcription, and immune response (Eldridge & O’Brien 2010). However defects in 



18 

 

UPS have been implicated in a number of human pathologies, most notably in cancer 

and neurodegenerative disease (Crawford et al. 2011). In cancer an increased 26S 

proteasome and immunoproteasome activity results in the degradation of tumor 

suppressor proteins, the knowledge of which has been limited mostly to cell cycle and 

apoptosis-related factors (Eldridge & O’Brien 2010). Proteasome inhibitors Bortezomib 

(1
st
 generation) and Carfilzomib (2

nd
 generation) are clinically approved for the multiple 

myeloma treatment, while their application in solid tumor therapies did not progress 

beyond clinical trials (Johnson, 2015). Although the proteasome may represent point of 

weakness of solid tumors (Nijhawan et al. 2012; Petrocca et al. 2013) and a number of 

studies suggest the therapeutic potential of proteasome inhibitors in these malignancies, 

a prevalence of resistance mechanisms was reported (Johnson 2015).  
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NRF2 

 

Maintaining redox homeostasis in living cells requires a constant availability of 

intracellular antioxidants. In aerobic conditions, cells are permanently exposed to the 

generation of reactive oxygen species (ROS) that can impact proteins, lipids, and DNA, 

playing a pathological role in the development of various human diseases and cancer. 

Therefore in response to the oxidative or nucleophilic stress and to maintain ROS at low 

physiological levels cells evolved an endogenous defense mechanisms. The core of this 

antioxidant response is NRF2 (NFE2-related factor or Nuclear factor (erythroid-derived 

2-like 2) (Gorrini et al. 2013). Ability to survive and adapt under conditions of 

inflammatory, oxidative and electrophilic stress relays on the expression of a complex 

network comprising nearly 500 genes that can be regulated by NRF2 encoding for 

proteins with different cytoprotective and antioxidant functions (Sporn et al. 2012).  

In the first 10 years since its discovery in 1994, NRF2 had been an obscure 

protein with numerous studies conducted by few research groups around the world that 

were focused on investigating its involvement in suppression of the oxidative and 

electrophilic stress and possible potential in inhibiting the tumorigenesis (Moi et al. 

1994; McMahon et al. 2001). With the understanding of the complex effects caused by 

the extrinsic and intrinsic insults such as: xenobiotics and oxidative stress, to the 

cellular homeostasis, the role of main cellular defense mechanism orchestrated by NRF2 

moved the oxidative stress response pathway from the backstage of molecular and cell 

biology research topics to its spotlight (Gorrini et al. 2013) counting 966 in 2014 and 

over 1200 publications reported in PubMed last year (2015). Over the years hundreds of 

studies worldwide started to link the role of NRF2 mediated cellular defense response 

with protection from many diseases in which oxidative and inflammatory stress are 

crucial for pathogenesis like: the neurodegenerative diseases, aging, inflammation, acute 

pulmonary injury, photo-oxidative stress, cardiovascular disease, diabetes, pulmonary 

fibrosis, as well as cancer (Jaramillo & Zhang 2013; Sporn et al. 2012; Hayes & 

Dinkova-Kostova 2014). Ample evidence established NRF2 as a pivotal player in 

regulating processes as diverse as proliferation, inflammation, apoptosis, cell 
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differentiation, tissue regeneration and metabolism (Wakabayashi et al. 2010) 

impinging on such important and well investigated pathways as NF-kB (Lee et al. 

2009), p53 (You et al. 2011; Bui & Shin 2011), mTOR (Shibata et al. 2010), NOTCH1 

(Wakabayashi et al. 2014), AP-1 (Kim et al. 2010) and proteasome (Kwak et al. 2003). 

These observations consolidated the role of NRF2 as key regulator of cellular 

homeostasis and main regulator of cell survival (Fig. 7). Recently however the dark side 

of NRF2 emerged, various cancers types were shown to hijack NRF2 pathway by 

upregulating its mRNA and protein levels or to enhance its transcriptional activity thus 

creating a favorable environment as well as increasing the cancer cell resistance to 

standard chemotherapeutic agents thus lowering overall survival of patients (Wang et al. 

2008). The role that this potent transcription factor plays in cellular homeostasis became 

a controversy. This dispute is important from the clinical point of view due to the fact 

that many chemotherapeutic approaches used to treat cancer or other diseases (ex. 

Sulphoraphane - SFN) as well as food preservatives (ex. tBHQ – tetr-Butyl 

hydroquinone) activate the NRF2 pathway in direct or indirect way. Opposite approach 

suggests that in various cancer types the inhibition of NRF2 (ex. Brusatol) pathway 

would be a tempting path for the treatment development to follow (Sporn et al. 2012; 

Jaramillo & Zhang 2013).  

NRF2 – the master regulator of oxidative stress response 

 

Encoded by Nfe2l2 gene NRF2 belongs to the Cap’n’Collar (CNC) basic leucine 

zipper (bZIP) transcription factors family (Moi et al. 1994) that comprises of NFE2-

related factors: NF-E2 p45,  NRF1/TCF11 (Nfe2l1), NRF2 (Nfe2l2), and NRF3 (Nfe2l3) 

(Chevillard & Blank 2011). NRF2 was cloned in the laboratory of Yuet Wai Kan and 

described as a protein that could bind a tandem repeat of the consensus site for AP-1 

(Transcription Factors Activating Protein 1) and NF-E2 (Nuclear Factor-Erythroid 2) 

(Moi et al. 1994). The function of NRF2 was not clear in the initial stage of research 

due to no evident phenotype of mice knock-out for NRF2 (Chan et al. 1996). NF-E2 

binding site however (5’-
A
/GTGA

C
/GTCAGCA-3’) shared by NRF2 with other family 

members closely resembles the Antioxidant/Electrophile Response Element 

(ARE/EpRE – 5’-TGACNNNGC-3’) (Rushmore et al. 1991; Friling et al. 1992). Based 

on sequence homology between ARE and MAF-recognition element (MRE), further 
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studies proved that small MAF and bZIP Cap’n’Collar transcription factors interact with 

ARE and both families heterodimerize on the gene promoters transactivating the genes 

responsible for oxidative stress response (Motohashi et al. 2004). In order to test the 

hypothesis that NRF2 controls enzymes involved in metabolism of the drugs in vivo, in 

a landmark study Itoh and colleagues revealed that induction of various GST subunits, 

as well as NQO1, by BHA (butylated hydroxyanisole) was greatly diminished in Nrf2
-/-

 

mice demonstrating the role that NRF2 plays in the oxidative stress response (Itoh et al. 

1997). As mentioned before NRF2 KO mice do not present an obvious phenotype 

however they possess markedly higher susceptibility to carcinogen-induced tumor 

development in various organs, including colon, skin, breast, bladder and liver 

(Jaramillo & Zhang 2013). Further studies established NRF2 as a master regulator of 

the expression of various Phase I/II drug-metabolizing enzymes, as well as the battery 

of multi- drug resistance associated protein (MRP) transporters: MRP2, MRP3, MRP4, 

and MRP5 (Sporn et al. 2012). However today an ample evidence supported by various 

high-throughput analyses established NRF2 to control pathways spreading wide beyond 

only the oxidative stress response and multi drug-resistance-associated proteins 

programs in both in health and the disease (Chorley et al. 2012; MacLeod et al. 2009; 

Malhotra et al. 2010; Hayes & Dinkova-Kostova 2014). For the list of genes reported to 

be regulated in NRF2 dependent manner see Tab. 1 modified after (Hayes & Dinkova-

Kostova 2014).   

 

Structure of NRF2 

 

NRF2 is composed of seven conserved NRF2-ECH homology (Nef) domains 

(Fig. 7). Nef1 contains the CnC-bZIP motif that facilitates the binding of NRF2 to the 

ARE sequences and heterodimerizes with small Maf proteins on the gene promoters 

(Itoh et al. 1997). This domain interacts with UbcM2, an E2 ubiquitin conjugating 

enzyme, which regulates the Nrf2 protein stability (Plafker et al. 2010). Nef1 controls 

the NRF2 mediated transcriptional activity by binding and subsequent acetylation of its 

multiple lysine residues by p300/CBP in response to the arsenite induced oxidative 

stress (Z. Sun et al. 2009). C-terminally oriented region Neh3 domain helps with NRF2 
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transactivation through the interaction with chromatin remodeling protein CHD6 (Nioi 

et al. 2005) and is the domain regulating NRF2 activity through 

acetylation/deacetylation events that shuttle NRF2 between the nucleus and the 

cytoplasm regulating HO-1 activity among oxidative stress response genes (Kawai et al. 

2011). Transactivation of ARE response genes is regulated also by domains Neh4 and 

Neh5 that are bound by CBP (Katoh et al. 2001) or nuclear cofactor RAC3 (Kim et al. 

2013). The redox-insensitive Neh6 domain contains DSGIS and DSAPGS motifs and 

regulates Nrf2 stability. Phosphorylation of the DSGIS motif by GSK-3β enhances the 

ability of β-TrCP to ubiquitinate NRF2 and promotes its rapid turnover (McMahon et al. 

2004; Chowdhry et al. 2013). Neh7 which is localized between Neh5 and Neh6 domain 

of NRF2 interacts with the retinoic acid receptor α (RARα) and is able to repress NRF2 

target gene expression (H. Wang et al. 2013).  

The best described and most profoundly investigated NRF2 domain is Neh2. 

Neh2,  located at the N- terminal end of the NRF2, is its major regulatory domain, that 

contains two motifs important for NRF2 stability (
29

DLG
31

 and 
79

ETGE
82 

motifs) 

divided by short linker sequence comprising seven lysine residues responsible for the 

conjugation of ubiquitin (McMahon et al. 2006). With 
29

DLG
31

 and 
79

ETGE
82 

 NRF2 

binds the KEAP1 – a dimeric redox sensitive substrate adaptor for the CUL3 RING 

ligase complex (McMahon et al. 2006) that sequesters NRF2 in the cytoplasm and 

represses its transcriptional activity and nuclear translocation by promoting its 

ubiquitination and directing for constant degradation (Cullinan et al. 2004; Zhang et al. 

2004). (Fig. 7) 

   

Regulation of NRF2 

 

Under basal condition of low oxidative stress NRF2 is sequestered in cytoplasm 

by its inhibitor - KEAP1 that binds NRF2 dimer with two KELCH domains. This 

binding, subsequent polyubiquitination of NRF2 and recognition by CUL3 RING ligase 

directs it for degradation by the 26S proteasome. Two KELCH domains of KEAP1 bind 

two specific motifs within the Neh2 domain (
29

DLG
31

 and 
79

ETGE
82

) of NRF2. Both 

motifs have different affinity to the KEAP1 - binding ETGE being 20 times stronger 
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than DLG (Tong et al. 2007). This difference in affinity of the binding is explained by 

hinge and latch regulation model of NRF2. To be efficiently degraded NRF2 needs to 

bind the KEAP1 with both of the domains, the loss of binding with DGE motif (hinge) 

is enough, regardless of the binding to ETGE (latch), to lose the efficient ubiquitination 

and degradation of NRF2, thus allowing its detachment from the complex, subsequent 

translocation to the nucleus and transcription of its target genes (Canning et al. 2015) 

(Fig. 7).  

  Disruption of the binding between NRF2 and KEAP1 occurs upon oxidative 

stress stimuli, the KEAP1 loses its ability to bind NRF2 leading to its disassociation 

from the KEAP1-NRF2-CUL3 degradation complex and translocation to the nucleus. 

KEAP1 through its 25 reactive cysteine residues plays the role of an oxidative stress 

sensor that according to the intensity as well as the origin of recognized electrophilic 

insult tunes the activation of NRF2 which in literature forged a term of “cysteine code” 

of KEAP1 (Kobayashi et al. 2009; Ma 2013). Apart from mechanism of KEAP1 

cysteine residues oxidation other regulations of NRF2-KEAP1 pathway were reported: 

proteins with higher affinity to the DLG motif recognized by KEAP1 on NRF2 are able 

to compete with KEAP1 to the binding to NRF2 (Chen et al. 2009) and the covalent 

modification of NRF2 by phosphorylation/dephosphorylation (Huang et al. 2002; Zheng 

Sun et al. 2009; Pi et al. 2007; Cullinan & Diehl 2004) and acetylation/deacetylation (Z. 

Sun et al. 2009; Kawai et al. 2011), that were mentioned briefly before and are 

responsible for the nuclear translocation/export, transcription activation, and 

degradation of NRF2 in response to induction signals. 

 

NRF2 in cancer 

 

Activation of NRF2-KEAP1 pathway protects from various diseases and 

harmful intra- and extra- cellular agents, however chronic and constitutive upregulation 

of NRF2 activity was established to foster the progression of several types of cancer 

like breast, neck, lung, ovarian, and endometrial carcinomas (Lau et al. 2008; DeNicola 

et al. 2012; DeNicola et al. 2015; Mitsuishi et al. 2012; Q. Wang et al. 2013; Kim et al. 

2010) In some cancer types the high expression of Nrf2 and its targets correlates with 
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poor prognosis of patients (Sasaki et al. 2013; DeNicola et al. 2015; Wang et al. 2008). 

Due to the oncogene activation in transformed cell environment, ROS and thus the 

oxidative stress levels are already high in non-induced conditions (Ogrunc et al. 2014). 

This situation leads to a chronic oxidative insult causing a constant NRF2 activation and 

nuclear presence of a substantial fraction of NRF2 protein even without additional 

exogenous oxidative stress (Chen et al. 2009). (Fig. 8) In cancer NRF2 can be activated 

by various mechanisms, to the most relevant belong: mutations in one of the genes 

comprising the NRF2-KEAP1-CUL3 inhibitory complex - both mutations of KEAP1 

and CUL3 were reported to abrogate the degradation of NRF2 (Padmanabhan et al. 

2006; Sjöblom et al. 2006; Ooi et al. 2013); mutations in NRF2 itself - although much 

less frequent than in KEAP1- are enhancing its activity mainly by blocking the proper 

and efficient binding to KEAP1 (Shibata et al. 2008; Singh et al. 2010); an epigenetic 

silencing of KEAP1 by the hypermethylation of its promoter (Muscarella et al. 2011), 

miRNA targeting KEAP1 (Eades et al. 2011) or NRF2 itself (Yamamoto et al. 2014); 

upregulation of proteins that can interfere with the interaction between NRF2 and 

KEAP1 such as p21 (Chen et al. 2009) that has stronger affinity to bind the DLG motif 

of NRF2 than KEAP1 (activation of NRF2) or p62/SQSTM (Komatsu et al. 2010) 

whose STGE motif in comparison to ETGE of NRF2 possess higher than affinity to 

bind KEAP1 (degradation of KEAP1); inhibition of Keap1 by metabolic intermediates 

such as fumarate (Ooi et al. 2011).  

As reported by DeNicola and colleagues oncogenes can also upregulate the 

transcription of NRF2. In their study oncogenic alleles of KRAS (KRAS
G12D

)  BRAF 

(BRAF
V619E

) and C-MYC (C-MYC
ERT12

) increased the level of NRF2 mRNA as well as 

its canonical anti-oxidative genes (HO-1, NQO1) and upregulated levels of GSH/GSSG 

ratio resulting in an increase of cytoprotective activity in the cell and, most notably, a 

decrease in ROS levels thus creating more reduced intracellular redox environment for 

the survival of tumor cells. Interestingly the binding site for Jun and Myc was found in 

the TSS of the Nrf2 - it has been proposed that their action mediate the NRF2 oncogene 

dependent regulation (DeNicola et al. 2012)  

NRF2 regulates the transcription of the most abundant antioxidant within all 

cells - glutathione (GSH). GSH is synthesized in a two-step process; the rate limiting 
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step  driver by glutamate cysteine ligase (GCL), a heterodimer of catalytic (GCLC) and 

modifier (GCLM) subunits (Meister 1983). Recently the laboratory of Tak W. Mak 

reported that the synthesis of glutathione driven by GCLM is required for cancer 

initiation in-vivo and in-vitro. Genetic loss of Gclm prevents a tumor’s ability to drive 

malignant transformation - they indicate that this process is likely to be NRF2 

dependent. Combined downregulation of glutathione by buthionine sulfoximine (BSO) 

together with inhibition of other oxidative stress defense mechanism driven by 

thioredoxine (TXN) by auranofin (AUR) or sulfasalazine (SSA) efficiently leads to a 

synergistic cancer cell death in vitro and in vivo, demonstrating the importance of these 

two antioxidant pathways for tumor progression and as potential targets for clinical 

approach (Harris et al. 2015).  

Mounting evidence associates NRF2 activity and cancer cells resistance to the 

therapies. NRF2 confers both intrinsic and acquired chemo- and radio- resistance 

abilities of cancer cells. High NRF2 activity and the resulting target gene expression 

confers cancer cell the protection against the oxidizing microenvironment in cancer 

cells makes them less sensitive to cytotoxic chemotherapeutic agents such as etoposide, 

doxorubicin, carboplatin, cisplatin and 5- fluorouracil through enhanced detoxification 

of anticancer agents and improved antioxidant capacity (Jaramillo & Zhang 2013; 

Hayes et al. 2010). 

Recently chemoresistance to cisplatin and doxorubicin of MCF7 breast cancer 

cells and cancer stem cells derived from MCF7 were demonstrated to be fostered by the 

NRF2 and its upregulation of genes encoding for GSTA2, GSTP1, CYP3A4, HO-1, 

MRP1, and MRP5 (Kang et al. 2014; Syu et al. 2016). Cancer cells in which expression 

of NRF2 and its targets was high were more resistant also to the radiation induced 

toxicity and the ablation of NRF2 expression by siRNA in non-small cell lung cancer 

cell lines sensitized these cells to the ionizing radiation toxicity (Singh et al. 2010).  

Apart from crucial role of NRF2 in regulating oxidative stress response by 

inducing genes like HMOX1 and NQO1 or genes involved in gluthatione/thioredoxine 

systems whose oncogenic potential has been a main subject of studies describing the 

dark side of NRF2 (Wang et al. 2008; DeNicola et al. 2012) some pathways regulated in 

NRF2 dependent manner also apart from the additional oxidative insult in cancer cells 
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were recently unraveled (Huang et al. 2015). This still under-addressed issue is a scope 

of an interesting study by Lacher and colleagues that focused their work on determining 

the most ancient NRF2 dependent pathway conserved from D. melanogaster to human 

beyond the oxidative stress response. The most conserved NRF2 mediated program is 

indicated to regulate genes associated with: lipid or glucose metabolism, proteasome 

degradation pathway, autophagy and genes encoding proteins involved in 

oxidation/reduction reactions – listed and indicated in Table1 (Lacher et al. 2015). 

Recently Mitsushi and colleagues identified novel NRF2 target genes involved 

in the pentose phosphate pathway that are responsible for NADPH regeneration such as: 

G6PD, PGD, TKT and TALDO as well as other metabolic genes, including ME1, 

PPAT,  MTHFD2, and IDH1. NRF2 bound directly ARE sequences in the promoters of 

G6PD, PGD, TKT, TALDO1, ME1 and IDH1 enhancing their expression and activity. 

These proteins participate in synthesis of purines  which are necessary building blocks 

for DNA and RNA and are involved in acceleration of proliferation of cancer cells as 

well as they support the glucose flux (Mitsuishi et al. 2012).  

Serine and glycine are biosynthetically linked, and together they provide 

essential precursors for synthesis of proteins, nucleic acids, and lipids that are crucial 

for cancer cell growth (Amelio et al. 2014; DeNicola & Cantley 2015). Recently 

DeNicola and co-workers by analyzing the metabolic tracing combined with 

transcriptional profiling reported that the regulation of the serine/glycine biosynthetic 

pathway in large panel of NSCLC cell lines is orchestrated by NRF2 through its control 

of the key serine/glycine biosynthesis enzymes as PHGDH PSAT1 and SHMT2 via 

ATF4 to support glutathione and nucleotide production (DeNicola et al. 2015). 

Interestingly the laboratory of Cantley developed also a peptide targeting the crucial 

enzyme (PHGDH) of the first steps of serine biosynthesis pathway that is able to 

efficiently block the activity of enzyme and specifically target NSCLC and TNBC 

cancer cells that survival depend on enhanced serine/glycine biosynthesis (Mullarky et 

al. 2016).   

Oxidized and damaged proteins caused by high levels of ROS or oxidative stress 

inducing agents that accumulate in the cell are the reason for enhanced increased 

proteasomal activity and increased  proteasome encoding genes transcription (Kwak et 
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al. 2003). Increased proteasome activity as mentioned before is an important feature of 

human cancers that allows to drive signaling pathways crucial for proliferation and 

survival (Crawford et al. 2011). NRF2 controls a battery of genes encoding for 

proteasomal subunits of both the 20S core and the 19S regulatory particle are targets 

direct targets of NRF2 (Jung & Grune 2013). Both 20S and 19S proteasome encoding 

genes possess ARE-like sequences in their promoters (Pickering et al. 2012). Despite 

that no TF is reported to possess exclusive master control over transcription of whole 

proteasome machinery encoding genes in mammals, its regulation by NRF2 is reported 

to be an ancient existing axis shared by human NRF2 and its homologues in D. 

melanogaster - CncC (Lacher et al. 2015) and C. elegans - SKN-1 (Pickering et al. 

2012). It is important to underline that the impact of the NRF2 on proteasome genes 

transcription and proteasome activity might strongly vary depending on the cellular 

context (Sporn et al. 2012) and some other transcription factors activities (like ex. 

NRF1/TCF11) might be involved in the regulation (Koch et al. 2011). Proteasome 

inhibitors used in therapy for treating multiple myeloma are shown to induce NRF2 

activity thus engaging a compensatory mechanism of de novo synthesis of proteasomal 

subunit proteins called the “bounce-back” response. Enhanced NRF2 activity is 

considered to be one of the main issues responsible for  failure of PI-based therapies in 

solid tumors (Rushworth et al. 2011) (Fig. 7).  

To underline the complexity of NRF2-KEAP1 pathway it is interesting to 

mention a recent and conceptually provocative work of Zucker and colleagues showing 

that NRF2 – the master regulator of anti-oxidant response – induces ROS levels. When 

intracellular ROS levels cross a critical cellular threshold, NRF2 is not able to 

efficiently bind promoters of the canonical antioxidant genes and increase their 

expression, but, by inducing the expression of Klf9 transcription factor instead, causes 

further Klf9-dependent increase in ROS levels leading to induction of cell death  

(Zucker et al. 2014). 
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In sum, although recent studies started to unravel the roles of NRF2 in 

oncosuppression and tumorigenesis, the mechanism of action of this potent transcription 

factor in various cellular contexts requires further investigation.  
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AIM OF THE THESIS 
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This thesis focuses on Triple-Negative Breast Cancers: model of an aggressive 

group of tumors of high mutation rate in TP53 loci. TNBC tumors are prone to 

recurrence, metastasis, become resistant to chemotherapy and currently they lack 

targeted therapies - therefore finding novel targets for possible treatment is necessary. 

The fact that the accumulation of mutant p53 proteins is observed in various tumors at 

high level and that TP53 is the most frequently mutated genes in cancer, creates a 

tempting opportunity to target it for more precise cancer therapy. Point mutations of 

TP53 have been established to contribute to carcinogenesis by: losing the tumor 

suppressor activities of the wild-type p53, exerting dominant negative effects over the 

wild type allele and providing the mutant p53 with novel oncogenic gain-of-function 

(GOF) properties. Common GOF program shared by many mutant p53 variants has not 

been defined. However, current approaches are only starting to resolve whether 

missense p53 mutants can be regarded as one oncoprotein with a conserved tumorigenic 

activity, or if they represent a population of different oncoproteins, each exerting its 

unique program. This renders it difficult to propose a universal therapeutic approach 

tailored to the presence of mutant p53 in standard clinical practice.  

Aims of this work are: 1) determining the common GOF program of various p53 

mutant proteins; 2) understanding the molecular mechanism behind the regulation of 

this program; 3) proposal of a therapy tailored for GOF p53 mutant variants presence 

and their shared oncogenic activities. 
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Proteasome pathway is a common transcriptional target of various p53 

missense mutants in TNBC cells 

 

In order to gain novel insights into the oncogenic gain-of-function of mutant 

p53 in cancer cells, we utilized a combination of large-scale approaches in the MDA-

MB-231 cells (Fig. 9a, c) – a well-established TNBC cellular model, whose 

transformed phenotype relies on the high level of a R280K mutant variant of p53 

(Girardini et al. 2011). RNA-sequencing coupled to whole cell lysate proteomic 

analysis and chromatin immunoprecipitation sequencing (ChIP-sequencing) allowed 

us to understand to what extent mutant p53 dependent changes in the levels of proteins 

match the transcriptional control exerted by mutant p53. As shown in Fig. 9a, we 

observed upon silencing of mutant TP53  that 56% of the significantly up- and down-

regulated proteins identified by a differential whole cell proteome analysis (p-

value≤0.05) match their corresponding transcripts, identified by RNA-sequencing 

(Benjamini-Hochberg adjusted p-value≤0.05). In parallel (Fig. 9a), upon silencing of 

mutant TP53, we observed significant changes in the levels of transcripts (B-H 

adjusted p-value≤0.05) for the 59% of corresponding transcription start sites that were 

identified by mutant p53 in ChIP-sequencing analysis (FDR≤0.05, +/- 500 bp from 

adjacent TSSes). These results suggested that in MDA-MB-231 cells the majority of 

the observed mutant p53-dependent protein changes are related to its transcriptional 

activity and that a binding of mutant p53 to the majority of gene promoters in the 

proximity of TSSes results in a significant modulation of transcription at the 

corresponding loci. Overlapping the lists of transcripts matched to the corresponding 

proteins and transcripts matched to the mutant p53-bound TSS regions, we obtained a 

72-gene signature (Venn diagram in Fig. 9a) linked to the presence of mutant p53 in 

the MDA-MB-231 cells (“integrated signature”). Pathway/GO-term enrichment 

analysis (independently – by Ingenuity Pathway Analysis and Cytoscape-ClueGO 

software) of the integrated signature suggested the proteasome-ubiquitination pathway 

to be the most affected process (Fig. 9a).  
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Having demonstrated that the transcriptional activity is pivotal to the R280K 

mutant p53 GOF in MDA-MB-231 cell line, we decided to focus our attention on 

mutant p53-regulated transcriptomes to investigate whether the GOF program is shared 

among other p53 missense mutants and conserved in different cellular contexts. The 

MDA-MB-231 transcriptome was compared with mutant p53 mRNA profiles obtained 

from 4 other TNBC cell lines (all at B-H adjusted p-value≤0.05 cutoff) carrying diverse 

missense mutations of TP53, upon mutant TP53 silencing (Fig. 9b, c). The p53 variants 

in these cell lines differ in their biophysical properties – two contact and three 

conformational p53 mutant variants (Bullock & Fersht 2001). The analysis allowed us 

to distinguish between mutant-specific and common mRNA signatures associated with 

the presence of the missense p53 mutants. Applying the -/+ 0.4 logarithmic fold change 

(LFC) cutoff to the shared mutant p53 transcriptional program, we obtained a 205-gene 

common signature (Fig. 9b, c). Strikingly, the common signature, just like the integrated 

signature obtained from MDA-MB-231 cells, was most significantly enriched with 

genes belonging to the proteasome-ubiquitination pathway (Fig. 9b). Notably, among 

the extensive number of wt p53 targets identified in recent transcriptomic/ChIP-seq 

studies carried out in various cell models there are no proteasome-ubiquitination 

pathway genes shared with the integrated or common mutant p53 signatures shown in 

Fig. 9 (Allen et al. 2014; Tonelli et al. 2015) 

Both integrated and common mutant p53 signatures contain multiple 26S 

proteasome and immunoproteasome subunit genes which partially overlap in the two 

signatures and are overrepresented in the top enriched pathways , all but three 26S 

proteasome subunit mRNAs were on average downregulated upon silencing the mutant 

TP53. To clarify and validate this data, we have quantified the mRNA levels for all the 

37 proteasome subunit genes expressed in humans by qPCR in the 5 TNBC cell lines of 

interest. In all the cell lines, transcription of the genes encoding all the components of a 

20S proteasome core, a 19S regulatory cap and 3 subunits of the immunoproteasome 

was downregulated upon the mutant TP53 knockdown (Fig. 9d), accompanied by a 

downregulation of the corresponding proteins (Fig. 16a). Several other candidate mutant 

p53 target genes related to the proteasome-ubiquitination pathway, such as the 

PSME1/2 (Pa28αβ) proteasome regulatory subunits, did not pass this validation step. 
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Silencing-rescue experiments in MDA-MB-231 cells demonstrated that the 5 

different full-length mutant p53 variants derived from the panel of TNBC cell lines of 

interest are interchangeable with respect to their ability to upregulate the expression of 

10 tested proteasome genes that represent all the proteasome components (Fig. 16b). 

This evidence further confirms that proteasome machinery encoding genes are targets 

shared by different p53 missense mutants within a common transcriptional program.   

The proteasome expression signature is strongly associated with poor 

prognosis and mutant status of TP53 in cancer patients 

 

We next explored the association between the expression levels of the identified 

mutant p53-related gene sets, the prognosis in cancer patients' datasets or the presence 

of mutant TP53 in clinical samples.  

The mutant p53 common signature, derived from the panel of TNBC cell lines, 

showed more significant association with a poor prognosis in breast cancer than any 

mutant p53 signature derived from the 5 TNBC cell lines individually (Fig. 10a; for 

each signature we selected the top 30 upregulated and the top 30 downregulated genes) 

This result suggests that in breast cancer the most significantly oncogenic GOF 

transcriptional program is shared between different mutants and cell backgrounds rather 

than associated with the individual mutant p53 variants in their cellular contexts. Having 

shown that the GOF p53 mutants activate all the subunits of the 26S proteasome and 

immunoproteasome in the 5 TNBC cell lines (Fig. 9d) we tested the association between 

the “whole proteasome” 37-gene signature and the prognosis of breast cancer patients. 

Strikingly, high expression level of the whole proteasome 37-gene signature was able to 

more effectively discriminate a poor outcome of the patients than the mutant p53 

common signature or any other signature derived from the individual TNBC cell lines 

(Fig. 10a).  

Since all the 37 proteasome genes are upregulated by mutant p53 (Fig. 9d), we 

decided to test the association between the mutational status of TP53 and this signature 

in breast cancer. As a control, we also analyzed an equal number of upregulated genes 

in common and cell line-specific signatures. The association of the signature expression 

level with wt/mutant status of TP53 (TP53-null status was excluded) is represented in 
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Fig. 10b by box plots with Mann–Whitney U test p-values and indicated differences 

between means. We used the Pearson's Chi-squared (χ
2
) test with Yate’s continuity 

correction (shown as test values for degrees of freedom=1 and supporting p-values) to 

verify whether the mutant status of TP53 and the expression of the signatures are 

independent (Fig. 10b). Also in this case, the high expression of the 37-gene whole 

proteasome signature was most strongly associated with the TP53 mutations and had the 

highest Chi-squared test value as well as the lowest p-value, allowing us to reject the 

null hypothesis that the mutant TP53 status and the high proteasome expression are 

independent (Fig. 10b). This observation supported the significance of the proteasome-

related GOF program shared by the studied p53 mutants regardless of the cell 

backgrounds.  

Mutant p53 proteins increase the activity of the proteasome machinery in in 

vitro and in vivo cancer models 

 

In line with the expression data, depletion of mutant p53 in the TNBC cell lines, 

but not of wild-type p53 in MCF7 breast cancer cells, nor in non-transformed breast 

epithelium MCF10A cells, resulted in a significant decrease of the proteasome rate-

limiting Chymotrypsin-like (Fig. 11a) and Trypsin-like activities (Fig. 16c). As a 

positive control of the proteasome downregulation we used a silencing of the essential 

proteasome 20S core subunit gene PSMA2 – strongly downregulated transcriptionally 

and on a protein level upon mutant TP53 silencing (Fig. 9d, Fig. 16a) - and two 

clinically approved proteasome inhibitors – Bortezomib and Carfilzomib.  

In frozen primary tumor samples obtained from 15 basal-like breast cancer 

patients (including 10 TNBCs), the presence of the elevated proteasome activity 

correlated with the presence of p53 missense mutants determined by TP53 mRNA 

sequencing and immunohistochemical staining (Fig. 11b, Fig.16d).  

Expression of each of the TP53 mutant variants, characterizing the 5 TNBC cell 

lines in MCF10A cells with depleted endogenous wt p53, caused a significant increase 

of the proteasome activity and protein levels of selected proteasome subunits (Fig. 11c, 

Fig. 16e). This effect was accompanied by an increased transcription of proteasome 

subunit genes (Fig. 16f). The result indicates that the activation of the proteasome is an 
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inherent process linked to the expression of the various TP53 mutants in a non-

transformed background. Although the basal proteasome activity is lower in MCF10A 

than in TNBC cells, the introduction of the p53 mutants caused it to increase to levels 

that are comparable to the TNBC cell lines (Fig. 11c vs Fig. 16g).  

Importantly, we observed a significant decrease in the proteasome activity and in 

the proteasome subunits transcription upon mutant TP53 silencing in other cancer-

derived cell lines - of hepatic, ovarian, pancreatic, prostatic and colonic origin – 

carrying various GOF p53 mutants (Fig. 11d, Fig. 16h). Therefore, the dependence of 

high proteasome expression and activity on mutant p53 is an inherent trait of cancer 

cells with p53 mutants.  

In line with the above observations, proteasome activity was significantly 

increased in thymic lymphomas and lymphoma-infiltrated enlarged livers derived from 

mutant TP53 knock-in mice (expressing p53 variant R172H), as compared with TP53 

knock-out and normal thymi or livers in control mice (Fig. 11e). These organs were 

chosen for comparative analysis in mouse models since their transformation-related 

changes are pathologically comparable in both mutant TP53 R172H KI and TP53 KO 

mice (Lang et al. 2004). However, despite these similarities, the strongly elevated 

proteasome activity was characteristic only of the mutant TP53 KI genotype. Also in 

mouse embryo fibroblasts (MEFs) derived from the same mice as above the elevated 

proteasome activity correlated with the mutant TP53 KI status and the effect was 

enhanced by an overexpression of the oncogenic RAS V12 variant (Fig.  13f).  

Altogether, this in vitro and in vivo evidence strongly supports the dependence of   

proteasome activity on the presence of the p53 mutants in different cancer types, and 

suggests that the proteasome activation by different p53 missense mutants may be 

further increased in an oncogenic context. 

NRF2 transcription factor cooperates with GOF p53 mutants in binding the 

26S proteasome subunit gene promoters 

 

 In order to investigate molecular mechanisms underlying the proteasome 

transcriptional regulation by the p53 mutants in cancer, we analyzed the ChIP-
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sequencing data obtained from the MDA-MB-231 cell line (Fig. 9a). We defined 

candidate mutant p53-binding regions within promoters of 10 genes encoding 

proteasome subunits, selected to represent all proteasome functional parts which we 

have previously validated at the transcriptional level (Fig. 9d) and p53 ChIP-seq peaks 

of both weak and strong intensity. Irrespective of the ChIP-seq peak size, we confirmed 

a strong binding of mutant p53 to all these regions in the panel of 5 TNBC cell lines of 

interest, while  regions mapping outside the ChIP-seq peaks in each gene locus showed 

no evidence of mutant p53 binding (Fig. 12a).  

We next performed a bioinformatics analysis to identify consensus sequences 

significantly enriched in the mutant p53 bound regions in all 37 proteasome genes. We 

found that the most frequently represented sequence motifs match the binding sites of 

known transcription factors, with no indication of the wt p53 consensus binding site. 

These included motifs for NRF1 (NFE2L1, TCF11), NRF2 (NFE2L2), STAT3, NF-YA, 

NF-κB (Fig.  12b) that have been previously reported to control basal transcription of 

26S proteasome and immunoproteasome genes (Steffen et al. 2010; Xu et al. 2012; 

Vangala et al. 2014; Moschonas et al. 2008; Höhn & Grune 2014), the latter two having 

been reported to directly cooperate with mutant p53 (Di Agostino et al. 2006; Weisz et 

al. 2007) (Fig.  12b). We silenced the expression of these factors in MDA-MB-231 cells 

to investigate their impact on the activity and transcription of the 26S proteasome (Fig. 

12c). We selected PSMA2 and PSMC1 as the 26S proteasome machinery representative 

genes for further studies, as these genes were the most downregulated on average in the 

transcriptomic analysis and qPCR validation in the TNBC cell line panel (Fig. 9d) and 

were positively validated in all expression and ChIP experiments (Fig. 12a). Silencing 

of either NRF1 or NRF2 resulted in downregulation of both PSMA2 and PSMC1 

transcription and proteasome activity to the levels comparable to the mutant TP53 

silencing. Conversely, silencing of STAT3, NFYA or NFKB1 had a substantially weaker 

effect (Fig. 12c, for protein levels control see - Fig. 17b). Double knockdown 

experiments suggested that the effect of NRF1 is additive and as such independent of 

mutant p53 while the activities of NRF2 and mutant p53 are not additive and possibly 

interdependent (Fig.  12d; for an alternative NRF2 siRNA see Fig. 17c).  
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Indeed, ChIP analysis confirmed that the recruitment of mutant p53 to PSMA2 

and PSMC1 gene promoters relies on the presence of NRF2 but not NRF1, while NRF2 

binding weakly depends on mutant p53 (Fig. 12e). In MDA-MB-231 cells, mutant p53 

and NRF2 increase the recruitment of the acetyltransferase p300 at PSMA2 and PSMC1 

promoters more strongly than NRF1 and induce the p300-dependent acetylation of 

Histone 3 K9 at these loci (Fig. 12f-g) – a marker of transcriptionally active chromatin 

(Drost et al. 2010). Conversely, wt p53 does not bind to the proteasome gene promoters 

in MCF7 cells (Fig. 17d). 

These data indicate that mutant p53 is specifically recruited to the proteasome 

gene promoters by NRF2. Together with the fact that the silencing of NRF2 in MDA-

MB-231 cells significantly downregulated transcription of most subunits of the whole 

proteasome machinery (Fig. 17e) our results suggested that the transcriptional control of 

mutant p53 over proteasome subunit genes is dependent on NRF2.  

NRF2 interacts with p53 mutants but not with wild-type p53 and is required 

for the mutant p53-mediated transactivation of the proteasome genes 

 

To deepen our understanding of the interplay between p53 mutants and NRF2 in 

regulating proteasome gene transcription, we evaluated their ability to interact. Co-

immunoprecipitation experiments revealed that the endogenous NRF2 protein interacts 

with the p53 missense mutants in all tested TNBC cells but not with endogenous wild-

type p53 in MCF7 and MCF10A cells (Fig. 13a). This interaction pattern was confirmed 

by a reversed co-IP with anti-NRF2 IgGs (Fig. 18a). In contrast, STAT3 and NF-YA 

interacted with the p53 mutants only in two TNBC cell lines, while neither NRF1 nor 

NF-κB (p65) interacted with any of the mutants characterizing the different TNBC cell 

lines (Fig. 13a). Thus, among the different transcription factors regulating the 

proteasome genes, only NRF2 was able to specifically and consistently bind all the GOF 

p53 mutants in their endogenous cellular backgrounds. Interestingly, upon treatment of 

MDA-MB-231 cells with PRIMA-1, a drug that binds and converts mutant p53 into a 

wild-type-like, active protein by covalently modifying its thiol residues (Lambert et al. 

2009), we did not detect the p53-NRF2 interaction (Fig. 13b).  
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In normal, unstressed cells NRF2 is predominantly localized in the cytoplasm. 

Following an exposure to oxidative stimuli – such as a sodium arsenite treatment – 

NRF2 translocates to the nucleus and activates transcription of oxidative stress response 

genes (e.g. HO-1/HMOX1) and the proteasome (Fig. 18g-h) (Koch et al. 2011). As 

mentioned earlier in the introduction in cancer cells, likely due to the increased 

accumulation of reactive oxygen species (ROS) caused by oncogene activation, a 

substantial fraction of NRF2 is localized in the nucleus even without the exogenous 

oxidative stress (Fig. 18h-i) (Chen et al. 2009). We confirmed that in the MDA-MB-231 

cell line NRF2 co-localizes in the nucleus with mutant p53, with or without the sodium 

arsenite-induced oxidative stress (Fig. 18e, h), and that the interaction of both proteins 

occurs in the nuclear fraction of these cells (Fig. 18f). Furthermore NRF2 or TP53 

silencing reduces the mRNA levels of the proteasome genes in both control and 

oxidative stress conditions, while TP53 silencing has an opposite effect on the 

expression of the oxidative stress response gene HO-1, as described earlier (Fig. 18g) 

(Kalo et al. 2012).  

In the non-transformed MCF10A cell line, we did not detect the interaction 

between wt p53 and NRF2 in control conditions nor in the presence of high levels of wt 

p53 stabilized after Nutlin treatment. However, the presence of comparable levels of the 

stably overexpressed mutant p53 variants (R280K or R175H) in MCF10A resulted in a 

detectable mutant p53-NRF2 interaction (Fig. 13c; for co-localization see Fig. 18i). 

Consistently, expression of PSMA2 and PSMC1 genes was significantly downregulated 

by the NRF2 or TP53 silencing only in the presence of ectopically expressed mutant p53 

variants which were upregulating the basal level of the proteasome gene transcripts (Fig. 

13d). This result clearly indicates that the upregulation of the proteasome genes 

transcription by the p53 missense mutants requires the presence of NRF2.  

We found the same regulation pattern in a p53-null background of H1299 lung 

carcinoma cells upon TP53 overexpression. In this context the p53 mutants interacted 

with NRF2 more strongly than wt p53 in co-immunoprecipitation experiments (Fig. 

18b), while the proteasome gene expression was significantly blunted by either TP53 or 

NRF2 silencing only in the presence of mutant p53 (Fig. 18d).  
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As a next step, we mapped the interaction domain of mutant p53 with NRF2 by 

in vitro binding assays using truncated versions of GST-tagged p53. GST-pull down 

experiments with NRF2 overexpressed in H1299 cells clearly showed that the 

interaction of both R175H and R280K p53 mutants with NRF2 is mediated by the 

DNA-binding domain (DBD) of these variants (Fig. 18c).  

These data indicate that the ability of the p53 missense mutants to interact with 

NRF2 is mediated by the DNA-binding domain of p53, is conserved in all the tested 

mutant variants and cellular environments, and NRF2 presence is required for the 

mutant p53-dependent stimulation of the proteasome transcription.  

Targeting GOF p53 mutants with APR-246/PRIMA-1MET abrogates 

chemoresistance of TNBC cells to the proteasome inhibitor Carfilzomib 

 

The observation that the concomitant silencing of mutant p53 and PSMA2 

synergistically reduce viability of MDA-MB-231 (Fig. 19i) prompted us to investigate 

whether this effect could be significant in an in vivo tumor growth and metastasis 

model. Preliminarily we used in combination with Carfilzomib, two clinically-tested 

molecules known to inhibit mutant p53’s oncogenic activity - a histone deacetylase 

inhibitor SAHA (Vorinostat) which downregulates mutant p53 level (Li et al. 2011) and 

PRIMA-1 which converts GOF p53 mutants into a wt-like proteins (Lambert et al. 

2009; Bykov et al. 2016) and abolishes the mutant p53-NRF2 interaction as shown 

earlier in this study (Fig.  14b). 

 The combination of Carfilzomib and mutant p53-targeting drugs (PRIMA-1 or 

SAHA) acted synergistically to reduce cell viability and proteasome activity in the panel 

of 5 TNBC cell lines of interest, but not in MCF7 and MCF10A wild-type p53 cell lines 

(Fig. 19a-b). Both SAHA and PRIMA-1 cooperated with Carfilzomib in increasing the 

level of tumor suppressor KSRP and wt p53 targets (NOXA, PUMA and p21) (Fig. 

19c). We therefore tested the activity of SAHA and PRIMA-1, individually or in 

combination with Carfilzomib, in an in vivo xenograft model of MDA-MB-231 cells 

injected into a mammary fat pad of immunocompromised SCID mice (Rustighi et al. 

2009). After 4 weeks of treatment, the combination including PRIMA-1 was more 
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effective than the combination with SAHA in reducing the primary tumor growth (Fig. 

19d).  

Having selected PRIMA-1 as the more effective drug in vivo, we introduced its 

phase I/II clinically-tested derivative APR-246 (PRIMA-1MET) into further studies 

(Lehmann et al. 2012). APR-246, just like PRIMA-1, showed an inhibitory effect on the 

proteasome activity and induced the wt p53 targets in MDA-MB-231 cells (Fig. 19b-c). 

APR-246 was able to eradicate Carfilzomib-resistant clones in colony formation assays 

in MDA-MB-231 cells (Fig. 14a). In contrast, neither of the drugs (Carfilzomib or APR-

246) was able to significantly increase the effect of other chemotherapeutic drugs such 

as Doxorubicin (Adriamycin), Cisplatin or Paclitaxel (Taxol) - used in sub-lethal 

concentrations, to allow emergence of resistant colonies (Fig. 19e).  

Of note, ectopic expression of 5 GOF p53 mutants into an isogenic background 

of MCF10A cells with silenced endogenous wt TP53, significantly increased the 

resistance of cells to Carfilzomib but also increased sensitivity to the Carfilzomib/APR-

246 combination (Fig. 19f).  

In response to treatment with proteasome inhibitors, cells engage recovery 

mechanisms which up-regulate proteasome genes transcription through the action of 

NRF1 and NRF2. This effect is called a “bounce-back response” and leads to resistance 

to treatment (Arlt et al. 2012; Radhakrishnan et al. 2010). Based on our findings it is 

conceivable that, on a molecular level, the silencing of the GOF TP53 mutants or NRF2, 

as well as the treatment with APR-246, could abrogate the bounce-back effect. To 

evaluate this we treated the 5 TNBC cell lines with Carfilzomib and observed a bounce-

back increase of PSMA2 and PSMC1 gene expression that was abolished upon NRF2, 

mutant TP53 silencing or by the APR-246 treatment (Fig. 14b and Fig. 19g). In cell 

lines harboring wt p53, such as MCF7 and MCF10A, the bounce-back response was less 

pronounced and, importantly, silencing of TP53 or NRF2 did not cause a strong effect 

(Fig. 19g). Of note, ectopic expression of the GOF p53 mutant R280K in MCF10A cells 

(with stably silenced endogenous wt TP53) caused the appearance of the bounce-back 

response during Carfilzomib treatment that was blunted by silencing of mutant TP53 or 

NRF2 or by treatment with APR-246 (Fig. 19g).  
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In vivo, the combination of Carfilzomib and APR-246 was more effective than 

any single drug treatment in reducing the primary tumor growth of the mammary fat pad 

xenografts of MDA-MB-231 with stably introduced luciferase gene (on average less 

than 50% tumor size of the DMSO treated control mice – (Fig. 14c-d, Fig. 19h), while 

the same drug combination had no effect on ER+ primary tumors of wt p53 MCF7 

xenografts (Fig. 14e). Importantly, the Carfilzomib and APR-246 combination 

efficiently eradicated lymph-node and lung metastasis derived from the MDA-MB-231 

xenograft (over 90% reduction on average in lymph node luciferase activity; the 

metastasis analysis was performed when the treated primary tumors reached sizes 

comparable to the control tumors (Fig. 19f-g;).  

Analysis of the MDA-MB-231 primary tumor biopsies indicated that the 

Carfilzomib-induced “bounce-back” transcription of the proteasome genes, as well as 

the in-tumor proteasome activity, were both significantly blunted in mice treated with 

APR-246 (Fig.  14h-i), matching the in vitro results. No adverse effects associated with 

the APR-246 and Carfilzomib combined treatments were observed during the in vivo 

experiments.  

In summary, only the combined drug-mediated inhibition of mutant p53 and the 

proteasome was able to effectively recover the tumor suppressive downstream targets of 

the mutant p53-proteasome axis, as well as to block proliferation and metastatic 

dissemination of the TNBC cells in vivo (Fig. 15).  
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DISCUSSION 
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In this thesis I provide the evidence of a connection between the gain-of-function 

(GOF) p53 mutants and NRF2 mediated upregulation of proteasome that blunt the 

tumor-suppressive potential of cancer cell.  

The proteasome machinery is a conserved representation of the mutant p53 

transcriptional GOF. We thoroughly investigated this property in TNBC, also providing 

the evidence for a variety of other tumor types harboring TP53 missense mutations: 

hepatic, ovarian, pancreatic, prostatic, colonic and a p53 KO/KI mouse lymphoma 

model. Interestingly, several previous studies reported regulation of the proteasome 

subunits by mutant p53, without investigating its relevance. In a mouse model of 

pancreatic cancer, two immunoproteasome subunits have been described among the 

main mutant p53 transcriptional targets (Weissmueller et al. 2014). Several 26S 

proteasome subunits were found in the mutant p53-regulated proteome in MDA-MB-

468 TNBC cell line (Polotskaia et al. 2015). In mutant p53 ChIP-sequencing studies, the 

promoters of multiple proteasome subunit genes were reported to be bound by mutant 

p53 variants (Martynova et al. 2012; Do et al. 2012). These studies, however, did not 

compare high-throughput data from multiple models, and hence did not define which 

targets are shared between various p53 mutants and cell backgrounds. Our multi-omic 

and multi-model analyses led to identification of the proteasome subunits as the most 

overrepresented group of proteins whose upregulation is associated with the presence of 

several p53 missense mutant variants. Hence, at least the GOF p53 mutants which we 

have analyzed can be regarded as a uniform, potent oncogene with shared downstream 

transcriptional targets - a notion supported by a recent study on shared properties of 

DNA-interactomes of 3 mutant p53 variants (Zhu et al. 2015). We show here that the 

broad influence of mutant p53 on the protein content of a cancer cell extends beyond the 

control of chromatin and transcription, to the level of proteasome-mediated protein 

content regulation. Of note, although not observed in the TNBC cell line transcriptomes 

described here, a mutant p53 control over the transcription of the proteasome activator 

REGγ (PSME3) reported earlier (Ali et al. 2013), may contribute to the overall 

oncogenic effects of the mutant p53-proteasome axis under different conditions. 

According to our observations in the wt p53 cell lines MCF10A and MCF7, it is 
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reasonable to assume that the p53 dependent activation of 26S proteasome is a specific 

property of cells carrying TP53 missense mutations. Supporting this notion, multiple 

large scale studies (Allen et al. 2014; Tonelli et al. 2015; Younger et al. 2015) did not 

detect proteasome genes among the identified wt p53 targets. 

Secondly, among the GOF effects the p53 mutants exert through a formation of 

protein-protein complexes, the mutant p53 influence on the transcription factor NRF2 

may play a key role. NRF2, whose both pro- and antitumorigenic activities are currently 

getting an increasing experimental support (Sporn et al. 2012), is a master regulator of 

the oxidative stress response, known to cooperate with multiple oncogenes (DeNicola et 

al. 2012). Mutant p53 has been previously shown to attenuate the expression of the 

oxidative stress-induced genes controlled by NRF2, such as HO-1, although no direct 

mutant p53-NRF2 interaction has been investigated (Kalo et al. 2012). Conversely, we 

show here that the proteasome genes are transactivated by NRF2 and mutant p53. The 

effect involves an interaction between the two proteins and is retained under the 

oxidative stress when HO-1 is indeed repressed by mutant p53 (Fig. 18g). This evidence 

suggests that in cancer cells NRF2 has two modes of regulation of its target promoters, 

possibly orchestrated by mutant p53: one towards the proteasome genes house-kept in 

cancer cells by NRF2, and another towards the NRF2-induced canonical oxidative stress 

response genes. These two modes of NRF2 activity deserve further investigation, as 

they may help to better understand the dual role of NRF2 as the context-dependent 

oncoprotein or oncosuppressor (Jaramillo & Zhang 2013).  

Moreover, mutant p53, when present, is responsible for the resistance of TNBC 

cells to proteasome inhibitors. As the resistance to proteasome inhibitors is a major 

issue in cancer treatment clinical practice, combinational therapies are being widely 

tested (Huang et al. 2014). In our in vitro and in vivo experimental setups PRIMA-1 and 

APR-246, turned out to be efficient and well tolerated in combination with Carfilzomib. 

APR-246 effectively decreased the Carfilzomib-induced bounce-back response of 

proteasome expression recovery, reduced primary tumor growth and eradicated 

metastasis in mutant p53 TNBC xenografts, while having no effect on primary tumor 

growth in wt p53 xenografts. The mutant p53-related proteasome activation may 

therefore at least partially explain the resistance to proteasome inhibitors observed in 
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clinical trials involving TNBC (Schmid et al. 2008; Irvin et al. 2010), despite the fact 

that the proteasome has been reported as a vulnerability in this tumor type (Petrocca et 

al. 2013).  

The treatment strategy suggested by our data may also overcome the limitations 

of therapies which target only mutant p53 in solid tumors (Bykov et al. 2016; Girardini 

et al. 2014). The promising efficiency of simultaneous targeting of the p53 missense 

mutants and their major downstream pathways, such as the proteasome machinery, has 

not been previously shown in vivo.  

In summary, our study defines a common mutant p53 gain-of-function 

transcriptional program and links it to proteasome machinery activation. Our findings 

explain how the transcriptional activity of mutant p53 and its consequent effects on the 

protein degradation machinery co-shape the protein landscape of cancer cells. The 

simultaneous targeting of both mechanisms by APR-246 and Carfilzomib (Fig. 15) 

provides a solution to overcome chemoresistance to proteasome inhibition in solid 

tumors harboring mutant p53.  
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FUTURE PERSPECTIVES 
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 Interplay between GOF p53 mutant variants and NRF2 reported in this thesis 

establishes a ground for interesting questions to be investigated in the future.  

The double mode of NRF2 action in cancer cell – one exerted upon the oxidative 

stress stimuli and one kept by NRF2 in the basal condition without an oxidative insult 

allows hypothesizing that mutant p53 can be playing the role of a molecular switch 

between these two activities. Unraveling the mechanism behind NRF2 action towards 

the proteasome subunits encoding (basal oncogenic program) and anti-oxidative genes 

(induced oncogenic program) in cancer cells and cancer cells bearing GOF p53 mutant 

variants specifically, would allow to use it as a possible molecular target for a targeted 

therapy. 

Since most of the high-throughput studies that aim at unraveling the possible 

novel targets of NRF2 are conducted upon NRF2 induction, the oncogenic program kept 

by NRF2 at basal level is significantly less known. For example, unlike in case of 

canonical oxidative stress response genes the regulation of the proteasome by NRF2  is 

not ubiquitously reported in all large scale datasets (Hirotsu et al. 2012; Chorley et al. 

2012; Malhotra et al. 2010). This might be explained due to the fact that some of NRF2 

activities are strongly dependent on the cellular and tissue context and thus the choice of 

the experimental model in mentioned studies might have a significant impact on the 

observed NRF2 regulated program (Sporn et al. 2012). A thorough, broad large-scale 

analysis focused on defining the NRF2 dependent program kept on basal and induced 

level in various cancer cell models would be necessary for proper understanding of 

oncogenic role of this potent transcription factor.  

More pronounced nuclear localization of NRF2 (Fig. 18i) upon introduction of 

GOF p53 mutant into the normal cell background of MCF10A previously silenced for 

wild-type p53 variant, might suggest that biochemical properties of the GOF p53 mutant 

proteins, directly or indirectly regulate process of the translocation of NRF2 to the 

nucleus. This fact could explain the transcriptional activities of NRF2 towards 

proteasome gene promoters even without additional oxidative insult.  
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Since NRF2 transcriptional activities and nuclear localization are dependent on 

PTM events like phosphorylation/acetylation (Kawai et al. 2011; Pi et al. 2007), it 

would be interesting to investigate if GOF p53 mutant variants are involved in this type 

of NRF2 regulation. Further studies should determine if GOF p53 mutant proteins have 

an impact on phosphorylation/acetylation of NRF2 and if these PTM events have a 

functional effect on the transcription of particular set of NRF2 targets in cancer cells, 

thus explaining the dual mode of NRF2 action.  

NRF2 exerts its transcriptional activities on the canonical oxidative stress 

response genes through heterodimerization with other transcription factors at the gene 

promoters (ex. small Maf proteins) (Hirotsu et al. 2012). Recent studies indicate novel 

transcriptional cofactors to interplay with NRF2 on gene promoters, like the ATF4 

transcription factor that fosters aberrant transcriptional activities of NRF2 in cancer cells 

(Zucker et al. 2014; Ye et al. 2014). Thus it should be investigated further if mutant p53 

requires other cofactors to induce the transcription of specific NRF2 target genes. 

In mutant p53 bearing cancer cells the “bounce-back” chemoresistance response 

to proteasome inhibitors is mediated by NRF2 (Figure 14 a, b). Thus it is conceivable 

that NRF2 itself could be an interesting target of a therapeutic approach. Future studies 

should determine if the combination of NRF2 targeting drugs (Brusatol (Ren et al. 

2011) or ATRA (Tan et al. 2008)) with proteasome inhibitors (Carfilzomib) could be an 

alternative therapeutic target for the resistant tumor cells.  

In summary: understanding of the mechanisms of NRF2 dual action together 

with determining novel, specific programs that NRF2 engages in various tumors in both 

basal and induced conditions might give a reasoning of developing the therapies 

targeting specifically these tumors that rely on mutant p53 hijacking the broad activities 

of NRF2.  
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Cell lines 

Human cell lines MDA-MB-231 (p53 R280K), MDA-MB-468 (p53 R273H), HCC-

1395 (p53 R175H), PANC-1 (p53 R273H), HT-29 (p53 R273H), 293GP (p53 wt) and 

Mouse Embryonic Fibroblasts (MEF – for p53 status see below) were cultured in 

DMEM medium (Sigma) supplemented with 10% FCS (ECS0180L, Euroclone), and 

antibiotics (DE17-602E, Lonza). BT-549 (p53 R249S), DU145 (heterozygous p53 - 

P223L/V274F), H1299 (p53-null) and TOV112 (p53 R175H) cells were cultured in 

RPMI medium (Sigma) supplemented with 10% FBS and antibiotics. SUM-149 (p53 

M237I) cells were cultured in DMEM:F12 Ham’s medium 1:1, supplemented with 10% 

FCS and antibiotics. MCF7 (p53 wt) were cultured in EMEM (Sigma), supplemented 

with 1% non-essential aminoacid solution (Sigma), 10% FBS and antibiotics. Malhavu 

cells (p53 R249S) were grown as MCF7, with addition of 2mM L-Glutamine. MCF10A 

(p53 wt, sh p53 and stable mutant p53 overexpressing cell lines) cells were maintained 

in DMEM:F12 Ham’s medium 1:1, supplemented with 5% horse serum, insulin (10 

µg/ml), hydrocortisone (0.5 µg/ml) and epidermal growth factor (EGF 20 ng/ml), if 

needed - with addition of selection antibiotics. All human cell lines were subjected to 

STR genotyping with PowerPlex 18D System and confirmed in their identity comparing 

the results to reference cell databases (DMSZ, ATCC, and JCRB databases). Mutant 

p53 cell lines have been confirmed to possess indicated mutant p53 variants by 

sequencing of the full-length p53 mRNA. MEFs were generated by crossing mice of the 

appropriate genotype, and collecting cells from 13.5 d.p.c. embryos. MEF KO p53 and 

MEF KI p53R172H were optionally immortalized through retroviral transduction of H-

Ras V12 as described 

All the cell lines have been tested by PCR/IF for the Mycoplasma presenceAll 

human cell lines were subjected to STR genotyping with PowerPlex 18D System and 

confirmed in their identity comparing the results to reference cell databases (DMSZ, 

ATCC, and JCRB databases). Mutant p53 cell lines were confirmed to possess the 

indicated mutant p53 variants by sequencing of the full-length p53 mRNA extracted 

from these cells.  
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Western blot analysis  

Total cell extracts were prepared in RIPA buffer without SDS (150mM NaCl, 50mM 

Tris-HCl pH8, 1mM EDTA, 1% NP-40, 0.5% Na-deoxycholate) supplemented with 1 

mM PMSF, 5 mM NaF, 1 mM Na3VO4, 10µg/ml CLAP protease inhibitor cocktail 

(SIGMA). Protein concentration was determined with Bio-Rad Protein Assay Reagent 

(Bio-Rad). Lysates were resolved by SDS/PAGE and transferred to nitrocellulose 

(Millipore). Western blot analysis was performed according to standard procedures 

using primary antibodies listed in. Western blots experiments were normally performed 

in at least 3 biological replicates, the representative is shown.  

Proteasome activity assay 

The assay was performed on the basis of the 20S Proteasome Activity Assay Kit 

(Chemicon-Millipore), using proteasome substrates: Substrate III (Suc-LLVY-AMC, 

chymotrypsin like activity), Substrate IV (Z-ARR-AMC, trypsin-like activity). 50 μg of 

protein lysates were incubated with the substrates at 37°C for 2h and measured at 

wavelengths of 380 nm excitation and 460 nm emission (3 biological replicates, for 

each means from 3 technical replicates were used).  

Protein stability determination 

Cells 24h with DMSO or Carfilzomib or 48h post indicated siRNA transfection were 

treated with 0.1mg/ml Cycloheximide (CHX; Sigma) and lysed in SDS-PAGE loading 

buffer directly on plates on the indicated time points. Lysates were subjected to western 

blots and the results were scanned and analyzed densitometricaly by the ImageJ 

software. The results were plotted in Excel and protein half-lives determined according 

to the fitted exponential decay curves’ equations.  

Protein interaction studies 

Coimmunoprecipitation experiments with endogenous proteins were performed by 

lysing cells in the Co-IP buffer (NaCl 150mM, Tris-HCl pH8 50mM, EDTA 1mM, 

NP40 0.5%, glycerol 10%) with protease inhibitors. Samples were cleared by 

centrifugation for 30 min at 13000g at 4°C and incubated overnight at 4°C with the 

specific antibody. After 1h incubation with protein G-Sepharose (GE Healthcare), 
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immunoprecipitates were washed three times in Co-IP buffer, resuspended in a sample 

buffer, and analyzed by western blotting. For Co-IP of endogenous p53 or NRF2 – DO-

1 (sc-126, Santa Cruz) and EP1808Y (ab62352, Abcam) primary antibodies were used 

respectively, and mouse or rabbit normal IgGs (Santa Cruz) as negative controls.  

GST pull-down assay was performed essentially as described earlier. H1299 cells 

overexpressing the full length NRF2 were lysed in 300mM NaCl containing buffer 

(300mM NaCl, 50mM Tris, pH 7.5, 0.5% NP-40, and 10% glycerol) supplemented with 

protease and phosphatase inhibitors (CLAP - inhibitor cocktail, 1mM PMSF and 5mM 

NaF, 1mM Na3VO4). Lysates were then diluted 1:2 in the same buffer without NaCl and 

incubated for 2 h at 4 °C with 2 μg of Sepharose-GSH-bound GST proteins. After 

washing, the resin was resuspended in the SDS-PAGE loading buffer and subjected to 

western blot. NRF2 was detected using anti-NRF2 antibody and overexpressed GST-

fusion proteins were dectected by Ponceau-Red staining of the western-blot membrane. 

NRF2 expression vector was a kind gift of prof. D.D. Zhang (Chen et al. 2009). 

Immunofluorescence  

IF has been performed as described (Sorrentino et al. 2014) using primary antibodies 

against p53 and NRF2: DO-1 (sc-126, Santa Cruz) and EP1808Y (ab62352, Abcam). 

The shown photos are representative of at least 3 biological replicates.  

Nucleus-cytoplasm fractionation 

To evaluate NRF2 and p53 cellular localization, nuclear and cytosolic fractions were 

prepared using the ProteoExtract Subcellular Proteome Extraction Kit (Millipore), 

following the manufacturer’s instructions. Proteins were detected on western blots using 

indicated antibodies.  

Viability assay  

6-10x10
4
 cells were plated in 96-well plates (white, transparent bottom), after 24h they 

were treated as indicated in figures and assayed for viability post 24h using ATPlite 

OneStep reagent (Perkin Elmer), according to the manufacturer’s instructions. 

Luminescence intensity was measured using EnSpire plate fluorometer (Perkin Elmer). 

Most important results were reconfirmed (not shown) using a colorimetric WST 
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viability assay (Roche) as instructed by the manufacturer. 3 biological replicates were 

performed, for each means from 3 technical replicates (3 wells) were used. 

Colony formation assay 

4,000 cells were plated on 6cm plates in serum-containing medium. After 48h medium 

was supplemented with drugs as indicated in the figures. Medium and drugs were 

replaced every 3 days. After 12-14 days with drugs, cells were fixed (Formaldehyde 

37%, diluted 1:10 in PBS) and stained for 15 min. with Giemsa diluted solution 1:10 in 

water (Fluka). Plates washed with water and dried were analyzed microscopically.  

Human breast cancer specimens  

Human breast cancer tissues for research's purposes were provided by institutional 

biobank at IRCCS Fondazione Salvatore Maugeri (FSM), Pavia, Italy. This study was 

approved by FSM Central Ethic Committee and subjected to patient's informed consent. 

Tumor samples were selected based on histopathological analysis performed by the Unit 

of Pathology at FSM. Frozen tumor tissue was fragmented by mortar and pestle in 

liquid nitrogen, fragments split 1:1 into Quiazol (see Total RNA extraction) and Lysis 

Buffer (see Proteasome activity assay) and homogenized mechanically. Samples were 

further processed according to RNA extraction and Proteasome activity assay protocols. 

For p53 cds mRNA sequencing the cDNA produced from total mRNA was used as a 

template for PCR of full length p53 cds and the product has been sequenced.  

Immunohistochemistry 

For p53 staining in breast cancer tissues, FFPE slices from each cancer sample along 

with its normal counterpart (as control) were processed. Epitope Retrieval was 

performed in pre-warmed TE buffer, pH 9 (Dako) for 40 minutes at 98°C. Incubation 

with monoclonal primary antibody, anti-p53 DO-7 (1:200, DAKO) was carried out at 

room temperature for 30 minutes. For antigen detection, samples were incubated with 

HRP-conjucted antibody from LSAB-Plus/HRP kit (Dako). Nuclei were counterstained 

with haematoxylin. p53 staining was evaluated by DM1000 Microscope (Leica) 

equipped with LAS Software (Leica) for images capture. Nuclear p53 localization was 

measured as percentage of cells. For each sample fifty randomly selected regions were 
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analyzed and compared with the staining in its normal tissue. Representative images are 

displayed at 200x magnification. 

Plasmids 

pSR-shRNAp53 PuroR used to stably silence TP53 expression was a kind gift of R. 

Agami. N-terminally HA-tagged p53 constructs: pMSCV-HA-p53R175H, -p53M237I, -

p53R249S, -p53R273H, -p53R280K were generated by first introducing 4 silent point 

mutations in the region targeted by p53 siRNA I/shRNA (the same target sequence) by 

site directed mutagenesis in pcDNA-HA-p53 (, subsequent introduction of missense 

point mutations and subcloning of sequenced p53 cds constructs to pMSCV-HA BlastR 

retroviral vector to obtain pMSCV with N-terminally HA-tagged p53 cds.  

Transfection 

For retrovirus production (stable silencing of TP53 and ectopic overexpression of 

mutant p53s) low confluent HEK 293GP packaging cells were transfected with 

appropriate vectors by calcium phosphate precipitation. After 48–72 hr the virus-

containing medium was filtered and added to target cells (MDA-MB-231 or  MCF10A). 

Cells were selected with puromycin (0.5 µg/ml) and/or blasticidin (2 µg/ml). H1299 

cells were transfected using Lipofectamine 2000 reagent (Invitrogen) as in the 

manufacturer’s instructions. For siRNA transfections, all cells lines were transfected at 

40-60% confluence two times with 24h interval (to increase efficiency of silencing), 

with 50 nM siRNA oligonucleotides using Lipofectamine RNAiMax (Invitrogen), 

following manufacturer’s instructions. After 48 hr of the second silencing, cells were 

processed. For TP53 silencing two alternative siRNA sequences were used – marked 

p53 I (targeting p53 cds) and p53 II (targeting p53 mRNA 3’UTR). If number is not 

indicated – p53 I was used. siRNAs coding sequence used in this work are listed in the 

Tab. 2. 

Total RNA extraction and RT-qPCR of mRNA and miRNA 

Total RNA was extracted with QIAzol (Qiagen) following manufacturer’s instructions. 

1μg of total RNA was reverse-transcribed with QuantiTect Reverse Transcription 

(Qiagen). Real-time qPCR in technical duplicates from each biological replicate (for 
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cell lines at least 2 biological replicates were used) was performed using 

SsoAdvancedTMSYBR Green Master Mix (Biorad) on a CFX96 Real-Time PCR 

System (Biorad). Quantitative RT-PCR of miRNAs was performed starting from total 

RNA and using miScript kit (Qiagen) for retrotranscription to cDNA. Human mature 

forms of let-7a and miR-30c were analyzed in technical duplicates from each biological 

sample (3 biological replicates for the cell line experiments) by using QuantiTect SYBR 

Green Master Mix (Qiagen) and primer kits (MS00031220, MS00009366; Qiagen). The 

list of qPCR primers used is provided in the Tab. 2. 

Gene signatures, functional annotation and Gene Ontology term enrichment 

analysis 

Full transcriptome, proteomic or ChIPseq expression datasets were imported to 

Ingenuity Pathway Analysis (IPA) software (Qiagen, www.ingenuity.com). P-value and 

log fold-change cutoffs were applied in IPA as described in the Figures. IPA was used 

to overlap datasets, generate Venn diagrams, produce resulting signature gene/protein 

lists and pathway analysis. ClueGo and GeneMania plugins for Cytoscape were used for 

further pathway, GO-term and functional annotation.  

RNA-seq and low level analysis 

MDA-MB-231 mRNA-seq libraries were obtained by Illumina TruSeq library 

construction kit using total RNA from the cell line transfected with control siRNA or 

p53 siRNA I (three biological replicates for each condition). mRNA-seq libraries were 

sequenced using Illumina HiSeq2000 for 100bp paired-end sequencing. Quality control 

of mRNA-seq data was performed using Fatsqc 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Read files were mapped to the 

human genome (hg19) and analyzed for differential expression using the Tuxedo 

software suite 
3
 implemented in the Galaxy workflow manager. The mapping was 

performed by Tophat2 and Cufflinks was used to find out differential expressed genes. 

P-values are adjusted for multiple testing using the Benjamini–Hochberg correction 

with a false discovery rate (FDR) ≤0.05. The full data set was submitted to Gene 

Expression Omnibus under accession number GSE68248.  
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Microarray Hybridization and low level analysis 

For gene expression profiling in MDA-MB-468, BT-549, SUM-149PT and HCC1395 

cell lines, we used the Illumina HumanHT-12-v4-BeadChip (Illumina). Total RNA 

isolated from the utilized cell lines expressing control siRNA and p53 siRNA I, were 

reverse transcribed and amplified according to standard protocols and in vitro 

transcription was then carried out to generate cRNA. cRNA was hybridized onto each 

array (three biological replicates for each cell line and condition) and then labeled with 

Cy3-streptavidin (Amersham Biosciences). The array was then scanned using a 

BeadStation 500 system (Illumina). The probe intensities were calculated and 

normalized using GenomeStudio Data Analysis Software’s Gene Expression Module 

(GSGX) Version 1.9 (Illumina). Further data processing was performed in the R 

computing environment version 3.0 (http://www.r-project.org/), with BioConductor 

packages (http://www.bioconductor.org/). Statistical analysis for differentially 

expressed genes was performed with limma. P-values were adjusted for multiple testing 

using Benjamini and Hochberg's method to control the false discovery rate.  

Chromatin immunoprecipitation and ChIP-sequencing 

Chromatin immunoprecipitation has been performed essentially as described 
1
 with 

modification of cell lysis and sonication stage to produce DNA fragments suitable for 

ChIP-sequencing: Cells were lysed in Lysis Buffer - 50 mM HEPES pH 7.9, 140 mM 

NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, nuclei spun 

down, washed in 10 mM Tris-HCl, pH 7.5, 200 mM NaCl, 1mM EDTA and 

resuspended in Sheraing Buffer - 0.1% SDS, 1mM EDTA, 10 mM Tris, pH 7.5. 

Samples were sonicated using Bioruptor sonicator (Diagenode; medium power setting) 

for the total time of 30 min., to achieve average size of 250-300 bp of the sonicated 

chromatin fragments. The Shearing Buffer was then supplemented to RIPA buffer of 

composition described in (Javier E. Girardini et al. 2011) and the rest of the protocol 

followed. For the used mouse (anti- p53, p300) and rabbit (anti- NRF1, NRF2, Acetyl-

H3K9, Histone H3) ChIP antibodies the species-matched IgG unspecific antibodies 

were used as controls. ChIP results are means of at least 2 biological replicates and 2 

technical replicates for each cell line. List of used ChIP qPCR primers is provided in 

Tab. 2.  



58 

 

For the ChIP-sequencing, 2–10 ng DNA resulting from ChIP procedure described 

above, obtained from six 15 cm plates of MDA-MB-231 per IP, was prepared for 

HiSeq2000 sequencing with the TruSeq ChIP Sample Prep Kit (Illumina) following the 

manufacturer’s instructions. The full ChIP-sequencing data sets were submitted to Gene 

Expression Omnibus under accession number GSE66543. 

ChIP-seq peak calling and artefact filtering 

ChIP-seq NGS reads were aligned to the hg19 genome through the BWA  

aligner using default settings. We identified significant peaks using the Model-based 

Analysis of ChIP-Seq (MACS, version 1.0.1) program, integrated in the Galaxy web-

based platform. We considered the reads as reliable mut p53 binding sites if the P-value 

was ≤ 1.00e-05 and fold enrichment (FE) ≥ 10. As described in MACS manual, FDR is 

calculated by reversing the control and treatment data, calling peaks using the same 

strategy, then calculating p-values for these 'negative peaks'. After ranking 'positive' 

peaks and 'negative' peaks by p-values, the FDR in percentage for a certain p-value can 

be calculated. We used the Genomic Regions Enrichment of Annotations Tool 

(GREAT, version 2.0.2) to associate MACS peaks to nearby genes within a distance of 

+/-500 bp from peaks to gene TSS. 

Enriched Transcription Factor Binding Sites Discovery 

We selected the ChIP-seq peaks of 37 human proteasome genes and obtained the 

nucleotide sequences corresponding to the genomic regions  +/-150bp around the centre 

of each peak using EnsEMBL BioMart (Homo sapiens assembly GRCh38).  

We identified enriched Transcription Factor Binding Sites (TFBS) using the 

LASAGNA-Search web tool (version 2.0), using the JASPAR CORE Matrices (version 

5.0_ALPHA) as the reference Matrix-Derived Model, and applied the following 

filtering parameters: Cutoff P-value: 0.001 and “Report top-5 scoring sites per promoter 

for each TF”. 

We adjusted P-values for multiple testing using the Benjamini-Hochberg's method to 

control the false discovery rate, retaining only sites with counts≥20 (i.e. sites occurring 

in at least 20 different positions, in at least 10 different promoters). 
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For all the sites with maximum similarity, we created consensus sequences using 

WebLogo (version 3.4). Finally, we re-aligned every consensus sequence to its original 

predicted TFBS using the TOMTOM Motif Comparison Tool (version 4.9.1, integrated 

in the MEME suite), keeping only the sites with a P-value<1.00e-04 (Pearson 

correlation coefficient) with respect to binding sites of the “Vertebrates (In vivo and in 

silico)” database. 

Proteomic Analysis 

MDA-MB-231 cell line transfected with control siRNA, p53 siRNA I or PSMA2 

siRNA (4 biological replicates for each condition) were lysed in 50 mM Tris-HCl, pH 

7.8 containing 2% (w/v) SDS and 0.1 M DTT and the lysates were processed by the 

MED FASP procedure with consecutive protein cleavages using LysC and trypsin. The 

released peptides were loaded on strong anion exchange microcolumns and were eluted 

with Britton-Robinson universal buffer at pH 5 and pH 2. The fractions were analyzed 

by LC-MS/MS using LTQ-Orbitrap instrument as described previously. Spectra were 

searched by MaxQuant software (www.maxquant.org) and the concentrations of 

proteins were assessed by the Total Protein Approach using the raw protein intensities 

T-test was used to assess p-value support of differences between protein concentrations 

in distinct experimental conditions. The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with 

the dataset identifier PXD001673. 

Gene signatures, functional annotation and pathway enrichment analysis 

Full transcriptomic, proteomic or ChIPseq expression datasets have been imported to 

Ingenuity Pathway Analysis (IPA) software (Qiagen, www.ingenuity.com). P-value and 

log fold-change cutoffs were applied in IPA as described in text and figures. IPA was 

used to overlap datasets, generate Venn diagrams and produce resulting signature 

gene/protein lists  

Pathway analysis module of IPA was further used to associate analyzed signatures with 

molecular pathways – producing shown bar graphs. An independent, parallel method for 

analyzing the signatures was the pathway-related gene ontology term enrichment 
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analysis, using ClueGO plugin for Cytoscape environment (http://www.cytoscape.org/) 

– employing simultaneous association with KEGG, Reactome and WikiPathways with 

otherwise default settings (analysis using broader GO-terms categories yielded 

enrichment of general cellular processes).  

For proteomic data functional analysis GeneMania plugin for Cytoscape 
14

 has been 

used, allowing to analyze cellular co-localization, interaction and pathway association 

simultaneously (otherwise default settings were employed). The network visualization 

has been generated in Cytoscape.  

Biostatistical analyses 

The statistical analysis of experiments carried out is described in figure legends (tests 

were performed and p-value thresholds were obtained using GraphPad 6.0) and 

appropriate Extended Experimental Procedures sections (number of biological/technical 

replicates).  

To verify the correlation of the gene signatures and breast cancer clinical data, survival 

analysis was performed on a breast cancer meta-dataset composed by 3458 samples 

using the Km-plotter online analysis tool. In order to perform the analysis on the 

greatest possible number of patients, for each gene, we selected only HGU133A probe-

sets. The samples were split into two groups according to quantile expressions of the 

proposed signatures. The two groups were then compared by survival analysis. The 

Kaplan-Maier curves of relapse free survival time (RFS), the hazard ratio with 95% 

confidence intervals and log-rank test p-values were calculated. Because we are 

investigating the effect of mutant p53 in cancer patients we inverted the signs of 

expression fold change coming from the mutant TP53 silencing experiments. This way, 

a high expression of the signature means that the genes down-regulated after silencing 

of mutant TP53 (hence induced by mutant p53) are highly expressed. In order to 

combine up-regulated and down-regulated genes in the same analysis, to the genes that 

are down-regulated in the signatures (up-regulated after silencing of mutant TP53) a 

negative weight has been assigned, so the less they are expressed, the more the signature 

is considered highly expressed. 

Gene expression data, TP53 mutation status and clinical annotation for Breast Invasive 

Carcinoma, (TCGA datasets) have been obtained from Cancer Genomics Data Server 

http://www.cytoscape.org/
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using the cgdsr package for R (R Core Team, 2013). The datasets were chosen for 

analysis according to the wt TP53 vs mutant TP53 status availability, with TP53-null 

samples excluded. For each patient we defined the levels of a 37-gene signature 

expression as the mean of the expression values of all the genes included in the 

signature. The statistical differences between the distributions of expression values in 

the two molecular conditions (mutated TP53 and wt TP53) were calculated by Mann–

Whitney U test in R/Bioconductor environment (R Core Team, 2013). 

Pearson's Chi-squared test with Yates' continuity correction has been performed to test 

independence between TP53 status and a signature expression.  All statistical analysis 

has been performed using R statistical analysis environment. 

Mouse strains and animal care 

P53 R172H/R172H, p53 -/- and p53 +/+ genotypes were maintained on a C57BL/6 

background and genotyping was performed polymerase chain reaction (PCR) analysis 

as described 
1
. Animals showing signs of illness or evident tumor burden were 

sacrificed and organs frozen upon extraction in the liquid nitrogen for 80
o
C storage until 

protein extraction for the proteasome activity assay and western blot.  

For in vivo xenograft studies we used SCID CB17 female mice (Charles River 

Laboratories, Lecco, Italy) aged 7 weeks.  

Procedures involving animals and their care were in conformity with institutional 

guidelines (D.L. 116/92 and subsequent complementing circulars), all experimental 

protocols were approved by the ethical Committee of the University of Padua (CEASA) 

and conducted according to the UK Coordinating Committee on Cancer Research 

(UKCCCR) guidelines of 1989 for the welfare of animals in experimental neoplasia. 

During in vivo experiments, animals in all experimental groups were examined daily for 

a decrease in physical activity and other signs of disease. 

In vivo xenograft experiments 

For in vivo tumor growth and metastasis assays MDA-MB-231 cells were transduced 

with a lentiviral vector coding for the Firefly Luciferase reporter gene. The vector was 
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previously described (Breckpot et al. 2003). Cells were propagated in vitro before 

injections. 

For MDA-MB-231 xenograft experiments, 1x10
6 

cells were resuspended in 100 μl of 

DMEM, and injected into the mammary fat pad of previously anesthetized (1-3% 

isoflurane, Merial Italia) SCID female mice. For MCF7 xenograft experiment 10x10
6 

cells were resuspended in 100 μl of DMEM, and injected into the mammary fat pad of 

SCID female mice anesthetized as above. To support the MCF7 ER+ xenograft growth 

mice were injected once a week I.M. with 1mg/kg estradiol cypionate in cottonseed oil 

(solution 1mg/ml prepared from Sigma reagents). Tumor growth at the injection sites 

was monitored by caliper measurements. Tumor volume was calculated using the 

formula: tumor volume (mm
3
) = D × d

2
/2, where D and d are the longest and the 

shortest diameters, respectively. 

We performed in vivo imaging at 9-37 days after the subcutaneous fat pad injection, in 7 

day intervals. Anesthetized animals were given the substrate D-Luciferin (PerkinElmer, 

MA, USA) by intraperitoneal injection at 150 mg/Kg in PBS (Sigma). Imaging times 

ranged from 15 s to 5 min. The light emitted from the bioluminescent tumors or 

metastasis was detected using a cooled charge-coupled device camera mounted on a 

light-tight specimen box (IVIS Lumina II Imaging System; Caliper Life Sciences). 

Regions of interest from displayed images were identified around the tumor sites or 

lymph node metastasis region and were quantified as total photon counts or photon/s 

using Living Image® software (Xenogen). In lymph node metastasis detection, the 

lower portion of each animal was shielded before reimaging in order to minimize the 

bioluminescence from primary tumor so that the signals from metastatic regions could 

be observed in vivo.  

Primary tumors were extracted at 5 weeks post treatment initiation for treatment 

controls and after reaching a comparable size in mice treated with drugs. Tumors were 

directly frozen in liquid nitrogen for molecular analyses. Lymph nodes and lungs were 

excised, formalin-fixed and paraffin-embedded for hematoxylin-eosin staining and 

human Cytokeratin 7 (Cell Marque, OV-TL12/30) immunohistochemistry. 

Animal groups and drug administration 
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The animals were randomized both prior to cell injection and prior to treatment. 

Experiment 1, MDA-MB-231: 36 SCID mice, 6 groups of 6 mice, 4 weeks, drugs 

administered 2x a week intravenously with 2 days interval, drugs mixed before 

administration (where needed) in final injection volume of 200μl PBS. Groups: DMSO 

(ctrl), CFZ (Carflilzomib, Selleckchem; 1.5mg/kg), PRIMA-1 (Tocris Biosiecnce; 50 

mg/kg), CFZ (1.5 mg/kg) + PRIMA-1 (50 mg/kg), SAHA (Tocris Biosiecnce; 50 

mg/kg) - 2 animals deceased at 2 weeks, CFZ (1.5 mg/kg) + SAHA (50 mg/kg) - 2 

animals deceased at 2 weeks. 4 mice in each group were selected for the final result.  

Experiment 2, MDA-MB-231: 36 SCID mice, 4 groups of 9 mice, 5-7 weeks, CFZ 

administered intravenously 2x a week with 2 days interval, APR-246 (PRIMA-1 MET, 

provided by Aprea, Karolinska Institutet Science Park, Solna, Sweden) administered 

intravenously 3x a week on days alternating the CFZ injection (drugs were not mixed 

on administration), injection in 200μl PBS. Groups: DMSO (ctrl), CFZ (1.5mg/kg), 

APR-246 (100 mg/kg), CFZ (1.5 mg/kg) + APR-246 (100 mg/kg). 8 mice in each group 

were selected for the final results, ex vivo molecular studies were performed in the 

biopsy material from 5 mice from the selected groups.   

Experiment 3, MCF7: 14 SCID mice, 2 groups of 7 mice, 5 weeks, CFZ administered 

intravenously 2x a week with 2 days interval, APR-246 (PRIMA-1 MET, provided by 

Aprea, Karolinska Institutet Science Park, Solna, Sweden) administered intravenously 

3x a week on days alternating the CFZ injection (drugs were not mixed on 

administration), injection in 200μl PBS: CFZ (1.5 mg/kg) + APR-246 (100 mg/kg). 6 

mice in each group were selected for the final results.  
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Figure 1. p53 as an integrator of cellular stress. 

p53 functions to integrate signals from different types of cellular stress and subsequently promotes the 

appropriate biological response, which can lead to cell survival or cell death. In the case of repairable 

damage or transient stress, a reversible process is activated that allows for damage repair and/or 

adaptation in response to the change in environment. However, when the stress stimulus is persistent 

and irreparable, the affected cell is permanently removed from the pool of proliferating cells through 

cell death, senescence or the induction of terminal differentiation. Although both responses can 

promote tumour suppression, uncoupled or deregulated survival functions can contribute to tumour 

progression and chemoresistance.  

(Kruiswijk et al., 2015) 

FIGURE  1 

Figure 2. Mutations in p53 
 
A: the different tumor-derived mutation types. B: the distribution of reported missense mutations along 393 

amino-acid sequence of p53. The six most common hotspot mutations are highlighted in yellow for DNA-

contact mutations, green for locally distorted mutants and blue for globally denatured mutants.                 

C: phenotypic effects of TP53 mutations.  

Ab: LOF (loss-of-function); DN (dominant-negative effects); GOF (gain-of-function). 

           (Brosh & Rotter, 2009) 
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Figure 4. Therapeutic strategies to target mtp53 bearing tumors. 
 

A schematic view of gain-of-function mutant p53 activation, mutant p53 downstream effectors/pathways, and 

therapeutic opportunities of targeting each of the processes. Below the largely unexplored possibilities of mutant 

p53-related combinational anti-cancer therapies are suggested. 

        

(Walerych, Lisek, Del Sal, 2015) 

Figure 3. Summary of the proposed mechanisms for mutant p53 oncogenic function. 
 
The upper panel shows the pathways that cooperate with mutant p53 pro-oncogenicmechanisms and signals or 

interactors that are required for its activation. The middle panel shows a schematic representation of the 

proposed molecular mechanisms ofmutant p53 gain of function (GOF). In the bottom panel the biological effects 

of mutant p53 function are indicated (see text for details). Membrane receptors for the indicatedsignaling 

molecules are depicted in dark gray; a double line represents the plasma membrane. PTMs: posttranslational 

modifications; P-SMAD2/3: phosphorylated SMAD2o SMAD3.  

(Girrardini et al., 2014) 

FIGURE  4 

FIGURE  3 



 
 
Figure 5. Steps of proteasomal degradation.  

The proteasome recognizes ubiquitin tags in substrates through its receptors (here regulatory particle non-
ATPase 10 (Rpn10) and (Rpn13) and then initiates degradation at an unstructured region in the substrate. As the 
ATPase motors pull the substrate into the degradation channel, the ubiquitin chain is cleaved off, the substrate 
unfolds and is finally cleaved into peptides.  
         (Bhattacharyya et al., 2014) 

 
 
Figure 6. De novo synthesis of the proteasomal system via Nrf2-mediated stress-response. 

NRF2 controls a battery of genes encoding for proteasomal subunits of both the 20S core and the 19S regulatory 

particle are targets direct targets of NRF2. Both 20S and 19S proteasome encoding genes possess the ARE-like 

sequence in their promoters. When  present in nucleus NRF2 my play its TF role in transacticating the PSM 

encoding genes together with other targets including the oxidative stress response genes like MRPs,  NQO1, 

HO-1, GCLC etc. 

          (Jung et al.,  2013)  

FIGURE  5 
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Fiugre 7. The Nrf2–Keap1 defense pathway. 

Under basal conditions, Nrf2 binds to the adaptor protein Keap1 present in the cytosol and becomes 

polyubiquitinated by a Cullin E3 ubiquitin ligase complex, targeting Nrf2 for degradation by the 26S 

proteasome. Ubiquitin requires activation by an E1 activating enzyme, with ubiquitin transferred by an E2 

conjugating enzyme to the E3 ligase complex (consisting of Nrf2, Keap1, Cullin3 and Rbx1). Stress agents (e.g. 

HNE, SFN, DEM, D3T) induce Nrf2 activation through the oxidation of specific redox-sensitive cysteine 

residues on Keap1. This disrupts Keap1–Nrf2 interactions, preventing Nrf2 ubiquitination and subsequent 

degradation and thereby depletes the ‘free’ Keap1 pool. De novo synthesis of Nrf2 then leads to accumulation 

and translocation of Nrf2 to the nucleus, where it heterodimerises with other transcription factors such as small 

Maf proteins and binds the ARE/EpRE consensus sequence to initiate transcription of protective phase II and 

antioxidant genes. Key domain structures of Nrf2 and Keap1 are shown in the inset panel (right). Abbreviations: 

N-terminal region (NTR); broad complex, tramtrack and bric a brac domain (BTB); intervening region (IVR); 

DGR and CTR domain (DC); double glycine repeat or Kelch repeat (DGR); C-terminal region (CTR); Nrf2 ECH 

homology (Neh); Cullin E3 ubiquitin ligase complex (Cul3); ubiquitin (U); 4-hydroxynonenal (HNE); 

sulforaphane (SFN); diethylmaleate (DEM); dithiolethione 3-H-1,2-dithiole-3-thione (D3T). 

 

          (Chapple et al. 2012) 

FIGURE  7 
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Induced:



 
 
Figure 8.  Two modes of action of Nrf2 

As long as it is kept under homeostatic control, Nrf2 activation protects cellular components like DNA from 
damaging insults arising from acute/temporary oxidative and xenobiotic stress. In this way, Nrf2 prevents tumor 
development. When deregulated by 1) epigenetic and genetic alterations affecting the Keap1–Nrf2 pathway, 2) 
persistent stress conditions, and/or 3) oncogenic pathways, Nrf2 activation facilitates the growth and survival of 
transformed cells, thus promoting tumorigenesis. Abbreviations: ROS, reactive oxygen species; DNA, 
deoxyribonucleic acid; tBHQ, tert-butylhydroquinone; SFN, sulforaphane 
         
         (Geisman et al., 2014) 
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Figure 9. Proteasome is the most affected and conserved pathway controlled by missense mutant p53 

variants in TNBC cell lines 

a. An integrated analysis of the mutant p53 program muti-omic data from MDA-MB-231 cell line with indicated 

cutoffs used. The top left table shows matching of the proteomic and RNA-seq transcriptomic data upon mutant 

TP53 silencing (proteomics: n=4 for each condition, raw p-value p<0.05; RNA-seq: n=3 for each condition, B-H 

adj. p-value p<0.05). The top right table shows matching of ChIP-seq peaks (DO-1 immunoprecipitation, cutoff for 

called peaks: FDR<0.05, +/- 500bp of the adjacent TSS) to RNA-seq transcriptomic data upon mutant TP53 

silencing (n=3 for each condition, B-H adj. p-value p<0.05). Transcripts in agreement with protein level changes 

(corresponding to a majority of significantly changing proteins) and ChIP-seq peaks (corresponding to a majority of 

significant peaks +/- 500bp of the adjacent TSSes) are overlapped in the Venn diagram, resulting in the integrated 

72-gene signature. The signature is further analyzed by the pathway association: IPA pathways (upper graph; bars –

log (B-H adjusted p-values of the pathway association), line – ratios of the number of found genes to the total 

number of genes in the pathways) and ClueGO top enriched KEGG pathways/GO-terms (lower table; bars –log (B-

H adjusted p-values of the pathway association)).  

b. Venn diagram of the multi-transcriptome analysis in the indicated 5 TNBC cell lines with the silenced listed 

TP53 mutants (n=3 for each cell line and condition, B-H adj. p-value p<0.05) and the 205-gene common signature 

pathway association results, as in a. c. Scheme of the used multi-omic mutant p53 gain-of-function high-throughput 

analyses in the TNBC cell lines presented in a and b;  

d. Human 26S proteasome and immunoproteasome (shown schematically in the top picture) subunit gene transcript 

means levels from 5 TNBC cell lines (as in b) upon two mutant TP53 silencings (bar graph, means of results in 5 

cell lines with s.e.m. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001).  
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Figure 10. The proteasome signature is associated with a poor patient prognosis and a mutant TP53 status in 

breast cancer 

a. Association of the mutant p53-related signatures derived from 5 indicated TNBC cell lines, the mutant p53-

related 205-gene common signature and the 37 genes, “whole proteasome signature” with the survival of breast 

cancer patients. The red curve (“high”) represents the transcript levels in patients matching the level in the presence 

of mutant p53 in cell line-derived signature, black curve (“low”) – expression level not matching the presence of 

mutant p53 (for cell line and common signatures top 30 genes downregualted and top 30 genes upregulated were 

used; see Extended Experimental Procedures for analysis details). HR – hazard ratio; log-rank P – log-rank test p-

value for the curves comparison. Numbers below graphs indicate number of patients at risk – total and at 

consecutive time points; 

b. Association of the mutant/wt TP53 status and expression of the indicated 37-gene signatures in breast carcinoma 

– derived form each cell line individually (upper plots), derived from the common 205-gene transcriptional 

signature or the 37-gene whole proteasome signature (lower plots). The signatures used were all 37 genes and 

contain only genes upregulated by mutant p53 to allow a direct comparison with the 37-gene whole proteasome 

signature - composed of proteasome subunit genes upregulated by mutant p53. Box plots: diff – difference in mean 

gene expression in mutant vs wt p53 status samples; p-value is derived from Mann–Whitney U test). Below each 

plot the independence chi-squared (÷2) test value (for df=1) along with the supporting p-value is shown. The chi-

squared test indicates if the mutant p53 status is independent of a high expression of a signature – the higher the 

value and the lower p-value the less probable the independence.  
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Figure 11. The proteasome activity is elevated in the presence of the GOF p53 mutants in various cancer 

models 

a. Chymotrypsin-like proteasome activity in 5 mutant p53 TNBC cell lines versus 2 wt p53 cell lines (MCF10A 

and MCF7) upon silencing of mutant TP53 or PSMA2 (48h post silencing) or proteasome inhibitor treatment (24h; 

Carfilzomib, Bortezomib);  

b. Chymotrypsin-like proteasome activity in human basal-like breast cancer primary tumors is on average 

significantly elevated in association with the with the missense mutant TP53 status as opposed to the wild-type 

status.  Means with s.e.m are shown; t-test, * p<0.05 (see Supplementary Fig. 3d for mutant p53 status and IHC);  

c. Chymotrypsin-like proteasome activity in MCF10A cell lines stably transfected with empty retroviral vector 

(Ctrl), vector encoding shRNA targeting TP53 transcript (sh p53) and indicated mutant p53 cds shRNA-resistant 

HA-tagged variants, stably introduced into the MCF10A sh p53 cell line (+p53 changed residue). Ctrl MCF10A 

cells were also treated as indicated with 20ìM Nutlin for 24h to induce wt p53 accumulation to a level similar to 

stably overexpressed TP53 mutants. Right panel: western blot with p53 and indicated proteasome subunit levels in 

the MCF10A-derived cell lines; 

d. Chymotrypsin-like proteasome activity in indicated non-breast cancer cell lines with p53 missense mutants is 

decreased upon mutant TP53 expression silencing or PSMA2 proteasome subunit expression silencing;  

e. Chymotrypsin-like proteasome activity is elevated in protein extracts from thymi (enlarged with lymphomas in 

KO/KI mice) and livers (enlarged and infiltrated with lymphoma cells in KO/KI mice) mice with KI R172H p53 

genotype as compared to the WT/KO genotype mice (two animals per each genotype, 3 technical replicates of the 

assay per animal were used). Lower panel: p53 protein levels in liver extracts (western blot). Means with s.e.m. 

are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001. 

f. Chymotrypsin-like proteasome activity is elevated in Mouse Embryo Fibroblast cells (MEFs) from mice with KI 

R172H TP53 genotype as compared to the MEFs from WT/KO genotype mice, with or without a stable 

overexpression of the RAS V12 oncogenic variant. Lower panel: corresponding western blot with p53 and Ras 

level detection.  

a, c-d, f: Means with s.d. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001.  
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Figure 12. Mutant p53 cooperates with NRF2 in binding and activating promoters of the 26S proteasome 

subunit genes 

a. Chromatin immunoprecipitation is significantly enriched in anti-p53 DO-1 antibody IP in the mutant p53 

binding regions, but not in the p53 non-binding ChIP-seq regions or the IP with a control IgG antibody. A 

heterochromatic AchR locus was used as a ChIP negative control. Mean result with s.e.m. for the panel of the 5 

TNBC cell lines is shown – each cell line result is a mean of 2 technical replicates; ANOVA test with Bonferroni 

correction: * p<0.05, ** p<0.01, *** p<0.001;; 

b. Predicted (upper) and derived (lower) consensus sequences found by motif analysis in the mutant p53 binding 

regions of the proteasome genes, corresponding to the transcription factors involved in the regulation of 

proteasome gene expression: NRF1/2, NFYA, STAT3, NF-êB  

c. Transcription levels of PSMA2 and PSMC1 proteasome genes (upper graph) and chymotrypsin-like proteasome 

activity (lower graph) upon silencing of mutant TP53 and candidate mutant p53 transcription co-factors (NRF1/2, 

NFYA, STAT3, NFKB1);  

d. As in c, upon double silencing of mutant p53 together with NRF1/2 transcription factors;  

e. ChIP of mutant p53 binding regions of the PSMA2 and PSMC1 genes with the indicated antibodies (Ab) upon 

siRNA-mediated silencing of mutant TP53, NRF2 or NRF1;  

f. Chromatin immunoprecipitation enrichments obtained with anti-p300 antibody at mutant p53 binding regions of 

PSMA2 and PSMC1 genes in MDA-MB-231 cells upon the treatment with the indicated siRNAs;  

g. Ratios of chromatin immunoprecipitation enrichments obtained with anti-acetyl-histone H3K9 (Lys9) antibody 

and anti-histone H3 antibody, indicating proportion of histone H3 acetylation at PSMA2 and PSMC1 mutant p53 

binding regions in MDA-MB-231 cells upon treatment with the indicated siRNAs;  

c-g: Means with s.d. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001;  

 



Figure 13. The GOF p53 mutants interact with NRF2 and are functionally sensitive to NRF2 silencing  

a. Western blot result of co-immunoprecipitation (co-IP) of mutant p53 (DO-1 antibody) with the candidate 

mutant p53 transcription co-factors (NRF1, NRF2, NFYA, STAT3, NFêB-p65) in lysates from indicated 5 TNBC 

mutant p53 cell lines and two wt p53 cell lines; 

b. Western blot result of co-immunoprecipitation (co-IP) of mutant p53 (DO-1 antibody) with NRF2 post 24h 

treatment of MDA-MB-231 cells with DMSO or 1ìM PRIMA-1; 

c. Co-immunoprecipitation (co-IP; DO-1 or IgG antibody) of p53 and NRF2 is shown in control or p53 stabilizing 

conditions (24h 20 ìM Nutlin treatment) for normal MCF10A cells with endogenous wt p53 (wt) and in the 

mutant p53 overexpresssing MCF10A cells with stably silenced endogenous wt p53 (+p53 R175H and +p53 

R280K); 

d. PSMA2 or PSMC1 gene expression in MCF10A cells (control or with stably silenced endogenous wt p53 and 

introduced mutant p53 variants +p53 R175H or +p53 R280K) upon indicated silencing (ctrl, NRF2, p53 III; for 

TP53 silencing siRNA was used that targets cds outside the residues used to produce siRNA resistance for the p53 

I sequence in the TP53 cds overexpressed ectopically in MCF10A). Means with s.d. are shown, ANOVA test with 

Bonferroni correction:  ** p<0.01, *** p<0.001. The protein levels were controlled in the western blot (right 

panel);  
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Figure 14. Mutant p53 targeting by APR-246 eliminates resistance to the proteasome inhibitor Carfilzomib 

in TNBC cells in vitro and in in vivo xenografts  

a.  Colony formation assay in the MDA-MB-231 cells under treatment with the indicated drugs (representative 

picture of 3 independent experiments,);  

b. Reducing effect of mutant TP53, NRF2 silencing or APR-246 (PRIMA-1MET) treatment on  transcription of 

the representative proteasome genes. PSMA2 and PSMC1 transcript levels are  elevated due to a bounce-back 

effect post treatment with Carfilzomib (CFZ) in MDA-MB-231. Means with s.d. are shown, ANOVA test with 

Bonferroni correction; * p<0.05, ** p<0.01, *** p<0.001;  

c. Luciferase in vivo intensity at 5 weeks at primary tumor sites at 5 weeks of the MDA-MB-231-Luc (cells stably 

overexpressing luciferase) mammary fat pad xenograft growth in SCID mice intravenously treated with DMSO, 

CFZ, APR-246 or combination of CFZ and APR-246;  

d. Primary MDA-MB-231-Luc (mutant p53, TNBC) mammary fat pad xenograft growth in SCID mice 

intravenously treated with DMSO or combination of CFZ and APR-246 (caliper measurements with s.e.m., 

significance for the time-course is indicated - Friedman nonparametric matched pairs test with Dunn’s correction;  

*** p<0.001); 

e. Primary MCF7 (wt p53, ER+) mammary fat pad xenograft growth in SCID mice intravenously treated with 

DMSO or combination of CFZ and APR-246 (caliper measurement, statistical test as in d., difference not 

significant); 

f. Lymph node area (metastasis) luciferase intensity in the mice treated as indicated in the MDA-MB-231-Luc 

xenograft experiment in c and d. Data refer to 5 weeks for the DMSO control group, and to later time-points for 

the treated groups, i.e. when the primary tumors reached sizes comparable to the controls; 

g. Representative photos of lymph nodes (homolateral to the xenograft - indicated by arrows; bar size – 2 mm) 

and lung tissue (bar size – 200 µm) with IHC staining of the MDA-MB-231 metastasis (human cytokeratin, 

brown) in mice from c,d,f. As reported in f, the IHC analyses were carried out on samples collected when the 

primary tumor sizes were comparable in all groups.  

h. PSMA2 and PSMC1 transcript levels in primary tumors extracted from mice in c-d under the indicated 

treatment;  

i. Chymotrypsin-like proteasome activity in primary tumors, extracted from mice as in h;  



Figure 15. Model representation of mutant p53 regulation of the proteasome machinery and its therapeutic 

implication  

a. Mutant p53 activates proteasome gene transcription by controlling NRF2 transcription factor that results in 

upregulation of proteasome activity and degradation of tumor suppressor proteins;  

b. Inhibition of the proteasome with Carfilzomib results in the mutant p53 and NRF2-mediated bounce-back 

response of the increased proteasome transcription;   

c. Proteasome activity can be efficiently decreased by the simultaneous treatment of cells with Carfilzomib and 

APR-246/PRIMA-1MET a drug which converts mutant p53 to the wild-type-like form and reduces the interaction 

of mutant p53 with NRF2. 
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Figure 16.  Mutant p53 upregulates the proteasome genes transcription, subunits protein levels 

and activity 

a. Levels of selected 26 proteasome (PSMA2, PSMB1, PSMC1) and immunoproteasome (PSMB9) 

subunits are lowered as determined by the western blot upon TP53 expression silencing in the 

indicated 5 TNBC cell lines with mutant p53 and MCF7 ER+ breast cancer cell line with wt p53, using 

2 alternative TP53 siRNAs; Below – a bar graph demonstrating average protein levels of proteasome 

subunits measured by densitometry in 5 TNBC cell lines with mutant p53 (2 western blot results per 

each cell line were averaged then means of n=5 were obtained, bars indicate means with s.e.m., 

ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001; normalized control silencing 

level shown as the dashed line);  

b. Overexpressed mutant p53 variants from the studied TNBC cell lines rescue the proteasome genes 

transcription in the stably silenced endogenous mutant TP53 background of MDA-MB-231 cells. 

Transcript levels of ten representative proteasome subunits in MDA-MB-231 cells stably transfected 

with: empty retroviral vector (Ctrl), vector encoding shRNA targeting TP53 transcript (sh p53) and 

indicated mutant p53 cds shRNA-resistant HA-tagged variants, stably introduced into the MDA-MB-

231 sh p53 cell line (+p53 changed residue). Lower panel: western blot demonstrating effect of the 

stable silencing of mutant TP53 and the expression of the indicated HA-tagged mutant p53 variants. 

Means with s.d. are shown; ANOVA test with Bonferroni correction: * p<0.05. The p-value is marked 

with * for the sh p53 difference from Ctrl and for each of the introduced variants difference from sh 

p53; 

c. Trypsin-like proteasome activity is decreased in mutant p53 TNBC cell lines versus wt p53 cell lines 

(MCF10A and MCF7) upon silencing of mutant TP53 or PSMA2 or proteasome inhibitor treatment 

(24h; Carfilzomib, Bortezomib). Means with s.d. are shown, ANOVA test with Bonferroni correction: * 

p<0.05, ** p<0.01, *** p<0.001; 

d. Table listing the basal-like primary breast cancer tumor samples from patients, used to determine 

correlation between the p53 status and the proteasome activity. Mutations found by sequencing of the 

TP53 mRNA expressed in samples are indicated along with the TNBC status, immunohistochemical 

p53 staining intensity assessment and proteasome chymotrypsin activity measurement result (mean 

of 3 technical replicates each). Lower panel - IHC staining of p53 (brown) in representative samples 

with indicated numbers corresponding to the table above; 

e. Trypsin-like proteasome activity in MCF10A cell lines stably transfected with empty retroviral vector 

(Ctrl), Ctrl treated with 20ìM Nutlin for 24h, stably transfected with vector encoding shRNA targeting 

TP53 transcript (sh p53) and indicated mutant p53 cds shRNA-resistant HA-tagged variants, stably 

introduced into the MCF10A sh p53 cell line (+p53 changed residue; the proteasome activity is 

increased). Means with s.d. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, 

*** p<0.001; 

f. Transcript levels of four indicated proteasome subunits in MCF10A cell lines transfected with empty 

retroviral vector (Ctrl), vector encoding shRNA targeting p53 transcript (sh p53) and indicated mutant 

p53 cds shRNA-resistant HA-tagged variants, stably introduced into MCF10A sh p53 cell line (+p53 

changed residue; increased proteasome transcript levels). Means with s.d. are shown, ANOVA test 

with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001; 



g. Basal chymotrypsin-like and trypsin-like proteasome activities are elevated in the five indicated 

TNBC cell lines (mutant p53), as compared to the MCF10A cell line (wt p53). Means with s.d. are 

shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001; 

h. Transcript levels of seven proteasome subunits are decreased in the indicated non-breast cancer 

cell lines upon mutant TP53 expression silencing. Control level is marked with the dashed line. Means 

with s.d. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001. 
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Figure 17. NRF2 is required for the regulation of proteasome genes transcription and activity 

a. Integrative Genomics Viewer (IGV) snapshots at the selected proteasome subunit gene loci with 

shown ChIP-sequencing enrichment readouts for the indicated samples in the MDA-MB-231 cells – 

DO-1 p53 ChIP (red), IgG ChIP (green), ChIP input (blue). (*) indicate significant peaks called in range 

-+500 bp of proteasome gene TSSes (Supplementary Tab. 4), other peak regions were hand-picked 

in IGV. Regions highlighted in red were used to design mutant p53 binding-region region primers for 

ChIP validation shown in Figure 4a (primers listed in the Supplemetary Tab. 7); 

b. Western blot related to Figure 4c (left panel) and Figure 4d (right panel) showing protein levels of 

the transcription factors whose expression has been silenced in the indicated samples; 

c. Effects of transfection of alternative siRNA for NRF2 (NRF2 II) and siRNA for TP53 on proteasome 

activity (middle panel) and transcription (right panel) are coparable with siRNA NRF2 I treatment 

shown in Figure 4c and 4d. Means with s.d. are shown, ANOVA test with Bonferroni correction: * 

p<0.05, ** p<0.01, *** p<0.001.; 

d. Chromatin immunoprecipitation enrichment obtained with the indicated antibodies at PSMA2 and 

PSMC1 mutant p53 binding regions in the wt p53 MCF7 cells. Means are shown, differences are 

insignificant - ANOVA test with Bonferroni correction; 

e. Transcript levels of all human 26S proteasome and immunoproteasome subunits determined in 

MDA-MB-231 cells upon NRF2 expression silencing (normalized control level shown as the dashed 

line, means with s.d. are shown, t-test: * p<0.05).  
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Figure 18. Direct interaction between NRF2 and mutant p53 drives proteasome genes 

transcription upregulation 

a. Mutant p53 co-immunoprecipitates (co-IP) with NRF2 in MDA-MB-231 and MDA-MB-468 cell 

lysates (anti-NRF2 antibody). In MCF-7 cell lysate endogenous wt p53 does not co-immunoprecipitate 

with NRF2 (anti-NRF2 antibody); 

b. NRF2 interacts stronger with the overexpressed mutant p53 than with wt p53 in the p53-null H1299 

cell lysates. Co-immunoprecipitation (co-IP) of NRF2 (anti-NRF2 antibody) and overexpressed wt or 

mutant (R175H and R280K) p53 in p53-null H1299 cells;  

c. GST tagged mutant p53 variants interact via DNA binding domain with overexpressed full length 

NRF2 in the p53-null H1299 cell lysates. Western blot results are shown of the GST pull-down of 

overexpressed full length NRF2 from H1299 lysates with the E.coli overexpressed, Sepharose-GSH-

bound p53 variants fused with GST – wt, R175H and R280K (FL- full length protein; DBD – DNA 

binding domain; N-term – amino terminal domain; C-term – carboxy terminal domain of p53). 

Scheme of the p53 constructs used for the experiment: All constructs were N-terminally GST-tagged. 

p53 domains and sub-domains are indicated – TA (trans-activation), PRD (proline-rich domain), DBD 

(DNA-binding domain), TET (tetramerization domain), REG (regulatory domain); 

d. The increased expression of PSMA2 and PSMC1 proteasome genes is blunted by silencing of 

TP53 or NRF2 in the presence of the overexpressed mutant p53 variants (R175H and R280K) in p53-

null H1299 cells. The effect is absent in the wt p53 overexpressing cells; 

e. NRF2 and p53 are present in the nuclei of MDA-MB-231 cells with or without oxidative stress. 

Western blot results of cells fractionation to nuclear and cytosolic fractions (and whole cell lysate 

control) are shown. Cells optionally treated with NRF2-targeting siRNA and/or for 6h with 50 ìM of 

oxidative stress-inducing sodium arsenite (NaAsO2);  

f. Mutant p53 co-immunoprecipitates with NRF2 in the nuclear fraction of MDA-MB-231. Western blot 

result is shown of the co-immunoprecipitation (co-IP) with the indicated antibodies after obtaining the 

nuclear fraction as in c.; 

g. Mutant p53 regulates transcription of NRF2-dependent oxidative stress induced gene HO-1 in the 

opposite manner to the proteasome genes. Transcription of HO-1, PSMA2 and PSMC1 genes is 

shown in MDA-MB-231 cells upon treatment with control silencing and silencing targeting NRF2 or 

TP53, with or without 6h treatment with 50 ìM of oxidative stress-inducing sodium arsenite (NaAsO2). 

Oxidative stress strongly induces HO-1 and moderately PSMA2/PSMA2 expression – upon which 

NRF2 silencing inhibits both, while mutant p53 silencing further induces HO-1 expression and reduces 

proteasome genes’ expression. 

h. NRF2 and p53 co-localize in the nuclei of MDA-MB-231 with or without oxidative stress. Cells 

optionally treated for 6h with 50 ìM of oxidative stress-inducing sodium arsenite (NaAsO2). Upon 

oxidative stress NRF2 increases its presence in the nucleus; 

i. NRF2 and p53 co-localize in the nuclei of MCF10A control cells (wt p53) and MCF10A cells with 

silenced endogenous wt TP53 (sh p53) plus overexpressed mutant p53 variants (+p53 R280K. +p53 

R175H).  



FIGURE  19 

i.



Figure 19. APR-246 and mtp53 targeting agents synergistically kill TNBC cells in vivo and in vitro 

a. TP53 silencing or targeting with SAHA (Vorinostat) or PRIMA-1 sensitizes TNBC but not wt p53 cell lines to the 

proteasome inhibitor Carfilzomib (CFZ). Viability is shown of indicated TNBC (mutant p53) and wt p53 cell lines (MCF7 

and MCF10A) post 24h treatment with the proteasome inhibitor Carfilzomib (CFZ, 12.5 nM; for MDA-MB-468 cell line 5 

nM CFZ was used due to a higher sensitivity of this cell line to proteasome inhibitors) with or without p53 silencing or 

treatment with SAHA (2,5 µM) / PRIMA-1 (1 µM). Means with s.d. are shown, ANOVA test with Bonferroni correction: * 

p<0.05, ** p<0.01, *** p<0.001; 

b. Drug-mediated inhibition of proteasome and mutant p53 synergistically decreases the proteasome activity in MDA-MB-

231 cells. Chymotrypsin-like and trypsin-like proteasome activities in MDA-MB-231 cell line post 24h treatment with the 

proteasome inhibitor Carfilzomib (CFZ), SAHA, PRIMA-1 or APR-246 (PRIMA-1MET) and their combinations. Means 

with s.d. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001; 

c. Treatment of MDA-MB-231 cells with SAHA (2,5 µM), PRIMA-1 (1 µM) or APR-246 (1 µM) plus the proteasome 

inhibitor Carfilzomib (CFZ; 12.5 nM) induces tumor suppressive proteins KSRP, PUMA, p21 and NOXA and the 

apoptosis marker PARP p85 increase. Western blots are shown for the indicated proteins upon treatment with the listed 

drugs for 24h. PRIMA-1 and APR-246 treatments alone induce protein level increase of the wt p53 transcriptional targets 

– PUMA, p21 and NOXA; 

d. Simultaneous administration of PRIMA-1 and the proteasome inhibitor Carfilzomib (CFZ) inhibits the growth of primary 

xenograft tumors more effectively than a combination of SAHA and CFZ. Average (bars) and individual (dots) primary 

tumor sizes of the MDA-MB-231-Luc subcutaneous xenografts in SCID mice post 4 weeks of treatment intravenously 

with the indicated drugs and their combinations are shown. 4 animals out of 6 originally involved in the test were selected 

for display in each treatment protocol – in each SAHA and SAHA+CFZ group 2 animals out of 6 died post 2 weeks of 

treatment, possibly due to SAHA toxicity (for details of the treatment protocol see Extended Experimental Procedures); 

e. Concomitant treatment of MDA-MB-231 cells with Carfilzomib (CFZ) and APR-246 eliminates Carfilzomib resistant 

clones while the combining CFZ or APR-246 Cisplatin, Doxorubicin or Paclitaxel does not increase their toxicity. Colony 

formation assay average colony numbers are shown in 3 biological replicates of the treatment experiment with the 

indicated drugs and their combinations. Means with s.d. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** 

p<0.01, *** p<0.001; 

f. Introduction of mutant p53 variants to MCF10A cells with stably silenced wt p53 increases their resistance to 

proteasome inhibitor Carfilzomib (CFZ) but sensitizes them to CFZ+APR-246 combination. Mean viability of MCF10A cell 

lines is shown - treated for 24h with the different concentrations of CFZ or/and APR-246 - stably transfected with empty 

retroviral vector (Ctrl), vector encoding shRNA targeting TP53 transcript (sh p53) and indicated mutant p53 cds shRNA-

resistant HA-tagged variants, stably introduced into MCF10A sh p53 cell line (+p53 changed residue number). Means 

with s.d. are shown, ANOVA test with Bonferroni correction: * p<0.05, ** p<0.01, *** p<0.001 

48 hours post silencing of mutant TP53, PSMA2 or both. Means of 3 technical replicates are shown with s.d., ANOVA test 

with Bonferroni correction: *** p<0.001. Lower panel: western blot showing the silencing effects on p53/PSMA2 and 

induction of apoptosis markers: PARP p85 fragment and cleaved Caspase 3. TP53 silencing does not induce apoptosis 

markers, viability decrease is due to cell cycle arrest 



g. Mutant TP53, NRF2 silencing or APR-246 (PRIMA-1MET) treatment reduces the proteasome 

genes PSMA2 (left graph) and PSMC1 (right graph) transcript elevation due to the bounce-back effect 

post treatment with Carfilzomib (CFZ) in indicated, four TNBC cell line. Both the bounce-back effect 

and its reduction due to the TP53, NRF2 silencing or APR-246 treatment are less pronounced in the 

wt p53 MCF7 and MCF10A cell lines, unless mutant p53 (R280K) is introduced to the MCF10A the 

cell line – that significantly boosts the bounce-back effect;    

h. Primary MDA-MB-231-Luc (mutant p53, TNBC) subcutaneous xenograft growth in SCID mice is 

significantly reduced compared with the DMSO treated controls in the mice intravenously treated with 

the combination of Carfilzomib (CFZ) and APR-246, but not in mice with the drugs administered alone 

(caliper measurement, means with s.e.m. are shown, significance for the time-course is indicated - 

Friedman nonparametric matched pairs test with Dunn’s correction;  *** p<0.001) 

i. Simultaneous silencing of mutant TP53 and essential proteasome subunit PSMA2 concomitantly 

decreases MDA-MB-231 cells viability and induces apoptosis markers. Bar graph represents cell 

viability 



Entrez Gene Name Gene symbol 

5TNBC 

Average Fold 

Change

General 

biochemical 

function

aldo-keto reductase family 1, member B1 AKR1B1 1,26

aldo-keto reductase family 1, member C2 AKR1C1 1,56
aldehyde dehydrogenase 7 family, member A1 ALDH7A1 -1,17
carbonyl reductase 1 CBR1 1,07

epoxide hydrolase 1, microsomal (xenobiotic) EPHX1 1,21
NAD(P)H dehydrogenase, quinone 1 NQO1 1,23
prostaglandin reductase 1 PTGR1 -1,37
ATP-binding cassette, sub-family B (MDR/TAP), member 6 ABCB6 -1,03

ATP-binding cassette, sub-family C (CFTR/MRP), member 1 ABCC1 1,03
ATP-binding cassette, sub-family C (CFTR/MRP), member 3 ABCC3 1,31
ATP-binding cassette, sub-family C (CFTR/MRP), member 4 ABCC4 1,17

ATP-binding cassette, sub-family C (CFTR/MRP), member 5 ABCC5 1,33
glutathione S-transferase mu 1 GSTM1 -1,19
glutathione S-transferase pi 1 GSTP1 -1,17
microsomal glutathione S-transferase 1 MGST1 -1,09

glutamate-cysteine ligase, catalytic subunit GCLC -1,01
glutamate-cysteine ligase, modifier subunit GCLM -1,49
gamma-glutamyltransferase 1 GGT1 -1,01

glutaredoxin (thioltransferase) GLRX -1,20
glutaminase GLS 1,02

glutathione peroxidase 4 GPX4 1,04

glutathione reductase GSR -1,03

solute carrier family 6, member 9 SLC6A9 1,39
solute carrier family 7, member 11 SLC7A11/x-CT 1,04

peroxiredoxin 1 PRDX1 1,09

peroxiredoxin 6 PRDX6 -1,04

sulfiredoxin 1 SRXN1 1,12

thioredoxin TXN 1,08

thioredoxin reductase 1 TXNRD1 1,29

biliverdin reductase A BLVRA -1,14
biliverdin reductase B (flavin reductase (NADPH)) BLVRB 1,02
ferrochelatase FECH -1,01

ferritin, heavy polypeptide 1 FTH1 1,00

ferritin, light polypeptide FTL 1,02

heme oxygenase (decycling) 1 HMOX1 1,57

acyl-CoA thioesterase 7 ACOT7 1,01

acyl-CoA thioesterase 8 ACOT8 -1,00
acyl-CoA oxidase 1, palmitoyl ACOX1 -1,24

acyl-CoA oxidase 2, branched chain ACOX2 -1,24

Detoxication:       

Phase I                

drug oxidation, 

reduction and 

hydrolysis

Lipid metabolism: 

fatty

acid oxidation

Detoxication:      

Phase III drug 

transport

Detoxication:      

Phase II

drug conjugation/  

GSH system

Antioxidant: GSH-

based

system

Antioxidant: TXN-

based

system

Heme and iron 

metabolism

glucose-6-phosphate dehydrogenase G6PD 1,10
hexokinase 1 HK1 1,02
malic enzyme 1, NADP(+)-dependent, cytosolic ME1 1,10
phosphogluconate dehydrogenase PGD 1,15

transaldolase 1 TALDO1 1,02

transketolase TKT 1,18
UDP-glucose 6-dehydrogenase UGDH -1,03
lipase, member H LIPH 1,01
patatin-like phospholipase domain containing 2 PNPLA2 1,05

thromboxane A synthase 1 (platelet) TBXAS1 1,12

P450 (cytochrome) oxidoreductase POR 1,05
ELOVL fatty acid elongase 1 ELOVL1 -1,01

prosaposin PSAP 1,27

lipin 1 LPIN1 1,56
pyruvate carboxylase PC 1,00

aldehyde dehydrogenase 3 family, member A1 ALDH3A1 1,01
serine hydroxymethyltransferase 1 (soluble) SHMT1 -1,20
serine hydroxymethyltransferase 2 (mitochondrial) SHMT2 -1,00
phosphoserine aminotransferase 1 PSAT1 -1,74

phosphoglycerate dehydrogenase PHGDH 1,08

Serine 

biosynthesis

Carbohydrate 

metabolism

and NADPH 

regeneration

Lipid metabolism: 

lipases

Table 1. NRF2 target genes and their regulation upon mutant p53 silencing in 5 TNBC cell lines 

(result FD on average)  

TABLE 1 



peroxisome proliferator-activated receptor gamma PPARG 1,03

peroxisome proliferator-activated receptor gamma, coactivator 1 

beta PPARGC1B 1,08

retinoid X receptor, alpha RXRA 1,03
Mdm2, p53 E3 ubiquitin protein ligase homolog (mouse) MDM2 -1,06
hypoxia up-regulated 1 HYOU1/ORP150 -1,16
zinc finger protein 143 ZNF143 -1,13
CUGBP, Elav-like family member 2 CELF2 1,02
nuclear receptor corepressor 2 NCOR2 1,02
RAB10, member RAS oncogene family RAB10 1,28

activating transcription factor 4 ATF4 1,16

Kruppel-like factor 9 KLF9 1,04

CCAAT/enhancer binding protein (C/EBP), beta CEBPB -1,05

kelch-like ECH-associated protein 1 KEAP1 -1,14

v-maf musculoaponeurotic fibrosarcoma oncogene homolog G MAFG 1,06

nuclear factor (erythroid-derived 2)-like 1 NFE2L1 -1,06
nuclear factor (erythroid-derived 2)-like 2 NFE2L2 1,06
nuclear factor (erythroid-derived 2)-like 3 NFE2L3 -1,10
cullin 3 CUL3 -1,00
glycogen synthase kinase 3 alpha GSK3A -1,02

various novel 

NRF2 targets  

(validated 

targets)

NRF2-KEAP1 

pathway

proteasome (prosome, macropain) subunit, alpha type, 1 PSMA1 -1,45
proteasome (prosome, macropain) subunit, alpha type, 2 PSMA2 -1,57
proteasome (prosome, macropain) subunit, alpha type, 3 PSMA3 -1,21
proteasome (prosome, macropain) subunit, alpha type, 4 PSMA4 -1,20

proteasome (prosome, macropain) subunit, alpha type, 5 PSMA5 -1,21
proteasome (prosome, macropain) subunit, alpha type, 6 PSMA6 -1,24

proteasome (prosome, macropain) subunit, alpha type, 7 PSMA7 -1,04
proteasome (prosome, macropain) subunit, beta type, 1 PSMB1 -1,02
proteasome (prosome, macropain) subunit, beta type, 2 PSMB2 -1,17
proteasome (prosome, macropain) subunit, beta type, 3 PSMB3 -1,08
proteasome (prosome, macropain) subunit, beta type, 4 PSMB4 -1,06
proteasome (prosome, macropain) subunit, beta type, 5 PSMB5 -1,07
proteasome (prosome, macropain) subunit, beta type, 6 PSMB6 -1,11
proteasome (prosome, macropain) subunit, beta type, 7 PSMB7 -1,01

proteasome (prosome, macropain) 26S subunit, ATPase, 1 PSMC1 -1,68
proteasome (prosome, macropain) 26S subunit, ATPase, 2 PSMC2 -1,03

proteasome (prosome, macropain) 26S subunit, ATPase, 3 PSMC3 -1,10
proteasome (prosome, macropain) 26S subunit, ATPase, 4 PSMC4 -1,07

proteasome (prosome, macropain) 26S subunit, ATPase, 5 PSMC5 -1,12
proteasome (prosome, macropain) 26S subunit, ATPase, 6 PSMC6 -1,15
proteasome (prosome, macropain) 26S subunit, non-ATPase, 1 PSMD1 -1,06
proteasome (prosome, macropain) 26S subunit, non-ATPase, 2 PSMD2 -1,13
proteasome (prosome, macropain) 26S subunit, non-ATPase, 3 PSMD3 -1,10
proteasome (prosome, macropain) 26S subunit, non-ATPase, 4 PSMD4 -1,12
proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 PSMD5 1,00
proteasome (prosome, macropain) 26S subunit, non-ATPase, 6 PSMD6 -1,02
proteasome (prosome, macropain) 26S subunit, non-ATPase, 8 PSMD8 -1,04
proteasome (prosome, macropain) 26S subunit, non-ATPase, 9 PSMD9 1,04

proteasome (prosome, macropain) 26S subunit, non-ATPase, 10 PSMD10 -1,44

proteasome (prosome, macropain) 26S subunit, non-ATPase, 11 PSMD11 -1,09
proteasome (prosome, macropain) 26S subunit, non-ATPase, 12 PSMD12 -1,32
proteasome (prosome, macropain) 26S subunit, non-ATPase, 13 PSMD13 -1,13
proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 PSMD14 -1,06

Proteasome 

machinery

Entrez Gene Name Gene symbol 

5TNBC 

Average Fold 

Change

General 

biochemical 

function

Table 1. NRF2 target genes and their regulation upon mutant p53 silencing in 5 TNBC cell lines 

(result FD on average) – cont. 

TABLE 1 



PSMA1 ATACTTTCGGCAGCACCTCC FW

PSMA1 AGACCAACTGTGGCTGAACC REV

PSMA2 GTGCTTTGGCTCTTCGGGTA FW

PSMA2 GCTTTAATTCCCACGGACGG REV

PSMA3 GGCTGCAGTTTCATGTTAGGG FW

PSMA3 GATGGCACAGCCCCAATAAC REV

PSMA4 GTTAAGGGCTCCGTGGACAT FW

PSMA4 CCTGCATGTCCAATAGCTTCC REV

PSMA5 GTACGACAGGGGCGTGAATA FW

PSMA5 GCACACACCCTCTGATGTCT REV

PSMA6 GGGCCCAGGGATTGTGTTTA FW

PSMA6 GATGTAAGGCCACCCTGGTT REV

PSMA7 CAAGTGGAGTACGCGCAGGA FW

PSMA7 GCAGTTTGGCCACTGACTTCT REV

PSMA8 TGAATATGCCCAGGAAGCGG FW

PSMA8 ACTGCAAAAGCCATGCAGAC REV

PSMB1 CCCTTTGCAGCTGCGATTTT FW

PSMB1 GGGCTATCCCGCGTATGAAT REV

PSMB2 CTCATCGGTATCCAAGGCCC FW

PSMB2 GTCTCCAGCCTCTCCAACAC REV

PSMB3 TGAGTTGAAGGAAGGTCGGC FW

PSMB3 AAAGGTCTTCGGGTCCAACC REV

PSMB4 CGGAGGCTATGCTGATGGAG FW

PSMB4 AGCGTTCTACTAAGTCGCGG REV

PSMB5 GCTACCGGTGAACCAGCG FW

PSMB5 CAACTATGACTCCATGGCGGA REV

PSMB6 CACTCCAGACTGGGAAAGCC FW

PSMB6 GACAGCAGAAAATGCGGTCG REV

PSMB7 CACAGACATGACAACCCAGC FW

PSMB7 AGGGCTGCACCAATGTAACC REV

PSMB8 GCTCCTGGCTGACTTCTAGT FW

PSMB8 TGAACGTTCCTTTCTCCGTCC REV

PSMB9 GGCGTTGTGATGGGTTCTGA FW

PSMB9 AGAGAGTGCACAGTAGATGCG REV

PSMB10 AGCTACACGCGTTATCTACGG FW

PSMB10 CTGCGGTCCAGTCAGGTCTA REV

PSMB11 CGTGGCTATCGCTACGACAT FW

PSMB11 TGACACATGCTCCCATCCAC REV

PSMC1 TGGAGCTTCCTCTCACCCAT Fw

PSMC1 TGGCTGAGGTTTGGTTTGCT Rev

PSMC2 ACAGCCTTTACAGGTTGCCA FW

PSMC2 CTATCCACGCCCACTCTCATC REV

PSMC3 ATTGGGGGTTTGGACAAGCA FW

PSMC3 ATCAGCACCCCTTTTGGAGG REV

PSMC4 TCTGGAGGCTGTGGATCAGA FW

PSMC4 AGTGCATTGCTGTGCTTGTG REV

PSMC5 AGAGAAGATGGCGCTTGACG FW

PSMC5 CTCCGGAGGTTTTGGCTCTT REV

PSMC6 AACACAAGGAGATCGACGGC FW

PSMC6 CGATCTGCCCAACACTCTGTA REV

PSMD1 ATGGGAGGATGGAAGAGGCT FW

PSMD1 AACATGTAGCAGGCGTCGAA REV

PSMD2 CATGACTTCAGTGCCCAAGC FW

PSMD2 CGGAGATGATGTCAGCAGCA REV

PSMD3 GCGAATCAAAGCCATCCAGC FW

PSMD3 CAGCTCCACCACGATGAGAA REV

PSMD4 ACGTGGGCCTTATCACACTG FW

PSMD4 GATCTTGCCCTTGGGTTGGA REV

PSMD5 GCTCTTCTCCCTGCTTAACGA FW

PSMD5 CAGGTCAACCCTGAGGTTCC REV

PSMD6 TCCAGCAGTTCGGCAGTATC FW

PSMD6 ATGAGGGGCAAAAAGCCAGT REV

PSMD7 TTGATGTGAAGCCGAAGGACC FW

PSMD7 GCTCCAATTTCACTGGTCACG REV

PSMD8 TGGAACCGTAAAAGCCCCAA FW

PSMD8 TCACGGGCCAGAATTAGCTG REV

PSMD9 CGCAAACTGGGTCAGAGTGA FW

PSMD9 TGTTCACAGAGCCGAACTCC REV

PSMD10 AGCAGCCAAGGGTAACTTGAA FW

PSMD10 ACTCTCTCCTCATCACAGGCT REV

PSMD11 GCTTGCACTTCGGTATGCAG FW

PSMD11 GAGCTCTGCCCGGTAATCTG REV

PSMD12 TCGTCAAGATGGAGGTGGAC FW

PSMD12 ACGAGTCTGCTTTTCCAGAGA REV

PSMD13 ACGTACCGGGCTTCCTACAG FW

PSMD13 CAAAGCACGGATCCTGCACA REV

PSMD14 AGGAGGTATGCCTGGACTGG FW

PSMD14 TCCAGCACGGCCATGTTTT REVTP53 CTCCTCTCCCCAGCCAAAGA FW

TP53 GGAACATCTCGAAGCGCTCA REV

NRF1 (TCF11, NFE2L1) TACGGGTGGACGTGGATACT FW

NRF1 (TCF11, NFE2L1) ACCAGCCAGGCATTTACCTC REV

NRF2 ( NFE2L2) TCCATTCCTGAGTTACAGTGTCT FW

NRF2 ( NFE2L2) TGGCTTCTGGACTTGGAACC REV

HO-1 aactttcagaagggccaggt FW

HO-1 ctgggctctccttgttgc REV

Actin CGCCGCCAGCTCACCATG FW

Actin CACGATGGAGGGGAAGACGG REV

H3 GAAGAAACCTCATCGTTACAGGCCTGGTFW

H3 CTGCAAAGCACCAATAGCTGCACTCTGGAAREV

GAPDH CATGCCATCACTGCCACCC FW

GAPDH ACCTGGTCCTCAGTGTAGC REV

qPCR primers:

Gene Name: Primer sequence: Direction:

qPCR primers:

Gene Name: Primer sequence: Direction:

Table 2. List of qPCR and ChIP primers sequences; primary antiobdies used for WB, ChIP and 

IP; siRNA sequences;  – cont. 

TABLE 2 



ChIP Primers:

Gene Name: Primer sequence: Direction:

PSMA1 ChIP Binding  AAGTCTGCGGGAGTTTGACG FW

PSMA1 ChIP Binding   TTTTCCCGCCAGTCTCAGTT REV

PSMA1 ChIP Non-binding  ATGTGGTCCTGGGTAAGGCA FW

PSMA1 ChIP Non-binding   GCTTAGGGAAGCACAGGCTAA REV

PSMA2 ChIP Binding  CCTCGACTACGCTGAAGACC FW

PSMA2 ChIP Binding   TAAAGGAAAGGTGAGGGGCG REV

PSMA2 ChIP Non-binding  TCGGTGCCACCTTTTCCTTT FW

PSMA2 ChIP Non-binding   ACAGGTGAGCAGCATCAGTC REV

PSMA3 ChIP Binding  AACCGAAGGAGGAGCCTTTG FW

PSMA3 ChIP Binding   TTTCTCTGTGGCTCGTTCCG REV

PSMA3 ChIP Non-binding  TGTAGGAAGGGGTCCAGTCA FW

PSMA3 ChIP Non-binding   CCCATCCCTACCGTCATTTCC REV

PSMB1 ChIP Binding  CGGCTTGTCCCTTTGGTAGT FW

PSMB1 ChIP Binding   CGTTGCGCCATAGTTCTGAC REV

PSMB1 ChIP Non-binding  CCAGATGGCTTAACAGTCCCA FW

PSMB1 ChIP Non-binding   AGAGGGCTCTGGTGTTTACG REV

PSMB5 ChIP Binding  GTAAGGGAAGTGAGGTCGGC FW

PSMB5 ChIP Binding   GAAGCAGCAGCGATGTAACC REV

PSMB5 ChIP Non-binding  CCCCAAATGGCTCTGACAGT FW

PSMB5 ChIP Non-binding   TAGGTGAGGATGTGGGGGAG REV

PSMB9 ChIP Binding CTTCTCGCCTCTCCCTGC FW

PSMB9 ChIP Binding AGACAAGTGACGAGGCAGC REV

PSMB9 ChIP Non-binding  ATCAGCAAACTCGCATGTAAAAG FW

PSMB9 ChIP Non-binding   TGAAATTCACAAGTGCCCCAAAA REV

PSMC1 ChIP Binding  CGTAGCGTCCCTAACGACTT FW

PSMC1 ChIP Binding   GACCAGCGGAAAGAAACCCT REV

PSMC1 ChIP Non-binding  GTCCGATAGGGGGAGTCAGT FW

PSMC1 ChIP Non-binding   GGCTCCCACTGTCCTGTTTA REV

PSMC6 ChIP Binding  GTGGAGTAGAAAGACGGGGC FW

PSMC6 ChIP Binding   TAGGGTCCGCCATGATGAGA REV

PSMC6 ChIP Non-binding  GACCCAGGTCATGTTCTCCC FW

PSMC6 ChIP Non-binding   CCATGGATGTCTCTCCAAGTGT REV

PSMD5 ChIP Binding  CGTCATCTAGGTCGCTGCTC FW

PSMD5 ChIP Binding   GCCGACGAGGCTGTTTAACT REV

PSMD5 ChIP Non-binding  CTGGAATCAAAGGACCTGGACT FW

PSMD5 ChIP Non-binding   ACAGTCCTGCAAAGAACATACAT REV

PSMD10 ChIP Binding  TCGCTGTCCCAGCAACTAC FW

PSMD10 ChIP Binding   CGCGACGGGAAAAGAAAAGG REV

PSMD10 ChIP Non-binding  TGGGCAAGGTTAGGAAGCAC FW

PSMD10 ChIP Non-binding   GCCCGAGGGAAGAAGAACTG REV

siRNAs:

Gene Name: siRNA sequence:

Control siRNA All star negative control (1027281,Qiagen)

TP53 I GACUCCAGUGGUAAUCUUAC

TP53 II GGUGAACCUUAGUACCUAA

TP53 III AGCAGUCACAGCACAUGAC

NRF1 (TCF11, NFE2L1) CAGAAGCAGUGCCUAGUGA

NRF2 (NFE2L2) GCACAGCAGAAUUCAAUGA

NRF2 (NFE2L2) II GCAUUGGAGUGUCAGUAUG

PSMA2 UGAAGAUCUGGAACUUGAA

STAT3 GAAUCACGCCUUCUACAGA

NFYA CAAUACCACCGUAUUCUUA

NFKB GCCCUAUCCCUUUACGUCA

Antibodies:

Target protein name: ID number, producer:

p53 sc-126, Santa Cruz

NRF1 (TCF11, NFE2L1) sc-13031, Santa Cruz

NRF2 (NFE2L2) ab62352, Abcam

PSMA2 sc-54671, Santa Cruz

PSMB1 sc-67345, Santa Cruz

PSMB9 (LMP2) sc-28809, Santa Cruz

PSMC1 ab3317, Abcam

CDKN1A (p21) sc-397, Santa Cruz

PMAIP1 (NOXA) OP180, Calbiochem

BCC3 (PUMA) 4976S, Cell Signaling

KHSRP (KSRP) ab150393, Abcam

Actin A2066, Sigma

Acetyl-Histone H3 (Lys9) 07-352, Merck

Histone H3 ab1791, Abcam

p300 554215, BD Pharmmingen

Cleaved Caspase-3 9664S, Cell Siganling

PARP p85 G734A, Promega

Mouse normal IgG sc-2025, Santa Cruz

Rabbit normal IgG sc-2027, Santa Cruz

Table 2. List of qPCR and ChIP primers sequences; primary antiobdies used for WB, ChIP and 

IP; siRNA sequences;  – cont. 

TABLE 2 
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