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Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-

borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus 

endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially 

fatal infection of the central nervous system. In collaboration with the local hospital we 

identified the first cases of human transmission of TBEV in the area of Trieste 

(Caracciolo et al., 2015). 

By studying the interplay of TBEV with the infected cell we recently demonstrated 

that TBEV is able to trigger the stress response of infected cells leading to the formation 

of stress granules (SG) (Albornoz et al. 2014). Indeed, by immunofluorescence analysis 

of infected cells we were able to identify SG containing the typical marker of stress: 

G3BP1, eIF3 and eIF4B. Moreover, by immunoblot analysis we demonstrated that in 

infected cells the initiation of translation factor eIF2α, a key regulator for the formation 

of SG, is phosphorylated. We also have evidences that stress and immune response to 

viral infection are strictly related. In particular we found that the formation of SG in 

TBEV infected cells is delayed, following the same delayed kinetic of the IFN response 

(16 h p.i.). Interestingly we found that all the possible agonists of the interferon 

response are present in the cells at early time after infection: viral RNA is increasing 

from 8 h.p.i. and infectious particles are produced from 10 h.p.i. These data suggest that 

the virus is able to escape the host defence machinery. 

To better understand what is happening during infection we performed a transcriptome 

analysis of infected cells comparing two critical time of the infection: 10 h p.i. when 

TBEV is already replicating but not inducing the IFN and the stress response, and 24 h 

p.i. when both cellular responses are activated. From the analysis of these data results 

that several cellular responses are upregulated during infection. Among the most 

significantly upregulated we found the Unfolded Protein Response (UPR) and the ER 

stress response. 

By performing time course experiments we found that the nuclear translocation of 

ATF6, the splicing of XBP1 and the phosphorylation of PERK are early events during 

infection (8-12 h p.i.) indicating that the UPR occurs before the induction of interferon.  

We then investigated the role of the UPR as an early cellular response to the infection 

and as a possible trigger of the interferon response. Interestingly, when cells were 

infected and, at the same time, treated with Tunicamycin, a known inducer of the UPR, 

the IFN response was already active at 8 h.p.i. In this condition we found that viral 

replication was significantly affected by the activation of the UPR and the virus titres 
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were significantly decreased. Consistent with our previous results we found that also in 

this condition interferon and stress response are strictly related, indeed, formation of 

stress granules was also anticipated with the same kinetic of the IFN response. 

Recently several authors have proposed a model in which SG induced by viral 

infection can play a role in the immune response. By studying the localization of RIG-I 

during TBEV infection we found that this antiviral protein is first localizing to viral 

replication sites and then is recruited to SG, suggesting a role for this viral induced SG 

in the IFN response. Finally, by studying the activation status of RIG-I during the 

infection we collected evidences that RIG-I is early activated (8 h p.i.) but that this early 

activation might not be sufficient to induce a full IFN response.  

Taken together these data suggest that TBEV is able to evade both the stress and the 

interferon responses, which appear to be strictly interconnected, and that the UPR may 

play a critical and unexpected role in the delayed activation of both. 
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1.1 Family Flaviviridae 

Flaviviridae is a large family of enveloped, positive single-stranded RNA viruses, 

that share similarities in virion morphology, genome organization and replication 

strategy. The Flaviviridae family consists of four different genera (Brett D Lindenbach, 

Thiel, and Rice 2007): 

• Flavivirus (from the Latin flavus, yellow) is the largest genus in the family, 

consisting of more than 70 members. Flaviviruses are also called arboviruses, 

arthropod-borne viruses, because they are mostly transmitted by mosquitoes 

or ticks. This family includes important human and animal pathogens such as 

Dengue viruses (DV), Yellow Fever virus (YFV), West Nile virus (WNV), 

Zika virus (ZIKV) and Tick-Borne Encephalitis virus (TBEV). 

• Pestivirus (from the Latin pestis, plague) are animal pathogens of major 

economic importance for the livestock industry. They include Bovine Viral 

Diarrhea virus (BVDV), classical swine fever virus (CSFV) and border 

disease virus (BDV) of sheep. 

• Hepacivirus (from the Greek hepar, hepatos, liver) include Hepatitis C virus 

(HCV) and GB virus B (GBV-B). Hepaciviruses share many features in 

common with the pestiviruses, including genome organization, a similar 

mechanism of translational control and limited sequence relatedness. 

• Pegivirus (from pe, persistent; g, GB or G) is a new genus of the Flaviviridae 

family (Stapleton et al. 2011) that includes GB-like viruses based on 

phylogenetic relationships, genome organization and pathogenic features: 

GBV-A, GBV-C and GBV-D. 

In figure 1.1 a simplified phylogenetic tree of the family Flaviviridae is shown.  
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Figure 1.1 - Family Flaviviridae. Phylogenetic tree based on the analysis of aligned conserved motifs of 

the RNA dependent RNA polymerase (RdRp). Shown are selected members of the family. A distance 

scale corresponding to amino acid substitutions per position is shown. Figure from (Romero-Brey and 

Bartenschlager 2014).  

 

 

1.2 Genus Flavivirus 

The genus Flavivirus consist of more than 70 viruses that are transmitted to humans 

through the bite of arthropod vectors. According to the arthropode, Flaviviruses can be 

divided in three clusters: 

• mosquito-borne: include Yellow Fever virus, Dengue virus, Japanese 

Encephalitis virus, West Nile virus and Zika virus; 

• tick-borne: the most important member is Tick-Borne Encephalitis virus; 

• nonvector-borne (i.e., for which no arthropod vectors are known): include 

Entebbe bat virus,  Modoc virus and Rio Bravo virus (Brett D Lindenbach, 

Thiel, and Rice 2007). 
Many of the Flaviviruses are human pathogens and can cause a variety of diseases, 

including biphasic fever, encephalitis, haemorrhagic fever, flaccid paralysis and 
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jaundice (Gould and Solomon 2008). Interestingly, recent reports suggest that Zika 

virus infection of pregnant women might correlate with microcephaly in foetuses 

(Mlakar et al. 2016).  

Flaviviruses are highly prevalent in the developing world. Many factors as 

urbanization, transportation and changes in land use but also natural factors, such as 

genetic change in the virus, host-vector relationships, bird migration and climate 

changes have lead to the spread of viruses to new geographic area (J. S. Mackenzie, 

Gubler, and Petersen 2004). 

Although a large number of humans are infected annually, there are no available 

antiviral therapies and only a limited number of vaccines are available, including 

inactivated TBEV and JEV.  

 

 

1.3 Flavivirus life cycle and genome structure 

1.3.1 Binding and entry 

Mature virions are small, ≈ 50 nm, and contain a 30 nm electron dense core 

surrounded by a lipid envelope. The surface of the virus contains two viral proteins: E 

(envelope) and M (membrane). E glycoprotein is the major antigenic determinant and 

mediates binding of the virus to the host membrane receptor and fusion during virus 

entry. 

Flaviviruses can utilize multiple receptors for different cell types and in different 

host species (Brett D Lindenbach, Thiel, and Rice 2007). Infection of dendritic cells 

(DC) is particularly important because these intradermal cells are the primary targets of 

Flavivirus infections. The entry occurs through receptor-mediated endocytosis with 

formation of clathrin-coated pits. Viruses subsequently traffic to a prelysosomal 

endocytic compartment where low pH induces fusion between the virus and host cell 

membranes to release the viral nucleocapsid. 

 

1.3.2 Genome Structure 

Flavivirus genome consists of a single, positive-strand RNA of approximately 11 kb, 

with a 5’ type I cap (m7GpppAmpN2). Unlike cellular messenger RNA (mRNA), 

Flavivirus genomes lack the 3’ polyadenylate tail (Wengler, Wengler, and Gross 1978). 

The genome encode a single long open reading frame (ORF) flanked by a 100 bp 5’ 
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noncoding region (NCR) or untraslated region (UTR) and a 400-700 bp 3’ NCR (or 

UTR) (Markoff 2003). 

Despite the lack of sequence conservation at the 5’ NCR, common secondary 

structures in this region called 5’-stem loop (5’ SL) have been show to be conserved 

among different Flaviviruses. These structures are functionally important as cis-acting 

regulatory elements for genome amplification, translation or packaging (Lindenbach, 

Thiel, and Rice 2007). 

The 3’ NCR exhibit great sequence variability as well, but show similar patterns of 

conserved sequences and structures. The most conserved structure is a long 3’ stem-

loop (3’ SL) that is enhancing both viral translation and replication (Holden and Harris 

2004). A 25 nucleotides region is located just upstream of the 3’ SL called cyclization 

sequence (3’ CS). This sequence is highly conserved among Flaviviruses and was found 

to be complementary with a sequence in the beginning of the capsid gene, more than 10 

kbp upstream (5’ CS) (Alvarez et al. 2005). The complementarity between these 

cyclization sequences was shown to be essential for Flavivirus replication (Khromykh 

et al. 2001). Moreover, during flaviviral replication, the cellular 5’-3’ exoribonuclease 

XRN1 digests viral genomes but stalls at secondary RNA structures at the beginning of 

the 3’ UTR resulting in a 0.3-0.5 kb RNA fragment called subgenomic flavivirus RNA 

(sfRNA) (Pijlman et al. 2008). It has been demonstrated that the sfRNA regulates 

multiple cellular pathways to facilitate flaviviral pathogenicity (Roby et al. 2014). 

Figure 1.2 shows a schematic representation of the Flaviviruses genome structure. 

 

 
Figure 1.2 - Flavivirus genome organization. The Flavivirus genome is a positive ssRNA of 

approximately 11 kb, which is capped at the 5’ and do not contain the polyA tail typical of cellular 

mRNA. It contains a single open reading frame with the structural and non-structural protein (coloured in 

green and red respectively), flanked by a 5’ and 3’ untranslated region (UTR). Simplified RNA secondary 

and tertiary structures within UTRs are also indicated: SL, stem loop; CS, cyclization sequence. 
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1.3.3 Translation and polyprotein processing 

Translation of the viral genome is cap dependent and initiates by ribosomal scanning. 

The translation is performed by the host cell machinery and produces a single large 

polyprotein precursor of approximately 3400 amino acids in length. This precursor is a 

multi-transmembrane domain protein localized on the membrane of the endoplasmic 

reticulum. The polyprotein is co- and post-translationally cleaved by the cellular 

enzymes signalase and Furin and by the viral NS2B-NS3 protease into ten proteins: the 

three structural proteins named capsid (C), envelope (E) and pre-membrane (prM) that 

form the virion particle, and the seven non-structural proteins named non-structural 

protein 1 NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5 that are involved in viral 

replication, virus assembly and immune response evasion (Lindenbach, Thiel, and Rice 

2007) (Figure 1.3).  

A 

B 
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Figure 1.3 - Flavivirus Polyprotein. A) Flavivirus genome encodes for a multi-transmembrane protein 

localized on the membrane of the ER. The polyprotein is co- and post-translationally cleaved by the 

NS2B/NS3 viral protease and by cellular enzymes located in the ER lumen. B) Schematic representation 

of Flavivirus polyprotein and processing. The Polyprotein precursor and the putative functions of the viral 

proteins during infection are described. C, capsid; prM, pre-membrane protein; E, envelope; RdRp, RNA-

dependent RNA polymerase.  

 

 

1.3.4 Features of the structural proteins 

 

C Protein 

The capsid protein, also named core, is a structural component of the virion forming 

the nucleocapsid and is essential during the assembly of viral particles ensuring specific 

encapsidation of the viral genome (Ferlenghi et al. 2001). Capsid is a highly basic 

protein of approximately 11 kDa. Although the sequence identity of capsid protein 

among the genus is very low, the structural organization is highly conserved for all 

Flaviviruses: charged residues are clustered at the N- and C- terminal region, whereas 

the internal region is hydrophobic. C protein folds into a dimer with each monomer 

containing four alpha helices. The region rich in basic residues interacts with the viral 

RNA during the assembly of the virion, whereas the hydrophobic region interacts with 

the membrane (Ma et al. 2004). Nascent C (anchC) contains a C-terminal hydrophobic 

domain of about 20 amino acids that anchor the protein to the ER membrane and serve 

as signal peptide for the translocation of the prM protein to the ER lumen (Lobigs 

1993). During maturation this domain is cleaved by the viral serine protease NS2B-NS3 

(Amberg et al. 1994). 

 

prM protein 

prM is a 26 kDa protein precursor of the structural protein M. As mentioned above, 

prM is translocated into the lumen of the ER by the signal peptide of the C protein. The 

N-terminal region of prM contains a variable number of N-linked glycosilation sites and 

six conserved cysteine residues while the C-terminal region, in mature virions, contains 

a short ectodomain (41 aa) that contains two membrane spanning domains (Chambers et 

al. 1990). 
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During the maturation, occurring in the secretory pathway, the Golgi-resident 

protease Furin, or a related enzyme, cuts prM in the fragments pr, that is released, and 

M, that remains anchored to the membrane. prM has a crucial role for the formation of 

mature and infectious virions. Indeed, it acts as chaperone assisting the folding of E 

protein and preventing its acid-catalyzed rearrangements that could occur in the 

secretory pathway (Guirakhoo, Bolin, and Roehrig 1992; Brett D Lindenbach, Thiel, 

and Rice 2007). 

 

E protein  

The E protein has an important role in several stage of viral life cycle being involved 

in receptor binding, membrane fusion and virus assembly processes. Moreover, E 

protein is the main target of neutralizing antibodies (Stiasny and Heinz 2006; Kaufmann 

and Rossmann 2011). 

Although the aminoacid sequence identity is low (≤ 40%), the structural features of E 

protein are conserved among different Flaviviruses. E is a 53 kDa type I membrane 

protein composed by two transmembrane domains and a N-terminal ectodomain 

connected one to each other by a α-helical stem region. E protein on the viral surface is 

forming sets of three head-to-tail homodimers that are tightly associated and parallel to 

the viral membrane (Kaufmann and Rossmann 2011). The ectodomain has three distinct 

structurally defined domains: DI, DII and DIII connected by flexible junctions capable 

of hinge-like motions, this flexibility is important during membrane fusion and 

transition from immature to mature virion (Stiasny and Heinz 2006). DI is the central β-

barrel domain that carries an N-linked carbohydrate side chain and that participates in 

the conformational changes induced by endosomal acidification during cell entry. DII 

has an elongated structure and provides most of the intersubunit contacts, and is so 

called dimerization domains. Moreover it contains a hydrophobic fusion loop at its tip 

that is indispensable for virus-cell membrane fusion. DIII is the immunoglobuline-like 

C-terminal domain and appears to be involved in receptor binding (Stiasny and Heinz 

2006; Bressanelli et al. 2004; Rey et al. 1995).  

When exposed to low pH in the endosomal compartments, E protein dimers undergo 

major rearrangements: from a pre-fusion homodimeric array, to a fusion-active 

homotrimers (Kaufmann and Rossmann 2011). 
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1.3.5 Features of the non-structural proteins 

 

NS1 

The Non-Structural protein 1 is 46 kDa glycoprotein that is translocated into the ER 

lumen during polyprotein synthesis. At the N-terminal region of NS1 the junction 

E/NS1 is cut by a host signal peptidase while at the N terminal, the junction NS1/NS2A 

is cut by an ER-resident host enzyme that is still unknown. NS1 contains two or three 

N-linked glycosylation sites and 12 conserved cysteine residues that form disulphide 

bonds. Newly synthesized NS1 appears as monomer but it has been shown that around 

30 minutes after synthesis NS1 forms highly stable homodimers and acquires an affinity 

for membranes. 

NS1 is found intracellularly, on cell surface and, as soluble form, can also be 

secreted by mammalian cells (Brett D Lindenbach, Thiel, and Rice 2007). Intracellular 

NS1 is important for RNA replication and mutation of the N-linked glycosylation sites 

can lead to dramatic defects in RNA replication and virus production (Muylaert et al. 

1996).  

The function of extracellular forms of NS1 is not yet clear. It has been shown that 

Flavivirus NS1 has a direct immune evasion function antagonizing complement 

activation  (Avirutnan et al. 2010)and that high levels of NS1 soluble form in the serum 

of DV-infected patients correlate with severe disease, suggesting that extracellular NS1 

is implicated in viral pathogenesis (Avirutnan et al. 2010). A recent report demonstrated 

that NS1 of all DENV serotype is able to induce endothelial barrier dysfunctions, 

causing increased permeability of human endothelial cell monolayer in vitro. In the 

same paper, they show that these reactions could be blocked by NS1 immune polyclonal 

mouse serum or monoclonal antibody against NS1, suggesting NS1 as a new potential 

target for DENV therapeutics and vaccines (Beatty et al. 2015).  

 

NS2A 

NS2A is a 22 kDa hydrophobic membrane-associated protein. The N-terminal is 

generated by the cleavage of an unknown ER-resident host enzyme at the junction 

NS1/NS2A, whereas, the cytosolic C-terminal is generated by the cutting of the viral 

serine protease NS2B-NS3 (Brett D Lindenbach, Thiel, and Rice 2007). The viral 

protease cleaves also at an internal site in NS2A generating a C-terminally truncated 

form named NS2Aα (Nestorowicz, Chambers, and Rice 1994). Mutation study at the 
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NS2Aα cleavage site provided the evidences that NS2A is involved in virus assembly 

and release (Kümmerer and Rice 2002). Moreover, it has been demonstrated that NS2A 

also acts as interferon (IFN) antagonist inhibiting the IFN-α/β-signalling pathway 

(Muñoz-Jordan et al. 2003). 

 

NS2B 

NS2B is also a small, 14 kDa, membrane-associated protein with a central 

hydrophilic domain and two terminal hydrophobic helices. It has been shown that NS2B 

forms a stable complex with NS3 and acts as cofactor for NS2B-NS3 serine protease.  
The hydrophilic region strongly interacts with the NS3 protease whereas the two 

hydrophobic domains are responsible for membrane association of the NS2B-NS3 

complex (Falgout et al. 1991). Consistently with his role as cofactor of the viral 

protease, NS2B strongly influences the secondary structure of NS3, by stabilizing the N 

and C-terminal domains and completing substrate-binding site (Erbel et al. 2006). 

 

NS3 

The NS3 is a large, 70 kDa, multifunctional protein, containing several activities for 

polyprotein processing and RNA replication. The N-terminal of the protein is the 

catalytic domain of the NS2B-NS3 serine protease complex (NS3pro) (Chambers et al. 

1990) and cleaves the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 junctions 

but also generates the C-termini of mature capsid protein and NS4A and can cleave at 

an internal site of NS2A and NS3. NS3pro is a trypsin-like serine protease and, as 

mentioned above, it works in association with NS2B cofactor that is contributing with a 

β-strand to form a chymotrypsin-like fold (Erbel et al. 2006). The protease contains the 

characteristic catalytic triad (Asp-His-Ser) and a highly specific substrate recognition 

sequence conserved in all Flavivirus. The cleavage site consist of two basic residues 

followed by an amino acid with a short side chain (Chambers et al. 1990). 

The C-terminal portion (NS3hel) shows significant homology to supergroup 2 RNA 

helicases and performs different activities including nucleoside triphosphatase 

(NTPase), RNA triphosphatase (RTPase) and helicase activities. NS3hel is a member of 

the DEAH/D box family of RNA helicases and its activity is thought to be involved in 

initiation of RNA synthesis by unwinding the secondary structures present at the 3‘UTR 

of the Flavivirus genomes, to facilitate polymerase processivity during elongation, or to 
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separate double-stranded RNA (dsRNA) intermediates generated during viral 

replication (Warrener et al. 1993; Brett D Lindenbach, Thiel, and Rice 2007). The NS3 

RTPase dephosphorylates the 5’ end of genome RNA and is therefore involved, 

together with the NS5 methyltransferase (MTase) domain, in capping the viral RNA 

(Wengler and Wengler 1993). It is also thought that NS3 can have a role in inducing 

apoptosis through activation of caspase-8. Whether this is the normal pathway for 

Flavivirus-induced cell killing requires further study (Ramanathan et al. 2006). 

 

NS4A 

NS4A is a small hydrophobic protein of about 16 kDa. As mentioned above, its 

interaction with the NS1 protein is required for efficient RNA amplification (B D 

Lindenbach and Rice 1999) and its role in RNA replication is supported by the co-

localization of this protein with replication complexes (J M Mackenzie et al. 1998).  

The maturation of the NS4A protein involves first the cutting, by the viral serine 

protease NS2B-NS3, at a site just upstream of the 2K internal signal peptide and then a 

cut at the 2K-NS4B junction by the signal peptidase (Brett D Lindenbach, Thiel, and 

Rice 2007). Overexpression studies show that regulated NS4A/2K/4B cleavage is 

necessary for induction of membrane rearrangements by NS4A (Miller, Sparacio, and 

Bartenschlager 2006). 

 

NS4B 

The non structural protein 4B of Flavivirus is also a small, 27 kDa, hydrophobic 

protein capable to associate to the ER membrane independently of the 2K signal peptide 

and co-localize with NS3 and dsRNA in viral replication complex (Miller, Sparacio, 

and Bartenschlager 2006).  

As noted for the NS2A protein, DENV NS4A and NS4B have been shown to block 

the IFN signalling pathway. NS4B has the strongest antagonist effect which requires a 

proper processing of the protein by the protease NS2B-NS3 (Muñoz-Jordan et al. 2003; 

Munoz-Jordan et al. 2005). 

 

NS5 

NS5 is at the C terminus of the viral polyprotein and is the largest, 103 kDa, and 

most conserved flaviviral protein. NS5 is a multifunctional protein with two main 

enzymatic activities: the N-terminal domain has a methyltransferase (MTase) activity 
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whereas the C-terminal contains the RNA-dependent RNA polymerase (RdRp) domain 

(Brett D Lindenbach, Thiel, and Rice 2007). A study on the purified N-terminal domain 

of NS5 of DENV-2 shows that this domain is capable to transfer methyl groups from S-

adenosyl-methionine (SAM) to capped RNA substrates. The same report shows that this 

domain presents structural similarity with other MTase and binds guanosine 

triphosphate (GTP) with high specificity (Egloff et al. 2002). The C-terminus of NS5 

contains significant homology to RdRPs of other positive-strand RNA virus and its 

polymerase activity has been confirmed using recombinant NS5 (Guyatt, Westaway, 

and Khromykh 2001). 

NS5 localizes to sites of viral replication complex (RC), associated with the dsRNA 

template located in induced membranes (Jason M Mackenzie, Kenney, and Westaway 

2007).  

In addition to MTase and polymerase activities, a new role of for NS5 as an IFN 

antagonist has recently emerged: study on DENV, TBEV and JEV demonstrated that 

NS5 antagonizes IFN signalling by inhibiting the Janus kinase-signal transducer and 

activator of transcription (JAK-STAT) transduction pathway (Ashour et al. 2009; Best 

et al. 2005; Lin et al. 2006). 

 

1.3.6 RNA Replication and membrane compartments 

After translation of the genomic input RNA, the NS5 RdRP synthesizes a genome-

length minus strand RNA, which then serves as a template for the synthesis of 

additional plus strand RNA (Brett D Lindenbach, Thiel, and Rice 2007). Flaviviral 

RNA synthesis is asymmetric: the positive strand RNA is produced ten times more than 

the negative strand (Chu and Westaway 1985). The newly synthesized positive strand 

RNA can be subsequently used for several purposes: for further translation of viral 

proteins, for synthesis of additional negative strand RNA, or to be incorporated into 

new viral particles. Hence, the viral RNA genome has three different functions: 

translation, replication and association with nascent viral particles. Flavivirus 

replication occurs in close association with virus-induced membrane structures of the 

rough ER, predominantly in the perinuclear region. These membrane structures may 

serve as a scaffold for anchoring the replication complex (RC), or to limit the diffusion 

of viral/host proteins and viral RNA increasing the concentration of components 

required for RNA synthesis (Miller and Krijnse-Locker 2008). In addition, it has also 

been suggested that these membrane structures may serves to hide the replication 
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intermediate dsRNA from the host cellular surveillance (Fernandez-Garcia et al. 2009; 

Miorin et al. 2013). Composition and three-dimensional organization of these 

compartments have been recently characterized (Miorin et al. 2008; Miller and Krijnse-

Locker 2008; Welsch et al. 2009; Gillespie et al. 2010; Miorin et al. 2013): earliest 

event leading to the formation of the RC is the proliferation of the ER membranes, 

followed by the appearance of smooth membrane structures around the time of early 

logarithmic virus production. These structures are clusters of about 100 nm vesicles, 

called vesicles packets (VPs). Afterwards other structures are formed: convoluted 

membranes (CM) and paracrystalline arrays (PC). Three-dimensional EM tomography 

studies have also showed that VPs, CM and PC are all part of a single ER-derived 

membrane network. Moreover, dsRNA, NS5, NS2B-NS3 immunolabelling of 

cryosections prepared from Flavivirus infected cells revealed that VPs are the sites of 

RNA replication, whereas CM and PC are possibly the sites of protein translation and 

proteolytic cleavage (Figures 1.4a and 1.4b).  

More recently, electron tomography analyses of TBEV infected human neurons were 

performed (Bílý et al. 2015). The authors demonstrated that TBEV induces vesicles and 

cisterns containing tubule-like structures (Figure 1.4c and 1.4d). Moreover, they proved 

that vesicles containing TBEV are associated with cellular microtubules to be 

transported in infected neurons (Figure 1.4e, 1.4f and 1.4g). This pioneer study reveals 

important steps of the neuronal injury caused by TBEV infection.  
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Figure 1.4 - Ultrastructure of TBEV-induced membrane alterations. (A) Electron Tomography of 

BHK-21 cells infected with TBEV. Vesicles (Ve) and virions (yellow arrowheads) were observed in the 

lumen of the rough ER. (B) 3D reconstruction of the tomogram displaying the TBEV-induced vesicles (in 

light yellow) in the lumen of the ER (in light brown), as well as virions (in dark red). Figure A and B are 

adapted from Miorin et al. 2013.  (C) Human neurons infected with TBEV for 3 days displaying RER 

rearrangements. (D) Detail of the boxed region in (C) shows the RER containing viral particles, virus-

induced vesicles (green arrow), and tubule-like structures (yellow arrow). (E) Two vacuoles that 

accommodated TBEV particles in a neuronal extension at 12 days aſter infection. Arrows indicate 

connections between vacuoles and microtubules. (F) 3D model. (G) Details of the connection. Figures C-

G are adapted from Bílý et al. 2015. 
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1.3.7 Virion assembly and maturation 

Virion assembly occurs in association with ER membranes, then budding occurs in 

the lumen of the ER and virions are transported via the secretory pathway and released 

at the cell surface (Jason M Mackenzie and Westaway 2001). At the earlier step E and 

prM proteins are associated as heterodimers through their C-terminal transmembrane 

anchors. The highly basic C protein interacts with the RNA viral genome in the 

cytoplasm and forms the nucleocapsid precursor that acquires an envelope by budding 

into the ER lumen. The maturation of the virus occurs in the trans-Golgi network 

(TGN) and includes the glycan modification of E and prM and the cleavage, by the host 

enzyme Furin, of prM. This cleavage renders the mature virion ready for acid-catalysed 

rearrangements of E required for productive entry (Figure 1.5) (Mukhopadhyay, Kuhn, 

and Rossmann 2005; Lindenbach, Thiel and Rice 2007). 

 
Figure 1.5 - Flavivirus Life Cycle. Flaviviruses are internalized by receptor-mediated endocytosis and 

trafficked to early endosomes, where the acidic environment induces fusion between the virus and the 

host membrane resulting in genome release. The genome is then translated and replicated. Packaging of 

newly synthesized RNA genomes occurs on the surface of the ER. The immature virions are transported 

to the trans-Golgi where Furin-mediated cleavage of prM to M generates mature infectious particles that 

are released by exocytosis.  
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1.4 Pathogenesis of Flavivirus 

The major human pathologies caused by Flaviviruses can be grouped into 

encephalitis and haemorrhagic diseases. Interestingly, recent reports suggest that Zika 

virus infection of pregnant women might correlate with microcephaly in foetuses 

(Mlakar et al. 2016).  

The host cells targeted by flaviviruses include monocytes, macrophages and 

dendritic cells (DC). After the inoculation of the virus in the host by the bite of an 

infected mosquito or tick, the virus undergoes replication in the local tissues. The host 

cells targeted by flaviviruses include monocytes, macrophages and dendritic cells (DC). 

Then the virus migrates to the lymph nodes where it further replicates in monocyte 

resulting in a primary viremia. From the lymphoid system the virus can spread into the 

body of the host and infect peripheral tissues like the spleen or kidneys. After this 

peripheral amplification the virus can enter the circulation and cross the blood-brain 

barrier (BBB) and enters the central nervous system (CNS) (King et al. 2007; Ye et al. 

2013). 

Human infections are usually asymptomatic. A low percentage (probably lower than 

1%) of individuals shows clinical signs of infection, with symptoms ranging from 

general malaise to mild fever and headache and these individuals recover without 

sequelae. In some cases the symptoms can be more severe and the patients develop 

encephalitis and haemorrhagic disease. Children and the elderly, as well as those with 

debilitating chronic illness or immunosuppression (Caracciolo et al. 2015; Chmelík, 

Chrdle, and Ruzek 2016) are statistically at greatest risk of disease and death. 

 

 

1.5 Immune response to Flavivirus 

To detect, contain and clear viral infection, mammalian cells have evolved two self-

defence mechanisms: innate immune response and the acquired immune response. The 

innate immune response offer the first protection against pathogens and is mediated by 

germline-encoded pattern recognition receptors (PRRs) that senses viral RNA, as 

retinoic acid-inducible gene I (RIG-I), Toll-like receptors 3 and 7 (TLR3 and TLR7) 

and melanoma differentiation associated gene 5 (MDA5). Acquired immunity is instead 

implicated in pathogens clearance during the late phase of infection and involves 

lymphocytes T and B expressing antigen-specific receptors.  
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The innate immune response to viral infection involves two phases: in the early 

phase PRRs detect specific pathogen-associated molecular patterns (PAMPs) triggering 

cytokine production including pro-inflammatory cytokines and type I interferons 

(IFNs), whereas in the late phase occur the IFN signalling that induce the expression of 

the interferon stimulated genes (ISGs) (Yoneyama and Fujita 2009). 

 

1.5.1 RIG-I like receptors 

The RIG-I like receptors (RLRs) belong to the DExD/H-box helicases family and 

sense viral RNA in the cytoplasm of infected cells. The RLR family is composed of 

three members: the retinoic acid-inducible gene I product RIG-I, melanoma 

differentiation-associated antigen 5 (MDA-5) and laboratory of genetics and physiology 

2 (LPG2) (Kang et al. 2002; Yoneyama et al. 2005). RLRs are expressed in most cells 

of the human organism where they play a crucial role in antiviral responses, except in 

pDCs where for this function the TLRs are indispensable (Kato et al. 2005).  

All RLRs proteins share structural and functional similarities. Their primary 

structure can be divided into three basic domains:  the N-terminal domain consisting of 

two tandem caspase activation and recruitment domain (CARD), the central DExD/H 

box RNA helicase domain that hydrolyse ATP and bind and unwind RNA and a C-

terminal repressor domain (RD) (Figure 1.6). The CARD domain of RIG-I and MDA5 

is essential for the interaction with the CARD domain of IPS-1, also called MAVS, and 

thus for the downstream signalling. LGP2 lacks the CARD domains and therefore is 

unable to signal through MAVS (Yoneyama et al. 2005). However, it has been proved 

that LGP2 acts as a positive regulator of RIG-I and MDA5 viral sensing (Satoh et al. 

2010). 
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Figure 1.6 – Schematic representation of the RLRs and their adaptor IPS-1. Key structural domains 

involved in signaling are shown. The RLRs consist of CARD (caspase activation and recruitment 

domain) domain; ATPase containing DEAD box helicase (DEAD helicase); and a C-terminal domain 

(CTD) that in RIG-I and LGP2 but not MDA5 encodes a repressor domain (RD) involved in 

autoregulation. LGP2 lacks the N-terminal CARDs. IPS-1 consists of a homologous CARD, a proline-

rich region (Pro), and a transmembrane domain (TM) on its C terminus. Figure from Loo and Gale 2011. 

 

 

1.5.2 Retinoic acid-inducible gene I (RIG-I) 

RIG-I was originally identified as activator of IRF-regulated reporter gene 

expression when co-transfected with PolyI:C (PIC) (Yoneyama et al. 2004). In 

particular, Yoneyama and colleagues demonstrated that the CARD domains are 

responsible for the downstream signalling cascade. Further studies have identified that 

the C-terminal domain contains a ssRNA/dsRNA binding sites that when unbound 

functions as a repressor domain (RD), inhibiting RIG-I activation in the absence of viral 

stimulation (Saito et al. 2007). 

It has been demonstrated that RIG-I binds preferentially RNA sequences marked 

with a 5’-ppp end (Hornung et al. 2006). Subsequently, next-generation sequencing of 

RNA derived from RIG-I-bound RNA complexes isolated from influenza virus-infected 

cells confirmed that RIG-I associates preferentially with short 5’ppp-RNA sequence 

motifs and RNA containing dsRNA regions but that full-length genomes of RNA 

viruses are not bound by RIG-I (Baum, Sachidanandam, and Garcia-Sastre 2010). More 

recently it has been also demonstrated that RIG-I is capable to react to incoming viral 

nucleocapsid containing 5’ppp dsRNA structures of negative-strand RNA virus (Weber 

et al. 2013). This last observation suggests that RIG-I can recognize a wider set of viral 

RNA structures than what it was thought before. 
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In the absence of an RNA ligand RIG-I is held in a closed conformation in which the 

CARD domain function is repressed due to interaction between the CTD and the 

helicase region. When viral infection produces short dsRNA or 5’ppp-RNA, these 

oligonucleotides bind the CTD in the presence of ATP and RIG-I changes its 

conformation and unmasks the CARD domains. CARD is able to interact with other 

CARD domains to form the RIG-I oligomers (Takahasi et al. 2008), or to the CARD 

domain of its adaptor protein IPS-1 and start the signaling cascade that induce IFN 

production (Figure 1.7). 

 
Figure 1.7 – RIG-I activation and conformational changes. In absence of viral infection, RIG-I is 

inactivated by intramolecular interaction between C-terminal repressor domain (RD) and caspase 

recruitment domain (CARD) or linker region of helicase domain. When viral RNA is released in the 

cytoplasm of infected cells, RIG-I selectively detects these non-self-RNAs via the C-terminal domain 

(CTD) and induces ATP-dependent conformational change to form a dimer or an oligomer, which allows 

CARD to interact with the downstream adapter protein IPS-1. Figure from Yoneyama and Fujita 2009.  

 

 

1.5.3 RIG-I signalling pathway 

Upon activation, RIG-I, but also MDA5, interacts with its adaptor protein IPS-1 

(interferon-β promoter stimulator 1), also called mitochondrial antiviral signalling 

(MAVS), virus-induced signalling adaptor (VISA) and CARD adapter inducing IFN-β 

(Cardif). The interaction occurs through the association of the CARD domains. Indeed, 
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IPS-1 contains a N-terminal single CARD domain and a proline-rich region (PRR) and 

a transmembrane domain (TM) at its C-terminal end that localize the protein on the 

outer membrane of mitochondria, suggesting a critical function of mitochondria as a 

platform for RLR-mediated signalling (Figure 1.6) (Yoneyama and Fujita 2009). The 

interaction leads to the recruitment of downstream signalling molecules. In particular, 

IPS-1 associates with the tumor necrosis factor (TNF) receptor-associated factor 

(TRAF) 3 leading to TBK1 and inhibitor of kB kinase (IkB) ε (IKKε) activation and 

subsequent IRF3 phosphorylation. Alternatively, IPS-1 recruits the adaptor Fas-

associated death domain (FADD) and the kinases receptor-interacting protein 1 (RIP1) 

in order to trigger the NF-kB pathway. Upon activation, IRF3 and NF-kB translocate to 

the nucleus to drive type I IFN transcription and subsequent induction of the antiviral 

state (Figure 1.8) (Yoneyama and Fujita 2009). 

Figure 1.8 – RIG-I-like receptors signaling cascade. Signaling pathway triggered by RIG-I, Mda5 and 

DNA. Viruses entering the cytoplasm produce dsRNA during replication. RIG-I and Mda5 recognize 

dsRNA to initiate antiviral signaling. IPS-1 interacts with RIG-I and Mda5 via the CARD-like domain, 

followed by the activation of IRF3 and IRF7 via TBK1- and IKKi-dependent phosphorylation (P). IPS-1 

also activates NF-⎢B via FADD- and RIP1-dependent pathways. These pathways coordinately activate 

type I interferon promoter. Synthetic dsDNA also activates an IPS-1-dependent pathway, although a 

receptor responsible for DNA recognition has not been identified. It is possible that such a putative sensor 

would recognize bacterial DNA, viral DNA, undigested DNA and chromatin DNA–containing 

immunoglobulin G (IgG) complexes. Figure from Kawai and Akira 2006. 
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1.5.4 Type I IFN system 

Type I IFN is a critical cytokine for antiviral innate immunity (Samuel 2001). Since 

they are induced by viral infection, type I IFNs are also known as viral IFNs and 

include: IFN-α (produced mainly in leukocyte), IFN-β (produced mainly in fibroblast), 

and IFN-ϖ. 

Most types of infected cells, in cell culture, are able to synthesize both IFN-α and 

IFN-β. The large number of type I IFN genes in humans include: 13 IFN-α genes, 1 

IFN-β gene, and 1 IFN-ϖ gene. It is not known why there are so many IFN-α genes. A 

mice KO for IFN-β gene is highly susceptible to viral infection suggesting that IFN-α is 

not able to compensate the loss of IFN-β that has an essential role for antiviral response 

(Deonarain et al. 2000). 

Once that the RLR-signalling pathway induce the expression of IFNα/β, a secondary 

signalling pathway is induced in an autocrine or paracrine manner and is called IFN 

receptor-mediated secondary signal. The receptor-mediated secondary signal starts from 

the interaction of the expressed IFNs with the heterodimeric IFNα/β receptors 

(IFNAR), which are broadly expressed in the majority of cells. This interaction triggers 

the activation of the Jak-STAT transduction pathway that induce the expression of 

hundreds of IFN-inducible genes (ISGs), like double-stranded RNA-dependent protein 

kinase (PKR), 2’-5’-oligoadenylatesynthetase (2’-5’-OAS), adenosine deaminase and 

guanosine triphosphatase (GTPase) that all together establish a strong antiviral activity 

(Figure 1.9) (Yoneyama and Fujita 2009). 

In addition to these mechanisms, to establish the antiviral state, type I IFNs have a 

role in the regulation of innate and adaptive immunity. It has been shown that IFNs 

regulate natural killer (NK) cells and cytotoxic T cells (CTLs) and also it has been 

shown to facilitate cross-presentation by DCs of viral antigens to CD8+ T cells (Stetson 

and Medzhitov 2006). 
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Figure 1.9 – IFNAR signaling cascade.  Binding of type I IFN to the IFN-a/b receptor activate the JAK–

STAT pathway. The activation of Tyk2 and Jak1 kinase results in the generation, phosphorylation and 

assembly of the trimeric ISGF3 transcription factor complex, which consists of a STAT1-STAT2 

heterodimer and IRF9 (p48). This complex translocates to the nucleus, binds to IFN-stimulated response 

elements (ISRE) and induces ISGs production. Figure from Katze, He, and Gale 2002.  

 

 

1.5.5 Evasion to the interferon system by viruses 

To establish infection and replication in the hosts, Flaviviruses have evolved a 

variety of strategies to modulate the host’s immune responses. These strategies can be 

summarised in five main activities, as reviewed in Ye et al. 2013: 

• delaying PRR detection: it has been shown that during replication TBEV 

form intracellular membrane structures in order to hide viral dsRNA and 

delay IFN production (Overby et al. 2010; Miorin et al. 2012; Miorin et al. 

2013); 

• inhibiting the transcription of IFN genes: it has been shown that during WNV 

(Wilson et al. 2008) and TBEV infection (Miorin et al. 2012; Overby et al. 

2010), IRF3 nuclear translocation is inefficient; 
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• suppressing IFN signalling: several non-structural proteins of flaviviruses 

have been shown to suppress the activity of downstream molecular key 

component of the IFN receptor-mediated secondary signal, for example by 

inhibiting the phosphorylation and the subsequent nuclear translocation of 

STAT1, suggesting a common mechanism for mosquito-borne flaviviruses 

(Munoz-Jordan et al. 2005); 

• directly affecting the function of antiviral ISGs: for example the 2’-O-

methylation of the 5’ cap of WNV RNA modulates the effect of IFIT that 

during infection interact with eIF3 and limits the translation of viral mRNA 

(Daffis et al. 2010). 

• regulating antiviral responses through the sfRNA. The sfRNA of DENV-2 

has been shown to bind and prevent TRIM25 deubiquitination which is 

critical for RIG-I-induced type I interferon expression (Manokaran et al. 

2015). 

 

 

1.6 Stress Response to viral infection 

1.6.1 Integrated Stress Response 

The Integrated Stress Response (ISR) is a signalling program common to all 

eukaryotes that enable cellular adaptation to several type of cellular stress, like hypoxia, 

nutrient deprivation, ER stress or viral infection (Harding et al. 2003).  

The ISR is designed to limit global translation and it is characterized by the 

phosphorylation of the initiation of translation factor eIF2α at Ser51. This 

phosphorylation is performed by four different kinases that are activated by different 

stress: 

• PERK, a transmembrane protein of the ER, is sensing the stress of the ER 

due to accumulation of unfolded proteins. PERK is also a key regulator of 

the unfolded protein response (see section 1.7.3); 

• GCN2 (general control non-derepressible 2), senses low amino acids levels 

by binding to uncharged tRNAs; 

• HRI (heme-regulated inhibitor kinase), is mainly expressed in erythrocytes 

and is activated by heme deficiency; 
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• PKR (double stranded RNA activated protein kinase) is ubiquitously 

expressed and is activated by sensing dsRNA, playing an important role in 

antiviral immunity. 

Upon activation, all four kinases phosphorylate eIF2α leading to an inhibition of 

translation of cellular mRNAs that are redirected from polysomes to discrete 

cytoplasmic foci known as stress granules (SG). 

 

1.6.2 Stress Granules 

Stress granules, as well as processing bodies (PB), are ribonucleoprotein granules 

found in the cytoplasm of cells in response to many types of environmental stress such 

as oxidative stress, heat shock, or viral infection. SG and PB are dynamically connected 

to regulate the translation repression and decay of host mRNA (Anderson and Kedersha 

2006).  

Upon activation of one of the cellular kinases involved in the integrated stress 

response the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) is 

phosphorylated, a modification that blocks the eIF2-GTP-Met-tRNAiMet ternary 

complex that in normal condition load tRNAiMet onto the small ribosomal subunit to 

initiate protein synthesis. When eIF2α is phosphorylated the GTP/GDP exchange factor 

eIF2B is not able to convert the ternary complex in the active form, inhibiting the 

protein translation. In this case, an eIF2/eIF5-deficient stalled 48S preinitiation complex 

is formed and together with the associated mRNAs, the T-cell restricted intracellular 

antigen-1 (TIA-1) and TIA-1 related protein (TIAR) gives rise to the formation of SG 

complex which in turn results in global protein synthesis inhibition (Kimball et al. 2001; 

N. Kedersha et al. 2002) (Figure 1.10). 

Recent studies have further demonstrated that SGs are composed also by other 

translation factors like eIF3, eIF4G and eIF4E as well as the polyA binding protein 

(PABP) and HuR and G3BP1 among others (Kedersha et al. 1999; Kedersha et al. 2002; 

Tourrière et al. 2003). 
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Figure 1.10 - Stress Granules assembly. In the absence of stress, eIF2B promotes the charging of the 

eIF2-GTP-tRNAMet ternary complex by exchanging GDP for GTP. When the eIF2-GTP-tRNAMet ternary 

complex is available, a canonical 48S preinitiation complex is assembled at the 5’ end of capped 

transcripts and ribosomal scanning begins (left part of the figure). Upon recognition of the initiation 

codon by the anticodon of tRNAMet, eIF5 promotes GTP hydrolysis, and early initiation factors are 

displaced by the 60S ribosomal subunit. As additional ribosomes are added to the transcript, the mRNA is 

converted into a polysome. In stressed cells, phosphorylation of eIF2α by PKR, PERK, HRI or GCN2 

converts eIF2 into a competitive antagonist of eIF2B. Under these conditions TIA-1 is included in a non-

canonical eIF2/eIF5-deficient 48S* preinitiation complex that is translationally silent. TIA-1 self- 

aggregation then promotes the accumulation of these complexes at discrete cytoplasmic foci known as 

stress granules. Blue square, eIF5; green triangle, eIF2 bound to GTP; yellow triangle, eIF2 bound to 

GDP; red triangle, phospho-eIF2 bound to GDP. Picture from (Anderson and Kedersha 2002). 
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1.6.3 Stress Granules and Flaviviruses 

Several viruses can manipulate the cellular components of the SG and regulate their 

formation, indeed, translational shutoff of cellular proteins is a common strategy to 

benefit viral protein translation, a process that gives the advantage to the virus to 

replicate faster and to avoid the production of antiviral cellular protein, but at the same 

time could be disadvantageous for example for RNA viruses that exploit the cellular 

translation machinery for their replication. 

It is known that some viruses induce the formation of SG, for example Respiratory 

Syncytial virus (RSV), whereas other viruses, for example WNV as well as Rotavirus 

among others, do not induce SG formation (Emara and Brinton 2007; Lindquist et al. 

2010).  

Regarding flaviviruses, it has been demonstrated that T-cell restricted intracellular 

antigen-1 (TIA-1) and TIA-1 related protein (TIAR), both key proteins in stress 

granules assembly, interact with the 3’SL of WNV complementary minus-strand RNA 

that is the site of initiation of RNA synthesis. By binding to this structure the proteins 

facilitate the viral replication, indeed the authors measured a reduced WNV RNA 

amplification in TIAR knockout fibroblasts (Li et al. 2002). Another report shows that 

during WNV and DENV infection, both TIA-1 and TIAR are sequestered, at different 

time of infection, at sites of viral replication and thus SG formation is reduced, 

suggesting that these viruses interferes with SG assembly by hijacking the cellular 

localization of SG proteins (Emara and Brinton 2007). Furthermore, a recent study 

shows that JEV core protein recruits several SG-associated proteins, including G3BP1 

and USP10, through an interaction with Caprin-1, another RNA binding protein 

involved in SG assembly (Katoh et al. 2013). In the same study, Katoh and colleagues, 

demonstrated that a mutant JEV carrying a core protein incapable of binding to Caprin-

1 exhibited lower propagation in vitro and lower pathogenicity in mice than the wild-

type JEV, suggesting that inhibition of SG formation by the core protein is crucial to 

antagonize host defence (Katoh et al. 2013). All together these results suggest a 

common strategy of flaviviruses to prevent the inhibition of viral mRNA translation and 

to enhance RNA synthesis.  

Due to these evidences it has always been wrongly assumed that Flaviviruses 

belongs to that group of viruses unable to trigger SG formation. Recently, the group of 

Brinton reinterpreted their own data, this time looking at G3BP1 as a marker for SG, 

showing that natural WNV genotypes, such as Eg101, induces SG less efficiently than 
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the lineage 2/1 chimeric WNV infectious clone W956IC, which produces high levels of 

early viral RNA (Courtney et al. 2012). More recently we have demonstrated (Albornoz 

et al. 2014) that, in agreement with Emara and colleagues studies, TIA-1 and TIAR 

proteins are recruited to sites of TBEV replication, binding the viral RNA and inhibiting 

its translation, but also that TBEV is able to trigger the formation of SG containing 

other SG markers as G3BP1, eIF3 and eIF4B. Moreover, in 2012, the group of 

Bartenschlager demonstrated that HCV infection is able to induce oscillatory formation 

of SG in Huh7 cells stimulated with IFNα (Ruggieri et al. 2012). 

Taken together all these evidences suggest that flaviviruses are indeed capable of 

inducing SG formation in infected cells. 

  

1.6.4 Antiviral-Stress Granules 

As mentioned above, viral infection can trigger the integrated stress response through 

activation of the kinase PKR that by phosphorylating the initiation of translation factor 

eIF2α is inducing formation of SG and the subsequent global inhibition of translation. 

Depending on both the virus and the host cell, different pattern of SG formation have 

been observed during infection: stable SG formation, no SG formation, transient SG 

formation and oscillating SG formation as reviewed in Onomoto et al. 2014.  

In some cases have been demonstrated that viruses are able to inhibit SG formation. 

For example the NS1 protein of Influenza A virus (IAV) has been shown to inhibit 

eIF2α phosphorylation by blocking PKR activation (Onomoto et al. 2012). In the case 

of JEV infection, SG formation is inhibited by direct interaction of the viral Core 

protein with Caprin1, a component of SG (Katoh et al. 2013). These data leads to the 

hypothesis that SG have an antiviral role and for this reason viruses have developed 

strategies to suppress their formation. Moreover, Onomoto and colleagues demonstrated 

that the RLRs MDA5 and RIG-I localizes to IAV-induced SG, together with PKR and 

viral RNA. Moreover they demonstrated that inhibition of SG formation during IAV 

infection, by silencing of the G3BP1 SG protein, reduce the expression of IFN-β. Their 

pioneer work suggests that these viral-induced SG, that they termed antiviral SG 

(avSG), may act as a platform for viral RNA sensing and activation of IFN response 

(Onomoto et al. 2012).  

In figure 1.11 is shown the model that Onomoto and colleagues proposed for avSG. 
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Figure 1.11 - A model for antiviral function of stress granules. In virus-infected cells, viral RNAs 

activate PKR that by phosphorylation of eIF2α initiate the assembly of SG. eIF2α phosphorylation 

blocks translation of cellular mRNAs that are accumulated in SG or transferred to P-bodies for 

degradation. Viral RNAs are also recognized by RLRs, which are recruited to SGs with several signaling 

molecules including antiviral proteins and ubiquitin ligases. The OAS–RNase L pathway cleaves viral 

RNAs, and the cleaved RNAs may act as ligands for RLRs. IPS-1, which is localized on mitochondria 

and/or MAM (Mitochondria-Associated ER Membranes), forms prion-like aggregates, interacts with 

RLRs on SGs, and activates IFN-inducing signaling. Areas that require further investigation are 

highlighted with question marks. Figure from Onomoto et al. 2014. 
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1.7 The Unfolded Protein Response 

Intracellular perturbations caused by a variety of stressors, like hypoxia, glucose 

deprivation, defective calcium regulation and viral infection, can induce endoplasmic 

reticulum (ER) stress, leading to accumulation of misfolded proteins into its lumen 

(Kaufman 2002; Chakrabarti, Chen, and Varner 2011). Normally, cells ensure a proper 

protein folding using combination of chaperons, foldases and lectins, but when ER 

stress is affecting the folding process, two are the possible cellular response: 

degradation of the incorrectly folded proteins trough the ER Associated Degradation 

pathway (ERAD) or activation of the Unfolded Protein Response (UPR) (Chakrabarti, 

Chen, and Varner 2011). 

In mammalian cells, the UPR is a complex signalling program mediated by three ER 

transmembrane receptors:  

• Activating transcription factor 6, ATF6; 

• Inositol requiring kinase 1, IRE1; 

• Double-stranded RNA-activated protein kinase (PKR)-like endoplasmic 

reticulum kinase, PERK. 

 

 
Figure 1.12 – Schematic representation of the structure of the ER stress sensors. Yellow bars 

represent regions sufficient for signal transduction or oligomerization. Purple bars represent regions 

interacting with BiP. The black boxes represent the signal peptides, and the green boxes depict the region 

of limited homology between IRE1 and PERK. Both IRE1 and PERK display a kinase domain in the 

cytosolic part (in blue). The RNase domain of IRE1 is indicated in yellow. bZIP, basic leucine zipper; 

GLS1 and GLS2, Golgi localization sequences 1 and 2; TAD, transcriptional activation domain; and TM, 

transmembrane domain. Figure from Schröder and Kaufman 2005. 
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UPR performs three functions: adaptation, alarm and apoptosis. Activation of the 

Unfolded Protein Response results in an initial adaptation, where the UPR tries to 

reestablish the normal protein folding processes by enhancing transcriptional synthesis 

of chaperones and enzymes required for protein folding. Simultaneously, translation is 

attenuated, to reduce the load of proteins at the ER level, and degradation of the 

misfolded proteins is increased. If these procedures of crisis containment fail, the UPR 

induces a cellular alarm that involves several signal transduction events that lead to the 

activation of an apoptosis program. 

The three UPR pathways are regulated by the chaperone protein BiP (Binding 

immunoglobulin Protein), also known as HSPA5 or GRP78, a member of the HSP70 

family. BiP is located in the ER lumen and binds newly synthesized proteins to help in 

their folding. This chaperon protein consists in an N-terminal ATPase domain and a C-

terminal peptide-binding domain (Gething 1999). Unfolded or misfolded protein 

binding stimulates the N-terminal ATPase activity of BiP resulting in ATP hydrolysis 

that strengthens BiP affinity for the hydrophobic motifs of unfolded peptide (Gething 

1999). Normally, BiP is bound to the transmembrane ER stress transducers PERK, 

ATF6 and IRE1, blocking their activation. However, in the presence of exposed 

hydrophobic residues BiP disassociates, allowing activation of these UPR regulatory 

proteins. 
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Figure 1.13 – Schematic representation of the three main UPR pathways. In the presence of unfolded 

polypeptides BiP dissociates from the UPR sensors PERK, ATF6 and IRE1 causing their activation. 

Through phosphorylation or proteolytic cleavage of the three sensors are activated, leading to 

phosphorylation of elF2α (impairing translation), splicing of Xbp1 and translocation of resulting 

transcription factors to the nucleus to boost transcription of UPR genes. Picture from Todd, Lee, and 

Glimcher 2008. 

 

 

1.7.1 ATF6 

ATF6 is a 90 kDa type II transmembrane protein encoding a basic leucine zipper 

(bZIP) transcription factor in its cytosolic domain. Two homologous proteins, ATF6α 

and ATF6β exist in mammals. The ER-luminal domain of ATF6 contains two 

independent and redundant Golgi localization sequences, GLS1 and GLS2, which are 

masked by the binding of BiP (Figure 1.12) (Schröder and Kaufman 2005). Following 

BiP dissociation, ATF6 is transported to the Golgi where the proteases S1P and S2P 

remove the luminal and the transmembrane domain, respectively. The resulting 50 kDa 

N-terminal cytoplasmic fragment (ATF6f) is a DNA-binding protein that translocates to 
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the nucleus where it activates the transcription of UPR target (Figure 1.13) (Chen, Shen, 

and Prywes 2002). Although ATF6α participates in the induction of various UPR target 

genes, ATF6β seems to have a minimal role in the UPR. The main targets of ATF6f are 

the ERSE (ER stress response element) which control the expression of ER-localized 

molecular chaperons like BiP, PDI and GRP94 and XBP1, providing a feed-forward 

strategy to augment the IRE1 axis of the UPR. Moreover, ATF6f can form heterodimers 

with XBP1 that can bind to the cis-acting UPRE (Unfolding Protein Response 

Elements), located in the promoters of several components of the ERAD system (Walter 

and Ron 2011; Todd, Lee, and Glimcher 2008).  

 

1.7.2 IRE1 

IRE1 is a 110 kDa type I ER transmembrane protein that exists in 2 isoforms, IRE1α 

and IRE1β. While IRE1α is ubiquitously expressed, IRE1β expression is limited to gut 

epithelial cells. Among the UPR regulators, IRE1 is the most conserved and the only 

one presents in lower eukaryotes. IRE1 consists in an ER-luminal dimerization and 

cytosolic serine/threonine kinase and endoribonuclease domains (Figure 1.12) 

(Schröder and Kaufman 2005). After BiP dissociation, IRE1 oligomerize and trans-

phosphorylate other IRE1 molecules in the complex. It has been demonstrated that 

activation of IRE1 can occurs also by direct binding of unfolded proteins by a peptide-

binding pocket present in the luminal domain of the transmembrane protein (Walter and 

Ron 2011).  

The IRE1-mediated kinase activity has yet to be fully elucidated. Activated IRE1 

bind to the tumor-necrosis factor (TNF)-receptor-associated factor 2 (TRAF2) that 

promotes activation of JUN N-terminal kinase 1 (ASK1) through apoptosis signal-

regulating kinase 1 (ASK1), allowing cells to initiate autophagy or promoting apoptosis 

(Todd, Lee, and Glimcher 2008) (Figure 1.13). 

The IRE1 endoribonuclease activity is better understood. Activated IRE1 performs a 

non-conventional cytoplasmic splicing, excising a 26-nucleotide sequence from XBP1 

(X-box-binding protein 1) mRNA (Yoshida et al. 2001). This splicing event causes a 

shift in the reading frame of XBP1 mRNA generating a new longer protein called 

XBP1s (spliced form) that possess a transcriptional trans-activation domain in its C-

terminal region. Once translated, XBP1s translocates to the nucleus where it binds to 

UPR elements (UPRE) on the promoter of several UPR target genes encoding for 
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enzymes involved in protein folding or disposal, as ER-associated degradation (ERAD) 

protein EDEM-1 and ER-localised chaperons such as DNAJB9 and DNAJC3 (Figure 

1.13). Moreover, it has been demonstrated that XBP1s regulates lipid biosynthesis and 

ER biogenesis (Sriburi et al. 2004; Todd, Lee, and Glimcher 2008), indeed, its 

overexpression is sufficient to induce phospholipids biosynthesis and trigger the 

expansion of the ER. 

The specific splicing of XBP1 mRNA was considered the only RNase activity of 

IRE1α but it has then been shown that IRE1 can mediates the rapid degradation of a 

specific subset of mRNAs that are targeted to the ER for translation and that localize in 

proximity to IRE1. This activity was termed Regulated IRE1-Dependent Decay (RIDD) 

and thought to help relieves ER stress by diminishing protein translation (Hollien and 

Weissman 2006). Moreover it has been shown that IRE1 through its RIDD activity is 

involved in the cellular immune response. Indeed, the exonuclease domain of IRE1 

shows similar catalytic mechanisms of the protein RNaseL, which is able to produce 

RNA fragments that activate RIG-I. A recent report (Cho et al. 2013) showed that 

exposure of human intestinal cell lines with cholera toxins induces activation of RIDD 

activity that produce mRNA fragments that are then recognized by RIG-I leading to 

induction of the IFN response and production of inflammatory cytokine.  

 

1.7.3 PERK 

PERK is a 125 kDa type I transmembrane protein with an ER-luminal stress sensor 

domain and a cytosolic protein kinase domain (Figure 1.12). The PERK branch of the 

UPR transduces both pro-survival and pro-apoptotic signals but its main function is to 

modulate translation. Dissociation of BiP from the luminal domain initiates trans-

phosphorylation of the kinase domain at T981 of other PERK molecules, promoting 

PERK oligomerization (Todd, Lee, and Glimcher 2008). The kinase domain of PERK 

phosphorylates also the α subunit of the eukaryotic translation initiation factor-2 

(eIF2α) at Ser51, causing a global inhibition of translation, thus reducing also the 

amount of newly synthesized proteins (Harding et al. 1999; Harding et al. 2000). 

Interestingly, some mRNAs that contain an internal ribosome entry site (IRES) 

sequence in the 5’ untraslated regions bypass the P-eIF2α translational block (Schröder 

and Kaufman 2005). The most known one encodes the transcription factor ATF4 that 

binds to UPR elements inducing the transcription of pro-survival genes involved in 
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amino-acid metabolism and oxidative stress response but also of pro-apoptotic genes as 

CHOP that lead to a controlled cell death if the stressed cells are not able to restore their 

homeostasis (Figure 1.13). Another direct target of ATF4 is the co-factor GADD34, 

which role is to recruits the serine/threonine-protein phosphatase PP1 to 

dephosphorylate the translation initiation factor eIF2α, thereby reversing the shut-off of 

protein synthesis initiated by stress-inducible kinases and facilitating recovery of 

cells (Novoa et al. 2001). 

 

1.7.4 The Unfolded Protein Response in Flavivirus infections 

As largely discussed previously the UPR is a cellular homeostatic response to an ER 

stress and it can be triggered also by viral infections. Increasing evidences suggest an 

intimate relationship between virus and the UPR. Indeed, if on one hand, the host 

activates the UPR in an attempt to restrict virus infection, on the other hand, the virus 

can manipulates the UPR to facilitate its own replication.  

Since Flavivirus infection induce ER-derived membrane structures where it takes 

place the viral replication, is not surprising that Flavivirus infection induce ER stress 

and consequently activation of the UPR.  

Several studies on members of the Flaviviridae family have documented the 

activation of one or more arms of the UPR. For instance, in OR6 cells, a genome-length 

HCV RNA replication system in Huh7 cells, all the three UPR signalling pathways are 

activated compared to control cells OR6c from which HCV genome had been removed 

by treatment with IFNα (Shinohara et al. 2013). In DENV infected cells the activation 

of the UPR arms follows a time dependent mechanism, with PERK activation and 

eIF2α phosphorylation during early stages of infection that rapidly switched off and 

with IRE1 and ATF6 upregulation occurring at later stages of the replication cycle 

(Peña and Harris 2011). Also for WNV, it has been shown that UPR is activated upon 

infection. Indeed Medigeshi and colleagues demonstrated ATF6 and IRE1 upregulation, 

as well as eIF2α phosphorylation and induction of CHOP and GADD34 (Medigeshi et 

al. 2007). More recently, it has been described that infection with WNV Kunjin 

(WNVKUN), an attenuated strain of WNV, is activating only the ATF6 and IRE1 arms of 

the UPR and that the virus might regulate PERK activation to facilitate viral replication 

and preventing CHOP transcription (Ambrose and Mackenzie 2011). These data 

indicate a high variability in the stress responses induced by different flaviviruses. Also 
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TBEV has been shown to induce XBP1 splicing and ATF6 cleavage and nuclear 

translocation. In the same study they demonstrated that by inhibiting the UPR TBEV 

replication is impaired suggesting that the virus could manipulate this response to 

facilitate the infection (C. Yu, Achazi, and Niedrig 2013). 

Finally, increasing evidences support an intersection between the UPR and 

inflammation, in particular the production of pro-inflammatory cytokines and type I 

IFN (Smith et al. 2008). These studies suggest that upon viral infection the UPR might 

serves as an intracellular “danger signal” alerting the cell about the infection and 

working in a synergic way together with the IFN response. 
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2.1 Materials 

 

2.1.1 Cells 

Bacteria 

• MAX Efficiency DH10B Competent Cells (Invitrogen – cat.num. 18297-

010). Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 

recA1 endA1 araD139 Δ (ara, leu)7697 galU galK λ- rpsL nupG 

/pMON14272 /pMON7124. 

• XL10-Gold Ultracompetent Cells (Stratagene – cat.num. 200315). 

Genotype: Tetr Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 

recA1 gyrA96 relA1 lac Hte [F´ proAB lacIqZΔM15 Tn10 (Tetr) Amy 

(Kanr)]. 

• MAX Efficiency Stbl2 Competent Cells (Invitrogen – cat.num. 10268-019). 

Genotype: F- mcrA Δ(mcrBC-hsdRMS-mrr) recA1 endA1lon gyrA96 thi 

supE44 relA1 λ- Δ(lac-proAB). 

Mammalian Cells 

• U2OS: Human osteosarcoma cell line (ECACC No. 92022711); 

• Vero: African green monkey kidney (ECACC No. 84113001); 

• U2OS_Flag-RIG-I: U2OS transduced with a lentivirus carrying Flag-RIG-I; 

• U2OS_EGFP-ATF6: U2OS cells transfected with the plasmid p-EGFP-

ATF6. 

 

 

2.1.2 Media 

Bacteria 

• Luria-Bertani (LB) Medium: 10 g bacto-trypton, 5 g bacto-yeast extract, 10 g 

NaCl per 1 liter medium. Ampicillin was added at a concentration of 100 

µg/ml. For hardening 1.5% agar-agar was added to the liquid medium. 

• SOC Medium: Super Optimal Broth (SOB) medium (20 g bactotrypton, 5 g 

bacto-yeast extract, 0.5 g NaCl per 1 liter medium) was enriched with 20 mM 

glucose. 
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Mammalian Cells 

• DMEM complete medium: Dulbecco’s Modified Eagle Medium (Gibco – 

cat.num. 31885-023) supplemented with 10% fetal bovine serum (FBS) 

(Euroclone – cat.num. ECS0180L). For selection of stable cell lines 

Geneticin, also called G418 Sulfate (Invitrogen – 10131035), or Puromycine 

Dihydrochloride (Invitrogen – A1113803) were added at a concentration of 

1.2 mg/ml and 1 µg/ml respectively. 

• OptiMEM: Reduced-Serum Medium (Gibco – cat.num 31985‐070) 

• Cryo medium: for long-term storage cells were frozen in liquid nitrogen in 

90% FBS, 10% DMSO. 

 

 

2.1.3 Antibodies and antisera 

Primary antibodies 

Reactivity Species Subtype Source Comments 

TBEV E Rabbit Polyclonal 

The antibody was produced 
by our colleague Gianmarco 

Corazza whole serum not 
purified 

1:100 IF 
1:1000 WB 

Human G3BP11 Mouse IgG 
Monoclonal BD transduction laboratories 1:100 IF 

Human eIF3 Goat Polyclonal Santa Cruz 1:200 IF 
Human eIF4B Rabbit Polyclonal Abcam 1:100 IF 

Human  
P-eIF2α (Ser51) Rabbit Polyclonal Cell Signalling 1:500 WB 

Human eIF2α Rabbit Polyclonal Santa Cruz 1:100 WB 

TBEV NS1 Mouse IgG 
Monoclonal 

Dr. Connie Schmaljohn  
(Iacono-Connors et al, 1996) 1:1000 WB 

β-Actin-HRP  Mouse IgG 
Monoclonal Sigma 1:50000 

WB 

dsRNA J2 Mouse IgG 
Monoclonal 

English and Scientific 
Consulting 1:200, IF 

TBEV prM Rabbit Polyclonal 
Kindly provided by Dr. 

Heinz, Medicine University, 
Vienna 

1:100 WB 

Human PERK Rabbit Polyclonal Santa Cruz 1:500 WB 
Human P-PERK 

(T981) Rabbit Polyclonal Santa Cruz 1:200 WB 

Human β-
Catenin Mouse IgG 

Monoclonal BD Trunsduction Lab 1:2000 WB 

Human PKR Mouse IgG 
Monoclonal Santa Cruz 1:200 WB 
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Human  
P-PKR (T446) Rabbit IgG 

Monoclonal Abcam 1:1000 WB 

Human RIG-I 
(CTD) Rabbit Polyclonal 

Kindly provided by Dr. 
Takashi Fujita, Kyoto 

University 
1:100 IF 

Human RIG-I 
(Alme-I) Mouse IgG 

Monoclonal AdipoGen 1:500 WB 

Flag Mouse IgG 
Monoclonal Sigma-Aldrich 1:1000 WB 

Flag Rabbit IgG 
Monoclonal Sigma-Aldrich 1:100 IF 

Table 2.1 Primary antibody used in this study. 

 

Secondary antibodies 

• Donkey, anti-mouse IgG, Alexa Fluor 488 (Molecular Probes); 1:500 for IF. 

• Donkey anti-rabbit IgG, Alexa Fluor 594 (Molecular Probes); 1:500 for IF. 

• Donkey, anti-goat IgG, Alexa Fluor 594 (Molecular Probes); 1:500 for IF. 

• Donkey, anti-rabbit IgG, Alexa Fluor 488 (Molecular Probes); 1:500 for IF. 

• Donkey anti-mouse IgG, Alexa Fluor 594 (Molecular Probes); 1:500 for IF. 

• Goat polyclonal, anti-rabbit immunoglobulins/HRP (DakoCytomation); 

1:10000 for WB. 

• Rabbit polyclonal, anti-mouse immunoglobulins/HRP (DakoCytomation); 

1:10000 for WB. 

 

 

2.1.4 Vectors 

Plasmid Relevant characteristics References 

pEGFP-ATF6 Expressing EGFP-ATF6,  
Geneticine Resistance gene 

32955, Addgene 
Chen et al., 2002 

psPAX2 Packaging Vector 12260, Addgene 
pMDG.2 Encodes VSV-G Envelope 12259, Addgene 

pWPI- NEO Lentivector, Neomycin Resistance gene D. Trono (EPFL) 
pEF-BOS-Flag-

RIG-I-N Encodes Flag-RIG-I Kindly provided by 
Dr. Takashi Fujita 

pWPI-Flag-RIG-I Lentivector expressing Flag-RIG-I Produced in this 
study 

Table 2.2 Cloning and expression vectors used in this study 
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2.1.5 Oligonucleotides 

Name Sequence (5’ to 3’) 
TBEV 5’NCR Fw GCGTTTGCTTCGGA 
TBEV 5’NCR Rv  CTCTTTCGACACTCGTCGAGG 
β-Actin Fw  CATGTGCAAGGCCGGCTTCG 
β-Actin Rv  GAAGGTGTGGTGCCAGATTT 
IFNβ Fw  AGGACAGGATGAACTTTGAC 
IFNβ Rv  TGATAGACATTAGCCAGGAG 
IFIT2 Fw ACGTCAGCTGAAGGGAAACA 
IFIT2 Rv TGTTCTCACTCATGGTTGCAGT 
IFIT3 Fw TGCAGGTCTCAAGCCGTTAG 
IFIT3 Rv GACCTCACTCATGACTGCCC 
IL8 Fw CAGAGACAGCAGAGCACACA 
IL8 Rv GGCAAAACTGCACCTTCACA 
OASL Fw TACCAGCAGTATGTGAAAGCCA 
OASL Rv GGTGAAGCCTTCGTCCAACA 
CHOP Fw TAAAGATGAGCGGGTGGCAG 
CHOP Rv CTGCCATCTCTGCAGTTGGA 
XBP1s Fw CTGAGTCCGCAGCAGGTG 
XBP1s Rv GGCTGGTAAGGAACTGGGTC 
XBP1tot Fw CCGGAGCTGGGTATCTCAAAT 
XBP1tot Rv CCGTATCCACAGTCACTGTAAGCA 
XBP1u Fw AGCCAAGGGGAATGAAGTGAGG 
DNAJC3 Fw CGTTTGCGTTCACAAGCACT 
DNAJC3 Rv CCCGAACTTCACTGAGGGAC 
DNAJB9 Fw TGGGGAAGCGTTTCGTGTAG 
DNAJB9 Rv CTAATATCCTGCACCCTCCGAC 
EDEM1 Fw AGGACCAAGGGGGAAAGTCT 
EDEM1 Rv GTACACGATTGCAGTTGGAGC 
BiP Fw CCCGAGAACACGGTCTTTGA 
BiP Rv TCAACCACCTTGAACGGCAA 
GADD34 Fw CCCAGAAACCCCTACTCATGAT 
GADD34 Rv CTCGGAGAAGCGCACCTTT 
XmaI-FlagRIGI 
Fw TCCCCCCGGGATGGATTATAAGGATGATGATGATAAAGG 

SpeI-FlagRIGI Rv ATACGACGCGTTCATTTGGACATTTCTGCTGG 
Table 2.3 Sequence of oligonucleotides used in this study. The restriction sites contained in the primer 

sequence are indicated in italic letters. 
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2.2 General Procedures 

 

2.2.1 Cell culture 

Monolayers of cells were grown at 37°C, 5% CO2 in DMEM complete medium. 

Cells were passaged after treatment with 0.05% Trypsin – 0.02 % EDTA and seeded 

at the appropriate dilution. 

 

 

2.2.2 Plasmid construction 

pWPI-Flag-RIG-I is a lentiviral protein expression vector created with pWPI-Neo 

cloning vector. pWPI cloning plasmid was digested with XmaI and SpeI restriction 

enzymes. Insert was created by PCR amplification using PFU DNA Polymerase 

(Promega – cat.num M7745) and PCR Nucleotide Mix (Promega – cat.num M0202L) 

from the pEF-BOS-Flag-RIG-I plasmid. For the reaction the primers Xmai-FlagRIGI 

Fw and SpeI-FlagRIGI Rv were used and PCR was performed under the following 

thermal cycling conditions: 94 °C 5 min, 94 °C 30 sec – 64 °C 30 sec – 72 °C 2.5 

min for 35 cycles, and 72°C 2 min. 

After purification with the QIAquick PCR Purification Kit (Promega – cat.num 

28104) the PCR product was digested with XmaI and SpeI restriction enzymes. Both 

linearized vector and digested PCR product were run on a 1% agarose gel to evaluate 

size and integrity. After gel extraction with the QIAquick Gel Extraction Kit (Qiagen – 

cat.num 28704), PCR digested product was ligated over-night (O/N) at 16°C using T4 

DNA Ligase enzyme (New England Biolabs – cat.num M0202S) into the linearized 

pWPI-Neo vector. 
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2.2.3 Plasmid transformation  

XL10-Gold Ultracompetent cells (Agilent Technologies) were used for 

transformation of all parental and produced plasmids. Briefly, cells were incubated with 

plasmids on ice for 30 min. Afterwards, they were heat-shocked at 42°C for 40 sec, and 

left on ice for 2 min more. Then, SOC medium was added into cells, and cells were 

incubated at 37°C for 1 h. Finally, cells were plated onto LB agar with the desired 

antibiotic and grew over-night (O/N) at 37°C.  

Selected colonies were picked and inoculated into 3 ml of LB medium containing the 

desired antibiotic. After 12-15 hours bacteria were lysed and plasmid DNAs were 

extracted using GenElute Plasmid Miniprep Kit (Sigma-Adrich – cat.num PLN350). 

Extracted plasmids were controlled by restriction enzyme digestion assay and 

sequencing.  
 

 

2.2.4 Production of infectious Lentiviral particles 

Lentiviral (LV) particles were produced in HEK 293T cells using calcium phosphate 

transfection method. Briefly, 2 x 106 HEK 293T cells were plated in 10 cm dishes one 

day prior to transfection. The following mix was prepared in 450 µl of sterile dH2O: 

- 5 µg pWPI-Flag-RIG-I expression plasmid,  

- 3.75 µg psPAX2 packaging plasmid 

- 1.25 µg pMD2.G envelope plasmid  

50 µl of sterile 2.5 M CaCl2 was added to each tube.  

This mixture was incubated for 5 min at room temperature and then added dropwise 

to 500 µl sterile 2X HBS (Hepes Buffered Saline: 50 mM HEPES pH 7.05, 280 mM 

NaCl, 1.5 mM Na2HPO4) by gently vortexing and incubated at room temperature (r.t.) 

for 30 min. The transfection mixture was added dropwise to the cells and incubated 

O/N. 

The day after, the media was changed to remove the transfection reagent and 

replaced with fresh DMEM + 10% FBS. Cells were then incubated at 37 °C, 5% CO2 

for 24 h. Following day, media containing the lentiviral particles were collected and 

centrifuged at 2250 rpm (Eppendorf Centrifuge 5804R) for 10 min at 4 °C to pellet any 

HEK-293T cells that were accidentally collected during harvesting. The surnatant was 

filtered with 0.45 µm sterile filters. The filtered lentiviral stocks were aliquoted and kept 

at -80 °C until needed for transduction experiments. 
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2.2.5 Transduction of target cells with purified Lentiviruses 

In order to produce stable cell lines expressing the chimeric protein Flag-RIG-I, 1.5 x 

105 U2OS cells were prepared in 3 ml of DMEM + 10% FBS and were incubated 

together with 1 ml of lentiviral particles additioned with 1 µl (150 ng/ml) of Polybrene 

(hexadimethrine bromide, Sigma Aldrich – cat.num 107689). Cells were plated in 6 cm 

dishes and incubated at 37 °C. Two days after, medium was replaced with fresh DMEM 

+ 10 % FBS additioned with 1.2 mg/ml Neomycin and cells were kept under selection 

for one week. Expression of the chimeric protein was evaluated by WB analyses.  

 

 

2.2.6 Transfection of U2OS cells with Lipofectamine LTX 

Plasmid DNAs were delivered into U2OS cells using Lipofectamine LTX 

(Invitrogen) according to the manufacturer’s instructions. 

 

 

2.2.7 Flow cytometry analysis  

For the analysis of EGFP-ATF6 expression, after transfection and selection, cell 

monolayers were treated with 0.05 % Trypsin – 0.02 % EDTA to prepare single cells 

suspensions. Cells were then washed twice with PBS (Phosphate Buffered Saline), 

resuspended with 500 µl PBS and analyzed immediately by flow cytometry using a 

FACSCalibur apparatus (Becton Dickinson) and the Cell Quest Pro software.  

 

 

2.2.8 Indirect Immunofluorescence (IF) analysis 

In general, cells were seeded onto microscope coverslips and supplied with complete 

growth medium. For IF analysis cells were washed three times with PBS and fixed in 

3.7 % paraformaldehyde (PFA) solution (3.7% PFA in PHEM buffer: 60 mM PIPES, 25 

mM HEPES, 10 mM EGTA, 2 mM MgCl2) for 15 minutes at room temperature. 

Thereafter, cells were again washed three times with PBS containing CaCl2 and MgCl2 

(PBS+S) and incubated 5 minutes with 100 mM Glycine in PBS+S in order to saturate 

excesses of PFA and to stop the fixation reaction. Cells were permeabilized for 5 

minutes with 0.1 % Triton X-100 in PBS and washed three times, 5 min each. Before 

incubation with antibodies, a blocking step was performed at 37°C for 30 minutes with 

1 % bovine serum albumin (BSA, Roche – cat.num 10735078001) and 0.1 % Tween 20 
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(Sigma Aldrich – cat.num P2287-500ML). Primary antibodies were diluted to the 

desired concentration in blocking solution to prevent aspecific binding of the antibodies. 

After one hour incubation at 37°C, or overnight incubation at 4°C, coverslips were 

rinsed three times with PBS+S 0.1 % Tween 20 (washing solution) and incubated with 

secondary antibodies for 1 hour at 37°C. Coverslips were finally washed three times 

with washing solution and mounted on slides using Vectashield mounting medium with 

addition of DAPI (Vector Laboratories – cat.num H-1200).  

In order to detect endogenous RIG-I intracellular localization, U2OS cells were fixed 

and permeabilized as previously described. The blocking was instead performed at 37°C 

for 1 hour with PBS, 0.5 % BSA and 0.04 % Tween 20 following Dr. Takashi Fujita 

protocol (Onomoto et al. 2012). Cells were next incubated O/N at 4°C with the anti 

RIG-I antibody diluted in the blocking solution described above, washed twice for 20 

minutes at room temperature with PBS 0.04 % Tween 20 and finally incubated with the 

secondary antibody for 1 hour at 37°C with the same blocking solution used before. 

After two washes at room temperature for 20 minutes, coverslips were mounted on 

slides as already described. 

 

 

2.2.9 Imaging of fixed cells 

Fluorescent images of fixed cells were captured with the Zeiss LSM 510 META 

confocal microscope (Carl Zeiss Microimaging, Inc.). 

The LSM 510 META confocal microscope was equipped with a 63X Plan-Apo/1.4 

NA Oil objective and with a 40X Plan-Neo/1.3 NA Oil objective. The pinhole of the 

microscope was adjusted to get an optical slice of less than 1.0 µm for any wavelength 

acquired. The fluorophore Alexa488 as well as EGFP-ATF6 protein were excited with 

488 nm line of the Argon Laser, while the fluorophore Alexa594 was excited with the 

HeNe Laser 543 nm. Their emissions were collected using the appropriate filters.  

Co-localization analyses of RIG-I and TBEV signals were performed with ImageJ 

software. 
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2.2.10 Real-time quantitative reverse transcription PCR (qRT-PCR) 

Total cellular RNA was extracted by using Isol-RNA Lysis Reagent (5Prime – 

cat.num 2302700) according to the manufacturer’s instructions, treated with DNase I 

(Life Technologies – cat.num 18060-015) and then quantified.  

500 ng of extracted RNA was used as a template to synthesize cDNA using 150 ng 

Random Primers (Life Technologies – cat.num 8190-011) and M-MLV Reverse 

Transcriptase (Life Technologies – cat.num 28025-013) according to manufacturer’s 

protocol.  

Quantitative Real-time PCR (qRT-PCR) using KAPA SYBR FAST qPCR Master 

Mix (KapaBiosystem - cat. num. KK4607) was performed from cDNA samples. Signals 

of inducible cellular mRNAs or viral RNAs were normalized to the β-Actin mRNA 

signal. The sequences of oligonucleotides used for this analysis are reported in table 1.3. 

Amplification and detection were carried out on a CFX96 Real Time System (Bio-

Rad). 

 

 

2.2.11 PstI digestion of Xbp1 splicing forms 

Total RNA samples were reverse transcribed as described in previous paragraph.  

Amplicon spanning Xbp1 splicing site was synthesized using the primers Xbp1u_Fw 

and Xbp1s_Rv (table 2.3) under the following thermal cycling conditions: 94 °C 5 

min, 95 °C 30 sec – 60 °C 30 sec – 72 °C 30 sec for 35 cycles, and 72°C 2 min. 

PCR products were purified with the QIAquick PCR Purification Kit (Promega – 

cat.num 28104) and subsequently digested with the restriction enzyme PstI 

(NewEngland BioLabs – cat.num R0140S). Finally the digested amplicons were run on 

a 2% Agarose gel. 
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2.2.12 Cell Lysis 

Depending on the type of analyses required cells were lysed in different lysis buffer: 

• Laemmli Buffer (50 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 100 mM 

DTT, 0.1% bromophenol blue); 

• RIPA buffer (50 mM Tris HCl pH8, 150 mM NaCl, 1% NP-40, 0.5% 

Sodium Deoxycholate, 0.1% SDS additioned with Proteinase Inhibitors 

(Roche - 11836170001) and Phosphatase Inhibitors: Sodium Fluoride and 

Sodium Orthovanadate; 

• Native Lyses Buffer:  0.5% Triton-X100 in PBS 

 

 

2.2.13 Trypsin digestion of infected samples 

To assay the conformation of RIG-I, cells were lysed in native lysis buffer, 0.5% 

Triton X-100 in PBS, and incubated on ice for 10 min. Then, samples were sonified at 4 

°C for 10 min and centrifuged at 4 °C for 10 min at 10000 g. Aliquots of 30 µg of total 

protein were digested for 10 min with 0.3 µg of Sequencing Grade Modified Trypsine 

(Promeca – cat.num V511A) at 37 °C. Reaction was stopped by adding Laemmli buffer 

and heating the samples at 95 °C for 10 min. Samples were subjected to 10% SDS-

PAGE and western blot analysis using mouse monoclonal anti-RIG-I antibody (ALME-

1). Staining of the blot with 0.1% Ponceau S in 5% acetic acid served as a loading 

control. 

 

 

2.2.14 SDS PAGE 

Whole cell lysates were resolved by SDS–PolyAcrylamide Gel Electrophoresis 

(SDS-PAGE) at the appropriate acrylamide percentages. Initially, the protein lysates 

were boiled at 95°C for 10 min, and centrifuged for 1min at RT at 1000g, and 

subsequently loaded into the acrylamide gel.  

Gels were run in SDS electrophoresis buffer (25 mM Tris, 190 mM glycine, 0.1% 

SDS), initially at 90 V into the stacking gel and later at 140 V into the running gel.  
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2.2.15 Native PAGE 

To investigate the oligomerization of RIG-I, 50 µg of sonified cell lysate in native 

buffer (50mMTris-HCl [pH 6.8], 10% glycerol, 0.1% bromphenol blue) was loaded 

onto a nondenaturing 8% polyacrylamide gel. Proteins were separated by 

electrophoresis with 50 mM Tris-NaOH (pH 9.0), 384 mM glycin as anode buffer and 

50 mM Tris (pH 8.3), 384 mM glycin, 1% sodium deoxycholate as cathode buffer. 

Western blot analysis was performed using anti-RIG-I (ALME-1) antibody. 

 

 

2.2.16 Western blot analysis 

For Western blotting, nitrocellulose membrane (GE Healthcare – cat.num 10600015) 

was used and membranes were blocked for 1 hour in 4% milk followed by incubation 

with the appropriate primary antibodies diluted in 4% milk / 0,5% Tween-20 at 4°C 

O/N. After three washing with TBS 0.5% Tween-20 secondary antibodies conjugated 

with HRP (DakoCytomation – cat.num P0447/8) were diluted in 4% milk / 0,5% 

Tween-20 and incubated for 1 hour. Blots were developed using Immobilon Western 

Chemiluminescent HRP Substrate (Millipore – coat.num WBKLS0500) according to 

manufacturer’s instructions. 

 

 

2.2.17 Whole-genome transcriptome analysis  

U2OS cells were seeded into 10-cm dishes. Next day, cells were infected, or mock 

infected, with TBEV at a MOI of 5. After 1 hour cells were washed with PBS and 

sample corresponding to 0 hours post infection (h p.i.) was lysed in Isol-RNA lysis 

buffer. For all other samples DMEM containing 5% decomplemented (Heat 

inactivation: 56°C for 30 minutes) FBS was added. Other RNA samples were collected 

at 10 and 24 h p.i.  

Total RNA was extracted. Integrity and concentration of total RNA were measured 

with denaturing agarose gel electrophoresis and nanodrop, respectively. Three 

independent experiments were performed.  

Total RNA samples were sent to the company (IGA Technology Services, Udine, 

Italy). RNA integrity number (R.I.N.) was measured. RNA samples were run with 

HiSeq 2000 sequencing system (Illumina). An average of 25 millions reads were 
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performed for each sample. Afterwards, the company performed alignment and 

expression analysis.  

Raw data were analyzed by Dr. Danilo Licastro (CBM, Trieste, Italy). Briefly, 

bioconductor packages DESeq2 version 1.4.5. and EdgeR version 3.6.2 in the 

framework of R software version 3.1.0 were used to perform differential gene 

expression analysis of RNA-seq data. Both packages are based on the negative binomial 

distribution (NB) to model the gene reads counts and shrinkage estimator to estimate 

the per-gene NB dispersion parameters. Specifically, rounded gene counts were used as 

input and the per-gene NB dispersion parameter was estimated using the function 

DESeq for DESeq2 while, for edgeR the function calcNormFactors with the default 

parameters was used. To detect outlier data after normalization, R packages 

arrayQualityMetrix were used and before testing differential gene expression all genes 

with normalized counts below 14 were eliminated to improve testing power while 

maintaining type I error rates. Estimated p- values for each gene were adjusted using the 

Benjamini-Hochberg method. Genes with adjusted P<0.05 and absolute Logarithmic 

base 2 fold change > 1 were selected.  

From the analyses 437 resulted up-regulated and 318 down-regulated.  
Finally, some of the down-regulated and up-regulated genes were validated by q-

PCR analysis in order to prove the accuracy of the whole-genome transcriptome 

analysis.  

 

 

2.2.18 Ingenuity pathway analysis  

Significantly changed genes (up-regulated, down-regulated, or both) were analyzed 

by using online bioinformatics tool Ingenuity Pathway Analysis (Qiagen). Settings for 

the analysis as following: direct relationships were included with experimentally 

observed or highly predicted confidence from human species. Canonical pathways, 

diseases and disorders, and molecular and cellular functions were analyzed.  
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2.3 Working with viruses 

2.3.1 Preparation of TBEV stocks 

TBEV strain Neudoerfl was used for these studies. 

Viral stocks were prepared by infection of Vero cells at the low multiplicity of 

infection of 0.1. After cytopathic effect (CPE) was observed, cell culture supernatant 

was collected, clarified by centrifugation, supplemented with 20 % FBS, and stored in 

aliquots at -80°C.  

Viral titres were determined by using a plaque-forming assay.  

 

 

2.3.2 Plaque Assay 

Vero cells were seeded into 24-well plates till monolayer was formed. 

Cells were infected the day after with a 10-fold serial dilution of TBEV in a total 

volume of 200 µl of serum-free medium. After 1 hour incubation at 37°C with 5% CO2, 

the inoculum was removed and a 500 µl overlay containing 1 volume of 6% 

carboxymethyl cellulose (CMC) to 1 volume of maintenance medium (DMEM 

supplemented with 4 % decomplemented FBS) was added. The plates were incubated 

for 5 days before fixation with 4 % PFA dissolved in PBS. Infected cells were stained 

adding 300 µl of 1% crystal violet solution in 80% methanol / 20% PBS. After 30 

minutes the staining solution was removed and cells were washed 3-4 times with water. 

Viral titres were determined by counting number of plaques formed and multiplying it 

for the dilution factor. 

 

2.3.3 TBEV infection of cells 

For standard infection assays, U2OS cells were seeded in a 12 well plate at an 

appropriate confluency.  

24 hours later, cells were infected at the appropriate moltiplicity of infection (MOI) 

by adding 400 µl of virus stock properly diluted in serum-free medium. After 1 hour 

incubation at 37°C with 5 % CO2, the inoculum was replaced with maintenance medium 

(DMEM supplemented with 4 % decomplemented FBS).  

The moment in which the virus is replaced with normal medium is considered time 

zero, 0 hours post infection (0 h p.i.). Cells were then harvested at the appropriate time 

points. 
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2.3.4 Tunicamycin treatment of cells 

U2OS cells were plated in 12 well plates and 24 hours later were infected with 

TBEV at a MOI of 1. After one hour, cells were washed with PBS and medium was 

changed with complete medium (untreated samples) or medium containing 1 µg/ml 

Tunicamycin (TM) (Sigma – cat.num. T7765-1MG). Control cells, mock infected and 

not treated with TM were also used. Cells were then harvested at the appropriate time 

points. 
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3.1 TBEV induce formation of Stress Granules 

Stress granules (SG) are dynamic aggregates of non-translating mRNAs in conjunction 

with translation pre-initiation complexes and several RNA binding proteins, including: 

the polyA binding protein, T-cell restricted intracellular antigen 1 (TIA-1), TIA-1-

related protein (TIA-R) and RasGAP SH3-domain binding protein 1 (G3BP1). Cells 

react to various stresses by activating cellular kinases that phosphorylate the eukaryotic 

initiation of translation factor 2α (eIF2α), thereby rendering eIF2α inactive and 

inducing a stop in translation with consequent formation of SG. Among the stresses that 

can cause formation of SG there is infection with a wide variety of viruses. Until some 

years ago it was accepted the idea that Flaviviruses, like West Nile Virus and Dengue 

Virus, were not able to induce formation of SG (Emara and Brinton 2007). More 

recently it has been demonstrated that HCV was able to induce oscillating SG (Ruggieri 

et al. 2012). In our recent work (Albornoz et al. 2014) we found that TBEV is able to 

induce SG formation.  

In figure 3.1 U2OS cells were infected with TBEV with a MOI of 1 and fixed for 

immunofluorescence analysis (IF) at 24 hours post infection (h p.i.). IF was performed 

using anti-TBEV and anti-G3BP1 antibodies to mark infected cells and the SG marker 

G3BP1, respectively. The same analysis was made on mock infected cells. Since we 

observed that G3BP1 was recruited to cytoplasmic granules only upon TBEV infection, 

we wished to understand if TBEV-induced granules are bona-fide stress granules. 

 

Figure 3.1 – TBEV infection induces formation of stress granules. U2OS cells were either mock 

infected or infected with TBEV at a MOI of 1. At 24 hours post infection cells were fixed and 

immunostained with an anti-G3BP11 antibody to detect stress granules and an anti-TBEV antibody to 

evidence viral replication. Scale bar: 5 µm.  
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Therefore we performed additional immunofluorescence analysis on TBEV infected 

U2OS cells (MOI=1) fixed at 24 h p.i. As shown in figure 3.2, G3BP1 co-localize in SG 

upon infection together with eIF3 (Figure 3.2a) and eIF4B (Figure 3.2b) that are typical 

marker of stress granules.  

 
Figure 3.2 - Characterization of TBEV-induced stress granules. U2OS cells were either mock 

infected or infected with TBEV at a MOI of 1. At 24 hours post infection cells were fixed and 

immunostained for G3BP1 and eIF3 (A) or G3BP1 and eIF4B (B) to detect stress granules. Scale bar: 5 

µm. 

 

 

As already described in the introduction, the very first step triggering the formation 

of SG in stressed cells is the phosphorylation of the initiation of translation factor eIF2α 

by several serine/threonine kinases, depending on the type of stress. 
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 Knowing that TBEV is able to induce SG formation, we wanted to study the 

phosphorylation status of eIF2α upon infection. To this end, lysates of U2OS mock 

cells, U2OS TBEV infected and U2OS heat shocked cells were used for WB analysis.  

We were able to demonstrate that in infected cells eIF2α is phosphorylated (P-eIF2α) 

as much as in heat-shocked cells (positive control), confirming the activation of stress 

response upon TBEV infection (Figure 3.3). We also have to notice that a small portion 

of eIF2 α is phosphorylated even in mock cells but that this amount is probably not 

sufficient to trigger the formation of SG and the inhibition of translation. To exclude 

that the increased amount of P-eIF2α was due to an increased expression of eIF2α in 

infected cells we also performed a WB analysis using the anti-eIF2α antibody. As 

control of infection the anti TBEV NS1 antibody was also used. Anti-β-Actin antibody 

was used for the loading control. 

 
Figure 3.3 - eIF2α  is phosphorylated upon TBEV infection. U2OS cells were either mock infected, 

heat shocked for 40 minutes at 45°C or infected with TBEV at a MOI of 1 for 24 hours. The cell lysates 

were immunoblotted for total eIF2a and phosphorylated eIF2a (P-eIF2a). Loading control (b-actin) and 

infection control (NS1) are also shown. 

 

 

3.1.1 Stress granules are formed in TBEV infected cells starting from 16 h p.i. 

So far we know that TBEV infection of U2OS cells is able to induce the activation of 

a stress response and the formation of stress granules at 24 h p.i.  

However, it would be more interesting and informative to study the kinetics of viral 

replication and of the cellular responses following infection in order to understand 

better the possible crosstalk between cellular responses, molecules responsible of 
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triggering these responses and, not less important, possible escaping routes of viruses 

from these cellular responses.  

In order to study the kinetic of stress granules formation during TBEV infection 

U2OS cells were infected at a MOI of 1 and fixed at different time-points: 0, 4, 8, 12, 

16 and 24 h p.i. Immunofluorescence analysis was performed using the anti-dsRNA 

antibody, detecting an intermediate of TBEV replication, and the anti-eIF3 antibody as 

marker of SG. As it is possible to observe in figure 3.4, TBEV dsRNA becomes 

detectable at very early time of infection, starting from 4 h p.i. with a typical perinuclear 

localization that corresponds to the endoplasmic reticulum (ER) (Miorin et al. 2013). By 

analysis of the eIF3 staining it is possible to observe that SG are formed much later, 

starting from 16 h p.i. highlighting a delay of this response with respect to viral 

replication. Indeed, while virus replication is detectable as early as 4 h p.i. SG are 

visible only after 16 hours.  

 

 
 

Figure 3.4 – Formation of stress granules occurs after16 hours post infection. U2OS cells were either 

mock infected or infected with TBEV at a MOI of 1. At 4, 8, 12, 16 and 24 hours post infection (h p.i.) 

cells were fixed and immunostained with the eIF3 antibody to detect stress granules and with the anti-

dsRNA antibody to evidence viral replication. White arrows indicate cells containing stress granules. 

Scale bar: 20 µm.  
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3.2 IFN-β  expression is delayed during TBEV infection with the same kinetic of 

stress granules formation. 

The observed kinetic of SG formation was reminiscent of a previous observation 

about the IFN-β response (Miorin et al. 2012).  

Therefore, Another time-course experiment was performed on U2OS cells infected 

with TBEV at a MOI of 1, but this time protein samples and cell supernatant were 

collected at 0, 4, 8, 10, 12, 14, 16 and 24 h post infection in order to perform 

respectively WB analysis and Plaque Assays. 

As we can see from figure 3.5a, WB analysis reveals that viral proteins, in this case 

stained with anti-prM antibody, were detectable starting from 12 h p.i. Anti-β-Actin was 

used as loading control. From the Plaque Assay we could determine that production of 

infectious viral particles starting already at 10 h p.i (Fig. 3.5b). The lack of detection of 

prM by WB at earlier time points is due to the sensitivity of the antibody and of the test 

itself. 

Figure 3.5 - Pattern recognition receptor agonists are present in infected cells from early time after 

infection. A) U2OS cells were infected with TBEV at a MOI of 1. At different time during infection cell 

lysates were collected and immunoblotted for prM. Loading control β-actin is also shown. (B) U2OS 

cells were infected with TBEV at a MOI of 1. At different time during infection cell supernatants were 

collected and Plaque Assays using these samples were performed. Data were averaged from two 

independent experiments and are represented as mean ± standard deviation.  
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From this final experiment we could conclude that both the stress response and the 

interferon response are activated later following TBEV infection. 

 

During the same time course experiment of figure 3.5 RNA samples from infected 

cells were also collected. Total RNA was extracted and retro-transcribed. qRT-PCR for 

TBEV RNA and IFN-β mRNA were performed. As we can see from figure 3.6, black 

line, a first increased of TBEV RNA (≅ 80 fold) was measurable at 10 h p.i. followed 

by an exponential increase till the end of the time course (≅ 180000 fold at 24 h p.i.). 

This confirms that TBEV is replicating from early time of infection.  

We could detect IFN-β mRNA levels only after 16 hours post infection as expected 

from previous data (Miorin et al., 2012). 

Figure 3.6 - IFN-β  mRNA induction is delayed during TBEV replication. U2OS cells were infected 

with TBEV at a MOI of 1. At different time during infection cell lysates were collected and total RNA 

was isolated and retro-transcribed. qRT-PCR analysis for TBEV RNA levels (black line) and for IFN-b 

mRNA (red line) were performed. Expression levels are expressed as fold increase relative to 0 hours 

post infection (h p.i.). Data were averaged from two independent experiments and are represented as 

mean ± standard deviation. 
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3.3 The unfolded protein response is activated upon TBEV infection 

In order to investigate the cellular events that lead to the stress and IFN responses in 

infected cells we applied an unbiased approach by analyzing differential transcription. 

We identified two critical points: at 10 h p.i. when virus is actively replicating in the 

cells but no IFN is activated, and 24 h p.i. when the full response is clearly activated. 

 

 

3.3.1 Whole-genome transcriptome analysis 

U2OS cells were plated in 10 cm dish. The day after cells were infected, or mock 

infected, with TBEV at a MOI of 5. After one hour cells were washed with PBS and 

medium was replaced. This moment of infection correspond to 0 h p.i. RNA samples 

were collected at 10 and 24 h p.i. both for TBEV and mock infected cells. The 

experiment was performed in triplicate. A simplified scheme of the experiment is 

shown in figure 3.7.  

 

 
Figure 3.7 - RNAseq analysis: schematic drawing of the experimental approach. U2OS cells were 

plated at day 0. 24 hours later cells were either infected with TBEV at a MOI of 5 or mock infected. After 

1 hour cells were washed and medium was changed. At this time the samples correspondent to 0 hpi (T0) 

were collected. At 10 hpi RNA samples for T10 were collected. At 24 hpi T24 samples were collected. 

Total RNA from the samples were extracted and sent for sequencing. 

 

 

After the extraction, the quality of total RNA was evaluated by running an RNA gel 

electrophoresis (Figure 3.8a). We were able to detect 2 sharp bands corresponding to 

28S and 18S rRNA, indicating that the RNA samples were not degraded and of good 

quality.  
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qRT-PCR analysis for TBEV RNA and IFN-β mRNA was also performed. As we 

can see in figure 3.8b, also in this experiment we were able to demonstrate that while at 

10 h p.i. the virus is already abundantly replicating (≅ 10 fold), the interferon response 

is still silent and that IFN-β is induced later during infection.  

Figure 3.8 – Testing RNA quality and IFN-β  and TBEV levels in samples for whole-genome 

transcriptome analysis. A) RNA gel electrophoresis was performed on TBEV or mock infected samples 

collected at 0, 10 and 24 hpi (T0, T10, T24). 2 mg of RNA were used. 28S and 18S rRNA are shown. 

Two different samples were tested. B) Total RNA extracted at 0, 10 and 24 hpi was retrotranscribed and 

TBEV RNA (black line) and IFN-β mRNA levels were tested by qRT-PCR analysis. Data were averaged 

from three independent experiments and are represented as mean ± standard deviation.  

 

 

Three biological replicates for each condition were sent to an external company for 

high-throughput RNA-Seq analysis. Raw data were analysed with the help of Dr. 

Danilo Licastro (CBM, Trieste, Italy) that used bioinformatics tools as explained in 

materials and methods.  

 In figure 3.9 is reported a Volcano Plot representation of the statistical analysis. 

Significance is plotted versus fold-change on the y- and x-axes respectively: up-
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regulated genes are shown in red (fold change ≥	
 2), down-regulated genes are shown in 

green (fold change ≤ 2), the genes whose expression did not change between the two 

time of infection are shown in grey. The red line indicates the False Discovery Rate 

(FDR) of the analysis, 0.05. 

As expected TBEV infection induced big changes in cell gene expression and in 

particular we can state that between 10 and 24 h p.i. cells undergo a critical 

reprogramming of gene expression, which will be further analyzed. 

 

Figure 3.9 - Analysis of whole-genome transcriptome sequencing data. Raw data were analyzed and 

comparison of gene expression at T0 and T24 was performed. The Volcano Plot represents in green the 

downregulated genes and in red the upregulated genes. Genes belonging to the Unfolded Protein 

Response are circled in blue. Unaffected genes are shown in grey. FDR at 0.05, red dot line. 

 

 



 RESULTS   
  

 

 
60  

 
  

 

3.3.2  Ingenuity Pathway Analysis (IPA) 

In order to understand which cellular pathways were mostly affected in our 

experiment, we analyzed our data with the Ingenuity Pathway Analysis software (IPA), 

a software for the functional analysis of omics data.  

As we can see in the stacked bar chart of figure 3.10, many were the pathways 

affected by TBEV infection. For each pathway, the percentage of genes belonging to 

the pathway and affected in the analysis are reported in bold. In particular, in red is 

indicated the amount of up-regualted genes, in green the down-regulated and in grey the 

unchanged molecules. The significance is indicated by the yellow line, reported as 

logarithmic P-value. 

 The most significantly affected pathway was the Unfolded Protein Response, 

followed by the Adipogenesis pathway, CDK5 signalling and the Endoplasmic 

Reticulum Stress Pathway.  

 

 
Figure 3.10 - Ingenuity Pathway Analysis of the top upregulated pathways of whole-genome 

transcriptome sequencing data. Data were analysed with Ingenuity Pathway Analysis (IPA) software. 

In the stacked bar chart are reported the main affected pathway resulted from the analysis. Percentage of 

genes belonging to the pathway and affected in the analysis are reported in bold. Upregualted (red), 

down-regulated (green) and unchanged molecules (grey) are indicated for each pathway affected. 

Significance is indicated by the orange line. 
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By a more detailed analysis of our subset of data, it was possible to identify which 

were the up-regulated genes whose products are involved in the UPR. In figure 3.11 is 

reported a schematic view of the Unfolded Protein Response where in red are 

highlighted the up-regulated components resulting from the RNA-seq analysis. It is 

evident that the majority of genes resulting from our analysis and overlapping the 

pathway are mainly upregulated, like, for example, the chaperonine BiP, the UPR key 

regulator PERK, the transcription factor XBP1s, the apoptosis regulator protein CHOP 

and other chaperons like DNAJC3 (also called P58IPK) and DNAJB9 (a member of the 

Heat Shock Protein 40 family). It is also interesting to notice that only few genes of this 

pathway are downregulated, i.e. HSPA8, a member of the Heat Shock Protein 70 

family, involved in folding of nascent proteins, and KAI1, an apoptosis regulator.  

During our studies we will mainly focus on the up-regulated genes of the Unfolded 

Protein Response and of the Endoplasmic Reticulum Stress Pathway but it might be 

interesting for future studies the understand of how the virus is able to inhibit the 

expression of HSPA8 and KAI1.   
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Figure 3.11 - – Ingenuity Pathway Analysis of the Unfolded Protein Response pathway. Interactive 

diagram of the canonical pathway Unfolded Protein Response. Highlited in pink the molecules from the 

dataset that overlap the pathway. Molecules are filled with different shades of red if upregulated, or green 

if downregulated. Double bordered molecules indicate groups or complexes that have members 

overlapping the dataset and may be differentially regulated. In grey, molecules that do not meet the 

analysis criteria. White, molecules that do not overlap with the dataset. 
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3.3.3 Validation of transcriptome analysis 

Next, we wanted to validate the transcriptome analysis data by qRT-PCR of 9 

selected genes in an independent experiment.  

U2OS cells were infected with TBEV at a MOI of 1 and RNA samples were 

collected at 0 and 24 h p.i. Even if the normalization, as well as the time points 

analysed, were not the same of the RNA-Seq experiment, we were still able to 

demonstrate that UPR genes as CHOP (called DDIT3 in the VolcanoPlot), XBP1s, 

DNAJC3, DNAJB9 and EDEM1 were up-regulated at 24 h p.i. confirming the 

activation of the UPR during TBEV infection (Figure 3.12). Differences in the fold 

change are attributable to the different condition of the two experiments.  

We also tested expression of some Interferon Stimulated Genes (ISG), i.e. IFIT2, 

IFIT3, IL8 and OASL that were up-regulate in the RNA-Seq analysis. For IL8 and 

OASL we were able to demonstrate their activation in the same independent experiment 

described above, while for IFIT2 and IFIT3 we were not able to show any induction. 

Several set of primers and several PCR conditions were tested but we never succeeded 

in demonstrating an increment of their expression. Since several published papers 

demonstrate that IFIT2 and IFIT3 are induced upon infection with Flaviviruses the 

failure of our tests could be related to the sets of primers chosen, or due to a discrepancy 

between the splicing variants of the 2 genes and the ones amplified by PCR (Figure 

3.12).  
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Figure 3.12 – Validation of whole-genome transcriptome. A total of 9 genes (4 belonging to immune 

response and 5 to UPR) were chosen among the most up-regulated of the analysis and their expression 

was analysed in an independent experiment where U2OS cells were infected with TBEV at a MOI of 1 

and RNA samples were collected at 24 hpi. Expression levels resulting from qRT-PCR analysis (grey 

bars) are compared with RNAseq analysis (black bars). Data were averaged from two independent 

experiments and are represented as mean ± standard deviation.  

 

 

3.4 Unfolded protein response is activated early during TBEV infection 

From the RNA-Seq analysis we found that one of the main cellular responses 

activated during TBEV infection in U2OS cells is the Unfolded Protein Response 

(UPR).  

The unfolded protein response is a cellular homeostatic response to endoplasmic 

reticulum stress. It is activated in response to accumulation of unfolded or misfolded 

proteins in the ER and has three main functions: inhibit protein translation, produce 

molecular chaperons to promote protein folding, degrade misfolded proteins. If the ER 

stress is too severe and prolonged, the UPR starts a signaling cascade leading to 

apoptosis. 

Controversial studies have been published about the role of UPR during infection: on 

one hand the host activate the UPR in an attempt to restrict virus infection, on the other 

hand the virus could be able to exploit and manipulate the UPR for its benefit. 

Moreover the UPR has been proposed to augment the anti-viral response suggesting a 

synergic relationship between the PRR and the UPR. 
Previous work (Peña and Harris 2011; Ambrose and Mackenzie 2011; C. Yu, 

Achazi, and Niedrig 2013) already demonstrated that the UPR is activated during 
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infection with different flaviviruses and that viruses are able to manipulate this pathway 

in order to favor cell survival or promote apoptosis, but no particular focus was posed 

on the role of UPR in inducing the IFN response.  

In order to understand if in the case of TBEV the unfolded protein response is a 

possible trigger of the delayed IFN response we first investigated at what time during 

infection the UPR is activated.  

 

3.4.1 Activation of ATF6 during TBEV infection occurs at early time of infection. 

ATF6, Activating Transcription Factor 6, is one of the three key regulators of the 

UPR. ATF6 is an ER transmembrane protein that once activated by the detaching of 

BiP from its luminal domain, translocate to the Trans-Golgi Network (TGN) where is 

cleaved by two proteases, S1P and S2P, leading to the release of its cytoplasmic 

domain. The cytoplasmic domain of ATF6 is a transcription factor able to induce 

expression of several UPR target gene like BiP, CHOP and XBP1 (Schröder and 

Kaufman 2005; Walter and Ron 2011).  

The canonical readout for ATF6 activation are: proteolytic cleavage and nuclear 

translocation of the cleaved product. However, both require a good antibody that we did 

not have. Therefore, we took advantage of a construct in which EGFP reporter gene is 

fused to the N-terminal domain (the transcription factor domain) of ATF6 (Chen, Shen, 

and Prywes 2002).  

U2OS cells were transfected with the plasmid and subsequently selected with the 

Neomycin antibiotic for 4 days. Efficiency of transfection and selection was tested. 

Even if the cells were kept under selection for several weeks we were able to measure 

by cytofluorimetry analysis only a 52% of cells expressing the chimeric protein (Figure 

3.13).  
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Figure 3.13 - Characterization of U2OS_EGFP-ATF6 cells. Cytofluorimetric analysis was conducted 

both in wild type U2OS (left) and in U2OS_EGFP-ATF6 cells (right). As shown in the graph, 52% of 

U2OS_EGFP-ATF6 were espressing EGFP-ATF6. 

U2OS_EGFP-ATF6 cells were infected with TBEV at a MOI of 1 and samples for IF 

were collected at 0, 4, 8, 12, 16 and 24 h p.i. Anti-TBEV antibody was used to evaluate 

the infection. EGFP-ATF6 nuclear localization in mock cells was approximately 8%. 

 EGFP-ATF6 translocates in the nucleus of infected cells starting from 8 h p.i. The 

number of cells presenting nuclear localization of EGFP-ATF6 increases linearly with 

approximately 25% of infected cells presenting ATF6 positive nuclei (figure 3.14). This 

data suggests that ATF6 is slowly activated during infection starting from 8 h p.i.  

 

 
Figure 3.14 - ATF6 pathway is activated during TBEV infection starting from 8 hpi. U2OS_EGFP-

ATF6 cells were either mock infected or infected with TBEV at a MOI of 1. Cells were fixed at different 

time after infection and immunostained with TBEV antibody to detect viral replication. EGFP-ATF6 

nuclear localization was monitored to evidence activation of the protein. Yellow arrows indicate ATF6 

nuclear localization. Scale bar: 35 µm.  

* * * * 
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To further study the activation of the ATF6 pathway we performed a qRT-PCR 

analysis of the genes BiP and XBP1 in samples of U2OS cells infected with TBEV at a 

MOI of 1 collected at different time points. Indeed, induction of these two genes is 

believed to be mainly activated by this arm of the UPR, although more recent finding 

suggest a more intricate regulation of these UPR markers also by the other UPR arms. 

Surprisingly, our result demonstrates that both XBP1 (Figure 3.15a) and BiP (Figure 

3.15b) have a slight increase in their expression at 14-16 h p.i. but that they are 

significantly induced only at 24 h p.i.  

All together our studies about the activation of the ATF6 arm of the UPR suggest 

that nuclear translocation of ATF6 occurs as early as 8 h p.i. but that the gene 

expression induced by this arm might be differently regulated and activated only at later 

time of infection. 

 

Figure 3.15 - XBP1 and BiP expression are induced at late time points during TBEV infection. 

U2OS cells were infected with TBEV at a MOI of 1. At different time during infection cell lysates were 

collected and total RNA was isolated and retro-transcribed. qRT-PCR analysis for XBP1 levels (A) and 

for BiP (B) were performed. Levels are expressed as fold increase relative to 0 hours post infection (h 

p.i.). Data were averaged from two independent experiments and are represented as mean ± standard 

deviation. Significant p-values were calculated with paired t-test (* = p < 0.05) 

 

 

3.4.2 The IRE1 pathway is activated at 12 hours post infection 

IRE1, Inositol-Requiring Enzyme 1, is an ER transmembrane protein containing an 

ER luminal dimerization domain and cytosolic kinase and RNase domains. IRE1 

activation, due to the detachment of BiP from the luminal domain, induces the 

dimerization of the protein and consequent autophosphorylation of the dimer leading to 
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the activation of the RNase domain. This endoribonuclease activity initiates an 

unconventional splicing of the XBP1 mRNA, excising a 26 nt sequence and shifting the 

reading frame to produce a functional isoform of XBP1s which contains a C-terminal 

transactivation domain absent in the unspliced form (XBP1u). XBP1s is then translated 

and translocates into the nucleus where it induce the expression of many target genes 

involved in the Endoplasmic-Reticulum Associated protein Degradation (ERAD), 

chaperone proteins production and ER membrane biosynthesis. 

 To investigate the activation of the IRE1 pathway during TBEV infection, qRT-PCR 

for XBP1 spliced mRNA was performed in a time course experiment. As shown in 

figure 3.16 XBP1 splicing takes place starting from 12 h p.i. As already demonstrated 

earlier in figure 3.15a, XBP1 mRNA expression slightly increases only at later time 

points (16-24 h p.i.) confirming that the measured increase in XBP1s form is 

specifically due to IRE1 activation and not to a general increase of XBP1 transcription.  

Figure 3.16 - XBP1 splicing occurs at 12 hours post infection. U2OS cells were infected with TBEV at 

a MOI of 1. At different time during infection cell lysates were collected and total RNA was isolated and 

retro-transcribed. qRT-PCR analysis for XBP1 spliced was performed. Expression levels are indicated as 

fold increase relative to 0 hours post infection (h p.i.). Data were averaged from two independent 

experiments and are represented as mean ± standard deviation. Significant p-value is calculated with 

paired t-test (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). 
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Another method to evaluate splicing of XBP1 mRNA has been described in the work 

of (Hirota et al. 2006). A scheme of this procedure is reported in figure 3.17a. At the 

intron-exon junction, XBP1 mRNA contains the restriction site recognized by the 

enzyme PstI. This specific sequence is lost during the splicing of this mRNA. By PCR, 

a region of XBP1 mRNA containing the 26 nucleotides of the intron is amplified. The 

PCR product is then purified and digested with PstI. Finally, a 2% agarose gel is run in 

order to separate the different bands. The primer we choose for this test amplified a 255 

bp amplicon of the unspliced XBP1 mRNA (XBP1u) and an amplicon of 229 bp of the 

spliced form. After digestion we would expect to obtain 2 different bands of 184 and 71 

bp in the case of XBP1u-amplicon digestion and a unique band of 229 bp corresponding 

to XBP1s amplification product. In figure 3.17b is reported the result of this 

experiment. As we can see we always have the presence of a band of 255 bp probably 

indicating that the digestion with PstI was not 100% efficient. Nevertheless, the data 

obtained confirm the qRT-PCR results, i.e. IRE1 is activated at 12 h p.i. At 0 h p.i. as 

well as in mock infected samples, we only have XBP1u, correspondent to the 184 and 

71bp bands. A little induction of splicing, corresponding to the appearance of the 229 

bp band, occurs starting from 4 h p.i., but a significant increase occurred only at 12 h 

p.i. Starting from this time we can appreciate not only the increased signal of the band 

corresponding to XBP1s, 229 bp, but also a decreased signal of the 184 bp and 71 bp 

bands that almost disappear at 24 h p.i.  

Altogether the data suggest that the IRE1 pathway of the UPR is activated early 

during infection, at 12 hours of infection or even earlier. 
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Figure 3.17 - XBP1 splicing analysis by PstI digestion. U2OS cells were infected with TBEV at a MOI 

of 1. At different time during infection cell lysates were collected and total RNA was isolated and retro-

transcribed. A) Scheme of the analysis. By PCR amplicon spanning the intron (red) was amplified, 

purified and digested with PstI. B) 2% Agarose gel showing the products obtain by PCR and digestion. 

255 bp, unspliced XBP1. 229 bp, spliced XBP1. 184+71 bp, unspliced XBP1 digested by PstI. 

 

We then analyzed the expression of two genes downstream of XBP1s which resulted 

as upregulated in our RNA-Seq analysis, DNAJB9 and DNAJC3 (Lee, Iwakoshi, and 

Glimcher 2003). These are chaperones protein induced during ER stress that bind 

unfolded proteins in the lumen of the ER in order to contain the stress. Moreover, it has 

been demonstrated that DNAJC3 has an inhibitory effect on PERK activity (Yan et al. 

2002), suggesting a negative feedback regulating the UPR.  

Since we proved that XBP1 mRNA is spliced starting from 12 h p.i, it could be 

expected to see also early induction of these genes at 12 h p.i. but instead DNAJC3 

(Figure 3.18a) is activated only at 24 h p.i. while DNAJB9 follow an upward trend, with 

a more significant increase at 24 h p.i. (Figure 3.18b). 
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Taken together these results demonstrate that the IRE1 pathway of the UPR is 

activated at 12 h p.i. an earlier time respect to activation of IFN response and SG 

formation.  

Induction of genes regulated by the activation of this pathway might be delayed due 

to an unknown mechanism. 

 

Figure 3.18 - DNAJC3 and DNAJB9 genes are induced during TBEV infection. U2OS cells were 

infected with TBEV at a MOI of 1. At different time during infection cell lysates were collected and total 

RNA was isolated and retro-transcribed. qRT-PCR analysis for DNAJC3 (A) and for DNAJB9 (B) were 

performed. Levels are expressed as fold increase relative to 0 hours post infection (h p.i.).Data were 

averaged from two independent experiments and are represented as mean ± standard deviation. 

Significant p-values were calculated with paired t-test (* = p < 0.05)  

 

 

3.4.3 The PERK pathway of the UPR is activated at 12 h p.i. 

At last, we studied activation of PERK during infection. PERK is the key protein of 

another branch of the UPR that is activated when BiP detach from its luminal domain to 

bind the unfolded proteins. When activated, PERK oligomerizes and phosphorylates 

itself and the initiation of translation factor eIF2α (Harding et al. 1999). As already 

mentioned above, eIF2α phosphorylation induces a block of translation. Selectively, 

cells hold the translation of those mRNA that are useful to recover from the stress, like 

heat-shock protein and chaperones. Moreover, phosphorylation of eIF2α induces the 

transcription of ATF4, a transcription factor that induces expression of UPR target 

genes like CHOP, involved in regulation of apoptosis, BiP and GADD34 that carry out 
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a negative feedback on this pathway regulating the activity of the phosphatase PP1 on 

eIF2α (Novoa et al. 2001).  

WB analysis was performed with the anti-P-PERK antibody on samples obtained 

from a time course experiment of U2OS TBEV infected cells. As visible in figure 3.19, 

PERK is phosphorylated starting from 8h p.i. with a big increment of phosphorylation 

at 12-14 h p.i. Interestingly the level of phosphorylation is then decreased starting from 

16 h p.i. As a control, a WB for PERK was also performed and no changes in total 

protein expression was evidenced. As loading control, an immunoblot with β-Catenin 

antibody was also performed.  

The protein PERK is also a key regulator of the so called Integrated Stress Response 

(ISG), a cellular pathway regulated in cells by four different kinases that, depending on 

the stress, phosphorylate the initiation of translation factor that, as discussed previously, 

is able to induce formation of stress granules and inhibit cellular translation. The 

kinases involved in the activation of this response are: HRI, heme-regulated eIF2α 

kinase, that phosphorylates eIF2α in response to low levels of heme; GCN2, general 

control nonderepressible 2, activated when sensing aminoacid deprivation; PERK, 

Eukaryotic translation initiation factor 2-alpha kinase 3, described above and PKR, 

double-stranded RNA-activated protein kinase, that phosphorylates eIF2α upon 

recognition of viral RNA.  

For our study we were particularly interested in understanding if the phosphorylation 

of eIF2α, and the subsequently formation of SG, during infection is due to PERK or 

PKR activity.  

In figure 3.19 we report several WB of a time course experiment in which U2OS 

cells were infected with TBEV at a MOI of 1 and samples were collected at 0, 4, 8, 10, 

12, 14, 16 and 24 h p.i. As controls anti-eIF2α and β-actin antibodies were used. 

Interestingly, when expression of P-PKR was analyzed, we found that phosphorylation, 

and subsequent activation, of this protein occurs at 16 h p.i. As controls PKR and β-

Catenin antibodies were used as well as TBEV antibody as infection control. 

These data suggest that both kinases are regulating the response during TBEV 

infection but in a time dependent manner. At early time of infection (8-12 h p.i.) eIF2α 

is phosphorylated by PERK and later during infection (from 16 h p.i.) PKR is 

responsible for the maintenance of the response.  
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Figure 3.19 - eIF2a phosphorylation is regulated by both PERK and PKR during TBEV infection. 

U2OS cells were infected with TBEV at a MOI of 1. At different time during infection cell lysates were 

collected and immunoblotted for phosphorylated eIF2α (P-eIF2α), phosphorylated PERK (P-PERK) and 

phosphorylated PKR (P-PKR). Phosphorylated protein’s blots are indicated in red. Immunoblot for total 

proteins eIF2α, PERK and PKR is also shown. and total PERK. Loading controls (b-Catenin and b-Actin) 

and infection control (prM) are also shown. 

 

 

Since one of the most upregulated genes resulting from the RNA-Seq analysis was 

CHOP, a pro-apoptotic factor induced by ATF4 during stress, we performed a qRT-

PCR analysis of its expression during TBEV infection. As we can see from figure 3.20a 

its expression is induced from 12 h p.i. This data is consistent with PERK activation.  

Another direct target of ATF4 is the protein GADD34, which role is to recruit the 

serine/threonine-protein phosphatase PP1 to dephosphorylate the translation initiation 

factor eIF2α, thereby reversing the shut-off of protein synthesis initiated by stress-

inducible kinases and facilitating recovery of cells.  As we can see from figure 3.20b its 

expression is induced only at 24 hours post infection. 
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Figure 3.20 - CHOP and GADD34 genes are induced during TBEV infection. U2OS cells were 

infected with TBEV at a MOI of 1. At different time during infection cell lysates were collected and total 

RNA was isolated and retro-transcribed. qRT-PCR analysis for CHOP (A) and for GADD34 (B) were 

performed. Levels  are expressed as fold increase relative to 0 hours post infection (h p.i.). Data for 

CHOP expression were averaged from two independent experiments and are represented as mean ± 

standard deviation. Significant p-value is calculated with paired t-test (** = p < 0.01; *** = p < 0.001). 

GADD34 expression levels are calculated from one single experiment and no statistical analyses were 

performed..  

 

 

3.5 Early activation of the Unfolded Protein Response during TBEV infection 

trigger the IFN response 

Recent reports have proposed a possible link between SG and IFN-β induction 

during viral infection (Onomoto et al. 2012) and indicate these cytoplasmic structures as 

platforms in which viral RNA and antiviral proteins interact and initiate the IFN 

response. Moreover, it has also been proved that UPR is able to induce IFN-β 

expression, as well as production of other cytokines, and that might play a key role in 

immune response during pathogens infection (Smith et al. 2008). 

So far, our data demonstrate a clear involvement of UPR during TBEV infection and 

suggest a time-dependent regulation of eIF2α phosphorylation, and subsequent 

formation of SG and inhibition of translation, by the two cellular kinases PERK and 

PKR.  

For these reasons we wanted to study if the UPR can actually be the cellular trigger 

for SG formation at 16 h p.i. and, more important, for IFN-β induction. 

A B 
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To answer these questions we performed a time course experiment with TBEV 

infected cells in which the UPR was activated earlier during infection by using 

Tunicamycin. Tunicamycin (TM) is a strong inducer of the unfolded protein response 

and its activity consist in inhibiting the glycosylation of newly synthesized 

glycoproteins.  

A schematic representation of the experiment is reported in figure 3.21.  

U2OS cells were plated in 12 well plates and 24 hours later were infected with 

TBEV at a MOI of 1. Mock-infected cells were also used. After one hour, cells were 

washed with PBS and medium was changed with complete medium (untreated samples) 

or medium containing 1 µg/ml Tunicamycin. Control cells, mock infected and not 

treated with TM were also used. Samples for RNA, immunofluorescence, WB and 

Plaque Assay were collected at 0, 4, 8, 12 and 24 h p.i. 

 

 
Figure 3.21 - TBEV infection in UPR preactivated cells: schematic drawing of experimental 

approach. U2OS cells were either infected with TBEV at a MOI of 1 or mock infected. After 1 hour cells 

were washed. At this time the samples correspondent to 0 hpi were collected. Medium additioned or not 

with 1 ug/ml Tunicamycin (TM) was added to the cells. At different time during infection RNA and 

protein samples as well as cell surnatants were collected and also samples were fixed for IF. 

 

 

In order to verify the activation of the UPR by TM in our experiment we performed 

qRT-PCR analysis to detect splicing of XBP1. As we can see from figure 3.22a the 

combination of TBEV infection and treatment with TM (white bars) is inducing XBP1 

splicing as early as 4 h p.i. while TBEV infection alone (black bars) induce this splicing 

only at 12 h p.i.. XBP1 total mRNA was also analyzed (Figure 3.22b) and we were able 

to see that its expression is increased early upon treatment with TM (4-8 h p.i.) but upon 

only infection is induced at later time point (24 h p.i.), as previously demonstrated. 
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Figure 3.22 - XBP1 splicing is anticipated during TBEV infection in cells treated with tunicamycin. 

U2OS cells were infected with TBEV at a MOI of 1 and treated (white bars) or mock treated (black bars) 

with 1 mg/ml tunicamycin (TM). At different time during infection cell lysates were collected and total 

RNA was isolated and retro-transcribed. qRT-PCR analysis for XBP1s (A) and for XBP1 (B) were 

performed. Levels are expressed as fold increase relative to 0 hours post infection (h.p.i.). Data were 

averaged from two independent experiments and are represented as mean ± standard deviation. 

Significant p-value is calculated with paired t-test (** = p < 0.01; *** = p < 0.001). 

 

 

Once established that the treatment with TM was anticipating the activation of the 

UPR in TBEV infected cells, we studied viral replication in cells infected and treated 

with the drug.  

In figure 3.23a are reported the viral titers for samples treated (white bars) and not 

treated (black bars) with TM at different time point of infection. It is evident that early 

activation of the UPR, affect drastically TBEV replication.  

In the graph of figure 3.23b we report qRT-PCR results for viral RNA. These data 

demonstrate that earlier UPR activation affects viral replication also at the level of RNA 

from earlier time of infection (8 h p.i.). 
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Figure 3.23 - TBEV replication is affected by early activation of the unfolded protein response. 

U2OS cells were infected with TBEV at a MOI of 1 and treated or mock treated with 1 mg/ml 

Tunicamycin (TM). At different time during infection cell supernatants and cell lysates were collected. 

Black bars show results of infected cells, white bars show results of TM treated and infected cells. A) 

Plaque assay analysis determining viral concentration (PFU/ml) during time. B) qRT-PCR analysis for 

TBEV RNA. Levels are expressed as fold increase relative to 0 hours post infection (h.p.i.). Data were 

averaged from two independent experiments and are represented as mean ± standard deviation. 

Significant p-value is calculated with paired t-test (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). 

 

 

As already mentioned before and in the introduction, activation of UPR itself can be 

sufficient to induce the IFN response (Smith et al. 2008). We tested this possibility in 

U2OS cells, not infected and treated with TM.  

In figure 3.24a we report the qRT-PCR results for IFN-β mRNA expression upon 

treatment with tunicamycin (white bars) compare to mock-treated cells (black bars). As 

we can see, UPR activation was able to induce a little IFN-β mRNA expression starting 

from 8 hours of treatment, with a total of 7 fold increase after 24 hours. In untreated 

cells (black bars) IFN-β mRNA levels do not increase over the time.  
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Figure 3.24 - IFN-β  mRNA expression is induced by tunicamycin treatment and is affected during 

TBEV replication in UPR activated cells. A) U2OS cells were treated (white bars) or mock treated 

(black bars) with 1 mg/ml Tunicamycin (TM) and at different time of treatement cell lysates were 

collected and total RNA was isolated and retro-transcribed. qRT-PCR analysis for IFN-β was  performed. 

B) U2OS cells were infected with TBEV at a MOI of 1 and treated or mock treated with 1 mg/ml 

Tunicamycin (TM). At different time during infection cell lysates were collected and total RNA was 

isolated and retro-transcribed. qRT-PCR analysis for IFN-β was performed. Levels are expressed as fold 

increase relative to 0 hours post infection (h.p.i.). Data were averaged from two independent experiments 

and are represented as mean ± standard deviation. Significant p-value is calculated with paired t-test (* = 

p < 0.05; ** = p < 0.01; *** = p < 0.001). 

 

 

Since we demonstrated that UPR activation can regulate expression of IFN-β in 

U2OS cells and that upon activation of UPR the virus is replicating less efficiently, we 

wanted to see if this effect on the TBEV could be due to a different activation of the 

IFN response during this experiment. In figure 3.24b are shown the qRT-PCR results 

for IFN-β.  

As expected, in infected but not treated samples (black bars) IFN-β mRNA levels 

increase only at late time point (24 h p.i.). Intringuingly, in samples infected and treated 

with TM (white bars) we were able to demonstrate that IFN-β mRNA expression not 

only start much earlier (8 h p.i.) but also at 24 h p.i. is much more induced, 1500 fold 

compare to 170.  

All these data together suggest that the early activation of the UPR drastically affect 

TBEV replication due to a synergetic effect of antiviral proteins and UPR activation on 

IFN response. 
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3.5.1 Early activation of the Unfolded Protein Response during TBEV infection 

triggers the formation of stress granules.  

As previously discussed, SG appear to be linked to the IFN response during 

infection. Since we saw that upon earlier activation of the UPR during TBEV infection 

we have an anticipation of the IFN response (8 h p.i.), we also wanted to study at what 

time SG are formed in this experiment. Cells infected and treated, or mock-treated, with 

TM were fixed at different time point and IF was performed using the anti-TBEV 

antibody and the anti-eIF3 as a marker for SG.  

While in TBEV infected cells SG are formed at late time point (in this experiment 

they are visible at 24 h p.i. since 16 hours time point was not collected) we were able to 

see that formation of SG started at 8 h p.i. in cells that were both infected and treated 

with TM (Figure 3.25). Moreover, we noticed that at 24 h p.i. a larger number of cells 

were presenting SG compared to cells that were only infected reflecting the data about 

IFN-β expression that in TM treated and infected cells was much higher than in TBEV 

only infected cells (Figure 3.24b).  

One more time, the formation of SG and the induction of the IFN-β expression are 

strictly linked during TBEV replication, suggesting a role for these cytoplasmic 

granules in the IFN response of the cells to the infection. 

As a control we also performed IF analysis of U2OS cells treated with TM for 

different time (4, 8, 12 and 24 hours). Also in this case anti-eIF3 antibody was used in 

order to detect formation of SG. Interestingly, no SG were detectable at this time of 

treatment suggesting that UPR activation by itself is not sufficient to induce formation 

of SG. This data might counteract our hypothesis since upon TM treatment of U2OS 

cells we assist to a slight induction of IFN-β  expression, but we also have to consider 

that, indeed, the levels of IFN induced by TM treatment are extremely low compare to 

the levels we record upon TBEV infection and so also the formation of SG can be 

extremely reduced and thus not detectable. 
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Figure 3.25 - Stress granules formation is induced earlier in UPR activated cells. A) U2OS cells 

were infected with TBEV at a MOI of 1 and treated or mock treated with 1 mg/ml Tunicamycin (TM). At 

different time during infection cell were fixed and immunostained with TBEV and eIF3 antibodies. 

Yellow arrows indicate cells containing SG. B) U2OS cells treated with 1 mg/ml Tunicamycin (TM) 

were fixed after different time of treatment and immunostained with eIF3 antibody. Scale bars represent 

35 µm. 

 

 

WB analyses were also performed for this experiment. From figure 3.26 is possible 

to appreciate how TM treatment drastically reduce the expression of TBEV proteins, 

indeed in infected cells TBEV protein E is detectable starting from 8 h p.i. but in cells 

that were both infected and treated with TM, the E protein of TBEV is detectable only 

from 12 h p.i. and at this time, as well as at 24 h p.i., its amount is drastically reduced. 

Anti-β-Actin antibody was used as loading control.  

Afterwards we checked levels of phosphorylated eIF2α (P-eIF2α). In infected cells it 

is possible to detect P-eIF2α starting from 8-12 h p.i. and its level increase at 24 h p.i., 

confirming the data reported in figure 3.19.  

In samples that were also treated with TM we assist to a rapid and strong 

phosphorylation of eIF2α, at 4 h p.i. that is then kept phosphorylated till 24 h p.i. where 
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is even possible to notice an increased in its level. As control anti-eIF2α and anti β-

Actin antibodies were also used. The early and higher phosphorylation of eIF2α 

correlates with the early and more abundant formation of SG in these samples.  

All these data together suggest a functional link between UPR and IFN response 

during TBEV infection. In particular, our experiments suggest that the Unfolded Protein 

Response could be responsible for the production of IFN-β and the formation of SG.  

 

 
Figure 3.26 - Early activation of UPR affect viral replication and eIF2α  phosphorylation. U2OS 

cells were infected with TBEV at a MOI of 1 and treated (TBEV + TM, right part) or mock treated  

(TBEV, left part) with 1 mg/ml Tunicamycin (TM). At different time during infection cell lysates were 

collected and immunoblotted for TBEV E protein (TBEV) and phosphorylated eIF2α (P- eIF2α). 

Immunoblot for total eIF2α and loading control (β-Actin) are also shown. 

 

 

3.6 Localization study of the antiviral protein RIG-I during TBEV 

So far we have evidence of a strict link between SG and the IFN response that are 

possibly both regulated by a synergic activity of the UPR with antiviral proteins 

belonging to the Pattern Recognition Receptors (PPR).  

In the work of Onomoto (Onomoto et al. 2012), the authors described a new role for 

virus induced SG. In particular they characterized these cytoplasmic granules induced 

during influenza A virus (IAV) infection containing, not only the typical stress markers, 

like eIF3, but also antiviral proteins belonging to the PRR like RIG-I, MDA5, RNaseL, 

OAS and PKR as well as viral RNA, renaming them antiviral Stress Granules (avSG). 
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They also suggest that these specific avSG might work as a platform for recognition of 

viral RNA and induction of antiviral response.  

In our group it has been previously demonstrated the essential role of the antiviral 

protein RIG-I in the induction of IFN response during TBEV infection (Miorin et al. 

2012).  

RIG-I, retinoic acid-inducible gene-I, is an antiviral protein belonging to the 

DExD/H box-containing RNA helicase family that has at its C-terminus a characteristic 

helicase domain responsible for the recognition of specific viral RNA. In particular, it 

has been shown that RIG-I can bind (5’-ppp)-containing viral RNA or short (≅ 30 bp) 

dsRNA (Hornung et al. 2006). The 11 kb TBEV genome contains a 5’ Cap-1 structure 

(Brett D Lindenbach, Thiel, and Rice 2007) that is expected to mask the 5’-ppp 

structure necessary for RIG-I recognition. A possible modification of this 5’ end, as 

well as the dsRNA replication intermediates or highly structured subgenomic fragments 

(sfRNA) produced during TBEV replication might be recognized by RIG-I during the 

first step of the antiviral response to TBEV infection. Moreover, in a recent work Weber 

and colleagues (Weber et al. 2013) demonstrate that RIG-I is capable to reacting to 

incoming viral nucleocapsid containing 5’ppp dsRNA structures of negative-strand 

RNA virus. This last observation suggests that RIG-I can recognize a wider set of viral 

RNA structures than what it was thought before.  

 

 

3.6.1 RIG-I localize first with dsRNA in TBEV infected cells and later in stress 

granules. 

In order to characterize the SG induced during TBEV infection U2OS cells were 

infected with a MOI of 1 and fixed for immunofluorescence analysis. G3BP1 antibody 

was used as marker of SG while RIG-I antibody was used to study the localization of 

this antiviral protein in infected cells.  

As we can see from figure 3.27, at 24 h p.i. RIG-I localizes to SG marked by G3BP1. 

This data, for the first time, suggest a possible identification of TBEV induced SG as 

antiviral SG. 
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Figure 3.27 - RIG-I localize to TBEV induced stress granules. U2OS cells were either mock infected 

or infected with TBEV at a MOI of 1. At 24 hours post infection cells were fixed and immunostained 

with G3BP1 antibody to detect stress granules and RIG-I antibody to study localization of the antiviral 

protein. Scale bar: 20 µm.  

 

 

Unfortunately, even if a more detailed characterization of these avSG induced by 

TBEV is required, all the antibodies in our hands for MDA5, PKR and P-eIF2α never 

worked in immunofluorescence experiments. Moreover, in this work we didn’t have the 

possibility to perform RNA FISH analysis to analyze the presence of TBEV RNA in the 

avSG. 

Since we have already demonstrated that SG formation during TBEV infection 

occurs at 16 h p.i. we wanted to investigate if RIG-I localization in avSG follow the 

same kinetic. For this purpose U2OS cells were infected with TBEV at a MOI of 1 and 

fixed for immunofluorescence analysis at 0, 4, 8, 10, 12, 14 and 16 h p.i. An antibody 

against dsRNA was used to study viral replication. From this experiment we were able 

to demonstrate that RIG-I localize to SG at 16 h p.i. (Figure 3.28), but more 

interestingly we found that at earlier time point (14 h p.i.) RIG-I is accumulating 

together with dsRNA in a perinuclear region, that we can assume to be the site of viral 

replication.  

This is the first evidence of RIG-I localizing together with intermediates of TBEV 

replication. The different localization of RIG-I at 14 and 16 hours post infection might 

suggest that RIG-I is first recruited to viral replication sites while later translocate 

avSG. 
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Figure 3.28 - During TBEV infection RIG-I localize first with TBEV dsRNA and lately in stress 

granules. U2OS cells were infected with TBEV at a MOI of 1. At 0, 4, 8, 12, 16 and 24 hours post 

infection (h.p.i.) cells were fixed and immunostained with dsRNA antibody to detect viral replication and 

RIG-I antibody to study localization of the antiviral protein during infection. Yellow arrows indicate 

colocalization of RIG-I with dsRNA. Scale bar: 20 µm.  

 

 

3.6.2 Construction and characterization of U2OS_Flag-RIG-I cells 

 So far, the immunofluorescence analysis demonstrating RIG-I co-localization with 

dsRNA and SG were performed using an antibody recognizing specifically the C-

terminal domain (CTD) of the protein RIG-I. This antibody required particular 

protocols to be used and sometimes showed aspecific signals. For these reasons we 

decided to produce a lentivector carrying the chimeric gene Flag-RIG-I (pWPI-Flag-

RIG-I) to transduce U2OS cells in order to obtain cells stably expressing the chimeric 

protein Flag-RIG-I.  

Details regarding the cloning method as well as the transduction protocol are 

reported in the Material and Methods section. 

In figure 3.29a we show the results of a WB analysis of U2OS-Neo cells, control 

cells transduced with the empty lentivirus carrying only the resistance gene for 

neomycin, and U2OS_Flag-RIG-I cells, either infected or mock infected.  

In the first blot we can appreciate how the expression of RIG-I is incresead in 

U2OS_Flag-RIG-I cells. For the second immunoblot an anti-Flag antibody was used to 
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evidence the expression of Flag-RIG-I protein in the engineered cells. Anti-TBEV and 

anti-β-actin antibodies were also used as controls.  

We characterized these cells also by performing an IF analysis using anti-Flag and 

anti-RIG-I antibodies. From the analyses (Figure 3.29b) is clear that not all the cells 

express the chimeric protein but that in those cells expressing the chimeric protein, 

Flag-RIG-I has the same distribution as the endogenous one. 

 
Figure 3.29 - Characterization of U2OS_Flag-RIG-I cells. A) U2OS_Flag-RIG-I and control cells 

U2OS_Neo were infected with TBEV at a MOI of 1. At different time during infection cell lysates were 

collected and immunoblotted with RIG-I and Flag antibodies. Immunoblot for infection and loading 

control are also shown (TBEV E and b-actin respectively). B) U2OS_Flag-RIG-I cells were fixed and 

immunostained with Flag and RIG-I antibodies to study efficiency of expression of the chimeric protein 

and its localization compare to the endogenous. Scale bars represent 35 µm. 

 

 

RIG-I overexpression could be responsible of pre-activation of an antiviral-status 

that might inhibit the replication of TBEV. For this reason, and before continuing using 

these cells for our studies, we tested IFN-β mRNA levels, as well as TBEV replication, 

in U2OS_Flag-RIG-I mock or infected cells compare to the control cells U2OS_Neo. 
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Both cells population were infected, or mock infected, with TBEV at a MOI of 1 and 

RNA samples for this analysis were collected at 24 h p.i. As we can see from figure 

3.30a, IFN-β levels in mock cells (grey bars) were comparable, as well as in infected 

cells (black bars). This data suggest that not only the antiviral response in U2OS_Flag-

RIG-I cells was not pre-activated but also that upon TBEV infection the two population 

of cells were able to respond in the same way.  

In figure 3.30b the result of the qRT-PCR analysis for TBEV replication in 

U2OS_Neo and Flag-RIG-I cells are shown. From this result we can demonstrate that 

TBEV replication is not affected by Flag-RIG-I overexpression. 

 

Figure 3.30 - IFN response and TBEV replication in U2OS_Flag-RIG-I cells. U2OS_Flag-RIG-I cells 

were infected (black bars), or mock infected (grey bars), with TBEV at a MOI of 1. At 24 hours post 

infection cell lysates were collected and total RNA was isolated and retro-transcribed. qRT-PCR analysis 

for IFN-b (A) and TBEV RNA (B) were performed. Levels are expressed as fold increase relative to 

U2OS_Neo. Data were averaged from two independent experiments and are represented as mean ± 

standard deviation. 

 

 

This result might be due to the low number of cells (about 30%) in the population 

expressing the chimeric protein Flag-RIG-I.  

Since, single cell analysis by IF do not require Flag-RIG-I expression in all cells, and 

moreover, a system in which IFN response is not affected by the overexpression of the 

chimeric protein is required, we continue our experiments with these cells. 
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3.6.3 Flag-RIG-I colocalize with TBEV in infected cells 

In order to study the localization of Flag-RIG-I during infection U2OS_Flag-RIG-I 

and control cells U2OS_Neo were infected with TBEV at a MOI of 1 and fixed for 

immunofluorescence analyses at 24 h p.i. Anti-TBEV and anti-Flag antibodies were 

used.  

Surprisingly no avSG containing Flag-RIG-I protein were found (Figure 3.31), 

suggesting that the chimeric protein could not be recruited to SG or that the amount of 

Flag-RIG-I in avSG is too low to be detectable by IF. On the other hand, co-localization 

of Flag-RIG-I with TBEV was visible in several cells confirming our previous data.  

The last row of figure 3.31 shows IF images which were analysed for co-localisation 

using the Pearson’s coefficient, also called Pearson’s Correlation Coefficient (PCC). 

This coefficient is applied in microscopy to describe the degree of overlap between two 

signals (Manders, Verbeek, and Aten 1993). PCC calculation was performed with 

ImageJ software for selected region of interest. For values greater than 0.5 the two 

signals can be considered overlapped, co-localized.  

These data confirm our previous observation (Figure 3.28) that RIG-I co-localizes 

together with TBEV at the sites of viral replication. 
 

 

Figure 3.31 - Flag-RIG-I co-localize with TBEV during infection. U2OS_Flag-RIG-I and control 

U2OS_Neo cells were infected with TBEV at a MOI of 1. At 24 hours post infection cells were fixed and 

immunostained with Flag and TBEV antibodies. Circled in yellow are two point for which co-localization 

analyses was performed. Pearson’s coefficient for the two points are 0,58 and 0,6 respectively for A and 

B. 
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3.7 Studying the activation status of RIG-I during TBEV infection 

RIG-I binding to a target RNA triggers a conformational switch of the protein and its 

oligomerization. Usually RIG-I conforms to a closed structure, in which the CARD 

domain function is repressed due to interaction between the CTD and the helicase linker 

region. When viral infection produces short dsRNA or 5’ppp-RNA, these 

oligonucleotides bind the CTD in the presence of ATP and RIG-I changes its 

conformation and unmasks the CARD domain. CARD is able to interact with other 

CARD domains to form the RIG-I oligomers (Takahasi et al. 2008). This 

conformational switch is indicated by partial resistance to trypsin digestion and results 

in the generation of several fragments and in particular to a 30-kDa polypeptide (Saito 

et al. 2007). 

In order to study the activation time of RIG-I during TBEV infection we took 

advantage of two different protocols reported in the work of Weber and colleagues 

(Weber et al. 2013). 

 

3.7.1 Trypsin digestion indicates that RIG-I activation occurs at 8 hours of 

TBEV infection. 

As explained above the conformational switch of RIG-I due to its activation makes 

the protein partially resistant to trypsin digestion.  

We performed a time course experiment in which cells were either infected with 

TBEV at a MOI of 1 or mock infected and samples were collected at different time of 

infection: 0, 8, 10, 16 and 24 h p.i. In order to maintain the native conformation of the 

RIG-I protein, samples were collected with 0,5% Triton X-100 in PBS Native lysis 

buffer always working at 4°C. After sonication samples were centrifuged at 10000g for 

10 minutes at 4°C and the supernatant was collected. Protein concentration was 

measured by the Bradford assay.  

30 µg of protein from each sample were digested for 10 min at 37°C with 0.3 µg of 

trypsin. After the digestion samples were immediately mixed with Laemmli buffer, 

boiled and run in a 10% SDS PAGE. 

As we can see from figure 3.32 at 0 h p.i. no differences between Mock and infected 

samples are visible. For both samples trypsin digestion was almost complete.  

A first difference between mock and infected samples is visible at 8 h p.i. Here we 

can notice that at 8 h p.i. the infected sample result more resistant to trypsin, allowing 
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also the detection of the characteristic band at 30 kDa. Subsequently, at 10 and 16 h p.i. 

again no differences were evident. Finally, at 24 h p.i. a marked resistance to trypsin 

treatment was shown in the infected sample, where again we were able to detect the 

characteristic band at 30 kDa.  

On the right part of the figure we report the WB analysis of RIG-I and TBEV levels 

in mock and TBEV infected samples collected at 24 h p.i. without trypsin digestion.  

Due to the trypsin digestion the only loading control possible for this analysis is the 

Ponceau staining of the membrane, Figure 3.32b. 

 
Figure 3.32 - RIG-I is activated early during infection with TBEV: the activated form is partially 

resistant to trypsin digestion. U2OS cells were infected, or mock infected, with TBEV at a MOI of 1. 

At different time of infection cell lysates were collected respecting the native condition and 30 mg of 

each sample digested with 0,3 mg Trypsin. A) Samples were immunoblotted with RIG-I antibody. 

Immunoblot with RIG-I and TBEV antibodies of samples collected at 24 hpi and not digested with 

trypsin are also shown. B) Ponceau staining of the membrane. 
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3.7.2 Native PAGE indicates RIG-I activation starting from 8 hours of TBEV 

infection. 

Another way to test the activation status of RIG-I during infection is to perform a 

Native PAGE in order to assess its oligomerization, which occurs upon activation.  

50 µg of cell lysates, the same collected for trypsin digestion assay, were loaded on a 

non-denaturing 8% polyacrylamide gel. As shown in figure 3.33 in TBEV infected 

samples RIG-I forms oligomers starting from 8 h p.i.  

 

Figure 3.33 - RIG-I is activated early during infection with TBEV: the activated form is forming 

oligomers. U2OS cells were infected (TBEV, right part), or mock infected (Mock, left part), with TBEV 

at a MOI of 1. At different time of infection cell lysates were collected and loaded on a Native PAGE. 

Immunoblot with the RIG-I antibody was performed. 

 

 

Taken together these results suggest that RIG-I is activated as early as 8 h p.i.  

The experiment with trypsin suggests an oscillatory activation of RIG-I during the 

time of infection: the activation is visible at 8 h p.i. while at 10 and 16 h p.i. the WB 

suggest that RIG-I is not active, but at 24 h p.i. a pattern of bands suggesting the 

activation of the protein is again evident. On the other hand, the Native PAGE shows 

oligomerization of RIG-I starting at 8 h p.i. with no oscillatory pattern during the time 

of TBEV infection.  

Even if both techniques demonstrate an early activation of RIG-I at 8 h p.i. the data 

obtained for 10 and 16 h p.i. points are discordant and for this reason further analysis 

has to be performed. 
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Flaviviruses are single-stranded RNA viruses with positive polarity. Viral RNA is 

directly translated into a single polyprotein, which is then cleaved into structural and 

non-structural proteins. Non-structural proteins induce rearrangements of cytoplasmic 

membranes leading to the formation of replication vesicles where viral RNA is 

replicated through a double-stranded RNA intermediate. It has been hypothesized that 

masking replication RNA intermediates within replication vesicles is a mechanism of 

viral escape from innate immunity mechanisms. Indeed, a delay between the appearance 

of such intermediates and the induction of interferon has been observed. However, the 

interferon response is nevertheless activated at later time points. In addition, cells 

respond to viral infection also by activating the stress-response, leading to a transient 

stop of translation and induction of stress granules. Studying the activation of these 

cellular responses and their possible crosstalk is becoming extremely important to better 

understand possible viral evasion or regulation mechanisms. 

 

 

4.1 Main scope of this work 

Previous studies performed in our lab (Miorin et al. 2012; Miorin et al. 2013) as well 

as by Overby and colleagues (Overby et al. 2010) have demonstrated that the IFN 

response to TBEV infection is delayed. Miorin and colleague demonstrated that the 

innate response to TBEV is RIG-I dependent and that its agonists are present in infected 

cells from early time of infection, as early as 8 h p.i., but are not able to trigger the 

response unless transfected as naked RNAs. Since viral proteins were unable to block 

the response (Overby et al. 2010), it has been proposed that the dsRNA of TBEV, an 

intermediate of viral replication, is sequestered into ER derived perinuclear vesicles, 

which would protect viral RNA from PRR recognition.  

 

The cell responds to viral infection not only by activating the interferon response, but 

also by activating the stress response, which induce a transient arrest of translation. 

Recent studies suggest that the two pathways may be interconnected. For example, 

Onomoto and colleagues demonstrated that cells form SG upon infection with IAV and 

that these cytoplasmic aggregates contain viral RNA and antiviral proteins, which are 

involved in the activation of the IFN response during infection (Onomoto et al. 2012).  
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Despite initial observations that Flaviviruses did not induce SG, recent reports 

clearly showed that WNV (Courtney et al. 2012), HCV (Ruggieri et al. 2012) and 

TBEV (Albornoz et al. 2014) are indeed able to induce the formation of SG in infected 

cells.  

Although a wealth of data described the induction of the stress and IFN responses in 

virally infected cells, very little is known about the timing of the events and their 

relationship. In particular, it is not clear how, where and when the PRR driven by the 

viral RNA intermediates are triggering their responses. During my doctoral studies I 

took the challenge of exploring these topics using TBEV as a model for flaviviral 

infection. I found that the major cellular pathway that is activated upon TBEV infection 

is the UPR. Activation of the UPR precedes both the IFN and stress response and, most 

importantly, appears to trigger them both. Furthermore, I could show that RIG-I is 

activated at early time points and localize to replication compartment before moving to 

SG during infection. These results provide a novel view of the cellular events that 

follow a viral infection, which may be extended to other viruses of the same family and 

beyond. 

 

 

4.2 The IFN and stress responses are activated at the same time. 

TBEV is able to induce SG upon phosphorylation of the initiation of translation 

factor eIF2α (Figure 3.1 and 3.4) (Albornoz et al. 2014). We also characterized this 

TBEV induced SG as bona fide SG, containing several typical SG’s marker as G3BP1, 

eIF3 and eIF4B (FIG 3.1 and 3.2). The demonstration that a Flavivirus is able to induce 

SG is in agreement with similar recent studies on HCV (Ruggieri et al. 2012) and WNV 

(Courtney et al. 2012), but not with DENV (Emara and Brinton 2007). However it 

should be noticed that the suggestion that DENV was not capable of inducing SG was 

due to a TIA-1/TIAR staining, which we demonstrated to be recruited to replication 

sites during TBEV replication (Albornoz et al., 2014). 

The percentage of infected cells showing SG was about 20%. Several could be the 

explanations for this phenotype. Courtney and colleagues suggested that it might 

depend on the pathogenicity of the virus used, since they demonstrated that natural 

lineages 1 and 2 of WNV do not induce SG during 24 hours of infection, but the 

infectious chimeric lineage 2/1 W956IC is able to induce SG in the first 12 hours of 
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infection. This chimeric virus is known to synthesize RNA faster during the early stages 

of replication and this characteristic correlates with the increase in SG formation and 

PKR activation. Ruggieri and colleagues demonstrated that formation of SG in HCV 

Huh-7 infected cells upon treatment with IFN-α is highly dynamic showing that SG are 

assembled and disassembled several times in a cell during a 24 hours infection 

experiment. Therefore, at a given time point the number of infected cells showing SG 

was always below 40%. 

Also in our experiments the percentage of infected cells showing SG was always 

very low, about 20%, but we have to consider that the virus we are using in our 

experiments is TBEV strain Neudoerfl, a strain that has been demonstrated to be not as 

pathogenic as Hypr strain (Overby et al. 2010). For this reason we can speculate that 

with a different strain we could observe a higher percentage of cells presenting SG 

during TBEV infection. 

Moreover, we did not have the possibility to perform a live cell imaging experiment 

to determine if, also during our experiment of infection, SG were showing an oscillatory 

behavior of assembly and disassembly. The major limitation is that the biosafety 

containment for TBEV is classified at the BL3 level, where we didn’t have a live 

imaging station available. It is in our future plans to build a single-cycle recombinant 

virus to use in time-lapse microscopy experiments and determine the behavior of stress 

granules in TBEV infected living cells. This solution may be used to infect cells at BL2 

level.  

Finally, we should consider the fact that our analysis of SG formation stops at 24 h 

p.i., since we were mainly interested in early responses of the cell to the infection, but it 

might be that at later time points the percentage of cells presenting SG increases. 

Notwithstanding the low number of infected cells showing SG, we could determine 

that these start to appear from 16 h p.i. (Figure 3.4). This data is extremely interesting 

since it demonstrates that the activation of the stress response during TBEV infection 

follows the same kinetic of the IFN response. Now we understand that both the stress 

and the IFN response are delayed during TBEV infection, suggesting that these two 

cellular responses are strictly interconnected and that other cellular events might play a 

key role in their activation 
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4.3 Whole genome transcriptome analysis reveals that the UPR is strongly 

activated upon TBEV infection. 

Since we demonstrated that TBEV is abundantly replicating at 10 h p.i., when neither 

the IFN nor the stress response are activated, we decided to perform an RNA-Seq 

analysis of total cellular RNA of U2OS infected cells at these two critical time points of 

infection. After testing the integrity of the RNA (Figure 3.8) samples were sequenced. 

Thanks to the help of Dr.Danilo Licastro who performed for us the analyses of the raw 

data, we were able to understand the main differences in gene expression in infected 

cells at 24 h p.i. compared to 10 h p.i. As expected, and evidenced by the volcano plot 

of figure 3.9, we found that TBEV infection induces significant changes in the 

transcriptome of the cells. 

We further analyzed these data with Ingenuity Pathway Analyses (IPA) and we 

found that the most significant pathway affected by TBEV infection is the Unfolded 

Protein Response. From the same analysis the Adipogenesis Pathway, the CDK5 

Signalling Pathway as well as the Endoplasmatic Reticulum Stress resulted significantly 

affected. During our study we did not focus on these pathways, with the exception of 

the Endoplasmatic Reticulum Stress Pathway that share all the affected genes with the 

Unfolded Protein Response. It could be extremely interesting for future studies to 

analyse some of the genes involved in these other pathways. For example, we found that 

the gene SIRT2 in the adipogenesis pathway is up-regulated. SIRT2, NAD-dependent 

deacetylase Sirtuin-2, belongs to the Sirtuin proteins family that has been demonstrated 

to play a role as viral restriction factors (Koyuncu et al. 2014). In the same pathway we 

found XBP1s that has been studied in this work for its role in the UPR. However, 

several studies demonstrated that XBP1s is able to induces lipid biosynthesis in 

response to ER Stress (Sriburi et al. 2004), in order to increase the surface area and 

volume of the ER to better contain the stress. Since Flaviviruses are inducing lipid 

biosynthesis in order to increase ER membrane that is then required for the formation of 

replication sites (Heaton et al. 2010), it could be interesting to study if TBEV can 

positively regulate XBP1s in order to increase lipid biogenesis. 

The CDK5 Signalling pathway is implicated in pathological degeneration of neurons 

and in particular the most up-regulated gene of this pathway is DRD1, a dopamine 

receptor in central nervous system that regulate neural growth and development. Among 

the down-regulated genes we found ITGA6, integrin-α6, and LAMB1, Laminin-β1, 
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both of them involved in regulating cell adhesion and neurite outgrowth. Knowing that 

TBEV infection induce a neuropathology characterized by encephalitis and that major 

hallmarks of the infection are neuroinflammation, neuronal death, and disruption of the 

blood-brain barrier (BBB), it would be extremely interesting to study the role of these 

genes in the pathogenesis of TBEV infection. 

We next proceeded to the validation of the whole-genome transcriptome analysis by 

qRT-PCR of 9 up-regulated genes, 4 of them involved in the immune response to the 

infection and 5 involved in the UPR. The analysis was conducted with samples 

collected in an independent experiment.  

The genes belonging to the UPR pathway that were chosen for the validation are: 

CHOP, XBP1s, DNAJC3, DNAJB9 and EDEM1. We found for their expression a very 

good agreement between RNA-Seq and qRT-PCR analyses, suggesting high accuracy 

of the transcriptome analyses. 

Among the genes belonging to the immune response induced by the infection we 

decided to validate: IFIT2, IFIT3, IL8 and OASL. In this case we encountered several 

problems. In the RNA-Seq analyses IL8 and OASL were induced with a fold change of 

about 5 and 2 respectively, while during our qRT-PCR analyses we found an induction 

of approximately 80 and 20 fold changes. Concerning IFIT2 and IFIT3 expressions, we 

were never able to demonstrate their increased expression, while in the RNA-Seq they 

showed about 20 folds change induction. We also tried to perform the qRT-PCR on the 

same RNA samples that we used for the RNA-Seq analyses but also in this case we 

were not able to reproduce the data (data not show). We strongly doubt that the error is 

in the RNA-Seq since the data about these two genes are extremely significant, and also 

activation of this ISG during infection has been already demonstrated. More likely, the 

problem is due to the primer design. Several splicing variants have been identified for 

these genes and there might be discrepancy between the splicing variants found up-

regulated by the RNA-Seq analysis and the ones for which our primers were designed. 

Since we decided to focus on the UPR we didn’t investigate this aspect further. 

 

 

4.3.1 The Unfolded Protein Response is activated before the Stress and IFN 

responses during TBEV infection. 

TBEV, as other Flaviviruses, during its replication induce rearrangements of the host 

cell membranes originating from the ER. It has been demonstrated that ER membrane 
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reorganization is driven by flaviviral non-structural proteins, which induce not only 

changes in the protein composition of ER membranes but also in their lipid content 

(Heaton et al. 2010). The main non-structural proteins involved in membrane 

remodeling are NS4A (Miller et al. 2007) and NS4B (Kaufusi et al. 2014). As already 

mentioned before, in these complexes of rearranged membranes TBEV synthesizes new 

viral genomes that are then enclosed into virions that maturates in the Golgi complex 

along the secretory pathway. It is then evident that the interaction of TBEV, and more 

in general of Flaviviruses, with the ER during the viral life cycle is really strong and 

that ER plays a key role during infection. 

For this reason it is not surprising that pathways such as the ER Stress and Unfolded 

Protein Response are activated during TBEV replication. Indeed, several are the reports 

that already demonstrate the activation of these pathways during Flaviviruses infection. 

However, what differentiates my work from that of others is the kinetics of activation. 

 

 

4.3.2 All three pathways of the UPR are activated upon TBEV infection.  

 

ATF6 

The most accurate way to test activation of the ATF6 pathway is to investigate the 

cleavage of the protein and its nuclear localization. Since we didn’t have an antibody 

for the detection of endogenous ATF6 we developed an alternative strategy. U2OS cells 

were transfected with a plasmid encoding EGFP-ATF6 (Chen, Shen, and Prywes 2002). 

Expression of EGFP-ATF6 was first evaluated by cytofluorimetric analyses (Figure 

3.13), which revealed that about 52% of the cells were expressing the chimeric protein. 

The risk of this strategy is that overexpression of ATF6 might be able by itself to induce 

activation of the UPR, but we found that, in mock samples, only a low number of cells 

(8%) displayed nuclear translocation of ATF6 (Figure 3.14). From the time course 

experiment we found that infection with TBEV induce EGFP-ATF6 translocation from 

8 h p.i. in about 15% of cells, and the number increase to 25% till 24 h p.i. (Figure 

3.14). Moreover we found that XBP1 and BiP expression, which are strongly regulated 

by ATF6, are both induced at 16 h p.i. (Figure 3.15). We conclude that the ATF6 

branch of the UPR is activated early during infection, between 8 and 16 h p.i. 

Several published papers demonstrate that Flavivirus infection triggers the activation 

of ATF6 but, as it could be expected, the time of activation differs a lot between 



 D I S C U S S I O N  
  

 

 
98  

 
  

 

different viruses. In particular, Pena (Peña and Harris 2011) and Yu (C.-Y. Yu et al. 

2006) demonstrated that DENV-2 infection of 2fTGH and N18 cells induces the 

proteolitic cleavage of ATF6 at, respectively, 48 and 20 h p.i. On the other hand 

Ambrose (Ambrose and Mackenzie 2011) demonstrated that WNVKUN infection induce 

activation of ATF6 branch of the UPR by qRT-PCR analyses of XBP1 and BiP 

expression and they proved that it occurs between 12-18 h p.i., similarly to what we 

have shown. Finally, Yu and colleagues (C. Yu, Achazi, and Niedrig 2013) 

demonstrated that TBEV infection of Vero cells induce ATF6 activation. First they 

checked nuclear translocation of EGFP-ATF6 upon infection but didn’t succeed, then 

they tested the proteolitic cleavage of the protein by direct detection with a specific 

antibody. In this last experiment they showed activation of ATF6 at 24 h p.i. This data 

is not discordant with our since they did not performed a time course analysis of ATF6 

activation during TBEV infection but they tested only one single time of infection.  

For the first time we provided the evidence that also TBEV, as well as WNV 

(Ambrose and Mackenzie 2011), triggers the activation of ATF6 early during infection. 

 

IRE-1 

In this work we demonstrated, both by qRT-PCR analysis of XBP1 mRNA splicing 

(Figure 3.16) and by PstI digestion of XBP1 mRNA (Hirota et al. 2006) (Figure 3.17), 

that during TBEV infection the IRE1 pathway of the UPR is activated at 12 h p.i. Since 

splicing of XBP1 mRNA is a direct effect of IRE-1 activation we do not consider 

necessary to perform a WB for P-IRE-1 but obviously it can be a good experiment, 

together with XBP1s WB or nuclear translocation. The fact that TBEV is inducing 

splicing of XBP1 mRNA has already been demonstrated by Yu and colleagues (C. Yu, 

Achazi, and Niedrig 2013), but their analysis was performed only at 24 h p.i., not 

providing the information of  the specific time of activation of this pathway. On the 

other hand, several reports on different Flaviviruses demonstrate that this branch of the 

UPR is activated early during infection: WNVKUN, DENV2 and JEV induce XBP1 

splicing at 12 h p.i (Ambrose and Mackenzie 2011; Peña and Harris 2011; C.-Y. Yu et 

al. 2006).  

Afterwards, we demonstrate that the XBP1s target genes DNAJB9 and DNAJC3 are 

induced later during infection (Figure 3.18). In particular a small but not significant 

increase of DNAJC3 is detectable at 16 h p.i. and become more evident at 24 h p.i. 

while DNAJB9 show a little induction during the infection with a significant increase at 
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24 h p.i. Interestingly, also Yu and colleagues (C.-Y. Yu et al. 2006) demonstrated that 

these two chaperone proteins, during JEV and DENV2 infection, are induced only at 24 

h p.i. while, TM treatment of N18 cells induce expression of these XBP1 target genes 

already after 6 hours of treatment. The reason of this delay during Flavivirus infection 

has not yet been studied, but it might be interesting to understand if it is due to a direct 

regulation of the virus. 

 

PERK 

Finally, we studied PERK activation during TBEV infection. PERK is one of the 

kinases, together with PKR, belonging to the Integrated Stress Response, an ancient 

stress response known to modulate the recover from different kind of stress. For this 

reason, while studying activation of PERK we also investigate the activation of PKR 

and the phosphorylation of the initiation of translation factor eIF2α.  

We found that both PERK and eIF2α are phosphorylated starting from 8 h p.i. but 

that PERK phosphorylation is then negatively regulated by 16 h p.i. At this time P-PKR 

starts to be detectable by WB (Figure 3.19). These data indicate a time dependent 

regulation of eIF2α phosphorylation during TBEV infection by these two kinases.  

It has been demonstrated that DNAJC3 has an inhibitory effect on the kinase activity 

of PERK (Yan et al. 2002). We have shown that DNAJC3 is slightly induced at 16 h p.i. 

(Figure 3.18) thus, we can speculate that its induction is regulating PERK activation 

during TBEV infection and, once PERK activity is inhibited, PKR takes over the 

phosphorylation of eIF2α.  

As already discussed above, we demonstrated that SG formation occurs at 16 h p.i. 

Although two independent studies (Courtney et al. 2012; Ruggieri et al. 2012) have 

demonstrated that SG formation upon WNV and HCV infection is PKR dependent, we 

couldn’t demonstrate in our system if SG formation depends on PERK, PKR or both. 

Furthermore, we demonstrated that CHOP and GADD34, both of which are direct target 

of ATF4, a transcription factor translated upon PERK activation, are activated during 

TBEV infection at 14 and 24 h p.i. respectively (Figure 3.20). The induction of these 

genes was described also upon infection with DENV2 (Umareddy et al. 2007) but in 

that case they studied their induction only at 24 h p.i. CHOP is known to mediate 

apoptosis and it has been demonstrated to play an important role in limiting WNV 

growth (Medigeshi et al. 2007). Interestingly, even if CHOP is induced early during 
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TBEV infection we never had evidences of an active programmed cell death, indeed, 

from our experience, cells can resist to TBEV infection for at least 72 hours (data not 

shown). We did not focus on this cellular response but it might be interesting to 

investigate this pathway in order to understand if TBEV is able to block or delay this 

cellular response. Interestingly, Clavarino and colleagues (Clavarino et al. 2012) have 

recently demonstrated that GADD34 expression is a direct consequence of PKR 

activation and dsRNA sensing. In their study they concluded that GADD34 and PKR 

are necessary to produce anti-viral cytokines during CHIKV infection. Since we saw a 

late induction of GADD34 it might be that this gene is regulated by PKR during TBEV 

infection instead of the PERK pathway. This hypothesis should be further investigated. 

  

In the paper of Ambrose (Ambrose and Mackenzie 2011) it is shown that WNVKUN 

infection of Vero cells does not induce strong phosphorylation of eIF2α. On the other 

hand Pena (Peña and Harris 2011) demonstrated that DENV2 infection leads to 

phosphorylation of eIF2α at 9 h p.i. but at later time the phosphorylation of this factor is 

negatively regulated. These data suggest that both WNV and DENV2 are regulating 

PERK pathway during infection. Interestingly, they both took advantage of MEF 

PERK-/- cells demonstrating that viral replication in absence of PERK is more efficient, 

suggesting an antiviral role of PERK during flavivirus replication. 

Our hypothesis is that PERK is responsible of eIF2α phosphorylation during TBEV 

infection and consequently the responsible of SG induction. As we already discussed 

above, SG might have a critical role in the induction of the IFN response. For this 

reason we want to test TBEV replication in cells lacking PERK and, in particular, we 

want to study if SG induction and IFN response are affected in these cells.  

During my doctorate studies, I tried to obtain stable U2OS cells expressing shPERK 

(data not shown). Unfortunately, even if several shRNAs against PERK were used I 

never succeed in obtaining an efficient knock down of PERK, and, consequently, I have 

never been able to see an effect on TBEV replication in these cells. We are now 

considering to use MEF PERK-/- or to produce U2OS PERK KO by using the 

CRISPR/Cas9 technology. 

 

To conclude, we demonstrated that TBEV induce activation of the UPR at early time 

during infection, between 8 and 12 h p.i. Indeed, at 8 h p.i. we were able to detect a 
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weak signal for viral proteins both by IF and WB (Figure 3.25 and 3.26) suggesting that 

this is the time when viral proteins start accumulating in the ER, inducing activation of 

the unfolded protein response.  

Furthermore, we also have to consider that the UPR during TBEV infection could 

induce ER membrane rearrangements typical of TBEV replication. Miorin and 

colleagues (Miorin et al. 2013) demonstrated by FRAP experiments that the viral RNA 

is secluded into compartments that are not accessible by the EYFP-MS2 protein starting 

from 12 hours post electroporation (h p.e.) of the TBEV replicon carrying the MS2 

repeats, suggesting that in the period between 6 and 12 h p.e. the ER membrane start to 

be rearranged. We do not know if during infection the ER membranes are reorganized at 

this time since EM experiments on TBEV infected cells describing these structures were 

performed at 24 h p.i.  (Miorin et al. 2013) or even later (Bílý et al. 2015). Nevertheless, 

we can speculate that during TBEV infection the rearrangements of the ER membranes 

follow a similar kinetic since in this range of time we observe the induction of the 

unfolded protein response.  

 

 

4.4 Early activation of the UPR induce early IFN-β  expression and SG formation 

4.4.1 The Unfolded Protein Response triggers IFN-β  expression during TBEV 

infection 

After demonstrating that the UPR is activated in TBEV infected cells at earlier time 

of infection compared to the IFN response and SG formation, we investigate the 

possible role of the UPR in triggering these cellular responses. It is known that the UPR 

is involved in the development of immune cells and that it is implicated in several 

inflammatory conditions (J. A. Smith 2014). What remains unclear is its role in the 

induction of IFN.  

By treating the cells with tunicamycin at the time of infection we obtained an early 

(4 h.p.i) activation of the UPR in TBEV infected cells (Figure 3.22). We demonstrated 

that TBEV replication is drastically affected by early activation of the UPR (Figure 

3.23) and that in this condition IFN-β mRNA expression is induced at 8 h p.i. instead of 

16 (Figure 3.24 b). Indeed, Smith and colleagues demonstrated that UPR induction by 

thapsigargin or tunicamycin in mouse macrophage cells is able to induce expression of 

IFN-β at low levels. When the same cells treated with these UPR inducers were 
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stimulated with LPS the IFN response was extremely enhanced compared to the 

situation in which the cells were only stimulated with LPS (Smith et al. 2008). In figure 

3.24a we demonstrate that tunicamycin treatment of U2OS cells is sufficient to induce 

about 7 fold increase in IFN-β mRNA levels after 24 hours of treatment, while, in cells 

that were both treated with the drug and infected with TBEV the levels of IFN-β mRNA 

were 100 times higher than in cells that were only infected (Figure 3.24b).  

With this experiment we were able to demonstrate for the first time that activation of 

the UPR in TBEV infected cells is able to trigger and amplify the IFN response, 

confirming the synergistic activity of these responses suggested by Smith (Smith et al. 

2008). 

 

Interestingly, a recent report (Cho et al. 2013) showed that exposure of human 

intestinal cell lines with cholera toxins induces inflammatory response and activation of 

IRE1. They demonstrated that IRE1 is required for the induction of inflammatory 

cytokine but XBP1s is dispensable for this process since the inflammatory response 

depends on the regulated IRE1α-dependent decay of mRNA (RIDD). The endonuclease 

domain of IRE1 has similar catalytic mechanisms of the protein RNaseL, which is able 

to produce RNA fragments that activate RIG-I. Cho and colleagues were able to 

demonstrate that the RIDD activity of IRE1 produced mRNA fragments that are 

recognized by RIG-I, but not MDA5, and induce the IFN response. We are considering 

the possibility that IRE1-RIDD activity might be responsible for the production of PRR 

agonists able to activate RIG-I during TBEV infection. For this reason, we are planning 

a time course infection experiment where RIDD will be specifically inhibited. 

Moreover, we know that PRR agonists are present in the cells from early time of 

infection but they are not accessible to RIG-I recognition (Miorin et al. 2012). We 

already discussed the role of the UPR in lipid synthesis and speculate about the 

possibility that activation of UPR might coincide with ER membrane rearrangements in 

TBEV infected cells. We should consider also the possibility that the activation of the 

UPR might induce changes in the structure of these membranes vesicles where the virus 

is replicating and thus unmask the PRR agonists making them available for RIG-I 

recognition and activation, explaining why an earlier induction of this cellular response 

can activate early IFN response. 
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4.4.2 The Unfolded Protein Response triggers SG formation during TBEV 

infection 

From the same experiment we demonstrated that not only IFN-β induction occurs at 

earlier time points of infection but that formation of SG in these conditions is triggered 

at 8 h p.i. as well (Figure 3.25) with phosphorylation of eIF2α starting at 4 h p.i. (Figure 

3.26). This data is further confirming our hypothesis of a functional link between the 

UPR, the IFN response and the SG formation.  

We know that both PERK and PKR are regulating the phosphorylation of eIF2α 

during TBEV infection in a time dependent manner. It could be hypothesized that early 

activation of PERK by TM treatment is inducing early formation of SG that will serve 

as platform for the IFN response as proposed by Fujita and collaborators (Onomoto et 

al. 2012).  

It would be extremely interesting to repeat this experiment in MEF PERK-/- cells or 

in condition of PERK inhibition to evaluate if also TBEV replication is affected in these 

cells but also to measure at what time occurs SG formation in absence of PERK and, 

more important, if this affects the IFN response.  

 

Tunicamycin is an inhibitor of N-glycosilation of newly synthesized peptides. It is 

known that for some Flavivirus the envelope protein is highly glycosylated (Brett D 

Lindenbach, Thiel, and Rice 2007). For this reason, it could be objected that the effect 

on TBEV replication upon tunicamycin treatment is due to misfolding of E protein, 

even if this would not explain the effect on IFN response and SG formation that we 

have demonstrated. To rule this out, we will repeat this experiment using a different 

drug, thapsigargin, a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ 

ATPase.  

 

To conclude, with this experiment we have demonstrated the existence of a strong 

link between the unfolded protein response, the IFN response and the stress response, 

during TBEV replication. It would be extremely interesting to understand if this is a 

specific characteristic of TBEV replication or if it is a common issue of Flaviviruses. 

For this reason we already started to perform experiment with WNV (NY99) and 

DENV-2. 
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4.5 RIG-I activation occurs early during TBEV infection but is not sufficient to 

induce IFN response 

4.5.1 RIG-I localize first to viral replication sites and later to SG during TBEV 

infection. 

As previously discussed, the group of Fujita suggested an innovative role for SG in 

immune response during IAV infection (Onomoto et al. 2012) as platforms where the 

antiviral proteins recognize the viral RNA and activate the IFN response, renaming 

them antiviral SG (avSG). In the last part of this work we demonstrated that RIG-I 

localize in the SG starting from 16 h p.i. but that around 14 h p.i. some co-localization 

of RIG-I with dsRNA at viral replication sites was observed (Figure 3.28). In order to 

confirm this data and to exclude the possibility that what we were seeing was an artifact 

due to an unspecific activity of anti RIG-I antibody, we create U2OS cells expressing 

the chimeric protein Flag-RIG-I. After characterization of these cells by IF, WB and 

qRT-PCR analyses of IFN-β mRNA levels in mock condition and upon TBEV infection 

(Figure 3.29 and figure 3.30), the data regarding the co-localization of RIG-I with 

TBEV were confirmed (Figure 3.31). These data suggest that RIG-I is first recruited to 

viral replication sites where it might bind viral RNA, and then to SG where it activates 

the IFN response. 

Despite the evidence of a correlation between RIG-I localization and IFN-β 

induction, we need to better characterize these TBEV induced SG in order to define 

them as avSG. In particular we should investigate if they contains other antiviral 

proteins like MDA5 and PKR and, above all, if they contains viral RNA. Indeed, during 

our IF experiments we were not able to detect any viral dsRNA in SG but we have to 

consider the limit of the IF analyses for which single dsRNA molecules could not be 

evidenced by the antibody. Moreover, other forms of viral RNA could be recruited to 

SG during infection. A possible solution could be to perform an RNA FISH on viral 

RNA (vRNA) to visualize if even single vRNA molecules are contained in SG.  

Finally, as performed by Onomoto an colleagues, to prove that the TBEV induced 

SG are platforms from which the IFN response is triggered, we should be able to inhibit 

SG formation during TBEV infection and analyze IFN-β mRNA levels. One possibility 

that we are considering could be to infect the eIF2αA/A mutant cells (Scheuner et al. 

2001) in which the protein eIF2α is phosphorylation deficient.  
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4.5.2 RIG-I activation occurs early during TBEV infection but is not sufficient to 

induce IFN-β  expression 

As already explained before, once that RIG-I binds a target RNA, that is commonly 

considered to be a short dsRNA or a 5’ppp-RNA, it changes its conformation 

unmasking the CARD domain that through interaction with other CARD domains 

induce oligomerization of the protein (Takahasi et al. 2008). This conformational switch 

is indicated by partial resistance to trypsin digestion, which results in the generation of 

several fragments and in particular of a 30-kDa polypeptide (Saito et al. 2007). 

By performing trypsin digestion and Native PAGE (Figure 3.32 and 3.33) of samples 

collected during a time course infection experiment, we could demonstrate that an early 

activation of RIG-I occurs already at 8 h p.i. Unfortunately, the results of the two tests 

were partially discordant. In fact, the trypsin digestion indicates a possible oscillation of 

the activation status of RIG-I that was resistant to trypsin digestion only at 8 h p.i. and 

24 h p.i. but not at intermediate times, while the Native PAGE showed oligomers from 

8 h p.i. that are then conserved till 24 h p.i. Obviously, the experiments have to be 

repeated in order to confirm the data on the activation of RIG-I at 8 h p.i. and to 

understand if RIG-I is really following an oscillatory activation pathway during TBEV 

infection.  

We know that PRR agonists are produced in infected cells at early time points but 

likely they remain hidden in the ER membrane rearrangements till later time of 

infection (Miorin et al. 2012). From our results it seems that RIG-I is activated early 

during infection but that this activation is not sufficient to trigger the induction of IFN-β 

that in fact occurs only at 16 h p.i. Moreover, even if we know that RIG-I is the only 

PRR responsible of IFN-β induction during TBEV infection of U2OS cells (Miorin et 

al. 2012), which kind of PAMP is produced and recognized by RIG-I during TBEV 

infection remains unknown. For this reason a RIP-seq analysis could be performed at 

different time of TBEV infection pulling down RIG-I and analyzing which RNA are 

bound to the antiviral proteins.  

Finally, as suggested by the data of Cho and colleagues (Cho et al. 2013), RIG-I 

might be activated also by fragments of endogenous mRNA digested by RIDD activity 

of IRE-1, for this reason we should study activation status of RIG-I also in condition of 

UPR activation, and in condition of RIDD inhibition as well.   
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4.6 Conclusions and important remarks 

In this doctorate study I have worked on several aspects of the cellular response to 

TBEV infection. We have quickly understood that more important than knowing which 

cellular responses are activated upon TBEV infection is to define the time of their 

activation in order to study their possible crosstalk. Figure 4.1 shows a schematic 

diagram of all the events described in this work that take place during the first 24 hours 

of TBEV replication. 

We demonstrated that both IFN response and SG formation are delayed during viral 

replication, till 16 h p.i. but, thanks to the modern technique of RNA-seq, we were able 

to identified the unfolded protein response as early cellular response during TBEV 

infection. It has now become more important to understand if the induction of IFN-β is 

depending on the SG formation induced by UPR activation and which form of viral or 

host RNA is recognized by RIG-I to activate the IFN response.   

For the first time in the field of Flavivirus, we determine that the UPR is responsible 

of triggering the expression of IFN-β and the formation of SG during TBEV infection. 

What remains to define is if this is a characteristic cellular response to TBEV or if it is a 

general issue for Flavivirus infected cells. 
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Figure 4.1 - Schematic diagram of all the events occurring during TBEV infection described in this 

work.  

 



 REFERENCES   
  

 

 
108  

 
  

 

Albornoz Amelina, Tea Carletti, Gianmarco Corazza, and Alessandro Marcello. 2014. 

“The Stress Granule Component TIA-1 Binds Tick-Borne Encephalitis Virus RNA 

and Is Recruited to Perinuclear Sites of Viral Replication To Inhibit Viral 

Translation.” Journal of Virology 88 (12) (June 15): 6611–6622. 

doi:10.1128/JVI.03736-13.  

Alvarez Diego E., Maria F Lodeiro, Silvio J Luduen, Lia I Pietrasanta, and Andrea V 

Gamarnik. 2005. “Long-Range RNA-RNA Interactions Circularize the Dengue 

Virus Genome.” Journal of Virology 79 (11): 6631–6643. 

doi:10.1128/JVI.79.11.6631. 

Amberg Sean M, Ann Nestorowicz, David W McCourt, and Charles M Rice. 1994. 

“NS2B-3 Proteinase-Mediated Processing in the Yellow Fever Virus Structural 

Region: In Vitro and in Vivo Studies.” Journal of Virology 68 (6) (June): 3794–

802.  

Ambrose Rebecca L, and Jason M Mackenzie. 2011. “West Nile Virus Differentially 

Modulates the Unfolded Protein Response to Facilitate Replication and Immune 

Evasion.” Journal of Virology 85 (6) (March): 2723–32. doi:10.1128/JVI.02050-

10.  

Anderson Paul and Nancy Kedersha. 2002. “Stressful Initiations.” Journal of Cell 

Science 115 (16) (August 15): 3227–34.  

Anderson Paul and Nancy Kedersha. 2006. “RNA Granules.” The Journal of Cell 

Biology 172 (6) (March 13): 803–8. doi:10.1083/jcb.200512082. 

Ashour Joseph, Maudry Laurent-Rolle, Pei-Yong Shi, and Adolfo García-Sastre. 2009. 

“NS5 of Dengue Virus Mediates STAT2 Binding and Degradation.” Journal of 

Virology 83 (11) (June): 5408–18. doi:10.1128/JVI.02188-08.  

Avirutnan Panisadee, Anja Fuchs, Richard E Hauhart, Pawit Somnuke, Soonjeon Youn, 

Michael S Diamond, and John P Atkinson. 2010. “Antagonism of the Complement 

Component C4 by Flavivirus Nonstructural Protein NS1.” The Journal of 

Experimental Medicine 207 (4) (April 12): 793–806. doi:10.1084/jem.20092545.  

Baum Alina, Ravi Sachidanandam, and Adolfo Garcia-Sastre. 2010. “Preference of 

RIG-I for Short Viral RNA Molecules in Infected Cells Revealed by next-

Generation Sequencing.” Proceedings of the National Academy of Sciences of the 

United States of America 107 (37): 16303 – 16308. doi:10.1073/pnas.1100561108. 

 

 



 REFERENCES   
  

 

 
109  

 
  

 

Beatty P Robert, Henry Puerta-Guardo, Sarah S. Killingbeck, Dustin R. Glasner, Kaycie 

Hopkins, and Eva Harris. 2015. “Dengue Virus NS1 Triggers Endothelial 

Permeability and Vascular Leak That Is Prevented by NS1 Vaccination.” Science 

Translational Medicine 7 (304): 1–11. 

Best Sonja M, Keely L Morris, Jeffrey G Shannon, Shelly J Robertson, Dana N Mitzel, 

Gregory S Park, Elena Boer, James B Wolfinbarger, and Marshall E Bloom. 2005. 

“Inhibition of Interferon-Stimulated JAK-STAT Signaling by a Tick-Borne 

Flavivirus and Identification of NS5 as an Interferon Antagonist.” Journal of 

Virology 79 (20): 12828–12839. doi:10.1128/JVI.79.20.12828.2005. 

Bílý Tomáš, Martin Palus, Luděk Eyer, Jana Elsterová, Marie Vancová, and Daniel 

Růžek. 2015. “Electron Tomography Analysis of Tick-Borne Encephalitis Virus 

Infection in Human Neurons.” Scientific Reports 5: 10745. doi:10.1038/srep10745.  

Bressanelli Stéphane, Karin Stiasny, Steven L Allison, Enrico a Stura, Stéphane 

Duquerroy, Julien Lescar, Franz X Heinz, and Félix a Rey. 2004. “Structure of a 

Flavivirus Envelope Glycoprotein in Its Low-pH-Induced Membrane Fusion 

Conformation.” The EMBO Journal 23 (4) (February 25): 728–38. 

doi:10.1038/sj.emboj.7600064.  

Caracciolo Ilaria, Matteo Bassetti, Giorgio Paladini, Roberto Luzzati, Daniela Santon, 

Maria Merelli, Giovanni De Sabbata, Tea Carletti, Alessandro Marcello, and 

Pierlanfranco D’Agaro. 2015. “Persistent Viremia and Urine Shedding of Tick-

Borne Encephalitis Virus in an Infected Immunosuppressed Patient from a New 

Epidemic Cluster in North-Eastern Italy.” Journal of Clinical Virology 69: 48–51. 

doi:10.1016/j.jcv.2015.05.019. 

Chakrabarti Anirikh, Aaaron W Chen, and Jeffrey D. Varner. 2011. “A Review of the 

Mammalian Unfolded Protein Response.” Biotechnology and Bioengineering 108 

(12): 2777–2793. doi:10.1002/bit.23282.A. 

Chambers, Thomas J, Chang S Hahn, Ricardo Galler, and Charles M Rice. 1990. 

“Flavivirus Genome Organization, Expression, and Replication.” Annual Review of 

Microbiology 44: 649–88. 

Chen, Xi, Jingshi Shen, and Ron Prywes. 2002. “The Luminal Domain of ATF6 Senses 

Endoplasmic Reticulum (ER) Stress and Causes Translocation of ATF6 from the 

ER to the Golgi.” Journal of Biological Chemistry 277 (15): 13045–13052. 

doi:10.1074/jbc.M110636200.  

 



 REFERENCES   
  

 

 
110  

 
  

 

Chmelík Václav, Ales Chrdle, and Daniel Ruzek. 2016. “Fatal Tick-Borne Encephalitis 

in an Immunosuppressed 12-Year-Old Patient.” Journal of Clinical Virology 74: 

73–74. doi:10.1016/j.jcv.2009.05.033. 

Cho Jin a, Ann-Hwee Lee, Barbara Platzer, Benedict C S Cross, Brooke M Gardner, 

Heidi De Luca, Phi Luong, et al. 2013. “The Unfolded Protein Response Element 

IRE1α Senses Bacterial Proteins Invading the ER to Activate RIG-I and Innate 

Immune Signaling.” Cell Host & Microbe 13 (5) (May 15): 558–69. 

doi:10.1016/j.chom.2013.03.011.  

Chu P W, and E G Westaway. 1985. “Replication Strategy of Kunjin Virus: Evidence 

for Recycling Role of Replicative Form RNA as Template in Semiconservative 

and Asymmetric Replication.” Virology 140 (1) (January 15): 68–79.  

Clavarino Giovanna, Nuno Cláudio, Thérèse Couderc, Alexandre Dalet, Delphine 

Judith, Voahirana Camosseto, Enrico K Schmidt, et al. 2012. “Induction of 

GADD34 Is Necessary for dsRNA-Dependent Interferon-β Production and 

Participates in the Control of Chikungunya Virus Infection.” PLoS Pathogens 8 (5) 

(January). doi:10.1371/journal.ppat.1002708. 

Courtney S C, S V Scherbik, B M Stockman, and M Brinton. 2012. “West Nile Virus 

Infections Suppress Early Viral RNA Synthesis and Avoid Inducing the Cell Stress 

Granule Response.” Journal of Virology 86 (7) (April): 3647–57. 

doi:10.1128/JVI.06549-11.  

Daffis Stephane, Kristy J Szretter, Jill Schriewer, Jianqing Li, Soonjeon Youn, John 

Errett, Tsai-Yu Lin, et al. 2010. “2’-O Methylation of the Viral mRNA Cap Evades 

Host Restriction by IFIT Family Members.” Nature 468 (7322) (November 18): 

452–6. doi:10.1038/nature09489.  

Deonarain R, A Alcamí, M Alexiou, M J Dallman, D R Gewert, and a C Porter. 2000. 

“Impaired Antiviral Response and Alpha/beta Interferon Induction in Mice 

Lacking Beta Interferon.” Journal of Virology 74 (7) (April): 3404–9. 

Egloff Marie-pierre, Delphine Benarroch, Barbara Selisko, Jean-louis Romette, and 

Bruno Canard. 2002. “An RNA Cap ( Nucleoside-2’-O-)Methyltransferase in the 

Flavivirus RNA Polymerase NS5: Crystal Structure and Functional 

Characterization.” EMBO Journal 21 (11): 2757–2768. 

 

 

 



 REFERENCES   
  

 

 
111  

 
  

 

Emara Mohamed M, and Margo a Brinton. 2007. “Interaction of TIA-1/TIAR with 

West Nile and Dengue Virus Products in Infected Cells Interferes with Stress 

Granule Formation and Processing Body Assembly.” Proceedings of the National 

Academy of Sciences of the United States of America 104 (21) (May 22): 9041–6. 

doi:10.1073/pnas.0703348104.  

Erbel Paul, Nikolaus Schiering, Allan D’Arcy, Martin Renatus, Markus Kroemer, Siew 

Pheng Lim, Zheng Yin, Thomas H Keller, Subhash G Vasudevan, and Ulrich 

Hommel. 2006. “Structural Basis for the Activation of Flaviviral NS3 Proteases 

from Dengue and West Nile Virus.” Nature Structural & Molecular Biology 13 (4) 

(April): 372–3. doi:10.1038/nsmb1073.  

Falgout B, M Pethel, Y M Zhang, and C J Lai. 1991. “Both Nonstructural Proteins 

NS2B and NS3 Are Required for the Proteolytic Processing of Dengue Virus 

Nonstructural Proteins.” Journal of Virology 65 (5) (May): 2467–75.  

Ferlenghi Ilaria, Mairi Clarke, Twan Ruttan, Steven L Allison, Juliane Schalich, Franz 

X Heinz, Stephen C Harrison, Felix A Rey, and Stephen D Fuller. 2001. 

“Molecular Organization of a Recombinant Subviral Particle from Tick-Borne 

Encephalitis Virus Henry Wellcome Building for Genomic Medicine.” Molecular 

Cell 7: 593–602. 

Fernandez-Garcia Maria-Dolores, Michela Mazzon, Michael Jacobs, and Ali Amara. 

2009. “Pathogenesis of Flavivirus Infections: Using and Abusing the Host Cell.” 

Cell Host & Microbe 5 (4) (April 23): 318–28. doi:10.1016/j.chom.2009.04.001.  

Gething Mary-Jane. 1999. “Role and Regulation of the ER Chaperone BiP.” Seminars 

in Cell & Developmental Biology 10 (5): 465–472. doi:10.1006/scdb.1999.0318. 

Gillespie Leah K, Antje Hoenen, Gary Morgan, and Jason M Mackenzie. 2010. “The 

Endoplasmic Reticulum Provides the Membrane Platform for Biogenesis of the 

Flavivirus Replication Complex.” Journal of Virology 84 (20) (October): 10438–

47. doi:10.1128/JVI.00986-10.  

Gould E A, and T Solomon. 2008. “Pathogenic Flaviviruses.” Lancet 371 (9611): 500–

509. doi:10.1016/S0140-6736(08)60238-X.  

Guirakhoo F, RA Bolin, and JT Roehrig. 1992. “The Murray Valley Encephalitis Virus 

prM Protein Confers Acid Resistance to Virus Particles and Alters the Expression 

of Epitopes within the R2 Domain of E Glycoprotein.” Virology 191 (2) 

(December): 921–31. 

 



 REFERENCES   
  

 

 
112  

 
  

 

Guyatt Kimberley J, Edwin G Westaway, and Alexander A Khromykh. 2001. 

“Expression and Purification of Enzymatically Active Recombinant RNA-

Dependent RNA Polymerase (NS5) of the Flavivirus Kunjin.” Journal of 

Virological Methods 92 (1) (March): 37–44.  

Harding Heather P, Yuhong Zhang, Anne Bertolotti, Huiqing Zeng, and David Ron. 

2000. “Perk Is Essential for Translational Regulation and Cell Survival during the 

Unfolded Protein Response.” Molecular Cell 5: 897–904. 

Harding Heather P, Yuhong Zhang, David Ron. 1999. “Protein Translation and Folding 

Are Coupled by an Resident Kinase.” Nature 397 (January). 

Harding Heather P., Yuhong Zhang, Huiquing Zeng, Isabel Novoa, Phoebe D. Lu, 

Marcella Calfon, Navid Sadri, et al. 2003. “An Integrated Stress Response 

Regulates Amino Acid Metabolism and Resistance to Oxidative Stress.” Molecular 

Cell 11 (3): 619–633. doi:10.1016/S1097-2765(03)00105-9. 

Heaton Nicholas S, Rushika Perera, Kristi L Berger, Sudip Khadka, Douglas J Lacount, 

Richard J Kuhn, and Glenn Randall. 2010. “Dengue Virus Nonstructural Protein 3 

Redistributes Fatty Acid Synthase to Sites of Viral Replication and Increases 

Cellular Fatty Acid Synthesis.” Proceedings of the National Academy of Sciences 

of the United States of America 107 (40): 17345–17350. 

doi:10.1073/pnas.1010811107. 

Hirota Morihiko, Masato Kitagaki, Hiroshi Itagaki, and Setsuya Aiba. 2006. 

“Quantitative Measurement of Spliced XBP1 mRNA as an Indicator of 

Endoplasmic Reticulum Stress.” The Journal of Toxicological Sciences 31 (2) 

(May): 149–56.  

Holden Katherin L., and Eva Harris. 2004. “Enhancement of Dengue Virus Translation: 

Role of the 3V Untranslated Region and the Terminal 3V Stem-Loop Domain.” 

Virology 329: 119–133. 

Hornung Veit, Hiroki Kato, Hendrik Poeck, Shizuo Akira, Karl-klaus Conzelmann, and 

Martin Schlee. 2006. “5’-Triphosphate RNA Is the Ligand for RIG-I.” Science 

Reports 314: 994 – 997. doi:10.1126/science.1132505. 

 

 

 

 

 



 REFERENCES   
  

 

 
113  

 
  

 

Kang Dong-chul, Rahul V Gopalkrishnan, Qingping Wu, Eckhard Jankowsky, Anna 

Marie Pyle, and Paul B Fisher. 2002. “Mda-5: An Interferon-Inducible Putative 

RNA Helicase with Double-Stranded RNA-Dependent ATPase Activity and 

Melanoma Growth-Suppressive Properties.” Proceedings of the National Academy 

of Sciences of the United States of America 99 (2): 637–42. 

doi:10.1073/pnas.022637199.  

Kato Hiroki, Shintaro Sato, Mitsutoshi Yoneyama, Masahiro Yamamoto, Satoshi 

Uematsu, Kosuke Matsui, Tohru Tsujimura, et al. 2005. “Cell Type-Specific 

Involvement of RIG-I in Antiviral Response.” Immunity 23 (1) (July): 19–28. 

doi:10.1016/j.immuni.2005.04.010.  

Katoh Hiroshi, Toru Okamoto, Takasuke Fukuhara, Hiroto Kambara, Eiji Morita, 

Yoshio Mori, Wataru Kamitani, and Yoshiharu Matsuura. 2013. “Japanese 

Encephalitis Virus Core Protein Inhibits Stress Granule Formation through an 

Interaction with Caprin-1 and Facilitates Viral Propagation.” Journal of Virology 

87 (1) (January): 489–502. doi:10.1128/JVI.02186-12.  

Katze Michael G, Yupeng He, and Michael Gale. 2002. “Viruses and Interferon: A 

Fight for Supremacy.” Nature Reviews. Immunology 2 (9) (September): 675–87. 

doi:10.1038/nri888. http://www.ncbi.nlm.nih.gov/pubmed/12209136. 

Kaufman Randal J. 2002. “Orchestrating the Unfolded Protein Response in Health and 

Disease.” Journal of Clinical Investigation 110 (10): 1389–1398. 

doi:10.1172/JCI200216886.The. 

Kaufmann Bärbel, and Michael G Rossmann. 2011. “Molecular Mechanisms Involved 

in the Early Steps of Flavivirus Cell Entry.” Microbes and Infection / Institut 

Pasteur 13 (1) (January): 1–9. doi:10.1016/j.micinf.2010.09.005.  

Kaufusi Pakieli H., James F. Kelley, Richard Yanagihara, and Vivek R. Nerurkar. 2014. 

“Induction of Endoplasmic Reticulum-Derived Replication-Competent Membrane 

Structures by West Nile Virus Non-Structural Protein 4B.” PloS One 9 (1): 

e84040. doi:10.1371/journal.pone.0084040. 

Kawai Taro, and Shizuo Akira. 2006. “Innate Immune Recognition of Viral Infection.” 

Nature Immunology 7 (2) (February): 131–7. doi:10.1038/ni1303. 

 

 

 

 



 REFERENCES   
  

 

 
114  

 
  

 

Kedersha Nancy, Samantha Chen, Natalie Gilks, Wei Li, Ira J Miller, Joachim Stahl, 

and Paul Anderson. 2002. “Evidence That Ternary Complex ( eIF2-GTP-tRNA 

iMet ) Deficient Preinitiation Complexes Are Core Constituents of Mammalian 

Stress Granules.” Molecular Biology of the Cell 13 (January): 195–210. 

doi:10.1091/mbc.01. 

Kedersha Nancy L, Mita Gupta, Wei Li, Ira Miller, and Paul Anderson. 1999. “RNA-

Binding Proteins TIA-1 and TIAR Link the Phosphorylation of eIF-2a to the 

Assembly of Mammalian Stress Granules.” Journal of Cell Biology 147 (7): 1431–

1441. 

Khromykh Alexander A, Hedije Meka, Kimberley J Guyatt, and Edwin G Westaway. 

2001. “Essential Role of Cyclization Sequences in Flavivirus RNA Replication.” 

Journal of Virology 75 (14): 6719–6728. doi:10.1128/JVI.75.14.6719. 

Kimball S R, M J Clemens, V J Tilleray, R C Wek, R L Horetsky, and L S Jefferson. 

2001. “The Double-Stranded RNA-Activated Protein Kinase PKR Is Dispensable 

for Regulation of Translation Initiation in Response to Either Calcium 

Mobilization from the Endoplasmic Reticulum or Essential Amino Acid 

Starvation.” Biochemical and Biophysical Research Communications 280 (1) 

(January 12): 293–300. doi:10.1006/bbrc.2000.4103.  

King Nicholas J C, Daniel R Getts, Meghann T Getts, Sabita Rana, Bimmi Shrestha, 

and Alison M Kesson. 2007. “Immunopathology of Flavivirus Infections.” 

Immunology and Cell Biology 85 (1) (January): 33–42. 

doi:10.1038/sj.icb.7100012. http://www.ncbi.nlm.nih.gov/pubmed/17146465. 

Koyuncu Emre, B A, Hanna G. Budayeva, A, Yana V. Miteva, A, Dante P. Ricci, et al. 

2014. “Sirtuins Are Evolutionarily Conserved Viral Restriction Factors.” The 

American Society for Microbiology 5 (6): 1–10. doi:10.1128/mBio.02249-

14.Editor. 

Kümmerer Beate M, and Charles M Rice. 2002. “Mutations in the Yellow Fever Virus 

Nonstructural Protein NS2A Selectively Block Production of Infectious Particles.” 

Journal of Virology 76 (10): 4773–4784. doi:10.1128/JVI.76.10.4773. 

Lee Ann-hwee, Neal N Iwakoshi, and Laurie H Glimcher. 2003. “XBP-1 Regulates a 

Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded 

Protein Response XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident 

Chaperone Genes in the Unfolded Protein Response.” Molecular and Cellular 

Biology 23 (21): 7448–7459. doi:10.1128/MCB.23.21.7448–7459.2003. 



 REFERENCES   
  

 

 
115  

 
  

 

Li W, Y Li, N Kedersha, P Anderson, M Emara, K M Swiderek, G T Moreno, M A 

Brinton, and J V Irol. 2002. “Cell Proteins TIA-1 and TIAR Interact with the 3’ 

Stem-Loop of the West Nile Virus Complementary Minus-Strand RNA and 

Facilitate Virus Replication.” Journal of Virology 76 (23): 11989–12000. 

doi:10.1128/JVI.76.23.11989. 

Lin Ren-Jye, Bi-Lan Chang, Han-Pang Yu, Ching-Len Liao, and Yi-Ling Lin. 2006. 

“Blocking of Interferon-Induced Jak-Stat Signaling by Japanese Encephalitis Virus 

NS5 through a Protein Tyrosine Phosphatase-Mediated Mechanism.” Journal of 

Virology 80 (12) (June): 5908–18. doi:10.1128/JVI.02714-05.  

Lindenbach B D, and C M Rice. 1999. “Genetic Interaction of Flavivirus Nonstructural 

Proteins NS1 and NS4A as a Determinant of Replicase Function.” Journal of 

Virology 73 (6) (June): 4611–21.  

Lindenbach Brett D, Heinz-Jurgen Thiel, and Charles M Rice. 2007. “Flaviviridae  : The 

Viruses and Their Replication.” In Fields Virology, 5th Edition, edited by M. 

Knipe and P.M. Howley, 5th Editio, 1101 – 1152. Philadelphia: Lippincott-Raven 

Publishers. 

Lindquist Michael E, Aaron W Lifland, Thomas J Utley, Philip J Santangelo, James E 

Crowe Jr, and James E Crowe. 2010. “Respiratory Syncytial Virus Induces Host 

RNA Stress Granules To Facilitate Viral Replication.” Journal of Virology 84 (23): 

12274–12284. doi:10.1128/JVI.00260-10. 

Lobigs M. 1993. “Flavivirus Premembrane Protein Cleavage and Spike Heterodimer 

Secretion Require the Function of the Viral Proteinase NS3.” Proceedings of the 

National Academy of Sciences of the United States of America 90 (13) (July 1): 

6218–22.  

Loo Yueh-Ming, and Michael Gale. 2011. “Immune Signaling by RIG-I-like 

Receptors.” Immunity 34 (5) (May 27): 680–92. 

doi:10.1016/j.immuni.2011.05.003.  

Ma Lixin, Christopher T Jones, Teresa D Groesch, Richard J Kuhn, and Carol Beth 

Post. 2004. “Solution Structure of Dengue Virus Capsid Protein Reveals Another 

Fold.” Proceedings of the National Academy of Sciences of the United States of 

America 101 (10) (March 9): 3414–9. doi:10.1073/pnas.0305892101.  

 

 

 



 REFERENCES   
  

 

 
116  

 
  

 

Mackenzie J M, a a Khromykh, M K Jones, and E G Westaway. 1998. “Subcellular 

Localization and Some Biochemical Properties of the Flavivirus Kunjin 

Nonstructural Proteins NS2A and NS4A.” Virology 245 (2) (June 5): 203–15. 

doi:10.1006/viro.1998.9156.  

Mackenzie Jason M, Mark T Kenney, and Edwin G Westaway. 2007. “West Nile Virus 

Strain Kunjin NS5 Polymerase Is a Phosphoprotein Localized at the Cytoplasmic 

Site of Viral RNA Synthesis.” The Journal of General Virology 88 (Pt 4) (April): 

1163–8. doi:10.1099/vir.0.82552-0.  

Mackenzie Jason M, and Edwin G Westaway. 2001. “Assembly and Maturation of the 

Flavivirus Kunjin Virus Appear To Occur in the Rough Endoplasmic Reticulum 

and along the Secretory Pathway , Respectively.” Journal of Virology 75 (22): 

10787–10799. doi:10.1128/JVI.75.22.10787. 

Mackenzie John S, Duane J Gubler, and Lyle R Petersen. 2004. “Emerging 

Flaviviruses: The Spread and Resurgence of Japanese Encephalitis, West Nile and 

Dengue Viruses.” Nature Medicine 10 (12 Suppl) (December): S98–109. 

doi:10.1038/nm1144. 

Manders E. M. M., F. J. Verbeek, and J.A. Aten. 1993. “Measurement of Co-

Localization of Objects in Dual-Colour Confocal Images.” Journal of Microscopy 

169 (3): 375–382. 

Manokaran, Gayathri, Esteban Finol, Chunling Wang, Jayantha Gunaratne, Justin Bahl, 

Eugenia Z Ong, Hwee Cheng Tan, et al. 2015. “Dengue Subgenomic RNA Binds 

TRIM25 to Inhibit Interferon Expression for Epidemiological Fitness.” Science 

350 (6257): 217 – 221. 

Markoff, Lewis. 2003. “5’- and 3'-noncoding Regions in Flavivirus RNA.” Advances in 

Virus Research 59 (January): 177–228.  

Medigeshi Guruprasad R, Alissa M Lancaster, Alec J Hirsch, Thomas Briese, W Ian 

Lipkin, Victor Defilippis, Klaus Früh, Peter W Mason, Janko Nikolich-Zugich, and 

Jay a Nelson. 2007. “West Nile Virus Infection Activates the Unfolded Protein 

Response, Leading to CHOP Induction and Apoptosis.” Journal of Virology 81 

(20) (October): 10849–60. doi:10.1128/JVI.01151-07.  

 

 

 

 



 REFERENCES   
  

 

 
117  

 
  

 

Miller Sven, Stefan Kastner, Jacomine Krijnse-Locker, Sandra Bühler, and Ralf 

Bartenschlager. 2007. “The Non-Structural Protein 4A of Dengue Virus Is an 

Integral Membrane Protein Inducing Membrane Alterations in a 2K-Regulated 

Manner.” The Journal of Biological Chemistry 282 (12) (March 23): 8873–82. 

doi:10.1074/jbc.M609919200.  

Miller Sven, and Jacomine Krijnse-Locker. 2008. “Modification of Intracellular 

Membrane Structures for Virus Replication.” Nature Reviews. Microbiology 6 (5) 

(May): 363–74. doi:10.1038/nrmicro1890.  

Miller Sven, Sandra Sparacio, and Ralf Bartenschlager. 2006. “Subcellular Localization 

and Membrane Topology of the Dengue Virus Type 2 Non-Structural Protein 4B.” 

The Journal of Biological Chemistry 281 (13): 8854–8863. 

doi:10.1074/jbc.M512697200. 

Miorin Lisa, Amelina Albornoz, Marycelin M Baba, Pierlanfranco D’Agaro, and 

Alessandro Marcello. 2012. “Formation of Membrane-Defined Compartments by 

Tick-Borne Encephalitis Virus Contributes to the Early Delay in Interferon 

Signaling.” Virus Research 163 (2) (February): 660–6. 

doi:10.1016/j.virusres.2011.11.020.  

Miorin Lisa, Paolo Maiuri, V M Hoenninger, C W Mandl, and Alessandro Marcello. 

2008. “Spatial and Temporal Organization of Tick-Borne Encephalitis Flavivirus 

Replicated RNA in Living Cells.” Virology 379 (1) (September 15): 64–77. 

doi:10.1016/j.virol.2008.06.025.  

Miorin Lisa, Inés Romero-Brey, Paolo Maiuri, Simone Hoppe, Jacomine Krijnse-

Locker, Ralf Bartenschlager, and Alessandro Marcello. 2013. “Three-Dimensional 

Architecture of Tick-Borne Encephalitis Virus Replication Sites and Trafficking of 

the Replicated RNA.” Journal of Virology 87 (11) (June): 6469–81. 

doi:10.1128/JVI.03456-12.  

Mlakar Jernej, Misa Korva, Nataša Tul, Mara Popović, Mateja Poljšak-Prijatelj, Jerica 

Mraz, Marko Kolenc, et al. 2016. “Zika Virus Associated with Microcephaly.” 

New England Journal of Medicine. doi:10.1056/NEJMoa1600651.  

Mukhopadhyay Suchetana, Richard J Kuhn, and Michael G Rossmann. 2005. “A 

Structural Perspective of the Flavivirus Life Cycle.” Nature Reviews. Microbiology 

3 (1) (January): 13–22. doi:10.1038/nrmicro1067.  

 

 



 REFERENCES   
  

 

 
118  

 
  

 

Munoz-Jordan Jorge L, Maudry Laurent-Rolle, Joseph Ashour, Luis Martinez-Sobrido, 

Mundrigi Ashok, W. Ian Lipkin, and Adolfo Garcıa-Sastre. 2005. “Inhibition of 

Alpha / Beta Interferon Signaling by the NS4B Protein of Flaviviruses.” Journal of 

virology. 79 (13): 8004–8013. doi:10.1128/JVI.79.13.8004. 

Muñoz-Jordan Jorge L, Gilma G Sánchez-Burgos, Maudry Laurent-Rolle, and Adolfo 

García-Sastre. 2003. “Inhibition of Interferon Signaling by Dengue Virus.” 

Proceedings of the National Academy of Sciences of the United States of America 

100 (24) (November 25): 14333–8. doi:10.1073/pnas.2335168100.  

Muylaert Isabella R., Thomas J. Chambers, Ricardo Galler, and Charles M Rice. 1996. 

“Mutagenesis of the N-Linked Glycosylation Sites of the Yellow Fever Virus NS1 

Protein: Effects on Virus Replication and Mouse Neurovirulence.” Virology 222 

(1) (August 1): 159–68. doi:10.1006/viro.1996.0406. 

Nestorowicz Ann, Thomas J. Chambers, and Charles M. Rice. 1994. “Mutagenesis of 

the Yellow Fever Virus NS2A/2B Cleavage Site: Effects on Proteolytic 

Processing, Viral Replication, and Evidence for Alternative Processing of the 

NS2A Protein.” Virology 199: 114–123. 

Novoa Isabel, Huiqing Zeng, Heather P. Harding, and David Ron. 2001. “Feedback 

Inhibition of the Unfolded Protein Response by GADD34-Mediated 

Dephosphorylation of eIF2alpha.” The Journal of Cell Biology 153 (5): 1011–

1022. doi:10.1083/jcb.153.5.1011. 

Onomoto Koji, Michihiko Jogi, Ji-Seung Yoo, Ryo Narita, Shiho Morimoto, Azumi 

Takemura, Suryaprakash Sambhara, et al. 2012. “Critical Role of an Antiviral 

Stress Granule Containing RIG-I and PKR in Viral Detection and Innate 

Immunity.” PloS One 7 (8) (January): e43031. doi:10.1371/journal.pone.0043031.  

Onomoto Koji, Mitsutoshi Yoneyama, Gabriel Fung, Hiroki Kato, and Takashi Fujita. 

2014. “Antiviral Innate Immunity and Stress Granule Responses.” Trends in 

Immunology 35 (9) (August 18): 420–428. doi:10.1016/j.it.2014.07.006.  

Overby Anna K, Vsevolod L Popov, Matthias Niedrig, and Friedemann Weber. 2010. 

“Tick-Borne Encephalitis Virus Delays Interferon Induction and Hides Its Double-

Stranded RNA in Intracellular Membrane Vesicles.” Journal of Virology 84 (17) 

(September): 8470–83. doi:10.1128/JVI.00176-10.  

Peña José, and Eva Harris. 2011. “Dengue Virus Modulates the Unfolded Protein 

Response in a Time-Dependent Manner.” The Journal of Biological Chemistry 286 

(16) (April 22): 14226–36. doi:10.1074/jbc.M111.222703.  



 REFERENCES   
  

 

 
119  

 
  

 

Pijlman Gorben P, Anneke Funk, Natasha Kondratieva, Jason Leung, Shessy Torres, 

Lieke van der Aa, Wen Jun Liu, et al. 2008. “A Highly Structured, Nuclease-

Resistant, Noncoding RNA Produced by Flaviviruses Is Required for 

Pathogenicity.” Cell Host & Microbe 4 (6) (December 11): 579–91. 

doi:10.1016/j.chom.2008.10.007.  

Ramanathan Mathura P, Jerome a Chambers, Panyupa Pankhong, Michael Chattergoon, 

Watcharee Attatippaholkun, Kesen Dang, Neelima Shah, and David B Weiner. 

2006. “Host Cell Killing by the West Nile Virus NS2B-NS3 Proteolytic Complex: 

NS3 Alone Is Sufficient to Recruit Caspase-8-Based Apoptotic Pathway.” Virology 

345 (1) (February 5): 56–72. doi:10.1016/j.virol.2005.08.043.  

Rey Félix A., Franx X. Heinz, Christian Mandl, Christian Kunz, and Stephen C. 

Harrison. 1995. “The Envelope Glycoprotein from Tick-Borne Encephalitis Virus 

at 2 A Resolution.” Nature 375 (6529) (May 25): 291–8. doi:10.1038/375291a0.  

Roby Justin A., Gorben P. Pijlman, Jeffrey Wilusz, and Alexander A. Khromykh. 2014. 

“Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus 

Pathogenesis and Modulation of Host Responses.” Viruses 6: 404–427. 

doi:10.3390/v6020404. 

Romero-Brey, Ines, and Ralf Bartenschlager. 2014. Membranous Replication Factories 

Induced by plus-Strand RNA Viruses. Viruses. Vol. 6. doi:10.3390/v6072826. 

Ruggieri, Alessia, Eva Dazert, Philippe Metz, Sarah Hofmann, Jan-Philip Bergeest, 

Johanna Mazur, Peter Bankhead, et al. 2012. “Dynamic Oscillation of Translation 

and Stress Granule Formation Mark the Cellular Response to Virus Infection.” Cell 

Host & Microbe 12 (1) (July 19): 71–85. doi:10.1016/j.chom.2012.05.013.  

Saito, Takeshi, Reiko Hirai, Yueh-Ming Loo, David Owen, Cynthia L Johnson, Sangita 

C Sinha, Shizuo Akira, Takashi Fujita, and Michael Gale. 2007. “Regulation of 

Innate Antiviral Defenses through a Shared Repressor Domain in RIG-I and 

LGP2.” Proceedings of the National Academy of Sciences of the United States of 

America 104 (2): 582–587. doi:10.1073/pnas.0606699104. 

Samuel, Charles E. 2001. “Antiviral Actions of Interferons.” Clinical Microbiology 

Reviews 14 (4): 778–809. doi:10.1128/CMR.14.4.778. 

 

 

 

 



 REFERENCES   
  

 

 
120  

 
  

 

Satoh, Takashi, Hiroki Kato, Yutaro Kumagai, Mitsutoshi Yoneyama, Shintaro Sato, 

Kazufumi Matsushita, Tohru Tsujimura, Takashi Fujita, Shizuo Akira, and Osamu 

Takeuchi. 2010. “LGP2 Is a Positive Regulator of RIG-I- and MDA5-Mediated 

Antiviral Responses.” Proceedings of the National Academy of Sciences of the 

United States of America 107 (4): 1512–1517. doi:10.1073/pnas.0912986107. 

Scheuner, D, B Song, E McEwen, C Liu, R Laybutt, P Gillespie, T Saunders, S Bonner-

Weir, and R J Kaufman. 2001. “Translational Control Is Required for the Unfolded 

Protein Response and in Vivo Glucose Homeostasis.” Molecular Cell 7 (6): 1165–

76. doi:S1097-2765(01)00265-9. 

Schröder, Martin, and Randal J Kaufman. 2005. “The Mammalian Unfolded Protein 

Response.” Annual Review of Biochemistry 74 (January): 739–89. 

doi:10.1146/annurev.biochem.73.011303.074134.  

Shinohara, Yoshiyasu, Kento Imajo, Masato Yoneda, Wataru Tomeno, Yuji Ogawa, 

Hiroyuki Kirikoshi, Kengo Funakoshi, et al. 2013. “Unfolded Protein Response 

Pathways Regulate Hepatitis C Virus Replication via Modulation of Autophagy.” 

Biochemical and Biophysical Research Communications 432 (2): 326–332. 

doi:10.1016/j.bbrc.2013.01.103. 

Smith Judith a, Matthew J Turner, Monica L DeLay, Erin I Klenk, Dawn P. Sowders, 

and Robert A. Colbert. 2008. “Endoplasmic Reticulum Stress and the Unfolded 

Protein Response Are Linked to Synergistic IFN-β Induction via XBP-1.” 

European Journal of Immunology 38 (5): 1194–1203. 

doi:10.1002/eji.200737882.Endoplasmic. 

Smith Judith A. 2014. “A New Paradigm: Innate Immune Sensing of Viruses via the 

Unfolded Protein Response.” Frontiers in Microbiology 5 (May): 1–10. 

doi:10.3389/fmicb.2014.00222. 

Sriburi Rungtawan, Suzanne Jackowski, Kazutoshi Mori, and Joseph W. Brewer. 2004. 

“XBP1: A Link between the Unfolded Protein Response, Lipid Biosynthesis, and 

Biogenesis of the Endoplasmic Reticulum.” Journal of Cell Biology 167 (1): 35–

41. doi:10.1083/jcb.200406136. 

Stapleton Jack T., Steven Foung, A. Scott Muerhoff, Jens Bukh, and Peter Simmonds. 

2011. “The GB Viruses: A Review and Proposed Classification of GBV-A, GBV-

C (HGV), and GBV-D in Genus Pegivirus within the Family Flaviviridae.” 

Journal of General Virology 92 (2): 233–246. doi:10.1099/vir.0.027490-0. 

 



 REFERENCES   
  

 

 
121  

 
  

 

Stetson Daniel B, and Ruslan Medzhitov. 2006. “Type I Interferons in Host Defense.” 

Immunity 25 (3) (October): 373–81. doi:10.1016/j.immuni.2006.08.007.  

Stiasny Karin, and Franz X Heinz. 2006. “Flavivirus Membrane Fusion.” The Journal 

of General Virology 87 (Pt 10) (October): 2755–66. doi:10.1099/vir.0.82210-0.  

Takahasi Kiyohiro, Mitsutoshi Yoneyama, Tatsuya Nishihori, Reiko Hirai, Hiroyuki 

Kumeta, Ryo Narita, Michael Gale, Fuyuhiko Inagaki, and Takashi Fujita. 2008. 

“Nonself RNA-Sensing Mechanism of RIG-I Helicase and Activation of Antiviral 

Immune Responses.” Molecular Cell 29 (4): 428–440. 

doi:10.1016/j.molcel.2007.11.028. 

Todd Derrich J, Ann-Hwee Lee, and Laurie H Glimcher. 2008. “The Endoplasmic 

Reticulum Stress Response in Immunity and Autoimmunity.” Nature Reviews. 

Immunology 8 (9) (September): 663–74. doi:10.1038/nri2359.  

Tourrière Helene, Karim Chebli, Latifa Zekri, Brice Courselaud, Jean Marie Blanchard, 

Edouard Bertrand, and Jamal Tazi. 2003. “The RasGAP-Associated 

Endoribonuclease G3BP Assembles Stress Granules.” The Journal of Cell Biology 

160 (6) (March 17): 823–31. doi:10.1083/jcb.200212128.  

Umareddy Indira, Olivier Pluquet, Qing Yin Wang, Subhash G Vasudevan, Eric 

Chevet, and Feng Gu. 2007. “Dengue Virus Serotype Infection Specifies the 

Activation of the Unfolded Protein Response.” Virology Journal 4 (January): 91. 

doi:10.1186/1743-422X-4-91.  

Walter Peter, and David Ron. 2011. “The Unfolded Protein Response: From Stress 

Pathway to Homeostatic Regulation.” Science 334: 1081 – 1086. 

doi:10.1126/science.1209038. 

Warrener Paul, James K Tamura, Marc S Collett, West Watkins, and Mill Road. 1993. 

“RNA-Stimulated NTPase Activity Associated with Yellow Fever Virus NS3 

Protein Expressed in bacteriaVirus NS3 Protein Expressed in Bacteria.” Journal of 

Virology 67 (2): 989–996. 

Weber Michaela, Ali Gawanbacht, Matthias Habjan, Andreas Rang, Christoph Borner, 

Anna Mareike Schmidt, Sophie Veitinger, et al. 2013. “Incoming RNA Virus 

Nucleocapsids Containing a 5’-triphosphorylated Genome Activate RIG-I and 

Antiviral Signaling.” Cell Host & Microbe 13 (3) (March 13): 336–46. 

doi:10.1016/j.chom.2013.01.012.  

 

 



 REFERENCES   
  

 

 
122  

 
  

 

Welsch Sonja, Sven Miller, Ines Romero-Brey, Andreas Merz, Christopher K E Bleck, 

Paul Walther, Stephen D Fuller, Claude Antony, Jacomine Krijnse-Locker, and 

Ralf Bartenschlager. 2009. “Composition and Three-Dimensional Architecture of 

the Dengue Virus Replication and Assembly Sites.” Cell Host & Microbe 5 (4) 

(April 23): 365–75. doi:10.1016/j.chom.2009.03.007.  

Wengler Gerd, and Gisela Wengler. 1993. “The NS3 Nonstrutural Protein of 

Flaviviruses Contains an RNA Triphosphatase Activity.” Virology 197: 265–273. 

Wengler Gerd, Gisela Wengler, and Hans J. Gross. 1978. “Studies on Virus-Specific 

Nucleic Acids Synthesized in Vertebrate and Mosquito Cells Infected with 

Flaviviruses.” Virology 89 (2): 423–437. 

Wilson Jason R, Paola Florez de Sessions, Megan a Leon, and Frank Scholle. 2008. 

“West Nile Virus Nonstructural Protein 1 Inhibits TLR3 Signal Transduction.” 

Journal of Virology 82 (17) (September): 8262–71. doi:10.1128/JVI.00226-08.  

Yan Wei, Christopher L Frank, Marcus J Korth, Bryce L Sopher, Isabel Novoa, David 

Ron, and Michael G Katze. 2002. “Control of PERK eIF2alpha Kinase Activity by 

the Endoplasmic Reticulum Stress-Induced Molecular Chaperone P58IPK.” 

Proceedings of the National Academy of Sciences of the United States of America 

99 (25): 15920–15925. doi:10.1073/pnas.252341799. 

Ye Jing, Bibo Zhu, Zhen F Fu, Huanchun Chen, and Shengbo Cao. 2013. “Immune 

Evasion Strategies of Flaviviruses.” Vaccine 31 (3) (January 7): 461–71. 

doi:10.1016/j.vaccine.2012.11.015.  

Yoneyama Mitsutoshi, and Takashi Fujita. 2009. “RNA Recognition and Signal 

Transduction by RIG-I-like Receptors.” Immunological Reviews 227 (1) (January): 

54–65. doi:10.1111/j.1600-065X.2008.00727.x.  

Yoneyama Mitsutoshi, Mika Kikuchi, Kanae Matsumoto, Tadaatsu Imaizumi, Makoto 

Miyagishi, Kazunari Taira, Eileen Foy, et al. 2005. “Shared and Unique Functions 

of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate 

Immunity.” Journal of Immunology 175 (5): 2851–2858. doi:175/5/2851 [pii]. 

Yoneyama Mitsutoshi, Mika Kikuchi, Takashi Natsukawa, Noriaki Shinobu, Tadaatsu 

Imaizumi, Makoto Miyagishi, Kazunari Taira, Shizuo Akira, and Takashi Fujita. 

2004. “The RNA Helicase RIG-I Has an Essential Function in Double-Stranded 

RNA-Induced Innate Antiviral Responses.” Nature Immunology 5 (7) (July): 730–

7. doi:10.1038/ni1087.  

 



 REFERENCES   
  

 

 
123  

 
  

 

Yoshida Hiderou, Toshie Matsui, Akira Yamamoto, Tetsuya Okada, and Kazutoshi 

Mori. 2001. “XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response 

to ER Stress to Produce a Highly Active Transcription Factor.” Cell 107 (7): 881–

891. doi:10.1016/S0092-8674(01)00611-0.  

Yu Chao, Katharina Achazi, and Matthias Niedrig. 2013. “Tick-Borne Encephalitis 

Virus Triggers Inositol-Requiring Enzyme 1 (IRE1) and Transcription Factor 6 

(ATF6) Pathways of Unfolded Protein Response.” Virus Research 178 (2) 

(December 26): 471–7. doi:10.1016/j.virusres.2013.10.012.  

Yu Chia-Yi, Yun-Wei Hsu, Ching-Len Liao, and Yi-Ling Lin. 2006. “Flavivirus 

Infection Activates the XBP1 Pathway of the Unfolded Protein Response to Cope 

with Endoplasmic Reticulum Stress.” Journal of Virology 80 (23) (December): 

11868–80. doi:10.1128/JVI.00879-06. 

 

 



 

 

 

 


