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Summary 

This thesis is focused on the development of adhesive systems for biomedical applications 

and has been carried out in the framework of the European Project “AnastomoSEAL” (EU-

FP7). Within this project, a bioactive membrane based on polysaccharides was developed for 

the prevention of anastomotic leakage (AL) after colo-rectal cancer (CRC) resection. The 

membrane was designed to be wrapped around the intestinal tissue in order to stimulate the 

healing of the surgical wound, thus accelerating its closure. The main components of the 

system were the two polysaccharides alginate and hyaluronan (HA), the former representing 

the physical matrix, the latter exerting a bioactive function in the terms of stimulating the 

healing of wounds. The main goals of this thesis were to manufacture and characterize the 

membranes and to design tissue-adhesives that could be implemented in the medical device. 

In the first part of the work, the procedure for the membrane preparation was set up, followed 

by the characterization of the product as to its mechanical, chemical and biological properties. 

The membranes were prepared by freeze-drying alginate-HA hydrogels crosslinked by 

calcium ions (Ca2+). Several formulations of the membrane were screened to tailor its 

performance in the terms of mechanical resistance, stiffness and deformation. In vitro 

biological test pointed out the the non-cytotoxicity of the membranes, as well as the ability of 

the released HA to stimulate the healing of fibroblasts. Degradation tests and release studies 

were performed to predict the in vivo behavior of the membrane, pointing out that, in 

simulated physiological conditions, the release of HA occurs during the first hours, whereas a 

complete degradation of the membrane is achieved in 21 days. Sterilized membranes were 

also characterized to investigate the effect of terminal sterilization on the membrane 

properties; in particular, the effect of supercritical carbon dioxide (scCO2) supplemented with 

H2O2 was studied. In parallel, adhesive strategies were designed and tailored to the peculiar 

features of both membrane and intestinal tissue. 

The adhesive strategies developed in this thesis were based either on the use of exogenous 

compounds (i.e. H2O2), or on the use of molecules displaying bioadhesive properties. In the 

first case, adhesion studies proved the enhancement of the adhesion strength between 

membrane and tissue after the treatment with H2O2, and pointed out the ability of this 

compound to induce the formation of an adhesive interface made of gelatin, which was 

integrated in the structure of the tissue. In the latter case, bio-inspired adhesive strategies were 

designed considering the adhesion mechanism employed by natural organisms (i.e. mussels). 
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The key adhesive molecules of mussel’s adhesive (i.e. catechol-based compounds) were 

implemented into the structure of the membrane by chemical modifications. In vitro adhesion 

tests showed an improved adhesion of the modified-membrane in simulated physiological 

conditions, which was confirmed in vivo by preliminary adhesion studies.  

A second mussel-inspired adhesive strategy was based on the development of nanoparticles 

displaying a catecholic core, named melanin-like nanoparticles (MNPs). MNPs were 

characterized from a biological point of view and used to prepared adhesive coatings for the 

AnastomoSEAL membrane, whose adhesive properties were evaluated by in vitro adhesion 

tests. In conclusion, the tests performed allowed the development of a medical device 

endowed with adhesive components that enabled an efficient adhesion in a physiological 

environment. 
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Sommario 

Il presente lavoro di tesi è incentrato sullo sviluppo di sistemi adesivi per applicazioni 

biomediche e si configura all’interno del Progetto Europeo “AnastomoSEAL” (EU-FP7). 

Questo progetto aveva come scopo lo sviluppo di una membrana bioattiva a base di 

polisaccaridi, per la prevenzione della deiscenza anastomotica, che può verificarsi 

successivamente alla resezione chirurgica del tratto di intestino affetto da carcinoma colo-

rettale. La membrana è stata concepita per essere avvolta attorno al tratto di intestino 

interessato da sutura, al fine di stimolare e accelerare la chiusura della ferita chirurgica. Le 

principali componenti di questa membrana sono i polisaccaridi alginato e acido ialuronico 

(HA), i quali rappresentano rispettivamente la matrice fisica del sistema e la componente 

bioattiva che stimola il processo di guarigione delle ferite. I principali obiettivi di questa tesi 

riguardavano lo sviluppo della membrana e di sistemi adesivi che possono essere 

implementati nel dispositivo medico finale. Nella prima parte, è stata messa a punto la 

procedura per la preparazione delle membrane, le quali sono state caratterizzate dal punto di 

vista meccanico, chimico e biologico. Le membrane sono state ottenute mediante un processo 

di liofilizzazione di idrogeli a base di alginato-HA, reticolati mediante l’impiego di ioni calcio 

(Ca2+). Sono state preparate membrane a diversa formulazione per modulare le proprietà in 

termini di resistenza a trazione, rigidità e deformabilità. Test biologici in vitro hanno 

dimostrato la non-citotossicità delle membrane e l’abilità dell’HA rilasciato dalla membrana 

di stimolare la migrazione e la proliferazione di fibroblasti. Studi di degradazione e di rilascio 

sono stati effettuati per predire il comportamento della membrana in vivo e hanno evidenziato 

che, in condizioni simil-fisiologiche, l’HA viene rilasciato durante le prime ore, mentre la 

completa degradazione della membrane avviene in circa 21 giorni. Le membrane sterilizzate 

sono state caratterizzate per valutare l’effetto della sterilizzazione terminale sulle proprietà 

della membrana; in particolare, è stato valutato l’effetto della sterilizzazione mediante CO2 

supercritica (scCO2) in presenza di acqua ossigenata (H2O2). In parallelo, sono state 

sviluppate delle strategie adesive specifiche per il dispositivo medico finale, considerando le 

caratteristiche della membrana e del tessuto intestinale. Le strategie adesive sviluppate in 

questa tesi erano basate sull’impiego di composti esogeni (i.e. H2O2) o sull’uso di molecole 

con proprietà bioadesive. Nel primo caso, gli studi di adesività hanno dimostrato un aumento 

della forza adesiva, successivamente al trattamento con H2O2, indicando che questo composto 

consente di indurre modifiche del collagene tissutale portando alla formazione di 
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un’interfaccia adesiva costituita da gelatina. Nel secondo caso, sono state sviluppate strategie 

adesive inspirate a meccanismi di adesione impiegati da organismi naturali (i.e. mitili). Le 

molecole chiave delle sostanze adesive secrete dei mitili (i.e. molecole catecoliche) sono state 

implementate nella struttura della membrana, mediante modifiche chimiche. Test di adesione 

in vitro hanno dimostrato che in condizioni simil-fisiologiche, le membrane modificate 

presentano un’aumentata adesività, proprietà confermata da studi preliminari in vivo.  

Una seconda strategia adesiva ha previsto l’impiego di nanoparticelle che presentano un 

struttura catecolica, denominate nanoparticelle melanin-like (MNPs). Le MNPs sono state 

caratterizzate dal punto di vista biologico e impiegate per la preparazione di rivestimenti 

adesivi per le membrane, valutate mediante test di adesione in vitro. In conclusione, i test 

effettuati hanno consentito lo sviluppo di un dispositivo medico integrato con componenti 

adesive che permettono un’adesione efficace in ambiente fisiologico. 
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1. INTRODUCTION 

1.1. COLORECTAL CANCER DISEASE 

1.1.1. Incidence, mortality and survival 

Colorectal cancer (CRC) is the third most common form of cancer and the fourth most 

common cancer cause of death in the world (1), accounting for 9.4% of all cancer incidence in 

men and 10.1% in women (2;3). The incidence of CRC varies in the different countries, 

although the highest rates are reported in Europe, Australia, New Zealand, Canada and United 

States, pointing out that it is a disease mainly affecting countries with a Western culture (2). 

Although a general increase of the survival rate has been reported since 1960s due to the 

accessibility to specialized health-care techniques (4), CRC still represents the worldwide 

main cause of morbidity and mortality (5). The rate of survival increases according to the 

stage at diagnosis: in general, the earlier the stage of cancer progression at the diagnosis, the 

higher the chance of survival. Indeed, it has been estimated that in the case of localized 

cancers, the survival rate reaches 90%, while it decreases to 70% and 10% in the case of 

regional and metastatic cancers, respectively (4;6). Despite the availability of modern 

diagnostic approaches and screening programs have improved the early cancer detection and 

treatment, no significant variation of the CRC incidence have been recorded over the years 

(3). 

 

1.1.2. Risk factors of CRC 

Risk factors such as the elderly, the occurrence of inflammatory bowel diseases, the heredity, 

the environmental parameters and the lifestyle have been associated to the incidence of CRC. 

The mean age of patients at the diagnosis is 73 years old, although already at the age of 70, at 

least 50% of the Western population develops some forms of CRC, spanning from early 

benign polyps to invasive adenocarcinomas (7;8). Adenomas often represent precursor lesions 

of colorectal cancer and almost 95% of sporadic CRC develops from these alterations (9) in a 

time-frame of 5 to 10 years (10;11). The early detection of adenomas, followed by their 

surgical removal can reduce the risk of CRC occurrence (12). Some forms of CRC are related 

to hereditary conditions such as the familial adenomatous polyposis (FAP) and the hereditary 

non-polyposis colorectal cancer, known also as the Lynch syndrome (13), which are caused 

by alterations of genes involved in the DNA repair mechanism (MLH1 and MSH2 genes) and 
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in the tumor suppressor gene APC, respectively (14). The occurrence of inflammatory bowel 

diseases such as the ulcerative colitis and Crohn’s disease are also some of the factors that 

may increase the risk of developing CRC up to 20 folds (9;15). The lifestyle and 

environmental parameters can also influence the CRC development. Indeed, diets poor in 

fruits and vegetable or rich in fats as well as the high consumption of meat are considered 

some major risks for CRC, since in the digestive tract the accumulation of food metabolites 

can create a favorable environment for the development of a bacterial flora capable of 

degrading bile salts and lead to the formation of potentially carcinogenic nitric compounds 

(2;9;16;17). 

The physical inactivity and the overweight or obesity conditions account from a fourth to a 

third of colorectal cancers. Although the underlying mechanism have not been elucidated yet, 

it is believed that the physical activity improves the metabolic rate and the gut motility and 

that it reduces the blood pressure and the insulin resistance-causing diabetes (1;3;18). 

Smoking and alcohol consumption are also associated to the onset of CRC (19;20). Indeed, 

some alcohol metabolites such as acetaldehyde can exert a carcinogenic action. Similarly, 

smoking can cause DNA mutations, whose repair mechanisms are less efficient whether the 

alcohol consumption occurs. Moreover, alcohol can act as a solvent to favor the penetration of 

carcinogenic molecules into mucosa cells, thus enhancing the predisposition to tumor (21). 
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1.2. THE ANASTOMOTIC LEAKAGE 

1.2.1. Medical need 

Despite the availability of modern health care techniques and screening programs have 

allowed some improvements in the early diagnosis of CRC over the years, the curative 

management is mainly surgical and is based on the resection of the affected bowel, followed 

by the suture of the two extremities, in order to restore the normal transit (22;23). The site at 

which the bowel continuity is restored is called anastomosis and the most frequent post-

operative complication of any bowel resection is the anastomotic leakage (AL), which occurs 

when no proper tissue regeneration takes place at the site of anastomosis (24;25) (figure 1).  

 

Figure 1. Intestinal bowel affected by cancer (a); anastomosis performed after CRC resection (b). 

 

The general incidence of AL averages approximately around 10%, but it can be higher in the 

case of distal rectal cancers and much lower for cancers affecting the proximal colon tract 

(26). The rate of AL after rectal cancer surgery varies according to different countries, 

reaching the maximum value of 21% and leading to mortality in up to 39.3% of cases (27). 

From a clinical point of view, the patients developing this complication need an additional 

number of radiographic studies and extra nursing along with long hospital stays that further 

increase the costs for medical care. Moreover, these patients often display a generalized 

peritonitis that turns out in the need of a re-intervention with a subsequent increase in 

morbidity and mortality (28-30).  

The surgical intervention of CRC resection can be performed by hand-sewing or by 

mechanical stapling devices, through both laparoscopic and open surgery approaches, with no 

significant difference in the incidence of AL between the two techniques. However, some 

surgical aspects such as a technically difficult operation (i.e. a narrow deep pelvis, the 
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presence of a bulk tumor and a more advanced local stage of disease) or a reduced vitality of 

the treated tract, due to an excessive skeletonization of the proximal colonic stump, have been 

identified as possible causes of AL (31). 

Both systemic and surgical aspects can contribute to the onset of AL, although this 

complication also occurs in patients with no apparent predisposition (32): parameters such as 

malnutrition, co-occurrence of metabolic diseases, organ failures, elderly, immunosuppression 

and neo-adjuvant therapies are considered some of the main risk factors (33;34). Other factors 

are male gender, smoking, obesity, alcohol abuse, the use of anti-inflammatory drugs, the 

preoperative transfusion and the contamination of the operative field (35-37).  

 

1.2.2. Surgical-based treatment for treatment of anastomotic leakage (AL) 

In spite of the strong social, economic and medical impact of AL, at present only some 

surgical solutions aimed at reducing its clinical impact are available for surgeons, in the 

specific case of mid or low rectal cancers or when a combination of high-risk variables for AL 

are present. For instance, after CRC resection, the realization of a defunctioning stoma (i.e. 

ileostomy) for fecal diversion accounts for a significant decrease of the severity and an easier 

management of AL (38). However, the presence of a temporary ileostomy can add other 

clinical complications, such as tendency to dehydration and the imbalance of electrolytes, 

especially in elderly patients, and it makes necessary a second operation during which the 

ileostomy is resected and a new anastomosis is performed. Moreover, the closure of a 

defunctioning stoma can result in a long-term anorectal disfunction (39). Defunctioning 

stomas are created in up to 73% of the patients treated for rectal cancer to avoid complications 

due to anastomotic dehiscence. Nevertheless, even in such situation, the leakage may occur in 

up to 32% of these patients. Thus, the use of a diverting stoma can reduce the risk of 

reoperation and post-operative death if leakage occurs, but it seems not to decrease the 

leakage rate (40). 

In case of AL occurrence, the type of treatment depends on the severity of the clinical 

conditions and on the entity of the leakage (height and the flow volume of leakage). The 

treatment can range from percutaneous drainage to peri-anastomotic collection under 

ultrasound or CT-guidance to a major re-intervention. A portion of patients with AL can be 

managed conservatively, meaning to treat patients without performing any surgical 

intervention, but this approach often leads to a very long hospitalization. In a retrospective 

study conducted on 67 patients affected by AL after rectal cancer surgery, only 1.5% had a 



5 

 

conservative treatment, 1.5% underwent a surgical lavage and drainage operation with the 

creation of a diverting stoma not previously performed, while in 67.2% of patients a second 

resection with a new anastomosis was performed. In 11.9% of cases, there was a recurrent 

leakage rate. In the same paper, a more demolitive operation such as Hartmann’s resection 

was needed in almost 30% of patients (41). This operation consists in the detachment of the 

former anastomosis, followed by the closure of the distal rectal stump and the creation of an 

end-colostomy. According to the age and general conditions of the patient, a subsequent new 

major abdominal operation called “reversal of Hartmann’s” can be proposed, carrying again 

all the high morbidity and mortality risks mentioned for colorectal surgery, especially in old 

patients. The restoration of continuity after Hartmann’s procedure can be done in up to 63% 

of cases, leading to a large number of patients to keep the colostomy all life long (41). Finally, 

in a very small group of patients developing a life-threatening peritonitis with sepsis and multi 

organ failures, an emergency life-saving surgery such as laparostomy can be necessary. In this 

case, the patient needs a longer hospital stay, meaning an enormous amount of resources. 

Following recovery, morbidity will be accompanied by restoration of bowel continuity and 

abdominal wall reconstruction after laparostomy.  

These surgical methods are very invasive, debilitating and not fully efficient; therefore the 

prognosis and the health care of this pathology have not met any considerable improvement 

recently.  Nowadays, there are no efficient solutions for the prevention of the AL, but 

only some surgical-based techniques to limit its consequences at the clinical level. Hence, this 

complication represents the major concern associated to the CRC resection. Given the serious 

impact on the patient’s life and on the cost of the medical care associated to its occurrence, 

the availability of devices and methods capable to prevent the AL and to limit its serious 

consequences appear as a strong need. 

 

1.2.3. Commercial products employed for the prevention of AL 

Despite some surgical methods aimed at reducing the clinical impact of AL are being 

available nowadays, the high morbidity and mortality in patients undergoing AL justify the 

requirement of efficient solutions for decreasing the rate of failure (42). The absence of 

commercial products specifically tailored to the AL led clinicians to perform preclinical 

studies to test the effectiveness of biomaterials designed for general surgery and different 

applications, in the prevention of AL. In the last years, some biomaterials in the form of 

patches and membranes were tested in animals. For instance, in a porcine model, collagen-
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based patches from small intestinal submucosa (SIS) have shown some beneficial effects in 

anastomotic sealing (42). However, the risk of animal source contamination and bowel 

obstruction, along with the occurrence of ulcers on the luminal surface remain serious 

concerns (43;44). 

TachoComb® – Nycomed is a fibrin-collagen patch for topical hemostatic applications and 

whose effectiveness during the early healing period of colonic anastomoses was tested in rats. 

These patches were proved to support the anastomotic integrity, although they also caused an 

inflammatory reaction which may increase the time required for the healing process (45). 

Similarly, TachoSil® – Nycomed, a different collagen-based patch coated with the 

coagulation factors fibrinogen and thrombin, was used for the sealing of both colorectal (46) 

and gastrointestinal anastomoses (47). The first study was performed in a mice model and it 

pointed out a beneficial effect in terms of healing, although the underlying molecular 

mechanisms were not elucidated (46). In the second case, the material was tested on a porcine 

model, but the results did not point out any difference between sealed and unsealed controls 

(47). Conversely, autogenic grafts displayed bad anastomotic healing attributed to the 

avascularity of grafts and to aggravated adhesions between intestine and intra-abdominal 

organs (48). 

ForeSeal® – Brothier, a bioabsorbable sleeve for lung staple-line reinforcement that can be 

used with surgical staplers, has shown hemostatic and healing properties, but clinical trials are 

only related to lung applications (49). 

Hemo-ionic® – Brothier, an alginate-based material developed in the form of fibers, has been 

used as a non-resorbable haemostatic agent for rectal cancer surgery; this product may reduce 

the drainage volume but it did not show any clinical advantage over traditional techniques 

(50). 

Another material developed for the general treatment of soft tissues is the copolymer 

poly(glycolic acid):trimethylene carbonate. This material has been used to produce the 

commercial product Gore® Bio-A®, a synthetic resorbable web in the form of sheets acting 

as a tissue reinforcement which, however, was not specifically designed for intestinal 

anastomosis.  

The ePTFE – Gore®, an expanded poly(tetrafluoroethylene) sleeve, is a device displaying a 

good biocompatibility and handling, although these sleeves are non-resorbable, a feature that 

represents a limit for applications such as the prevention of AL, given the need to avoid a re-

intervention (51).  
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Technical improvements to the surgical precedures have been reached by the use of synthetic, 

bioresorbable staple line reinforcements (e.g. Gore® SeamGuard®). However, their use has 

only slightly decreased the rate of leakage in these operations (42).  

As shown by this literature overall, these biomaterials were not capable of satisfy entirely the 

clinical need of AL occurrence, thus pointing out the need of developing tailored biomaterials.  
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1.3. THE ANASTOMOSEAL PROJECT 

1.3.1. General overview of the AnastomoSEAL project 

The European project “AnastomoSEAL” was focused on responding to the widespread 

clinical need of preventing AL after CRC resection. Indeed, despite the efforts in identifying a 

possible treatment among the available ones, all the proposed solutions have shown some 

limitations and drawbacks and a biomaterial that is specifically tailored to the prevention of 

AL is still missing at the clinical level. A possible solution would be an external 

reinforcement of intestinal anastomosis through a material that can be wrapped around the 

intestine (44;46;52). Thus, an appropriate device to reach this objective would be a soft and 

pliable membrane that can be released in situ by the stapling device or applied exogenously to 

the staple line. Thus, the objective of the AnastomoSEAL project was the development of a 

bioresorbable biomaterial capable of stimulating the healing of the surgical wound, through 

the release of a bioactive component that accelerates tissue regeneration in terms of wound 

healing, during the critical period of tissue healing. 

The wound healing occurs in all the organs and tissues of the body through a complex 

process, at the end of which the migration and proliferation of fibroblasts and the deposition 

of newly synthetized extracellular matrix (ECM) account for the closure of the wound 

margins accompanied by scar formation (53;54). Fibroblast cells composing the most external 

layer of the intestinal bowel are directly involved in tissue healing, since their migration and 

proliferation account for the closure of wounds. The activity of fibroblasts in terms of 

migration and proliferation can be stimulated upon exposure to trophic factors such as 

exogenous hyaluronic acid (HA), as shown by both in vitro and in vivo tests (55-59). 

Given these premises, the proposed biomaterial was designed in the form of soft membrane 

(patch) mainly composed of the two polysaccharides alginate and HA, representing the 

physical matrix and the bioactive component, respectively. This patch was intended to be 

wrapped around the sutured part of the intestine where the HA, once released out of the 

membrane, stimulates the activity of fibroblasts composing the most external layer of the 

intestinal wall (serosa). This strategy was designed to promote the physiological process of 

tissue regeneration, thus preventing or limiting the risk of AL (figure 2).  
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Figure 2. Colorectal cancer resection (A); anastomosis at the extremities of the resected bowel (B); patch 

wrapped around the anastomosis sealed with sutures (C). 

 

In this perspective, this biomaterial is conceived as a delivery system, enabling the release of 

the bioactive molecule (HA) at the site of the wound. In order to achieve this goal, the 

biomaterial is required to adhere to the intestinal serosa and to remain in situ for the time-

frame required to ensure the cicatrization and remodeling of the anastomosis. After having 

exerted this function, the biomaterial should undergo degradation within the human body, 

under the catalysis of hyaluronidase and the hydrolytic activity of body fluids (60). Hence, no 

second intervention would be required to remove the medical device from the site of implant. 

 

1.3.2. The AnastomoSEAL Consortium 

The AnastomoSEAL Consortium involved two academic and four industrial partners, 

integrating the research and technology development chain, from material design to pre-

clinical testing.  

Hereafter, the main roles of the partners within the project are described: 

- University of Trieste (UNITS). UNITS was the coordinator of the project and it 

was responsible for its management. The main research activities focused on the 

study and development of biopolymer components and on the manufacturing of 

the patches, along with a chemical, physical and in vitro biological 

characterization of the materials.  

- University of Maastricht (UNIMA). UNIMA was involved in the animal studies: its 

main role was to develop and coordinate the animal models, to test the patches in 

vivo, to perform all the animal experiments and to analyze tissues derived from 

these animal experiments. 
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- SIGEA srl. SIGEA is a company whose research and development activities are 

focused on polysaccharides development. Its contribution to the project was 

related to the production of the patches, according to biological screening 

feedback, to provide all the chemical background from laboratory tests necessary 

to the subsequent technological transfer for the industrialization of the membranes. 

- RESCOLL. It is a private technology center of materials specialized in polymers, 

composites and surface treatment as well as adhesion and bonding technologies. 

The contribution within the AnastomoSEAL project was to develop adhesion 

strategies, to screen possible material reinforcements for the optimization of 

mechanical resistance of the matrix, to perform the mechanical characterization of 

adhesives over inert and biological substrates, as well as chromatographic, 

spectrometry and thermo-mechanical analyses. RESCOLL’s activities were also 

focused on the development and validation of the sterilization process and on the 

study of the final product performance under accelerated aging simulating storage 

conditions. 

- FMC BioPolymer. It is one of the leading manufacturers of biopolymers for 

pharmaceutical and biomedical applications. The Company manufactures ultrapure 

alginate as well as ultrapure chitosan and hyaluronan in NovaMatrix, a business 

unit of FMC BioPolymer. Two technology platforms developed by FMC 

BioPolymer/NovaMatrix were available to the Consortium: i) self-gelling alginate 

(an alginate system with controllable gelation kinetics); ii) ultrapure alginate foam 

with controllable degradation profiles; iii) industrial process technology and risk 

analysis aspects. 

- IMPULS. It is a Polish company that commercializes innovative products for 

health-care. The contribution of IMPULS was focused on the following area: i) 

sterilization procedures on patches; ii) exploitation studies on both European and 

Russian markets; iii) industrial process technology and risk analysis aspects. 

 

1.3.3. Advances of the AnastomoSEAL project 

The proposed biomaterial is based on the polysaccharides alginate and HA, which have been 

widely used for wound healing applications (55;61-63). The use of the proposed material 

provides many advantages and benefits over the current surgical techniques for the prevention 
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and treatment of AL. The major innovative aspects achieved by this project can be outlined as 

follows: 

i. development of an innovative material specifically designed for colorectal 

anastomosis applications; 

ii. use of natural-derived degradable/resorbable polysaccharides. They represent an 

alternative to synthetic polymers or to proteins such as collagen that can be associated 

to a severe risk of biological contamination. Natural polysaccharides offer the 

advantages of being environmental-friendly, produced on large scale and in ultrapure 

medical grade form. Moreover, these compounds may display several properties such 

as biocompatibility, biodegradability, bioactivity and bioadhesivity to the target tissue 

(50;64-66); 

iii. development of a patch with the following features: i) ease to handle during surgical 

procedures, ii) suitable for both open and laparoscopic techniques, iii) designed to 

have tear strength sufficiently high to support surgical positioning and physiological 

stresses on the site of implant, iv) endowed with adequate adhesive properties to be 

firmly held in position for the time required to achieve a successful healing; 

iv. development of a biomaterial that has the potential to become the material of choice 

for a non-invasive technique in the prevention of AL. 

 

1.3.4. Social and economical impact of the AnastomoSEAL project on European level 

The AL associated to CRC resection leads to serious consequences on both the patients’ life 

and on the costs for health care: the quality of life of a patient suffering from CRC is deeply 

modified when faced with this diagnosis and it worsens even more when complications occur. 

A study published in 2008 described how patients with AL had a poorer quality of life, lower 

body image, poor social activity and a significantly higher depression and anxiety (67). 

Patients requiring a stoma have to face problems including adapting to the new anatomy, 

managing the stoma and continuing normal activities in their socio-cultural environment (68). 

AL has also been associated with increased local recurrence and diminished survival after 

colorectal cancer surgery (69). The reduced incidence of the AL achieved by the use of the 

proposed medical devices would result in a short hospital stay, a quick return to daily activity 

and a good quality of life. It also could allow the patients to start the chemotherapy earlier and 

potentially prolong the long-term survival. The great impact on the quality of life of patients 

can be achieved in terms of patient’s comfort, since the complications of the actual surgical 



12 

 

proceedings, the number of additional surgical procedures and all the related medical and 

psychological morbidities can be reduced.  

Also the economic impact of the project is significant, especially in relation to the cost of 

health care and to the potential global growth of the european biomaterials industry. Indeed, 

the management of AL by the health care system is nowadays very onerous and the 

economical cost will increase in a linear fashion because of the aging of the population (70). 

Hence, by decreasing the number of patients suffering from this complication a subsequent 

decrease of the cost for health care can be achieved. Moreover, the proposed medical device 

can be exploited also for other applications in the fields of medical devices, considering that 

AL can occur in every kind of colorectal surgery as well as in the case of intestinal resections 

performed for inflammatory bowel diseases, diverticular disease, volvulus, perforation, 

strangulated hernia and ischemic colitis.  

Finally, the proposed patch could be employed for other potential applications, in the field of 

bioactive biomaterials or drug delivery systems, by physical or chemical incorporation of 

pharmacologically active compounds, or used as a carrier in advanced therapy medicinal 

products, in combination with cells or plasma derived products. In those cases, the already 

proven success of the proposed construct in AL treatment would constitute a technological 

and economical benefit for more demanding applications. 

 

1.3.5. Risk assessment and contingency planning 

The proposed patch was mainly composed of alginate and HA. Both of these polysaccharides 

are approved for human uses and can be produced in large amounts with Good Manufacturing 

Practices (GMP) protocols. Therefore, all the possible risks were analyzed for each crucial 

research and development step of the project, with respect to the raw materials and to 

biomaterial processing. The risk assessment and foreseen actions are listed in Table 1. 

Additional risks were related to the analysis of economical aspects, to the impacts of the 

product on the market and to the safety and efficacy of the medical device, based on 

indications of ISO 14971 that defines the international requirements of risk management for 

medical devices. 
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 Technological risk Risk level Preventing actions Technological risk 

1 Release of endotoxins from 

polysaccharides 

Very low Use of ultrapure GMP certified 

raw materials 

 

2 Release of toxic byproducts from 

the polysaccharide derivatives 

synthesis 

Very low Use of ultrapure GMP certified 

raw materials and production 

processes 

 

3 In-vivo biodegradation rate not 

matching tissue regeneration 

timing 

Medium Bibliographic study and in-vitro 

tests on the influence of 

polysaccharide concentration 

and reticulation on degradation rate 

Redesign formulation 

and reticulation 

techniques. 

Modulate polymers 

crosslinking. 

4 Insufficient adhesion of the patch 

to the intestinal tissue 

Medium/High Development of formulations with 

different amounts of HA 

Use of additional 

biomimetic adhesive 

components (e.g. 

chitosan, 

bio-inspired glue) 

5 Non-adequate mechanical 

properties 

Medium Research of the most suitable 

polysaccharide concentration 

and reticulation conditions 

Use of biocompatible 

resorbable 

reinforcement fibers 

6 Modification of chemical and 

physical properties of the 

biomaterial induced by 

sterilization 

Medium Monitor sterilization effect on 

different formulations; product 

characterization 

Investigation of 

alternative sterilization 

techniques (e.g. 

β-radiation, 

supercritical CO2) 

Table 1. Technological risk assessment and contingency plan. 

 

1.3.6. Regulatory issues for medical devices 

In the European Union (EU), the regulatory issue relating to the safety and performance of 

medical devices has been  regulated by three directives, since 1990s:  

a. Council Directive 90/385/EEC on Active Implantable Medical Devices (AIMDD) (1990); 

b. Council Directive 93/42/EEC on Medical Devices (MDD) (1993); 

c. Council Directive 98/79/EC on In Vitro Diagnostic Medical Devices (IVDMD) (1998). 

These Directives aim at guarantee a high level of protection for human health and safety. This 

regulation has been implemented by the Member States and undergone revision on the 26th of 

September 2012. The “COUNCIL DIRECTIVE of 20th June 1990 on the approximation of the 

laws of the Member States relating to active implantable medical devices” (90/385/EEC) 

stated that an active implantable medical device includes “any active medical device which is 

intended to be totally or partially introduced, surgically or medically, into the human body or 

by medical intervention into a natural orifice, and which is intended to remain after the 

procedure”. 

According to the guidelines and definitions of “MEDICAL DEVICES: Guidance document - 

Classification of medical devices” from EUROPEAN COMMISSION, DG HEALTH AND 

CONSUMER, the AnastomoSEAL product can be classified as a short term, surgically 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:01990L0385-20071011&locale=en
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:01993L0042-20071011&locale=en
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01998L0079-20120111&qid=1413308118275&from=EN
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invasive, non-reusable and for continuous use medical device (Class III). According to the 

definitions of concept of continuous use, invasiveness and permanence in the human body, a 

Class III medical device is considered as a surgically invasive one, intended for short-term use 

(between 60 minutes 30 days). Moreover, the device must exert a biological effect and be 

wholly or mainly absorbed or undergo chemical changes in the body. 
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1.4. POLISACCHARIDE-BASED BIOMATERIALS 

Polysaccharides are a class of macromolecules whose chemical structures and physical 

properties make them suitable for the development of biomaterials for diverse purposes, 

ranking from tissue engineering to drug delivery applications (71;72). As a general 

consideration, their stereo-regular character confers to polysaccharides the ability to form 

helical conformations in solution. The stability of their ordered conformation depends on 

parameters such as temperature, ionic concentration and presence of uronic acid units or ionic 

substituents in their structure (73;74). The dissolution of polysaccharides in aqueous solutions 

depends on the pH and it is favoured by their polyelectrolyte character. The presence of –OH 

functional groups in their structure accounts for the formation of hydrogen bonds stabilizing 

the cooperative intra and interchain interactions and for the semi-rigid behavior in well-

defined thermodynamic conditions (72). All polysaccharides also have a small hydrophobic 

character in relation to the CH groups (75;76). According to their charge, polysaccharides can 

be neutral or charge molecules. HA and alginate belong to the class of negatively charged 

polymers, given the presence of carboxylic groups; amino groups are instead present in 

chitosan, the only natural cationic polysaccharide.  

As previously mentioned, the use of polysaccharides for the manufacturing of biomedical 

materials provides several advantages over synthetic polymers. For instance, biocompatibility, 

biodegradability, bioactivity and bioadhesivity are some of the most desired features. 

Biocompatibility is the ability of materials of not causing any adverse reaction once implanted 

in the human body (77;78); this feature can be enhanced either by varying the composition or 

by modifying the chemical structure of the polysaccharides composing biomaterials (79-81). 

Biomaterials based on polysaccharides often undergo degradation in the human body. In the 

field of internal surgery, the availability of biodegradable biomaterials provides the advantage 

of avoiding a second intervention aimed at the removal of the medical devices from the site of 

implant, thus increasing the probability to have a successful medical outcome. For instance, in 

the case of AL prevention, both non-absorbable and absorbable materials are being studied 

(24), although the former materials seem to display several advantages over non-absorbable 

reinforcement (82). In the human body, the degradation of polysaccharide-based biomaterials 

occurs through the catalysis of hydrolases, as in the case of HA, while polymers such as 

alginate, for which there are no specific enzymes driving hydrolysis, undergo degradation 

given the contribution of both macrophages and bioerosion mechanisms, before excretion 
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through kidneys (60). Some natural polysaccharides can modulate biological responses. For 

instance, HA can positively influence the healing of wounds (83;84), while chitosan can exert 

an antimicrobial activity (85;86). These features have been exploited for the development of 

biomaterials devoted to topical applications, for which the stimulation of the wound healing 

and the absence of microbial infections are required (87;88).  

The bioadhesivity of biomaterials is a requisite for materials that can exert their function 

whether an intimate contact with the target organ is achieved. Polysaccharides can favor this 

process given to their hydrophilic feature and partially to the presence of surface charges, 

although adhesive functionalities can be introduced in their chemical structure to enhance the 

adhesive properties (89). This analysis points out that the most suitable biomaterial for the 

proposed medical applications can be based on polysaccharides, such as alginate and HA. 

 

1.4.1. Alginate 

Alginate was first described in 1881, by the British chemist E.E.E. Standford (90). Alginate is 

a hydrophilic polysaccharide extracted from brown marine algae such as Laminaria 

hyperborea (91) or soil bacteria such as Azobacter and Pseudomonas (92;93). Alginate is a 

linear copolymer consisting of the two sugar residues 1-4 linked β-D-mannuronic acid (M) 

and α-L-guluronic acid (G). These monomers can arrange to form blocks in which 

homopolymeric regions (M or G-blocks) are interspersed with regions of alternating structure 

(MG-blocks) in the polymeric chains (94;95) (figure 3). The G-blocks are stiffer than M-

blocks and display a more extended chain conformation, since the rotation around the 

glycoside bonds is impaired (96;97). Thus, the higher the G blocks content, the lower the 

intrinsic flexibility of alginate chains (98), while the viscosity of alginate solutions depends 

mainly on the molecular size (99). 

 

Figure 3. Chemical structure of G, M and GM blocks in alginate. 

 

Alginate has attracted attention for its hydrogel forming ability through an ionic crosslinking 

mechanism. Indeed, alginates can bind divalent cations such as Ca2+, Sr2+ and Ba2+ which 
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bind preferentially to the G-blocks in a highly cooperative manner (100). The binding of 

divalent cations accounts for the gel forming property of alginate (figure 4b) and this structure 

has been described by the “egg-box” model. In this model each divalent ion interacts with 

both two adjacent G-residues and with two G-residues in an opposing chain, leading to the 

formation of molecular junctions within the gel network (101) (figure 4a). However, these 

molecular junctions can be formed by involving not only the G-blocks of alginate but also the 

MG/MG and the GG/MG-blocks (102).  

 

Figure 4. Probable calcium-binding site in a GG-sequence (a); ionic crosslinking of two homopolymeric blocks 

of G-residues in the egg-box model (b).  

      

The selective binding of cations and the gel forming properties strongly depend on the 

composition (98) and sequence of alginate (95;103). Likewise, the properties of the gels 

depend on the molecular characteristics of the alginates, while the stability and the physical 

properties are related to the G content and to the length of the G blocks (104;105). Indeed, the 

higher the content of guluronate units, the stronger and more brittle will be the resulting gels; 

conversely, an increased number of mannuronate leads to the formation of softer and more 

elastic gels (95). 

Alginate-based biomaterials can be manufactured into films (106;107), fibers (108;109), gels 

(102;110) and foams (111;112), according to their final applications. Alginates have long 

been known to possess hemostatic properties (113;114) and biomaterials based on them are 

being employed in several areas of drug delivery and tissue engineering (115). In the human 

body, alginate-based biomaterials are bio-eroded, partially degraded by macrophages and 

excreted through kidneys (60). 

In the field of wound healing, biomaterials based on alginate offer many advantages such  

hemostatic properties and the gel-forming ability upon absorption of wound exudates 

(116;117). Alginate can be mixed with chitosan and silver nanoparticles for the manufacturing 
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of antibacterial wound dressing, in order to reduce the risk of bacterial infections. Indeed, the 

non-toxicity and biodegradability of alginate-based wound dressings with antiseptic 

properties are desirable features (72).  

The bioactivity of these dressings is often sought in wound treatment. Literature evidences 

suggested that Kaltostat®, a bioactive alginate dressings, can improve the wound healing by 

stimulating the production of cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-

α (TNF-α) from monocytes; these are some of the pro-inflammatory factors that are beneficial 

to the healing process (61). In the field of internal surgery, alginate-based dressings have been 

recently shown to reduce postoperative drainage volume in patients undergoing elective rectal 

resection for cancer (50).  

 

1.4.2. Hyaluronic acid (HA) 

HA is a high molecular weight polysaccharide discovered in 1934 by Karl Meyer and John 

Palmer in the vitreous of bovine eyes (118).  Nowadays, this polysaccharide can be produced 

on a large scale by Streptococcus zooepidemicus and Streptococcus equi with good yield and 

high purity (119). HA is a linear polysaccharide belonging to the family of 

glycosaminoglycans (GAGs), the main constituents of the extracellular matrix (ECM), and it 

is composed of D-glucuronic acid and D-N-acetylglucosamine linked together through 

alternating beta-1,4 and beta-1,3 glycoside bonds (120) (figure 5). 

 

Figure 5. Repeating units of hyaluronic acid. 

 

At physiological pH values, it has a polyanionic structure that imparts excellent hydro-

coordinating properties and enables the retention of large amounts of water; given its highly 

hygroscopic behavior, hyaluronan is involved in the regulation of tissue hydration and 

osmotic balance (121). 

HA is also involved in the regulation of several biological phenomena such as cell migration 

(56;58), differentiation (122;123), growth and adhesion (59;124), angiogenesis (125;126) as 
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well as the control of the immune response (127;128). In the human body, HA undergoes 

degradation through enzymatic catalysis (60).  

HA is used as a linear polymer in solution at concentrations and molecular weights that 

depend on the final application. Given the good viscoelastic properties and semi-rigid 

character of HA, this polysaccharide has been first employed for viscosupplementation in 

joint diseases (129-131). In addition, its physicochemical properties, non-immunogenicity and 

high biocompatibility make this polysaccharide suitable for biomedical applications, such as 

bone, cartilage, skin defects and for the prevention of post-surgical adhesions (132-138).  

Mixtures of alginate and HA have been investigated in order to combine the respective 

peculiar properties of these polysaccharides for various biomedical uses (63;139-142). For 

instance, alginate hydrogels containing HA have been prepared and proposed for cartilage 

transplant (143;144), articular surgery (145;146) and wound healing applications (55). 

The wound healing ability of HA has been reported in several studies (147) and the 

interaction between HA and the cell receptor CD44 accounts for this mechanism. CD44 is a 

trans-membrane receptor widely expressed by most cell types (e.g. leukocytes, fibroblasts, 

endothelial and parenchymal cells) and it is upregulated upon tissue injury and inflammation 

(148;149). Many functions of CD44 receptor are mediated through interaction with its ligand 

HA (150). In the context of wound healing, the activation of the CD44 receptor in the 

presence of chemotactic agents such as HA, leads to the cytoskeletal organization of cells, 

thereby stimulating fibroblast’s migration (151).  

The wound healing stimulating ability of HA makes this polysaccharide a good candidate for 

the development of bioactive polysaccharide-based materials for tissue engineering 

applications. Several studies report this ability: crosslinked sponges composed of gelatin/HA 

showed improved wound healing properties over gelatin/alginate or chitosan/HA sponges 

(152;153). In another study, the administration of HA to the periodontal part was proved to 

stimulate the healing of the surrounding area (62).  

In the field of internal surgery, the injection of autocrosslinked HA-based gels was proved to 

prevent an excessive scar formation in tendon and peripheral nerve of the hand and in the 

abdominal-pelvic area. In this last case, the prevention of post-surgical adhesions was also 

proved and attributed to the HA activity. To explain these results, it has been hypothesized 

that the HA-rich environment modulate the wound healing process of the peritoneum and is 

able to restore the gliding function of the tendon and peripheral nerve structures (63). 
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1.5. PATENTS ON POLYSACCHARIDE-BASED MEMBRANES 

Among various polysaccharides, alginate fibers, gels and foams are known to be useful for the 

preparation of surgical dressings (129-131;154;155). Various types of dressings made of 

alginate fibers are patented. Most of them act as surgical absorbent hemostats, wound 

dressings and anti-adhesion barriers at the site of an intra-body trauma. In some patented 

works, alginate is used in combination with other polymers to obtain specific properties. The 

most relevant ones include the patent WO/2007/093805, where methods to create composite 

fibers and films of alginate with carboxymethylcellulose, pectin, hyaluronic acid, chondroitin 

sulfate, chitosan and other biopolymers are described. A patent by Edwards et al. (U.S. Pat. 

No. 6,809,231) concerns a wound dressing composed of cellulose and alginate, wherein the 

latter is crosslinked through a poly(carboxylic acid) ester bond to the cellulose of the material. 

Patent U.S. No. 7,226,972 describes the process to cross-link hyaluronic acid with other 

polymers as alginate to create biomaterials in the form of film or sheet. These patents prove 

the interest on polysaccharides such as alginate and HA for the development of biomaterials 

devoted to the biomedical field.  
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1.6. TERMINAL STERILIZATION OF BIOMATERIALS BASED ON 

POLYSACCHARIDES 

The sterilization process is a fundamental step in the manufacturing of biomaterials and 

implantable medical devices. This process is generally carried out through physical or 

chemical treatments that enable the removal of organic macromolecules and microorganisms 

in order to prevent infections in patients (156;157). The sterilization procedure usually takes 

place at the end of the manufacturing chain and the methods used for sterilizing commercial 

biomedical materials must be approved by the Food and Drug Administration (FDA) (156). 

Several sterilization techniques are being used to this aim and the choice of the most suitable 

method is typically done according to the nature of the biomaterial, the impact on material 

properties and the type of potential contaminants (157). Regarding polymer-based 

biomaterials, it has been reported that the FDA approved terminal sterilization techniques 

(e.g. steam sterilization, γ-irradiation and ethylene oxide) might have a strong impact on their 

macromolecular structure, thus affecting the biomaterial properties and limiting the final 

medical application (156;158;159). For instance, γ-irradiation is well known to cause polymer 

degradation (158;160), while sterilization by ethylene oxide leads to the retention of toxic 

residues that can compromise the in vivo biocompatibility (161;162). To deal with the main 

drawbacks of the traditional sterilization methods, the use of supercritical carbon dioxide 

(scCO2) has been proposed as an alternative sterilization technique (163). The main 

advantages in the use of the carbon dioxide (CO2) for the sterilization of materials are related 

to its non-toxicity, non-inflammability and safety (159) and to the possibility of easily 

removing it by depressurization and degasing. In its supercritical state, CO2 has a liquid-like 

density (0.9 – 1.0 × 103 kg m−3) (164), gas-like diffusivity (10−7 – 10−8 m2 s−1) and viscosity 

(3 – 7 × 10−5 N s m−2), and zero surface tension (161), features that enable its ease penetration 

through materials. Methods based on the use of scCO2 have been reported as effective for 

sterilizing medical products and bioactive materials (165-167), while the combination of 

temperature, pressure and sterilization time was reported to influence the efficacy of the 

process (168). The efficiency of the sterilization can be improved through the addition of 

compounds such as hydrogen peroxide (H2O2), tert-butyl hydroperoxide, and paracetic acid 

(169;170), which ensures the inactivation of microorganisms, including bacterial endospores 

of different bacterial species (169;171-175). The use of such addictives allows the 

employment of milder conditions and shorter times of exposure (161;169;176-178). Despite 

the promising results regarding the application of scCO2 for the sterilization of biomaterials, 
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little work has been done in evaluating the changes of the material features after sterilization. 

For instance, it has been shown that heat-sensitive biomaterials might undergo degradation 

upon exposure to high temperature and pressure (178); moreover, the use of compounds such 

as H2O2 may cause polymer oxidation and depolymerization (178;179), thus modifying the 

chemical and physical properties of the biomaterial. With regard to the biocompatibility of 

sterilized biomaterials, both in vitro and in vivo evaluations are needed to assess the possible 

cytotoxic effect that they can exert (171). Indeed, some residues of addictive molecules can be 

retained within the material structure and exert a toxic effect when released in the human 

body. Thus, a detailed characterization of the biomaterial is required to evaluate whether these 

modifications can affect its features along with the final application of the medical device.  
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1.7. WOUND HEALING PROCESS 

Tissue repair and wound healing are complex physiological processes in which the damaged 

tissue repairs itself after an injury such as superficial cut, internal bleeding, or excision of a 

tumour (180). A wound is defined as a damage or distruption of the physiological and 

anatomical structures and functions (54). Wounds can be classified according to different 

criteria such as the aetiology, the degree of contamination, the morphological characteristics 

and the communication with hollow or solid organs (181-183). From a clinical point of view, 

the most common criterium of classification considers the time frame of healing, so that 

wounds are classified as acute or chronic (181;183;184). Acute wounds are able to repair 

themselves following the normal healing pathway, thus leading to the restoration of the 

functional integrity and of the anatomical structures. These wounds are considered as the 

result of either a traumatic event or a surgical intervention and the time course of healing 

usually ranges from 5 to 10 days (183;184). Chronic wounds are instead unable to heal 

following the phases of the normal healing process (183;185) because of the occurrence of 

pathological factors (182;186). For instance, hypoxia, tissue necrosis and excessive release of 

inflammatory cytokines are some of the negative factors affecting the healing process and 

they may retard or disturb one or more stages of tissue healing, thus perpetuating the non-

healing state. The wound healing process takes place in all tissues and organs of the body, 

although the most understood mechanism regards the healing of skin wounds (54). Within this 

process, it is possible to recognise four different but overlapping phases such as hemostasis, 

inflammatory response, proliferation and remodelling (figure 6). 

The hemostasis involves biological mechanisms whose principal aim is to stop bleeding from 

a wound, in order to protect the vascular system. A second goal is to provide a matrix for the 

migration of cells that are involved in the later phases of healing (54). During this phase, 

hemostatic events take place together with the activation of the coagulation cascade, so that 

the final stage regards the formation of a fibrin clot that limits the blood loss (187;188). The 

inflammatory phase is aimed at providing a barrier against micro-organisms. The 

inflammatory response is characterized by the release of cytokines and the activation of cells 

of the immune system (i.e. monocytes, macrophages, lymphocytes) acting against pathogens 

and accounting for the degradation of damaged tissue and the creation of healthy one (189). In 

the proliferation phase, the chemotactic agents released by macrophages and neutrophils draw 

fibroblasts at the wounded site where they proliferate and produce hyaluronan, fibronectin, 
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poteoglicans and type I and III procollagen composing the ECM (183;190-192). The HA 

produced during this phase contributes to stimulate cell migration and confers to the tissue the 

ability to resist to deformation by adsorbing water (193). Collagens are also synthetized by 

fibroblasts and impart integrity and strength to all tissues (194-196). At the end of this phase, 

abundant ECM accumulates and provides support to cell migration (191;197). The 

remodelling phase is characterized by the continuous synthesis and breakdown of collagen 

fibres, being responsible for the development of new epithelium and scar formation (54). 

These phenomena occur through the contribution of enzymes, cytokines and growth factors 

(180). During the remodelling phase, the highly disorganized collagen fibres become more 

oriented and they are cross-linked over time (54). The interactions between fibroblasts and the 

ECM allow the wound margins to get closer, leading to the formation of a mature scar 

displaying a high tensile strength (53;198;199). 

 

Figure 6. Wound healing process. The main cells involved in wound healing are platelets, red blod cells 

(hemostasis), macrophages, neutrophils (inflammation) and fibroblasts (proliferation). Newly deposited collagen 

fibers are reorganized at the end of the process (remodelling), leading to the complete closure of wounds. 
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1.7.1. Gastrointestinal healing 

The wound healing process has been extensively studied in the skin, thus enabling the 

description of the canonical healing phases. Although the healing phases of skin have been 

ascribed also to the healing of the gastrointestinal (GI) tract (42;200), some differences can be 

outlined (201).  

Significant differences between the healing of skin and of the GI tract regard the time frame 

of healing, the synthesis of collagen subtypes, the collagenase activity, the wound strength 

and tissue reactivity (201). In the GI tract, the healing of wounds is faster than in skin and 

parameters such as modifications of the vascular perfusion can represent potential risks 

threating a successful outcome (25;201).  In the skin, fibroblasts synthetize type I and II 

collagen, while in the GI tract type I, III and V collagen are produced by both smooth muscle 

cells and fibroblasts (202). Moreover, the high activity of GI collagenases involved in the 

remodelling of the scar causes an excessive collagen lisys that decrease the anastomotic 

strength (203). The colon wall is made up of four layers: mucosa, submucosa, muscolaris 

mucosa and serosa (from the lumen to the outside part) and all these layers are involved in the 

anastomotic healing for the creation of a safe anastomosis (202). At this level, fibroblasts 

composing the most external intestinal layer play an active role in the healing of anastomosis, 

since they are activated after GI surgery, thus enabling collagen deposition (202) and the 

formation of a fibrotic cap at the serosa side, serving as a matrix for fibroblasts themselves 

(204). 

 

1.7.2. Biomaterials for wound healing 

In the wound management, the type of wound and the tissue properties often dictate the 

choice of the most suitable therapeutic approach. Several treatments are based on the use of 

biomaterials or drug-delivery devices that are able to influence one or more mechanisms 

involved in the healing cascade (54). For instance, novel therapeutic approaches aim at the 

topical application of growth factors (i.e. platelet-derived growth factor - PDGF) that can 

decrease the time course of healing by modulating the inflammatory response and 

accelerating the proliferative phase (205;206).  

Biomaterials for the treatments of both superficial and internal wounds are available in the 

form of gauzes, synthetic dressings, hydrogels, hydrocolloids and foams (180). These 

biomaterials should display several requirements to exert their functions. For instance, 

biomaterials used for internal wounds should be hydrophilic, able to absorb exuded liquids, 
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should not favour microbial infections and should display a swelling behaviour that enables to 

fill voids within the damaged tissue. Moreover, to prevent adverse reactions, these 

biomaterials should be biocompatible and degrade on a time frame that matches with that of 

the wound healing process (i.e. few days) (207;208). Medical dressings can be designed and 

engineered in order to tune their features in the terms of antibacterial, anti-inflammatory, and 

adhesive properties, thereby tailoring the material to the final medical application (180).  

Several medical approaches have been pursued to face the unmet medical need related to the 

inefficient wound closure. Advanced wound therapies focus on the delivery of drugs and 

healing factors at the wounded site, in order to stimulate a cellular response. These molecules 

can act as haemostatic, immunomodulatory, antibiotic, angiogenetic and cell growth agents 

and they are able to influence and accelerate the biological response of healing. As an 

additional advantage, these devices can be manipulated in order to enable a controlled spatial-

temporal release of the bioactive agents (209;210). To achieve this goal, biomaterials such as 

bioactive hydrogels based on collagen, HA, chitosan, alginate, elastin and (poly)ethylene 

glycol (PEG) can be employed (211). 

All these components provide benefits to the tissue. For instance, dressings based on alginate 

usually display a swelling ratio that enables the absorption of large volumes of exudate that 

are generally present in wounds (212), while both chitin and chitosan are known for their 

adhesive, antibacterial and fungicidal properties (65;213). 

Collagen and hyaluronan are key components of the ECM and they are good candidate for the 

development of dressings that mimic the ECM and the surrounding environment (214). The 

bioactive properties of hyaluronan (with regard to the ability of stimulating the cell 

proliferation and migration) have been exploited for the development of systems that favor the 

migration of cells into the wound (193;215). 
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1.8. BIOADHESIVES FOR SURGICAL APPLICATIONS 

1.8.1. Medical need and general requirements of bioadhesives 

Bioadhesion is defined as the process whereby synthetic and natural macromolecules are able 

to adhere to a biological tissue for an extended period of time in the body (216). In the field of 

general surgery the use of adhesive and sealant interfaces are required for the replacement of 

sutures for wound closure (217), for hemostatic and sealing purposes (218;219) and for 

keeping in place implantable biomaterials (89;220).  

Despite sutures are considered a mainstay for several treatments and procedures in general 

surgery, they also have some drawback mainly associated with a high infection rate, an 

extensive handling, a risk of blood-borne disease transmission and tissue reactivity (218;221). 

Moreover, the presence of sutures or staple materials in surgical wounds is considered to 

increase the risk of infections, which may retard wound healing, cause wound chronicity and 

threaten the patient’s life (222;223). For these reasons, a general trend towards simpler, 

quicker and minimally invasive surgical procedures has encouraged the development of 

sutureless techniques based on the use of adhesive and sealant interfaces to restore soft tissue 

integrity and functionality. 

Beside the use of adhesives for the substitution of sutures, these interfaces can be successfully 

employed as hemostatic agents. Hemostats work by causing blood to clot and are indicated to 

stop non-suturable or non-cauterizable bleeding particularly in anticoagulated or 

coagulopathic patients, so that their use appears as fundamental in the treatment of emergency 

hemostasis (218;219) as well as in sealing the leaks of gas or fluids (224).  

Another common procedure in general surgery is the use of implantable biomaterials that 

should be maintained in situ in close contact with the target tissue; for instance, implanted 

devices like meshes, gauzes, webs or catheters need to be kept in place to properly fulfill their 

functions. Also in these cases, sutureless techniques offer considerable advantages (225;226). 

Regardless the final goal, adhesive compounds must match several requirements in order to 

create safe and stable interfaces, taking into account clinical needs, biological effects and 

material features. An ideal bioadhesive should possess several properties: it should be 

biocompatible, non irritating, inflammatory, toxic or antigenic, and it should be easily applied 

or injected in a form of liquid or hydrogel on the target surface. Then, the reticulation process 

required for the adhesive consistency, should take place in the presence of body fluids in a 

conveniently short time, according to the requirements of the specific operation. After 
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reticulation, the adhesive should be as pliable as the tissue, in order to follow its physiologic 

expansion/contraction, while at the same time ensuring strong binding efficacy. For this 

reason, adequate mechanical properties are required for a proper elasticity/compliance of the 

interface. In some cases, the adhesive should progressively undergo biodegradation after 

having exerted its function. Moreover, each adhesive system must be effective once applied at 

the target site: the effectiveness of a given formulation stems from a compromise between 

cohesive and adhesive forces, the former being due to molecular forces within the interface 

(bulk-bulk bonding), the latter being due to attractive forces between the adhesive and the 

target surface (227). Cohesive interactions are required only to a certain extent since too much 

cohesion may result in a hardened material without significant affinity for a surface. On the 

other hand, adhesive interactions with the target tissue are a fundamental aspect that must be 

considered for each specific organ of the body (89).This wide range of functions is pursued by 

employing polymers capable of generating a three-dimensional network that binds to the 

target tissue. Commercial surgical adhesives and sealants are either based on natural 

compounds or on synthetic materials; the former are generally well accepted by tissues but 

often exhibit low adhesive strength while the latter typically display higher strength but lower 

biocompatibility. Depending on the nature of the polymers, the main classes of adhesives for 

general surgery include fibrin (228-230), gelatin (231), formulations based on proteins and 

polysaccharides (6;222), cyanoacrylates (232;233), polyurethanes (234;235) and polyethylene 

glycol (PEG) (236;237). These systems are often applied at the target site as exogenous 

compounds.  

Taking into account the specific case of the AnastomoSEAL product, the adhesiveness of the 

membrane is required both in the short and in the long term: the short term adhesion enables 

the application of the material at the site of the implant without any slipping, thus preventing 

damages caused by surgical handling and positioning procedure. At the same time, the long 

term adhesion endowes to the membrane with the ability to withstand detachment caused by 

the action of biological fluids after implantation and it is required to ensure the release of HA 

at the anastomosis. 
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1.9. BIOMIMETIC ADHESIVE STRATEGIES 

Despite a huge number of tissue adhesives are available nowadays at the clinical level, some 

issues related to the safety and performances have driven researchers to focus on the 

development of tissue adhesives with limited drawbacks (89;218). In general, good adhesion 

strength is associated to a certain extent of tissue toxicity, while biocompatible tissue 

adhesives often display a poor adhesion ability (89). Moreover, bonding in a wet 

physiological environment is one of the main challenges of bioadhesion (216;238), since the 

action of body fluids can affect the strength of chemical bonds i.e. the strength of the adhesive 

(218). Given these premises, biomimetic adhesive strategies that take inspiration from the key 

adhesive features and mechanisms employed by natural organisms such as geckos and 

mussels are being investigated for the development of novel adhesives. Among the most 

popular ones, the topography of gecko-foot and the molecular features of mussel’s glues are 

being studied to develop novel adhesive materials (239-243). 

 

1.9.1. Geckos-based adhesive strategies 

The strategy employed by geckos to achieve adhesion relies on a physical mechanism related 

to the topography of their feet. Indeed, the gecko’s foot pad is composed of keratineous 

structures known as setae; each setae displays several terminal projections (spatula) that are 

200-500 nm in length (239;244;245) (figure 7). This fibrillar design accounts for adhesion to 

smooth and even inverted surfaces through a combination of mainly van der Walls and 

capillary forces (239;246;247).  

  

Figure 7. Gecko’s foot pad. The adhesion relies on physical mechanism due to a combination of Van der Walls 

and capillary forces. 

 

Various techniques aimed at the achievement of these hierarchical structures have been 

employed to reproduce the topography of gecko’s foot for the fabrication of bioadhesives to 

be employed in the biomedical field (248-250). For instances, Kwak et al. fabricated an 
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adhesive skin patch endowed with vertical pillars made of polydimethylsiloxane (PDMS). 

Although these patches displayed an initial lower adhesion over acrylic adhesives, there are 

several advantages such as the ability to restore adhesion, the improved biocompatibility and 

the reduced risk to be affected by surface contamination and oxidation were reported (251).  

Another proposed medical device is an active endoscopic capsule endowed with gecko-

patterned adhesive legs that extend from the capsule body and that enable the adhesion to the 

esophagus walls, thus withstanding the detachment caused by the peristaltic movements 

(252;253). Although geckos have inspired the development of many nano-structured 

adhesives, the adhesion mechanism employed by them is temporary and becomes ineffective 

under wet conditions (247). Only Messersmtih et al. developed a synthetic gecko-mimicking 

adhesive that can efficiently bind to inorganic surfaces under water, through the formation of 

reversible non-covalent bonds (254). However, biomedical adhesives are required to form 

covalent bonds to organic surfaces, in order to withstand detachment caused by the action of 

body fluids and by the movement of nearby tissues (89;255). In order to overcome the 

drawback regarding the in wet adhesion, Mahdavi et al. developed a nano-patterned 

polyglycerolcosebacate acrylate (PGSA), a biodegradable elastomer, coated with oxidized 

dextran and capable to covalent cross-link to wet tissue. Indeed, the presence of oxidized 

dextran enhances the adhesive binding of PGSA to tissue, since aldehyde groups can react 

with amino groups of tissue proteins thus strengthening the adhesion (255) (figure 8a). 

A second strategy that has been adopted to improve adhesion in wet conditions was based on 

the combination between the micropatterned-structure of gecko’s feet and the adhesive 

features of mussel’s glue. Lee et al. prepared a polydimethylsiloxane (PDMS) endowed with a 

nanofabricated pillar that was dip-coated by a thin polymeric layer mimicking the adhesive 

functionalities of mussels. Thus, by combining the hierarchical topography of gecko’s feet 

and the chemical features of mussel’s glue the adhesive properties of the final system can be 

enhanced both in wet and in dry state (254) (figure 8b).  



31 

 

 

Figure 8. Nanopatterned PGSA coated with oxidized dextran coating. (a) The adhesive is obtained through 

several step process enabling the manufacture of gecko-like pillars coated with oxidized dextran. (Reprinted with 

permission from PNAS “A biodegradable and biocompatible gecko-inspired tissue adhesive” (255); Copyright 

(2008) National Academy of Sciences, U.S.A.). doi: 10.1073/pnas.0712117105. 

(b) PDMS was casted on a substrate (PMMA) previously modified through electron-beam lithography to create 

an array of nanopillars. After curing, a catechol containing polymer was used to create an adhesive coating on 

PDMS. Reprinted with permission from Macmillan Publishers Ltd: Nature (254), copyright (2007). Nature 

Publishing Group is acknowledged.  http://dx.doi.org/10.1038/nature05968   

 

This literature overview clarify that the technological approaches exploiting gecko’s adhesion 

mechanism for the fabrication of novel bioadhesives is promising and in vivo studies pointed 

out they are suitable for biomedical applications (255). However, the fabrication of these 

patterned adhesives is still expensive and some improvements have to be done in order to 

increase the adhesive strength (256). 

 

1.9.2. Mussels-inspired adhesive strategies 

Mussels are marine organisms able to attach to a wide range of surfaces such as sea rocks, 

wood and ship hulls and to resist detachment under the harsh conditions of the marine 

environment (218;256). The structural component providing attachment in mussels is the 

byssus that is composed of a bundle of threads that extends from the shell of the mussel and 

that displays an adhesive plaque at its distal end (257). Both the byssal and the adhesive 

plaque are protein-based structures secreted by mussels and undergoing rapid solidification 
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after secretion. The adhesive plaque is directly involved in the interaction with the substrates 

and it allows an effective adhesion under wet conditions (219;224) (figure 9).  

 

Figure 9. Mussel’s adhesion. The adhesion occurs through the byssal thread that terminates with an adhesive 

plaque where MEF proteins are present. L-DOPA residues of MEF account for adhesion in wet and dry 

conditions. 

 

The adhesive plaque is composed of proteins known as Mytilus edulis foot proteins (Mefp): to 

date, five Mefp have been identified and all of them share the presence of the aminoacid L-

3,4-dihydroxyphenylalanine (L-DOPA) in their structure as a common feature (257;258) 

(figure 10). 

  

Figure 10. Chemical structure of L-DOPA. 

 

Mefp-3 and Mefp-5 display the highest L-DOPA content among the Mef proteins (259;260) 

and they are mainly located near the interface between the plaque and the substrate (260;261). 

The presence of the catechol molecule L-DOPA within those proteins accounts for both 

cohesion and adhesion of mussels (262-264), which are required for the bulk elastic properties 

of the adhesive and for the physicochemical interactions formed at the interface, respectively 

(262-264). Indeed, the surface adhesion occurs through the establishment of covalent bonds 

between the oxidized hydroxyl groups of L-DOPA and nucleophiles (NH2, SH, COOH and 

OH) exposed on both organic and inorganic surfaces; at the same time, the formation of 

covalent bonds between L-DOPA residues accounts for the formation of protein-crosslinking 
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(218). Based on the chemical reactivity of the key adhesive molecules of mussels, a number 

of mussel’s inspired adhesive systems have been developed. The main strategies are based on 

the chemical coupling of the catechols (i.e. L-DOPA, dopamine and their derivatives) onto the 

backbone of polymers such as alginate (265), hyaluronic acid (266;267), and poly(ethylene 

glycol) (PEG) (225;268), for the development of nano-engineered adhesive polymers. The 

mechanism enabling the catechol-modified polymers to perform adhesion has been described 

in the literature. In particular, under oxidizing or alkaline conditions, L-DOPA residues are 

converted into ortho-quinone (o-quinone) moieties that may interact between them via aryl-

aryl coupling to form intermolecular cross-linking (215;269). Alternatively, quinones can 

react via Michael Type Addition or Schiff base reaction with nucleophile groups (mainly NH2 

and SH) exposed on the tissue surface, thus leading to the formation of covalent bonds 

(270;271) (figure 11).   

 

Figure 11. Chemical reaction involved catechol-containing polymers. The oxidation of dopamine leads to the 

formation of o-quinones that can form covalent crosslinking between catechols; alternatively, the formation of 

covalent bonds occurs through Schiff base reaction and Michael Addition (adapted from (218)). 

 

Hydroxyl groups (OH) of the catechol rings of L-DOPA residues can also interact with 

hydrophilic surfaces through hydrogen bond formation (257;272). The hydrogen binding 

ability of DOPA-containing polymers accounts for the mucoadhesive properties of such 

compounds (273-275). Thus, the main mussel-inspired adhesive strategies, are based on the 

coupling of catechols with polymers. A novel emerging strategy exploiting mussel’s adhesion 
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is based on the synthesis and purification of catechol-based nanoparticles to be used as 

adhesive coatings. 

 

1.9.3. Nanostructured dopamine containing polymers 

The use of DOPA-modified polymers has been described for the development of adhesive 

biomaterials, since the presence of catechols in both natural and synthetic polymers endowes 

them with adhesive, coating and anchoring features that enable their binding to diverse 

surfaces (276-281). Beside L-DOPA, other catechol-based molecules such as dopamine or 

3,4-dihydroxyhydrocinnamic acid can be used for the functionalization of polymers, since 

these compounds were found to possess adhesive properties similar to those of DOPA 

(238;282-284). In the field of adhesive materials, DOPA residues were implemented in the 

structure of synthetic polymers such as polypeptides (238;285-288), poly(ethylene glycol) 

(PEG) (237;289) and polystyrene (290;291) to enhance adhesion. For instance, Yu et al. 

developed a polypeptide composed of L-DOPA and L-lysine that was able to adhere to 

different substrates and that displayed resistance to moisture environment (292). Brubaker et 

al. synthetized a catechol derivatized PEG adhesive (cPEG) in the form of hydrogel for the 

immobilization of pancreatic islet beta cells to extrahepatic tissues, for the treatment of 

diabetes type I mellitus. The adhesive features of this system were proved in vivo and ascribed 

to the presence of catechols (238). Similarly, an injectable nanocomposite tissue adhesive in 

the form of hydrogel was obtained by combining a dopamine-modified four-armed PEG with 

a synthetic nanosilicate (283). Natural polymers have also been functionalized with catechols. 

For instance, Lee et al. described the synthesis of an adhesive hydrogel based on dopamine-

conjugated hyaluronic acid mixed with thiol end-capped pluronic F127 copolymer whose 

adhesive features were tested on mouse skin (293). Similarly, a composite adhesive in the 

form of hydrogel was prepared from a mixture blend of catechol-functionalized chitosan and 

thiol-terminated Pluronic F127. The adhesion properties were proved on mouse subcutaneous 

tissues, thus pointing to the adhesive binding ability and to the hemostatic properties of the 

system (294). A two-components bioadhesive for bone applications has been developed by 

Hoffman et al: the adhesive was based on a mixture of the polysaccharides chitosan and 

starch, the latter oxidized to provide aldehyde groups on starch. These reactive groups enabled 

the interaction with both aminogroups of chitosan and tissue proteins, thus accounting for the 

formation of adhesive bonds and internal crosslinking within the adhesive. Starch was then 

conjugated with DOPA to further enhance the adhesive ability to tissues (295). Recently, 
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Mehdiazadeh et al. developed injectable citrate-enabled mussel-insired bioadhesives 

(iCMBAs) based on citric acid, PEG and dopamine/L-DOPA, whose adhesive properties were 

proved in vivo and showed up to 10 times increase over commercial fibrin glue (296). In vivo 

studies proved the effectiveness of iCMBAs in stopping bleeding and in closing wounds on 

the dorsal part in rat, without the use of stiches or staples. 

This literature survey shed light on the wide interest in developing such a water resistant 

tissue adhesives. 

 

1.9.4 Catechol-based nanoparticles 

Besides the development of polymers modified at the nanometer scale, the synthesis of 

nanoparticle suspensions has been reported for adhesive purposes (297;298). Recently, the 

synthesis of nanoparticles based on dopamine was described in the literature (299). Although 

little is known about the adhesive properties of these nanoparticles, it is likely that adhesive 

coatings based on these nanoparticles confer adhesive binding ability to biomaterials, since 

they display a catecholic core that is involved in the formation of the adhesive bonding with 

the tissues. The synthesis of nanoparticles containing catechols is generally carried out by 

inducing the oxidation of a catechol containing solution (i.e. aqueous dopamine solution). 

This process involves the polymerization of dopamine molecules under oxidizing conditions 

through a mechanism that resembles the biological pathway of melanin biosynthesis (figure 

12).  

 

Figure 12. Dopamine polymerization mechanism. The oxidation of dopamine induces crosslinking among 

molecules leading to the formation of polydopamine that is structurally similar to melanin. 
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These reactions lead to the formation of insoluble nanoparticles whose molecular structure is 

similar to that of melanin: for this reason they are called melanin-like nanoparticles (MNPs) 

(299). In particular, it has been reported that the oxidation of catechols (i.e. DOPA or 

dopamine) in the presence of oxidizing agents such as sodium hydroxide leads to the 

formation of the 5,6-dihydroxyindole (DHI), the monomer precursor of melanin (300-302). 

These monomers can interact with themselves to form oligomeric structures in which from 

two to eight DHI monomers are present (303). The oligomers assemble together to form 

nanometric aggregates (2-20 nm) that are stabilized by - stacking interactions and covalent 

bonds (304). The polymerization of the nanoparticles occurs through the association of the 

aggregates together with the inclusion of monomeric species and free oligomers, a mechanism 

that enables the growth of the nanoparticle size over time (305) (figure 13).  

 

Figure 13. Mechanism of dopamine-based nanoparticle formation. Under oxidizing conditions, dopamine is 

converted in 5,6-dihydroxyindole (DHI) and indo-5,6-quinone, the monomer precursors of melanin. Monomers 

interact to form oligomeric species that aggregates to give the nanoparticle. 

 

MNPs can fulfill a wide range of functions, since they can serve as drug delivery system 

(306;307), free radical scavengers (299), protector agents against ɣ-irradiation (308), films for 

structural color material (309;310) and contrast agents for magnetic resonance imaging (311) 

and for optoacoustic tomography (312). In the field of bioadhesion, little work has been done 

in investigating the role of MNPs as adhesives, although the presence of reactive o-quinones 

exposed on the surface of MNPs can account for the formation of covalent bonds with amines 

or thiols of tissue proteins, thus ensuring a firm adhesion (238;313).  
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The use of MNPs for adhesive purposes provides several advantages over catechol-

functionalized polymers. First, the chemical modification of polymers can modify the 

properties of the native molecules, which may lead to unpredictable outcomes. As a second 

main point, nanoparticle suspensions are suitable for the development of uniform coatings and 

the high active surface of nanoparticles together with the presence of a higher number of 

quinone reactive groups exposed on their surface can ensure the establishment of an increased 

number of covalent interactions, thus strengthening the adhesive bonds.   
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2. AIMS 

The overall scope of this research work was to develop a bioactive adhesive biomaterial for 

wound healing applications. 

 

More in detail, the specific aims of this thesis were to: 

 

- develop membranes based on the polysaccharides alginate and HA that could 

stimulate the healing of wounds and perform the mechanical, chemical and 

biological characterization of the biomaterial properties; 

 

- design and manufacture adhesive systems based on the modification at the 

nanoscale of the structural component of membranes and tissue, or on the use of 

nanoparticle suspensions; 

 

- evaluate the tissue adhesiveness of the proposed adhesive systems and characterize 

them as to their mechanical and biological properties. 
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3. MATERIALS AND METHODS 

3.1. Materials. Sodium alginate from Laminaria hyperborea (Alginate Pronova UP LVG, 

molecular weight, MW∼120 000; fraction of guluronic G residues, FG = 0.69; fraction of 

guluronic diads, FGG = 0.59; number average of G residues in G-blocks, NG>1 = 16.3) and 

sodium hyaluronate (HA) Pharma grade (MW∼ 800 000) were kindly provided by 

Novamatrix/FMC Biopolymer (Sandvika, Norway). HA (MW∼240 000, Phylcare Sodium 

Hyaluronate extra LW) was kindly provided by Sigea S.r.l. (Trieste, Italy). Calcium carbonate 

(CaCO3), D-Gluconic acid δ-lactone (GDL), glycerol, C1-ethyl-3-[3-

(dimethylamino)propyl]carbodiimide hydrochloride (EDC), N-hydroxusuccinimide (NHS), 

fluoresceinamine, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), LDH 

(lactate dehydrogenase) TOX-7 kit, mitomycin C, 2-(N-Morpholino)ethanesulfonic acid 

(MES), sodium chloride (NaCl), sodium bicarbonate (NaHCO3), hydrochloric acid (HCl), 

calcium chloride (CaCl2), glutaraldehyde, glucose, ethanol and Hanks’ Balanced Salt solution 

(HBSS) sodium hydroxide (NaOH), dimethyl sulfoxide (DMSO) and 3-(4,5-Dimethylthiazol-

2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), ethanol, hexamethyldisilazane (HMDS), 

Iodure Potassium (KI), Sodium Hydroxide (NaOH), Ammonium Molybdate (NH4)2MoO4, 

Potassium Hydrogen Phtalate (C8H5KO4)  were obtained from Sigma-Aldrich Chemical Co. 

U.S.A. Dopamine hydrochloride (DOPA-HCl,  heat-inactivated fetal bovine serum were 

supplied either by Sigma-Aldrich Chemical Co. U.S.A., Acros or Alfa-Aesar.  

Primary human dermal fibroblasts (HDFa) were purchased from Invitrogen™ Life 

Technologies; Medium 106, Low Serum Growth Supplement (LSGS) from Gibco™. Mouse 

fibroblast-like (NIH-3T3) cell line (ATCC CRL1658), Dulbecco’s Modified Eagle’s Medium 

high glucose (DMEM) and Fetal Bovin Serum (FBS) were purchased from EuroClone (Italy). 

Intestine explants were harvested from freshly sacrificed pigs at local slaughterhouse. 

 

3.2. Preparation of membranes 

All membranes were prepared according to the following procedure: the polysaccharides were 

dissolved in deionized water and glycerol was added as a plasticizer (final concentration = 5% 

v/v). Then, CaCO3 and GDL were added and the mixture was poured into rectangular moulds 

for the in situ gelation of the solution. The ratio CaCO3 / GDL was 0.5 for each formulation 

studied; suspensions of CaCO3 corresponding to [Ca2+] 20 or 50 mM were used. 
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Subsequently, the hydrogels were cooled by immersion in a liquid cryostat; ethylene glycol in 

water (3:1) was used as refrigerant fluid. Temperature was decreased stepwise  from +20°C to 

-20°C by 5°C steps with 30 min intervals for equilibration. Finally, the frozen hydrogels were 

dried under vacuum using a Single-Chamber Freeze-Dryer (Christ Alpha 1-2 LDplus). 

Several membrane formulations were prepared by varying the compositions: the list of 

formulations employed is reported hereafter: 

- Formulation A: Alginate 15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v;  

- Formulation B: Alginate 15 g/L, HA (800 kDa) 15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v;  

- Formulation C: Alginate 20 g/L, HA (240 kDa) 15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v;  

- Formulation D: Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v;  

- Formulation E: Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO3 50 mM, GDL 100 mM, glycerol 5% v/v. 

 

3.3. Preparation of membrane containing dopamine-modified alginate 

The preparation of membranes containing dopamine-modified alginates (D-AlgM) was 

performed following the procedure described in the section 3.2. (“3.2. Preparation of 

membranes”), under nitrogen flush (formulation D: Alginate 15 g/L, HA (240 kDa) 15 g/L, 

CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v). In this case, dopamine-grafted alginate was 

used instead on unmodified alginate. After freeze-drying, the modified membranes were 

stored in oxygen-free pouches. 

 

3.4. Synthesis and characterization of MNPs 

MNPs (melanin-like nanoparticles) were prepared as described in the literature (299). Briefly, 

180 mg of dopamine hydrochloride were dissolved in 90 ml of deionized water and NaOH 

1M (760 μL) was added to solution at 50°C under vigorous stirring. After 5 hours, melanin-

based nanoparticles (MNPs) were retrieved by centrifugation (20000 xg) and washed three 

times in deionized water. An additional centrifugation was carried out at 4000 xg, in order to 

remove larger particle size and MNPs were dispersed in aqueous solution at the final 

concentration of 1 mg/ml (w/v). pH was measured during MNPs formation. UV-visible 

spectra were acquired with a spectrophotometer in the range of 280 - 730 nm (Infinite M200 

PRO NanoQuant, Tecan) after MNPs purification. 

 

3.5. Preparation of MNPs-coated membranes 

The preparation of MNPs-coated membranes (formulation D: Alginate 15 g/L, HA (240 kDa) 

15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v) was performed following the 
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procedure described in the section 3.2. (“3.2. Preparation of the membranes”). In this case, 

after freeze-drying, the coating was obtained by spreading the nanoparticle suspension over 

the lyophilized membranes (25 g/ml MNPs / cm2 membrane). 

 

3.6. Mechanical characterization of the membranes (uniaxial tensile test) 

The membranes were cut in dog-bone shapes according to ASTM D638-10 standards (type 1 

samples); their mechanical properties were studied using a Universal Testing Machine 

(Mecmesin Multitest 2.5-i) equipped with a 100 N load cell. Tensile tests were performed at a 

crosshead speed of 5 mm/min. The cross section of the samples was measured with a caliper. 

Tensile stress was calculated dividing the load by the average original cross sectional area in 

the gage length segment of the specimen. Young’s Modulus (E) was calculated as the slope of 

the linear portion in the stress-strain curve, considering the deformation range of 1%-3%. For 

each formulation, five replicates were used and the data were averaged and standard 

deviations calculated. 

 

3.7. Swelling test 

Circular samples of the membrane (formulations A and D; Ø = 20 mm) were weighted at the 

dry state. The samples were soaked with 4 ml of SBF and the weight of the hydrated 

membranes was measured after drying the samples on a filter paper. Data were expressed as 

the ratio between the weight of the wet membranes and the weight of the dry membranes, as a 

function of the time. Three parallel replicates were averaged and standard deviations 

calculated. 

 

3.8. Degradation studies 

Circular samples of the membrane (Ø = 20 mm) were soaked with 10 ml of Hank’s balanced 

salt solution (HBSS) at room temperature and daily the samples were collected, dried for 1 

minute on filter paper, weighted and then immersed in fresh HBSS. The weight variation was 

recorded as a function of solution shifts. As a reference, the 100% of the weight was 

considered as the weight of the samples after 4 hours of immersion in HBSS. Six parallel 

replicates were averaged. 
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3.9. Release studies 

Membranes composed by alginate and HA were incubated in 10 ml of HBSS for selected time 

intervals. After incubation, the supernatants were collected and dialyzed for two days against 

0.1 M HCl (4 shifts) and deionized water until the conductivity of the solution was below 4 

μS. Then, the solution was collected and the pH adjusted at approximately 7.2. The 

supernatants were dried, weighted and analyzed by NMR according to the procedure 

described by Geremia et al (140). 

 

3.10. Cell cultures 

Primary human dermal fibroblasts isolated from adult skin (HDFa) were purchased from 

Invitrogen™ Life Technologies. The cells were cultured in Medium 106 and supplemented 

with Low Serum Growth Supplement (LSGS), both provided by Invitrogen™ Life 

Technologies, 100 U/ml penicillin, 100 µg/ml streptomycin. The cells were maintained at 37 

°C in a humidified atmosphere of 5 % CO2 at 37 °C. 

Mouse fibroblast-like (NIH-3T3) cell line (ATCC CRL1658) were cultured in Dulbecco’s 

Modified Eagle’s Medium high glucose (DMEM) supplemented with 10% Fetal Bovin Serum 

(FBS), 100 U/ml penicillin, 100 µg/ml streptomycin. These products were purchased from 

EuroClone (Italy). 

 

3.11. In vitro biocompatibility of the liquids extracted from the membranes (LDH assay) 

The biocompatibility of the biopolymeric membranes (formulation A and D) was evaluated 

through a quantitative analysis of the effect of the liquid extracts of the materials, according to 

the ISO 10993-5:2009 International Standard; the lactate dehydrogenase (LDH) assay was 

used.  Since the extracting conditions should simulate or exaggerate the clinical use 

conditions, the following procedure was developed. UV-sterilized specimens of membranes 

have been soaked and incubated in the extraction culture medium for 72 hours at 37 °C. The 

ratio between weight of the patch and volume of the medium was maintained constant and 

selected in order to reach a polymer concentration (on the basis of the release studies) of 0.5 

% w/V, which avoided biased results due to excessive viscosity of the extraction medium.  

The in vitro biocompatibility of the compounds was evaluated by means of the LDH assay. 

HDFa were trypsinized and seeded on a 24-well sterile plate at final concentration of 40000 

cells per well. Aliquots of 500 µl of liquid extract of the membranes were added to the wells. 

Untreated cells and cells treated with Triton X-100 0.1% were considered, respectively, as a 
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negative and positive control. The LDH assay was performed 24 and 72 hours after the 

treatment: the level of cytotoxicity was evaluated by comparing the LDH values measured for 

the samples and those corresponding to the total amount of intracellular LDH calculated by 

inducing cellular lysis. For each series, four replicates were tested. 45 µl of both cell medium 

from tested samples and cellular lysates were added to LDH mix (30 µl LDH assay substrate, 

30 µl LDH cofactor, 30 µl die solution) and the incubation was allowed 30 minutes in dark. 

The enzymatic reaction was stopped by adding 1/10 HCl 1N to each sample. The plate was 

read at 490 nm and 690 nm with a spectrophotometer (Infinite M200 PRO NanoQuant, 

Tecan). Evaluation of cytotoxicity was calculated according to the formula: LDH released 

(%)=[(A-B)/(C-B)]∙100,  with A: LDH activity in the culture medium of treated cells, B: LDH 

activity of culture medium from untreated cells and C: LDH activity after total cell lysis at 24 

and 72 hours. 

 

3.12. In vitro biocompatibility of the liquid extracted from membranes sterilized by 

means of scCO2 (LDH assay) 

The LDH assay was performed on primary human dermal fibroblasts (HDFa) to evaluate the 

biocompatibility of the scCO2 sterilized membranes, by following the procedure described in 

the section 3.11. (“3.11. In vitro biocompatibility of the liquids extracted from the membranes 

(LDH assay)”). The sterilized and non-sterilized membranes (1 g) were incubated in 10 ml of 

cell medium for 72 hours. After this period, cell medium was harvested and membranes were 

discarded and 500 µl of the supernatant were added to each well. This procedure aimed at the 

evaluation of cytotoxic effect of substances released by membranes. Untreated cells and cells 

treated with Triton X-100 0.1% were considered, respectively, as a negative and positive 

control.  

 

3.13. In vitro biocompatibility of MNPs (LDH assay) 

The biocompatibility of MNPs was evaluated by means of the lactate dehydrogenase (LDH) 

assay. The experiment was performed at the conditions reported in the section 3.11. (“3.11. In 

vitro biocompatibility of the liquids extracted from the membranes (LDH assay)”). For this 

test the cells were treated with cell culture medium (negative control) MNPs (5 g/ml and 50 

g/ml) and TritonX-100 0.1% (positive control). 
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3.14. In vitro wound healing (scratch assay)  

The scratch assay was performed to evaluate the ability of the HA released from the 

membranes to stimulate the closure of a scratch on a confluent cell plate; this assay is a well-

developed method to measure cell migration in vitro, enabling the study of cell-matrix and 

cell-cell interactions also during the wound healing process (112). For this test the plasticizer 

(glycerol) was removed from the formulation, in order to avoid biased results due to the 

increased viscosity of the aliquots of liquid extract. The kinetic of the closure of the gap is 

monitored and measured by using a microscope equipped with a camera, and a software for 

image analysis. HDFa cells were seeded at a density of 250000 cells per well in 6-well plate 

and incubated at 37 °C for 16 hours, in order to enable cell adhesion on the cell plate. Cells 

were treated with the liquid extract of the membranes (3 ml). 24 hours after the treatment a 

scratch was performed in each well using a sterile 200 µl plastic tip and the scratch closure 

was followed over time through an optical microscope (Optech IB3 ICS) equipped with a 

Pentax K100D camera and the images of the scratch were acquired over time to monitor the 

wound closure. The analysis was performed using the software Image J: the opened area was 

outlined per each scratch and the percentage of closure over time was plotted. The results are 

reported as percentage of closure of the gap area between day n and day 0. For each sample, 

data are expressed as mean ± standard deviation. In order to discriminate the contribution of 

cell migration to the scratch closure, cells were also treated for 24 hours with a non-toxic 

concentration of mitomycin C (1 µg/ml), a drug that blocks the proliferation of cells at G0 

phase, to inhibit cell proliferation.  

 

3.15. In vitro cell adhesion 

The membranes (formulation D) were immobilized on the bottom of the well of a 6-well 

sterile plate by means of a ring CellCrown (Scaffdex) to enable the complete immersion in 

cell medium. 230 000 cultured cells (primary fibroblasts) were resuspended in 400 μL of 

medium and then seeded on each membrane specimen. After 1.5 h, 2 ml of medium were 

further added to the wells. After 24 h, the membranes were removed from the cell culture 

medium and prepared for SEM analysis according to the following steps. The membranes 

were rinsed twice for 30 minutes with 10 mM Hepes buffer, 0.1 M NaCl, 10 mM CaCl2, 5 

mM glucose, pH 7.4. Then, the samples were fixed by using 10% glutaraldehyde in 10 mM 

Hepes, 0.1 M NaCl, 10 mM CaCl2, 5 mM glucose for 1 hour and finally washed with 

deionized water 3 times for 10 minutes. The membranes were dehydrated by sequential 
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immersions in ethanol 70%, 95% and 100%. Before SEM analysis, the dehydrated samples 

were gold-sputtered. 

 

3.16. Scanning Electron Microscopy (SEM) 

Morphological analyses of samples were performed using a Leica-Stereoscan 430i Scanning  

Electron Microscope (SEM). The following samples were employed for the analysis: gold-

sputtered membranes (with and without cells) and MNPs-coated membranes, MNPs-treated 

and bacteria (E. coli, S. aureus). 

 

3.17. Mechanical adhesion tests 

Adhesion tests were performed by means of a Universal Testing Machine (MultiTest 2.5-i) 

equipped with a 100 N cell load. Test conditions were inspired by ASTM F2258-05 standards. 

The membranes (2.5cm X 2.5cm) were glued onto the lower holder with a cyanoacrylate glue 

(Loctite® Superglue) while the intestine tissue was clamped on the upper holder. Before the 

test, 100 µl of deionized water or H2O2 at different concentrations were spread on the surface 

of the membrane, while the tissue was kept moist with gauze soaked in HBSS. Then, the 

tissue was brought in tight contact with the patch (compression force = 5 N) for 10 minutes 

and then pulled off at a crosshead speed of 50 mm/minute. The force-displacement curves 

were recorded. Data were averaged over at least 5 replicates. The detachment force was 

defined as the highest force required for the complete detachment. 

 

3.18. Sterilization of membrane with gaseous H2O2 

The gaseous H2O2 sterilization was carried out through a custom made equipment developed 

by “Impuls” using the following parameter: 250 ppm geaseous H2O2, 30% - 50% humidity. 

 

3.19. Sterilization of membrane with scCO2 

Membranes (3 cm X 5 cm) were exposed to scCO2 under controlled conditions and in a 100 

ml stainless steel reactor (NWA, Lörrach, Germany). Four sets of conditions were employed. 

 Pressure  

(bar) 

Temperature  

(°C) 

H2O2 content  

(ppm) 

Exposure time  

(hour) 

Set 1 270 40 200 1 

Set 2 270 40 1000 1 

Set 3 270 40 200 3 

Set 4 270 40 1000 3 
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The high pressure vessel was disinfected with sodium hypochlorite prior to use. H2O2 was 

added to the vessel by using a sterile medical cotton. A standard CO2 cylinder was used and 

the gas was pressurized by a high-pressure syringe pump (NWA, PM-101) equipped with a 

EUROTHERM 2216E heating unit. The reactor temperature was controlled by a digital GTH 

1150 thermometer (Greiser Electronic). The internal pressure of the reactor was controlled by 

a transducer (DS Europe LP632) connected to a pressure control unit (DS Europe AN341). 

 

3.20. Quantification of residual H2O2 

For the quantification of the residual H2O2, a solution containing KI (33 g), NaOH (1 g), 

(NH4)2MoO4 (0.1 g) (solution A) and a solution contining C8H5KO4 (10 g) (solution B) were 

prepared in distilled water (final volume of 500 ml). Sterilized and non-sterilized membranes 

(100 mg) were left in distilled water (100 ml) for 30 minutes; solution A and B were then 

mixed together with the membrane containing solution (ratio 1:1:1). The absorbance was 

measured at 351 nm. For the calibration curve, 60 μl of 30% w/v H2O2 were added to 100 mL 

of distilled water (H2O2 concentration = 200 mg/L); this solution was used as a stock to 

prepare standard samples. 

 

3.21. Dissolution of membranes sterilized by means of scCO2 and membranes treated 

with H2O2  

The scCO2 sterilized membranes were transferred in a dialyzing tube (Mw cut-off 10.000) and 

the dialysis was carried out against aqueous HCl 0.1 M (4 shifts) and against deionized water 

until the conductivity was below 4 μS. The pH was adjusted to 7.2 and the solution was 

freeze-dried. The same procedure was employed for alginate membranes (formulation A) (100 

mg) treated with 100 µl of H2O2 30% w/w for 30 minutes at room temperature and rinsed with 

water. As a control, an alginate membrane treated with distilled water was used and processed 

in the same way. 

 

3.22. SEC-MALLS analyses of membranes treated with H2O2 

Determinations of molecular weights were carried out by combining Size Exclusion 

Chromatography (SEC) with Multiangle Laser Light Scattering (MALLS) as described by 

Vold et al (314). The setup consisted of a Waters SEC (Waters 2695 Separations module), a 

MALS-detector (DAWN HELEOS; Wyatt Technology Corp., U.S.A) and an Optilab rEX RI-

detector (Wyatt Technology Corp., U.S.A). The SEC columns used were G6000PWXL, 
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5000PWXL, and 4000PWXL (Tosoh Bioscience LLC, U.S.A.), and mobile phase was 0.05 M 

Na2SO4 and 0.01 M EDTA.  The flow rate was 0.5 ml/min. The injected mass was 3 mg, and 

the sample concentration was adjusted to obtain the best possible light scattering signal 

without influencing the refraction index (RI) profile (overloading). Samples were filtered 

through a filter 0.45 µm prior to injection. Data from the light scattering and the differential 

refractometers were collected and processed using Astra (v. 5.3.4.14) software (Wyatt 

Technology Corp., U.S.A.). The constants used were refractive increment index (dn/dc)µ of 

0.150 ml/g (314) and second virial coefficient A2 of 5.0 × 10-3 ml•mol/g2. 

 

3.23. Size Exclusion Chromatography (SEC) on membranes sterilized by means of 

scCO2 

The setup for estimation of molecular weight of polysaccharides from dissolved membranes 

consisted of a Waters SEC (Waters 2695 Separations module) and an Optilab rEX RI-detector 

(Wyatt Technology Corp., Santa Barbara, CA, U.S.A.). Two SEC columns Agilent PL 

aquagel-OH 8μm 50 x 7.5 mm were used at 40°C; the flow rate was 1 ml/min and the mobile 

phase was 0.2 M NaCl in distilled water. Software for analysis from Wyatt Technology Corp. 

was Astra V SP. Pullulan at different molecular weight was used for the calibration curve. 

 

3.24. Synthesis of dopamine-modified alginates 

The synthesis of dopamine-modified alginate (D-Alg) is based on previously published 

articles (315-317). The syntheses were carried out under nitrogen flushing to avoid oxidation 

of dopamine. Sodium alginate (final concentration 1% w/V) was dissolved in 100 mM MES 

buffer pH 6.2 and 0.5 M NaCl. NHS and EDC were added to the solution at the same 

concentration of DOPA-HCl and stirred for 30 min. DOPA-HCl was added at different final 

concentration (12.5 mM, 25 mM, 50 mM and 75 mM) to the solution in order to enable the 

synthesis of D-Alg with different substitution degrees, and stirred for 1 hour. The solution 

was precipitated in ethanol (10X the volume of the alginate solution) and the precipitate was 

thoroughly washed several times with ethanol (2X the volume of the initial alginate solution) 

to eliminate unreacted molecules. The precipitate was then dried. 
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3.25. In vitro adhesion studies with membranes containing dopamine-modified alginate 

and MNPs coated membranes 

Adhesion studies were performed by employing an experimental setup adapted from 

Bernkop-Schnürch and colleagues (318). Briefly, membranes were cut (1 cm X 1 cm), and 

attached to the external part of freshly harvested pig intestine that was kept moist with HBSS 

solution at pH 7.5. The tissue was fixed on a plastic cylinder (diameter 2.5 cm; height 11 cm) 

and incubated at 4°C for 16 hours. The cylinder was then immersed into a beaker containing 

500 ml of HBSS at room temperature and gently shacked to mimic the action of the body 

fluids. For each series, ten specimens were tested and the number of detached samples was 

recorded with 30 minutes interval. Three independent experiments were averaged and the 

results are reported as mean ± standard deviation. This test was employed to evaluate the 

adhesion ability of membranes prepared with dopamine-modified alginates and MNPs-coated 

membranes, both containing HA. As a negative control, unmodified alginate-HA membranes 

were used. 

 

3.26. 1H-NMR studies on dopamine-modified alginates 

Samples were prepared as described by Grasdalen et al. (179;319). The 1H-NMR spectra 

were recorded at 90°C with a JEOL 270 NMR (6.34 T). The chemical shifts are expressed in 

ppm downfield from the signal for 3-(trimethylsilyl)-1-propanesulfonate. 

 

3.27. UV spectroscopy studies on dopamine-modified alginates 

The degree of substitution of D-Alg was determined from the molar extinction coefficient of 

dopamine and the absorbance of the sample. The D-Alg solution (1 g/L in citric 

acid/phosphate buffer pH 5.5) was analyzed by UV-spectroscopy (JASCO UV/Visible 

Spectrometer V6530) at λ = 280 nm. The molar extinction coefficient of dopamine in citric 

acid/phosphate buffer (pH 5.5) at 280 nm determined from a standard calibration curve was 

equal to: ɛ280 nm = 0.0128 L mol−1 cm−1. The determination of degree of substitution was 

performed in triplicate. 

 

3.28. In vitro biocompatibility of dopamine-modified alginates (MTT assay) 

The biocompatibility of the compounds was evaluated through a quantitative and a qualitative 

analysis, both according to the ISO 10993-5:2009 International Standard. In the first case, the 

MTT assay was performed, while in the second case, an optical analysis of cell morphology 
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was employed. Primary human dermal fibroblasts (HDFa) and a mouse embryonic cell line 

(NIH-3T3) were cultured in Medium106 and DMEM respectively, at 37°C and 5% pCO2. 

Medium106 and DMEM were supplemented with 0.5% LSGS and 10% FBS respectively, 

both with the addition of 0.25% penicillin/streptomycin. Cells were plated on a 96-well sterile 

plate at final concentration of 5000 cells in each well. The dopamine-modified alginate was 

dissolved in cell medium at different concentrations (0.2 %, 0.1 %, 0.5 %, 0.02 % w/V) and 

100 µl of sample were added to the wells. As a positive control of cell viability, cells treated 

with Triton X-100 (final concentration 0.01 % V/V) were considered. Cells growth in plain 

medium were used as negative control. The MTT assay was performed 24, 48 and 72 hours 

after treatment: 100 µl of MTT solution (0.5 mg/ml) were added to each well and incubation 

was allowed for 4 hours at 37 °C. After the incubation, the MTT solution was removed and 50 

µl of DMSO were added to each well for the dissolution of the formazan crystals. The 

absorbance of each well was read at 570 nm with a spectrophotometer (Infinite M200 PRO 

NanoQuant, Tecan). The percentage of viability of the negative control was set at 100% and 

relative viability was calculated for all samples. For each series, eight replicates were tested 

and averaged.  

 

3.29. In vivo adhesion studies on minipigs 

In vivo tests were carried out in pigs devoted to laparoscopic skill-training for surgical 

residents. The experimental protocol was compliant with the Dutch Animal Experimental Act 

and approved by the Animal Experimental Committee of Maastricht University Medical 

Center. After laparotomy, the membranes (3 cm X 6 cm) were placed around the intestine 

which was then repositioned in the abdominal cavity and the abdomen was sutured in two 

layers. After 7 hours, the animal was sacrificed, the treated intestine was macroscopically 

evaluated and the part of the intestine in direct contact with the membrane was harvested for 

histological analysis. This test was employed to test the in vivo adhesiveness of membranes 

containing dopamine-modified alginate and membranes sterilized by means of scCO2 (set3). 

 

3.30. Histological analyses 

Tissue samples were fixed in formalin 4% v/v for 24 hours and then embedded in liquid 

paraffin. Sections of 4 m were cut, de-paraffinized in xylene and rehydrated in graded 

ethanol to distilled water, followed by hematoxylin-eosin staining. 
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3.31. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (FTIR-

ATR) on MNPs 

Fourier transform infrared spectra of MNPs were collected using a Spectrometer Nicolet 6700 

(Thermo Electron Corporation, Madison WI, U.S.A.) with a DTGS KBr detector. The 

following setup was used throughout the measurements: number of sample scans 16, 

resolution 6 cm–1 from 500 cm–1 to 4000 cm–1. 

 

3.32. Dynamic Light Scattering (DLS) and ζ-potential measurements 

The hydrodynamic size and surface ζ-potential of the MNPs suspension (50 g/ml) were 

assessed at 25 °C by a a Zetasizer Nano ZS (Malvern Instruments), consisting of a photodiode 

detector and a 4 mW He–Ne laser (λ = 633 nm). The hydrodynamic diameter was calculated 

from the ζ-average translation diffusion coefficient through the Stokes–Einstein equation. The 

laser doppler velocimetry (LDV) was employed to determine the ζ-potential values of all the 

MNPs suspensions. All the measurements on MNPs suspensions were performed at least in 

triplicate. The analyses of MNPs at the final concentration of (50 g/ml) were redispersed in 

the following working solutions: NaCl 1.5 mM, 150 mM, 500 mM, HCl 50 mM (pH 2), MES 

buffer 50 mM (pH 5), Hepes buffer (pH 7), PBS 10 mM (pH 8), NaOH (pH 10), deionized 

water (pH 6), Lurian Broth (LB) 1X and Medium106 respectively. 

 

3.33. Bacterial growth inhibition assay 

The antibacterial activity of MNPs was evaluated using Escherichia coli 

(ATCC® 25922™), Staphylococcus aureus (ATCC® 25923™) strains. 20 μl of bacteria 

preserved in glycerol were added to 5 ml of LB broth and incubated overnight at 37°C. After 

24 hours, 500 μl of bacterial suspension was diluted in 10 ml of broth and grown up for 

90 min at 37°C in order to restore an exponential growth phase. Bacterial concentration was 

measured by means of optical density (OD) at 600 nm. Bacteria were resuspended with LB 

broth (2×105 bacteria ml−1). MNPs-treated bacteria were treated with MNPs at different 

concentrations (200 g/ml, 50 g/ml, 20 g/ml). As a negative control, latex Beads (Sigma) 

were used. In the case of membranes, coated (25 g MNPs / cm2) and uncoated samples (ф = 

6 mm) were rehydrated in water and incubated with the bacterial suspension (2×105 bacteria 

ml−1) in a final volume of 500 L. All bacterial samples were incubated at 37 °C for 24 hours 

in shaking conditions. At the end of incubation, bacterial suspension was serially diluted in 
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PBS buffer (from 10−1 to 10−7) and 25 μl of each suspension was plated on LB agar. After 

overnight incubation at 37 °C, the colony forming units (CFUs) were counted. Outcomes 

were compared with the suspension of bacteria grown in liquid medium as control. 

 

3.34. Preparation of bacteria for SEM 

E. coli and S. aureus (2×105 bacteria ml−1) were incubated with MNPs (50 g/ml and 200 

g/ml) and with LB medium (negative control) for 1 hours at 37°C, under shaking. Bacteria 

were rescued on a nitrocellulose filter paper with pore size of 0.2 m. The filters were washed 

in PBS 1X for three times and gradually dehydrated in ethanol (30%, 50%, 70%, 95%, 

100%), each step for 10 minutes. To dry the filters, samples were immerse in 2 ml of HMDS 

until amalysis. 

 

3.35. UV spectroscopy studies on dopamine-modified alginates 

UV-visible spectra of MNPs (100 g/ml in water) was acquired in the range of 200 – 800 nm 

with a UV-1800 Spectrophoometer Shimadzu. 

 

3.36. Statistical analyses 

Data are expressed as means and standard deviations. Statistical analyses were performed 

using Student’s t test, and a p-value < 0.05 was considered statistically significant. 
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4. EXPERIMENTAL SECTION 

4.1. PREPARATION AND MECHANICAL, CHEMICAL AND 

BIOLOGICAL CHARACTERIZATION OF POLYSACCHARIDE-

BASED MEMBRANES FOR WOUND HEALING 

 

4.1.1. LIST OF ABBREVIATIONS 

- GDL  D-Gluconic acid δ-lactone; 

- HA  hyaluronic acid; 

- HDFa human dermal fibroblasts adult; 

- LDH  lactate dehydrogenase; 

- SEM  scanning electron microscopy. 

 

4.1.2. AIMS 

In this section, polysaccharide-based membranes for wound healing applications were 

prepared and characterized. Mixtures containing alginate and HA were employed for the 

preparation of calcium-reticulated hydrogels that underwent freeze-drying for the 

manufacturing of surgical membranes. The main aims of these studies were to: 

- set up the procedure for membrane manufacturing; 

- evaluate the mechanical properties of the membranes to predict the behavior of the 

biomaterial during a surgical procedure, considering their potential use for 

intestinal applications (anastomosis wound healing); 

- prepare different formulations of membranes and evaluate the effect of the 

composition on their mechanical properties; 

- evaluate degradation and release profiles in simulated physiological conditions; 

- investigate the biological effect of the membranes on fibroblast cells in terms of 

biocompatibility and bioactivity (i.e. ability to stimulate the migration and 

proliferation of cells). 
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4.1.3. RESULTS AND DISCUSSION 

4.1.3.1. Manufacturing of membranes based on alginate and HA 

Polymer-based biomaterials in the form of membranes, meshes and dressings represent ideal 

supports for the development of bioactive surgical devices (320). In particular, in the field of 

wound treatment, the use of membranes based on both natural and synthetic polymers has 

been reported (321;322). Given these premises, in this research work alginate-HA membranes 

for intestinal wound healing applications were manufactured through a freeze-drying 

procedure, starting from aqueous solutions containing the two polysaccharides. In particular, 

alginate and HA were dissolved in deionized water in the presence of glycerol as a plasticizer. 

A CaCO3 suspension was added to the solution as an inactive source of Ca2+ ions. The further 

addition of GDL decreased the pH of the solution, leading to the release of Ca2+ ions that 

enabled hydrogel formation. The mechanism of hydrogel formation is sketched in figure 14.  

 

Figure 14. Formation of alginate hydrogels in the presence of Ca2+ ions. 

 

After gelation, freeze-dried membranes were obtained through a procedure based on a 

temperature-controlled freeze-drying; this procedure enabled to obtain pliable membranes 

with a homogeneous mesh (figure 15a). A morphological analysis of the membrane at the 

microscopic scale was carried out by SEM microscopy (figure 15b and c) which highlighted 

their homogeneous polymeric texture. Cross section micrographs displayed an average 

thickness of approximately 300 m (figure 15c); such a limited thickness matches with the 

thickness range of the main commercial surgical membranes for internal use (323). 
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Figure 15. Images of alginate-HA freeze-dried membranes (Formulation D): macroscopic view (a); top view at 

SEM (b); cross section at SEM (c). 

 

4.1.3.2. Mechanical characterization of membranes 

During a clinical procedure, it is important to handle, position and adapt a surgical membrane 

to the target site without breaking or tearing the material. The polysaccharide-based 

membrane described in the section 4.1.3.1 (“4.1.3.1. Manufacturing of membranes based on 

alginate and HA”) were specifically designed and developed as an implantable device to be 

wrapped around the intestine (anastomotic site), in order to stimulate the wound healing. In 

this perspective, it should be considered that these membranes were conceived to withstand 

the maximum mechanical stress during the positioning of the device on the target body site, 

i.e. at the dry state. After implantation, the membrane was designed to undergo a progressive 

degradation under the effects of body fluids and enzyme catalysis. 

For these reasons, the mechanical performances of the membranes (at the dry state) were 

investigated in terms of stiffness, resistance and pliability by means of uniaxial tensile tests, 

considering the Young’s Modulus, the stress and the strain at break of several membrane 

formulations. In particular, we investigated the effect of polymer concentration, amount of 

reticulating agent (Ca2+ amount) and molecular weight of HA on the mechanical behavior of 

the membranes, considering membranes of alginate alone (Formulation A) as a reference. The 

formulations investigated for this analysis are listed the table 2. 

Formulation Alginate 

concentration 

(g/L) 

HA    

concentration 

(g/L) 

MW HA 

(kDA) 

CaCO3 

concentration 

(mM) 

GDL 

concentration 

(mM) 

Glycerol 

concentration 

(v/v) 

A 15 - - 20 40 5 

B 15 15 800 20 40 5 

C 20 15 240 20 40 5 

D 15 15 240 20 40 5 

E 15 15 240 50 100 5 

Table 2. List of the formulations of membranes evaluated in term of mechanical properties. 
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Tensile tests were performed according to the ASTM-D638-10 standards with type 1 

specimens (“dog-bone shape”). The mechanical behavior of the different membrane 

formulations is reported in figure 16. 

 

Figure 16. Mechanical properties of freeze-dried membranes of different compositions: 1) Stress at break, 2) 

Strain at break, 3) Young’s Modulus. Membrane formulations: A) Alginate 15 g/L, CaCO3 20mM, GDL 40mM, 

glycerol 5% v/v; B) Alginate 15 g/L, HA (800 kDa) 15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v C) 

Alginate 20 g/L, HA (240 kDa) 15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v; D) Alginate 15 g/L, HA 

(240 kDa) 15 g/L, CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v; E) Alginate 15 g/L, HA (240 kDa) 15 g/L, 

CaCO3 50 mM, GDL 100 mM, glycerol 5% v/v. 

 

Despite the absence of covalent crosslinks to stabilize the physical matrix of the membrane, 

all the membranes displayed a tensile strength in the range of 0.5 – 1.8 MPa, in line with 

commercial collagen-based membranes for surgical use (324). 
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Considering membranes of alginate alone (Formulation A) as a reference, when HA with 

molecular weight 800 kDa was added, the stress at break decreased from 1.5 ± 0.2 MPa to 0.6 

± 0.1 MPa (Formulation B) and the strain at break decreased from 55 ± 5% to 37 ± 3%, while 

the Young’s Modulus remained approximately unaltered. At variance, when HA with a lower 

molecular weight (240 kDa) was added (Formulation D), the stress at break remained around 

1.5 MPa, the Young’s Modulus increased from 1.5 ± 0.2 MPa to 5.2 ± 0.4 MPa and the strain 

at break decreased from 55 ± 5% to 33 ± 4%. These results point out that, at a fixed alginate 

concentration, the addition of low molecular weight HA (240 kDa) increases the membrane 

stiffness with respect to high molecular weight HA (800 kDa). This could be ascribed to the 

fact that the low molecular weight HA could be better integrated within the reticulated 

polysaccharidic structure; conversely, high molecular weight HA causes a more pronounced 

destabilization of the alginate matrix. 

Comparing membranes with a fixed concentration of alginate (15 g/L) and HA 240 kDa (15 

g/L) (Formulation D), when the concentrations of CaCO3 (and GDL) increased by 2.5-fold 

(Formulation E), the Young’s Modulus increased from 5.2 ± 0.7 MPa to 11.3 ± 0.4 MPa, the 

stress at break slightly increased from 1.5 ± 0.2 MPa to 1.8 ± 0.2 MPa, while the strain at 

break decreased from 33 ± 4 % to 22 ± 2 %. Moreover, increasing the concentration of both 

CaCO3 and GDL increases material stiffness and resistance, while the deformation ability 

decreases. Indeed, higher amounts of CaCO3 increase alginate crosslinking, which accounts 

for the mechanical resistance and stiffness of the membranes. 

Considering the effect of the alginate content in membranes prepared with 15 g/L HA (240 

kDa), 20 mM CaCO3 and 40 mM GDL (Formulation D), an increase of alginate concentration 

from 15 g/L to 20 g/L (Formulation C) caused a decrease of the Young’s Modulus (from 5.2 ± 

0.7 MPa to 3.5 ± 0.9 MPa), a slight decrease of the stress at break and an increase of the strain 

at break (from 33 ± 4% to 40 ± 6%). Given the equal concentration of Ca2+, if a larger number 

of alginate chains occurs, there are less crosslinking points between alginate chains, which 

causes a decrease of membrane stiffness and a slight increase of its maximal elongation.  

Overall, this analysis indicates that by varying parameters such as the concentration of the 

main components (i.e. polysaccharides, CaCO3, GDL), the mechanical properties of the 

membranes can be tailored. The mechanical characterization of the membranes indicated 

Formulation D as the best compromise among resistance (stress at break), stiffness (Young’s 

modulus) and compliance (strain at break); for this reason, this membrane was selected for 
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further investigations in terms of polysaccharides release, degradation and biological 

behavior. 

 

4.1.3.3. Rehydration studies on membranes 

Rehydration studies were performed to evaluate the swelling behavior of the alginate-HA 

membranes (Formulation D) over time. As a reference, alginate membranes (Formulation A) 

were considered (figure 17).  

 

Figure 17. Rehydration kinetics of alginate (Formulation A; black squares) and alginate-HA membranes 

(Formulation D; red squares) in SBF solution. Data are reported as ratio between the weight of hydrated 

membranes and that of dry membranes. 

 

The results showed that in both cases, the freeze-dried membranes rapidly absorb liquids after 

immersion in the medium. The weight of alginate membranes (Formulation A) underwent a 

two-folds increase after 1 minute incubation, with no significant variation over time. 

Conversely, in the presence of HA the weight of the membranes (Formulation D) gradually 

increases during the first 15 minutes of immersion, after which the swelling profile reaches a 

plateau. This behavior can be ascribed to the hydrophilic features of the HA that tends to 

absorb the surrounding fluids. After 4 hours of incubation, the equilibrium of water 

absorption was reached. Overall, these results show that the presence of HA enhances the 

swelling behavior of the membranes. 

 

4.1.3.4. Polysaccharide release and membrane degradation 

The evaluation of both polysaccharide release and degradation kinetics was tackled to predict 

the in vivo behavior of the membranes. The release profile of the two polysaccharides was 
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studied by means of NMR according to a procedure described by Geremia et al (140). The 

membranes (Formulation D) were incubated in HBSS and the release of the two 

polysaccharides was measured as a function of time and expressed as percentage at given time 

with respect to the initial amount of the polymers within the membrane (time zero), as shown 

in Figure 18A.  

 

Figure 18. Polysaccharide release and degradation profiles in HBSS of the alginate-HA membrane (Formulation 

D). A) Polysaccharide release from alginate-HA membranes as a function of immersion time (square symbols: 

alginate release; round symbols: HA release); B) Degradation profile of the membrane in HBSS upon daily 

solution shift. Dashed and dotted lines were drawn to guide the eye. 

 

It should be considered that these polymeric membranes were designed to enable the in situ 

release of the bioactive component (HA) at the injured site. Once the HA has been delivered 

at the target site, the membranes have to progressively degrade within the body. The results 

show that both polysaccharides start to be gradually released during the first 3 hours of 

immersion, after which both release profiles reach a plateau. The HA display a faster release 

kinetics than alginate: considering the initial content of both polysaccharides, approximately 

the 66% of HA and the 33% of alginate are released during the first 3 hours of immersion. In 

this time frame, the dissolution of alginate can be ascribed to the presence of surface domains 

where the reticulation of the alginate chains was partially affected by the accumulation of HA. 

These results are in line with the study of Lindenhayn et al. showing that more than 40% of 

the HA entrapped in alginate beads with higher degree of reticulation is released during the 

first 3 days in cell culture medium (325). The fast release of the HA represents a positive 

feature for the membrane, since the HA has to be effectively provided on the wounded site to 

stimulate tissue healing, immediately after the wound has been closed by sutures.  
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In parallel, the degradation profile of alginate-HA membranes was studied by immersing the 

samples in HBSS solution at 37 °C and measuring the mass upon daily shifts of solution. The 

results are coherent with the analysis of the polysaccharide release (figure 18B): the 

membrane underwent an initial rapid loss of weight which is consistent with the release of 

HA and of a small fraction of alginate from the membrane, observed during the first hours of 

immersion (figure 18A). Then, the degradation rate decreases, with a gradual weight 

reduction for the successive 3 weeks. After that time, only small fragments of the membrane 

could be found in solution. 

 

4.1.3.5. In vitro biocompatibility  

The in vitro biocompatibility of alginate (Formulation A) and alginate-HA membranes 

(Formulation D) was investigated on human dermal fibroblasts (HDFa cells), by testing the 

effect of the liquid extracted from the membranes. The analysis of the in vitro 

biocompatibility was carried out through the quantification of lactate dehydrogenase (LDH). 

The LDH is a cytosolic enzyme that is released in the culture medium upon cellular 

membrane permeabilization caused by the effect of cytotoxic substances and materials. In this 

test, the effect of the liquid extracted from the membranes was evaluated (figure 19).  

 

Figure 19. In vitro biocompatibility (LDH test) of primary human dermal fibroblasts (HDFa) treated with the 

liquid extracted from the alginate (Alg, Formulation A) or alginate-HA (Alg+HA, Formulation D) membranes, 

24 hours (blue bars) and 72 hours (red bars) after incubation (***: p-value < 0.001). 

 

The LDH data pointed out that, after 24 hours of treatment, the release of LDH slightly 

increases in the case of cells treated with the liquid extracted from the alginate-HA membrane 

(11.16 % ± 1.61 %), with respect to the control (untreated cells) (p-value < 0.001). At 
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variance, in the case of alginate membranes, a slight increase of LDH release was observed 

after 72 hours incubation (4.69 % ± 2.62 %) (p-value < 0.001). On the contrary, the enzyme 

release quantified in the medium of cells treated with the cytotoxicity control (Triton X-100) 

was significantly higher (p-value < 0.001). The slight increase of LDH release observed in the 

case of cells treated with the liquid extracted from the membranes can be ascribed to the 

increased viscosity of the cell medium, caused by the release of polysaccharides and glycerol. 

However, an optical evaluation of the treated cells points out no signs of cell suffering. 

The biocompatibility of the membrane was also highlighted by a SEM investigation of 

primary human dermal fibroblasts (HDFa) seeded on the alginate-HA membranes: 24 hours 

after seeding, fibroblasts were able to colonize the material and to spread firmly on it; many 

cells appear flattened with long cytoplasmic extensions (figure 20). A deep physical 

integration of the cells with the polysaccharide matrix was observed, suggesting the existence 

of strong biological interactions between cells and substrate. 

 

Figure 20. Primary human dermal fibroblasts (HDFa) on alginate-HA membrane (Formulation D). 

 

These biological results suggest a possible use of this membrane also for tissue engineering 

applications, given its ability to support cell adhesion and proliferation. 

 

4.1.3.6. In vitro wound healing 

The wound healing assay was performed in order to evaluate the ability of the HA released 

from the membrane to stimulate the healing process. To this end, primary human dermal 

fibroblasts (HDFa) were treated with the liquid extracted from the membrane (Formulation 
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D). In order to highlight the contribution of HA to stimulate the wound healing, cells treated 

with cell culture medium and with the liquid extracted from alginate membranes (Formulation 

A) were considered.  

For all the samples, a scratch was performed on a confluent cell plate and the gap closure was 

monitored over time (figure 21C, 21D, 21E, 21F). The results are expressed as the percentage 

of scratch closure as a function of incubation time (figure 21A and 21B). This approach 

mimics the physiological response of tissue healing, after a wound has been made on an intact 

tissue. Since the wound closure is due to a combination of both the cell migration and 

proliferation, in order to highlight the two contributions, the scratches were performed in the 

absence (figure 21A) or presence (figure 21B) of mitomycin C, a compound able to impair 

cell proliferation.  

 

Figure 21. Effect of the membranes on the closure of gaps within HDFa cells cultured for the scratch tests in the 

absence (A) or presence (B) of mitomycin C. Triangles: alginate-HA membrane (Formulation D); circles: 

alginate membrane (Formulation A); squares: untreated cells (control). (*: p-value < 0.05; **: p-value < 0.01; 

***: p-value < 0.001). 

 

The results show that the kinetics of scratch closure of both cells treated with the liquid 

extracted from alginate membranes and untreated cells display a similar profile; conversely, in 
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the presence of the HA, the wound closure is accelerated. In this latter case, a complete gap 

closure was achieved after 32 hours, whereas in the same time frame, only a 70% of closure 

was observed for non-treated cells and cells treated with alginate membranes (figure 21A). 

When cell proliferation was impaired by mitomycin C (figure 21B), in the case of cells treated 

with alginate-HA membranes, the gap closure was 60% after 32 hours and 80% after 72 

hours, while in the absence of HA the gap closure was less than 40% at 72 hours. These data 

point out that the main mechanism involved in the wound closure is the cell migration; 

however, since in the presence of mitomycin C a complete gap closure was not reached, a 

minor contribution of HA to cell proliferation seems to be involved. This biological study 

proved that the HA effectively released from the membrane provides a significant support to 

the physiological healing process.  

 

4.1.3. CONCLUSIONS 

In this section, a bioactive membrane based on polysaccharides and designed for the 

stimulation of wound healing was manufactured and characterized. 

The main points addressed by this study are reported as follows: 

- membranes based on alginate and HA can be manufactured starting from Ca2+-

reticulated hydrogels, through a freeze-drying procedure that enables to obtain pliable 

and soft membranes with a homogeneous texture; 

- the mechanical properties of the membranes were evaluated by studying the influence 

of polysaccharides concentration, molecular weight and amount of reticulating agent 

(Ca2+). Considering the final medical application, this analysis pointed out that the 

best performing candidate was Formulation D (Alginate 15 g/L, HA (240 kDa) 15 g/L, 

CaCO3 20 mM, GDL 40 mM, glycerol 5% v/v), since it combines the required 

resistance (stress at break), stiffness (Young’s Modulus) and compliance (strain at 

break); 

- the polysaccharide release profiles of alginate and HA were investigated in 

physiological solutions, pointing out that most of HA is released during the first 3 

hours of immersion. This finding represents a positive feature of the membrane since 

this bioactive component should be immediately provided on the wounded site to 

stimulate tissue healing. 
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- in vitro biological tests proved the biocompatibility of the membranes on human 

dermal fibroblasts (HDFa), which were also able to colonize the substrate and 

integrate within the polysaccharide matrix.  

- scratch assays demonstrated the excellent capability of the HA released from the 

membrane to support in vitro the physiological healing process. 

Overall, these novel alginate-HA membranes represent a promising solution for several 

medical needs, in particular when the in situ administration of HA from a resorbable device is 

required. This strategy appears well suited for both the treatment of topical wounds as well as 

to promote the healing of internal tissues that have undergone surgery. 
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4.2. STERILIZATION OF POLYSACCHARIDE-BASED MEMBRANES 

BY MEANS OF SUPERCRITICAL CARBON DIOXIDE (scCO2) 

 

4.2.1. LIST OF ABBREVIATIONS 

- FDA  Food and Drug Administration; 

- HA  hyaluronic acid; 

- HDFa human dermal fibroblasts adult; 

- LDH  lactate dehydrogenase; 

- P.I.  polydispersity index; 

- scCO2 supercritical carbon dioxide; 

- SEC  size exclusion chromatography. 

 

4.2.2. AIMS 

In this section, membranes based on polysaccharides were sterilized by means of scCO2, in 

the presence of H2O2. Four sets of conditions were employed and the effects of temperature, 

time of exposure and amount of H2O2 on the properties of the membranes were investigated. 

In particular, the main aims of this study were to: 

- investigate in vitro biocompatibility of the scCO2-sterilized membranes; 

- evaluate the extent of alginate degradation after sterilization; 

- determine the effect of scCO2 sterilization on the mechanical properties of the 

membranes; 

- characterize the physico-chemical and biological properties of scCO2-sterilized 

membranes in the presence of H2O2; 

- perform preliminary in vivo studies to evaluate the effects of the sterilized material on 

the intestinal tissue. 

 

4.2.3. RESULTS AND DISCUSSION 

4.2.3.1. Evaluation of residual H2O2 

FDA approved terminal sterilization techniques (i.e. steam sterilization, γ-irradiation and 

ethylene oxide) might have a strong impact on the macromolecular structure of 

polysaccharidic biomaterials (156;158;159;163), leading to side effects such as polymer 
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degradation (158;160) or retention of toxic residues that can compromise the in vivo 

biocompatibility of the sterilized biomaterial (161;162). To deal with these main drawbacks, 

the use of supercritical carbon dioxide (scCO2) has been proposed as an alternative 

sterilization technique (163).  

For the sterilization of the polysaccharidic membranes (Formulation D) by means of scCO2, 

four sets of conditions were considered, by varying the amount of H2O2 (200 ppm or 1000 

ppm) used and the exposure time (1 hour or 3 hours) (table 3). 

 Pressure  

(bar) 

Temperature  

(°C) 

H2O2 content  

(ppm) 

Exposure time  

(hours) 

Set 1 270 40 200 1 

Set 2 270 40 1000 1 

Set 3 270 40 200 3 

Set 4 270 40 1000 3 

Table 3. Conditions employed for the sterilization of polysaccharidic membranes by means of scCO2. 

The efficiency of sterilization by means of scCO2 can be enhanced in the presence of 

addictive molecules such as H2O2 (169), although these compounds can damage biomaterials 

based on polysaccharides and exert a cytotoxic effects toward eukaryotic cells (171;178). In 

this perspective, the quantification of the H2O2 within the membrane after sterilization can 

provide useful insights to predict whether potential adverse in vivo reactions might occur after 

implantation. To this aim, a colorimetric assay was performed to quantify the H2O2 within the 

sterilized membranes (figure 22). 

 
Figure 22. Quantification of residual H2O2 upon sterilization according to set1, set2, set3, set4 conditions. 

 

The analyses pointed out that the amount of H2O2 retained after sterilization increased by 

increasing its initial concentration (comparison between set1-2 and set3-4; p-value < 0.01), 
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while no significant influence of the exposure time was noticed when the same amount of 

H2O2 was used (comparison between set1-3 and set2-4; p-value > 0.05). Overall, the 

concentration of H2O2 employed for the sterilization, rather than the time frame of the 

procedure, affects the amount of H2O2 in the sterilized membranes. 

 

4.2.3.2. Influence of the sterilization on alginate 

The membranes sterilized according to the conditions of set1, set2, set3, set4 were employed 

for SEC analyses to evaluate whether the sterilizing conditions cause the degradation of the 

polysaccharide matrix, taking into account the structural component of the membrane 

(alginate). For this reason, alginate alone membranes (Formulation A) were considered. The 

results are reported in table 4. 

Type Exposure time 

(hours) 

H2O2 content  

(ppm) 

Mn P.I. Mn reduction  

(%) 

Non-sterilized -- -- 195.680 1.70 -- 

Sterilized (Set1) 1 200 170.998 1.89 13 

Sterilized (Set2) 1 1000 31.449 2.40 84 

Sterilized (Set3) 3 200 128.427 1.89 34 

Sterilized (Set4) 3 1000 30.306 1.60 85 

Table 4. SEC data of alginate membranes (Formulation A). Sterilization conditions, numeric molecular weight 

(Mn), polydispersity index (P.I.) and reduction of numeric molecular weight (%) are reported. 

 

The results point out that, for all tested conditions, the scCO2 sterilization causes a 

degradation of the polysaccharide matrix of membrane, since a reduction of the numeric 

molecular weight (Mn) of alginate was observed. The extent of such a degradation is mainly 

related to the amount of H2O2 used during sterilization (comparison between the set 1-2 and 

set 3-4). In particular, the use of 200 ppm H2O2 has a minor impact on alginate degradation 

(13% degradation), while 1000 ppm H2O2 strongly decreases its molecular weight (85% 

degradation). These experimental evidences indicate that the conditions of set2 and set4 might 

not be suitable for the terminal sterilization of such biomaterials, while the sterilization 

performed according to the conditions of set1 is suitable for the alginate structure. However, it 

has been demonstrated that times of exposure shorter than 3 hours do not ensure the 

sterilizing effect (165). Therefore, considering these results and data from the literature, the 

sterilization of the membranes for further analyses was carried out for 3 hours by using 200 

ppm H2O2 (set3), since only this condition was found to cause an acceptable reduction of 

alginate molecular weight (34%). 
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4.2.3.3. Mechanical characterization of sterilized membranes 

The alginate-HA membranes (Formulation D) were sterilized by means of scCO2 (set3) and 

their mechanical performances were evaluated in terms of stiffness, resistance and pliability. 

This test was performed since the sterilizing procedures can affect the mechanical properties 

of polysaccharide-based biomaterials, making them less resistant and more prone to failure 

during surgical handling. For comparison, membranes sterilized by two approved terminal 

sterilization techniques, i.e. H2O2 in gaseous phase the γ-rays (>25 KGy) were considered 

(figure 23). 

 
Figure 23. Mechanical properties of alginate-HA membranes (Formulation D) before and after sterilization. (A) 

non-sterilized membranes, (B) membranes sterilized by scCO2 (set3), (C) gaseous H2O2 and (D) γ-radiation. 



68 

 

Stress at break (a), Young’s Modulus (b) and deformation at break (c) are reported. (*: p-value < 0.05; ***: p-

value < 0.001). 

 

These data indicate that scCO2 sterilization (set3) has a lower impact on the mechanical 

properties of polysaccharide-based membranes with respect to γ-irradiation and gaseous 

H2O2, for which a significant reduction of Young’s Modulus (figure 23a), stress (figure 23b) 

and deformation at break (figure 23c) were observed (p-value < 0.01). At variance, in the case 

of scCO2-sterilized membranes only a slight reduction (15%) of the deformation at break was 

noticed (p-value < 0.05), while the Young Modulus and the stress at break remain 

approximately unaltered. These results are in line with the studies of Bernhardt et al who 

demonstrated that the sterilization of alginate powder by means of scCO2 has a lower impact 

on the mechanical properties of the resulting hydrogels with respect to steam sterilization and 

γ-irradiation (171). Similarly, Donati et al showed that the mechanical properties of 

biomaterials for biomedical applications (i.e. bisGMA-TEGDMA thermoset materials) and 

bioactive coatings sterilized by scCO2 in the presence of H2O2 undergo only little variations 

after sterilization (165). Overall, these results indicate that sterilization by means of scCO2 at 

the conditions of the set3 can be an acceptable solution to preserve the mechanical properties 

of the alginate-HA membranes developed in this research work. 

 

4.2.3.4. In vitro cytotoxicity of sterilized membranes 

To evaluate the potential in vitro cytotoxicity of the scCO2-sterilized membranes (set3), the 

LDH assay was performed on fibroblast cells (HDFa). ScCO2 sterilized membranes (set3) 

were left in cell medium for 72 hours; the release of membranes was then incubated with cells 

and the analysis performed 24 and 72 hours after incubation. As a positive control of cell 

death, cells treated with a toxic compound (Triton-X100) were considered. The result points 

out that 24 and 72 hours after treatment, the release from sterilized membranes slightly affects 

cell viability, as the percentage of LDH released was as low as 16.6 ± 9.0 % (figure 24). 

Neverthless, the ISO 10993-5:2009 method for the evaluation of the cytotoxicity of a 

compound, states that a reduction of cell viability lower than 30% can be considered as a non-

cytotoxic effect (171). 
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Figure 24. LDH cytotoxicity assay of alginate-HA membranes (Formulation D) before and after scCO2 

sterilization (set3) on HDFa cells. The positive and negative control of cell viability are represented by cells 

treated with Triton 0.1% and cell treated with the release of non-sterilized membranes, respectively. 

 

Despite a certain extent of cell death that was observed in the case of cells treated with the 

sterilized membranes (7.50 % – 16.64 %) the level of cytotoxicity for the treated cells differs 

from that of the positive control (Triton-X100 0.1%). This effect can be ascribed to the 

presence of some toxic residuals of H2O2 that are retained into the membranes after 

sterilization and that can trigger a toxic response once released in cell culture medium. This 

hypothesis is consistent with the findings of Ikarashi et al who reported that the cytotoxic 

effect of several medical materials sterilized by vapour phase H2O2 was caused by the residual 

H2O2 (326). In a different work, sterilization of materials with scCO2 in the presence of a 

solution containing H2O2 and acetic anhydride did not elicit a cytotoxic effect on bone-

derived human mesenchimal stem cells. Thus, it is likely that the potential cytotoxic effect 

caused by the contact with a sterile biomaterial can be related to both the conditions employed 

for sterilization and to the features of the material itself. It should also be noticed that in vitro 

tests on cell cultures differ from real in vivo environment, where these residuals can be 

continuously diluted in body fluids; therefore, the effect of cell death is enhanced in vitro with 

respect to in vivo conditions. 

 

4.2.3.5. In vivo evaluation of tissue reactions 

A preliminary in vivo test in a pig model (non-dedicated animals) was performed for the 

evaluation of possible tissue reactions due to the presence of residual H2O2. For this 

evaluation, the scCO2-sterilized membranes (set3) were wrapped around the intact intestine 

(i.e. in the absence of anastomosis) and kept in place for 7 hours after implantation (figure 
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25a). At the positioning, the sterilized membranes could successfully withstand the surgical 

handling and showed a good pliability and adaptability to the intestinal walls. No adverse 

tissue reactions (i.e. tissue bleaching) were observed when the contact between the membrane 

and the intestinal serosa was established. Upon animal sacrifice, the tract of the intestine 

previously wrapped with the sterilized membrane was harvested and embedded in paraffin. 

Paraffin sections were cut and subsequently stained with hematoxylin and eosin for the 

morphological analysis (figure 25b).  

 
 

Figure 25. Membranes positioning at the pigs intestine (a) and histology of treated tissue (b). 

 

The histological assessment showed a normal extracellular organization along with no signs 

of inflammation or early adverse tissue reactions. These morphological analyses point out that 

the sterilization based on scCO2 may be promising for the terminal sterilization of these 

membranes, although an in vivo evaluation over prolonged time of exposure is required to 

confirm these preliminary results. 

 

4.2.4. CONCLUSIONS 

In this work, the effect of scCO2 sterilization on the properties of membranes based on 

polysaccharides was investigated. Parameters such as temperature, time of exposure and 

amount of H2O2 were optimized to limit the impact of the sterilization procedure on the 

membranes. The test performed on sterilized membranes pointed out that: 

- the amount of H2O2 within the membrane after sterilization is dependent on the 

amount of H2O2 employed for the sterilization, while no influence of the exposure 

time was noticed in the presence of equal amounts of H2O2; 

- an overall reduction of the molecular weight of alginate occurred depending on the 

amount of H2O2 employed; 
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- sterilization performed for 3 hours by using 200 ppm H2O2 (set3) was found the most 

suitable, since the combination of these parameters were found to be less detrimental 

to alginate integrity and to ensure, at the same time, the sterilizing effect; 

- sterilization by means of scCO2 (set3) has a lower impact on mechanical properties of 

the sterilized membranes, with respect to -irradiation and H2O2 gas plasma 

sterilization.  

- the H2O2 released from the membranes causes a slight in vitro cell cytotoxicity after 

24 hours of incubation. No significant variation was observed at 72 hours; 

- a preliminary in vivo test pointed out the absence of early adverse tissue reactions after 

the contact between membrane and pig’s intestine. However, long term in vivo studies 

are required in order to provide enough evidence for a safe use of scCO2. 
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4.3. H2O2-MEDIATED BIOADHESION OF THE POLYSACCHARIDE-

BASED MEMBRANE TO THE INTESTINAL SEROSA 

 

4.3.1. LIST OF ABBREVIATIONS 

- SEC  size exclusion chromotography; 

- MALLS multiangle laser light scattering. 

 

4.3.1. AIMS 

In this section, the short-term adhesion of alginate membranes to intestinal explants of pigs 

was investigated. The main aims of these studies were to: 

- develop an adhesive strategy based on the use of H2O2 applied as an exogenous 

compound to enhance the tackiness of membranes to the intestine; 

- evaluate the structural modifications induced on both tissue and membranes upon 

exposure to H2O2 and investigate the molecular mechanisms driving the adhesion. 

 

4.3.2. RESULTS AND DISCUSSION 

4.3.2.1. Adhesion studies based on the use of H2O2 

The rationale of this study was to induce the formation of an adhesive layer between an 

alginate-based membrane (Formulation A) and the intestinal tissue explants by treating both 

surfaces with H2O2. This oxidizing agent was employed to induce a molecular modification of 

the outer collagen of the tissue (serosa), in order to induce the formation of an adhesive layer 

of gelatin, while at the same time, promoting a partial oxidation of the polysaccharide alginate 

to enable the formation of reactive aldehyde groups. This approach is sketched in figure 26. 

 

 

Figure 26. Formation of an adhesive interface between an alginate membrane and the intestinal serosa (tissue): 

surface modifications induced by treating the surfaces with H2O2. 
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To simplify the analysis regarding the contribution of the polysaccharide and tissue 

modifications in enhancing the adhesiveness of the biomaterial-tissue system, membranes 

devoid of HA were considered. To evaluate the detachment forces between the two surfaces, 

an experimental setup that mimics the in vivo interaction between membrane and tissue was 

considered taking into account that a possible site of application is represented by the 

intestine. In that configuration, the membranes were first placed in tight contact with the 

explanted pig intestine and the two surfaces were then pulled apart and the detachment force 

was measured (figure 27a). H2O2 was added on the membrane surface before forcing the 

contact with the tissue, while deionized water was used as a control liquid. The results show 

that the force required for the detachment of the membrane upon the treatment with H2O2 

increases with respect to the membranes treated with water, pointing out the formation of an 

adhesive interface (figure 27b).  

 

Figure 27. Adhesion tests between the alginate membrane (Formulation A) and the intestinal tissue (tissue): a) 

sketch of the experimental setup; b) detachment forces measured in the presence water or with increasing 

concentration of H2O2. 

 

This behavior can be explained considering that H2O2 can exert its oxidative action through 

the modification of the chemical structure of the membrane and of the macromolecular 

components of the tissues. In principle, these modifications can determine the formation of an 

adhesive interface. In particular, H2O2 has been reported to drive the degradation of alginate 

molecules, causing the formation of aldehydes groups capable to establish covalent bonds 

mainly with amino groups of tissue proteins (179). At the same time, collagen denaturation 

triggered by H2O2 was previously reported to occur in vivo in tissues like cartilage (327), 

leading to the formation of a gelatin-like structure that displays adhesive features. Moreover, 
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the extent of such modifications can be related to concentration of H2O2 used: the higher the 

concentration of H2O2, the higher the extent of alginate and tissue modifications that result in 

the enhancement of the adhesion forces. Indeed, figure 27b shows that increasing the 

concentration of H2O2 leads to an enhancement of the adhesion force between membrane and 

tissue, with a maximum detachment force obtained with 30% v/v H2O2.   

Once verified the formation of an adhesive interface by means of adhesion tests, molecular 

analyses were carried out to establish the contribution of gelatin formation and alginate 

oxidation upon contact with H2O2. In order to focus on the adhesive features of the gelatin 

layer formed on the surface of tissue after contact with H2O2, two alternative substrates (glass 

and stainless steel) were employed for the adhesion tests and compared with the alginate-

based membrane. Tissue specimens were treated with 30% v/v H2O2 prior to contact with 

these substrates and the detachment forces were measured; the results showed that adhesion 

forces increase in all cases regardless the chemical nature of the interacting substrates, which 

highlights the adhesive role played by the gelatin layer (figure 28).  

 

Figure 28. Adhesion tests between the intestinal tissue and various substrates (glass, stainless steel), in the 

presence of deionized water (white bars) and H2O2 (grey bars). As a reference substrate, the values obtained with 

the alginate membrane (Formulation A) are reported in the same graph. 

 

4.3.2.2. Molecular Characterization of membranes treated with H2O2 

After the analysis of the effects of H2O2 on the intestinal serosa, a study of the molecular 

modifications of the alginate-based membrane was carried out. With reference to the effect of 

oxidative species on alginates, the rupture of the glycoside bonds between monomers 

determines the shortening of the alginate chains and the formation of reactive aldehyde groups 
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by reducing C-1 ends (179); these groups may be involved in the formation of covalent bonds 

with amino groups of cell surface proteins (328;329).  

In order to evaluate if the treatment with H2O2 causes the degradation of alginate, SEC-

MALLS measurements were performed. The analysis pointed out a slight reduction of the 

molecular weight for the H2O2-treated sample (78.000 g/mol) with respect to the control 

sample (95.000 g/mol), stressed by the shift of the refractive index (RI) curve at higher 

retention times (figure 29).  

 

Figure 29. SEC-MALLS analyses of untreated alginate (dotted line) and alginate treated with H2O2 (solid line).  

 

 

4.3.3. CONCLUSIONS 

Adhesive interfaces between the alginate-based membrane and the intestinal tissue can be 

obtained by means of exogenous compounds applied between tissues and biomaterials. In this 

section, the use of H2O2 to drive the adhesion between the two surfaces has been investigated. 

The main conclusions addressed by this study are: 

- H2O2 improves the adhesion between an alginate-based membrane and the intestinal 

serosa, through a mechanism that involves chemical/macromolecular modifications of 

both tissue and membrane; 

- H2O2 drives the formation of an adhesive layer of gelatin on the surface of the tissue; 

this layer plays a major role in increasing adhesion forces; 

- alginate undergoes a slight decrease of the molecular weight after the treatment with 

H2O2; however, this phenomenon does not seem to have significant effect in 

enhancing the adhesion strength, pointing to the main role of gelatin in adhesion 

mechanism. 
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Overall, this study describes a strategy to create adhesive interfaces between biomaterials 

and collagen-containing tissues and it can be exploited to enhance the adhesion of 

polysaccharide-based membranes to intestinal serosa, thus favoring an intimate contact 

between biomaterial and tissue. 



77 

 

4.4. ENHANCED BIOADHESIVITY OF POLYSACCHARIDIC 

MEMBRANES FUNCTIONALIZED WITH DOPAMINE. 

 

4.4.1. LIST OF ABBREVIATIONS 

- D-Alg dopamine-modified alginate; 

- D-AlgM dopamine-modified alginate membrane; 

- HA  hyaluronic acid; 

- HDFa human dermal fibroblasts adult; 

- 1H-NMR protonic nuclear magnetic resonance; 

- H&E  hematoxylin and eosin; 

- MTT  3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide; 

- NIH-3T3 murine fibroblast cell line. 

 

4.4.2. AIMS 

In this section, an adhesion strategy based on the grafting of adhesive functionalities on 

alginate composing membranes was devised. This strategy enabled to enhance the long-term 

adhesiveness of the membrane to the intestinal epithelium in wet conditions. The main aims 

of this study were to: 

- synthetize engineered polysaccharides (i.e. alginate grafted with dopamine moieties); 

- set-up and optimize the manufacturing of membranes with dopamine-modified 

alginate; 

- evaluate the adhesion of the membrane endowed with dopamine moieties in both 

simulated physiological conditions and in vivo; 

- characterize the adhesive system as to its mechanical, adhesion and biological 

properties. 

 

4.4.3. RESULTS AND DISCUSSION 

4.4.3.1. Synthesis of dopamine-modified alginates 

The adhesive substances secreted by mussels are protein-based compounds whose key 

adhesive molecules are L-DOPA residues. These molecules display a catecholic core that 

accounts for the attachment of mussels in wet environment, through the establishment of 

covalent bonds to both organic and inorganic surfaces (218). Given these premises, in this 
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research work catechol molecules displaying chemical features similar to those of L-DOPA 

(i.e. dopamine residues) were grafted on alginate in order to endow the structural component 

of the membrane with adhesive functionalities. EDC and NHS were added to the solution to 

activate the carboxyl groups of alginate, thereby enabling the coupling of alginate with the 

amino group of dopamine moieties. The reaction is shown in figure 30.  

 

Figure 30. Grafting of dopamine on alginate backbone after activation with EDC, NHS of the carboxyl group of 

alginate. 

 

Four formulations of dopamine-modified alginate (D-Alg1, D-Alg2, D-Alg3 and D-Alg4) 

were synthetized by varying the initial concentration of dopamine in solution. For each 

formulation, the degree of substitution was evaluated by means of 1H-NMR that pointed out 

the successful grafting of dopamine on the alginate backbone (figure 31), and confirmed by 

UV spectroscopy.  These analyses showed that the degree of substitution of D-Alg increases 

by increasing the initial concentration of dopamine employed for the synthesis (table 4). 

Formulation Dopamine concentration (mM) Degree of substitution (%) 

UV-visible spectroscopy 

Degree of substitution (%) 

1H-NMR spectroscopy 

D-Alg1 12.5 0.62 ± 0.02 < 1 

D-Alg2 25 1.68 ± 0.22 1.15 

D-Alg3 50 2.48 ± 0.01 1.83 

D-Alg4 75 3.42 ± 0.42 2.80 

Table 4. Dopamine-modified alginates. For each formulation, the initial dopamine concentration (in solution) 

and the degree of substitution (measured by UV-visible and 1H-NMR spectroscopy) are reported. 
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Figure 31. 1H-NMR spectrum of dopamine-modified alginate. 

Dopamine-modified alginates were employed for the preparation of calcium-reticulated 

hydrogels, which were freeze-dried to obtain the membranes (D-AlgM), as reported in the 

Materials and Methods section (“3.3. Preparation of membrane containing dopamine-

modified alginate”). 

 

4.4.3.2. In vitro adhesion studies of membranes 

In vitro adhesion studies were performed to evaluate the adhesiveness of the membranes in 

simulated physiological conditions and to highlight a possible correlation between the amount 

of grafted dopamine and the adhesion ability of D-AlgM to tissue. To this aim, an 

experimental setup was devised taking inspiration from the procedure described by Bernkop-

Schnürch and colleagues (318). In the experimental set-up, fresh porcine intestine was 

harvested and wrapped around a plastic cylinder to put the mucosa in contact with the support 

and to expose to HBSS solution the external part (serosa). The membranes were then applied 

on the serosa side (figure 32).  

 

Figure 32. Experimental setup of in vitro adhesion studies. The tissue is wrapped around a cylinder, to expose 

the serosa tissue. Membrane specimens are applied on it and the system is immersed in HBSS and put under 

shaking. 
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The membrane-tissue system was completely immersed in HBSS under gentle shaking to 

mimic the action of abundant body fluids within the abdominal cavity. The time required for 

the detachment of the membranes from the intestinal tissue was recorded (figure 33). 

 

Figure 33. In vitro adhesion behaviour of membranes attached on explanted pig’s intestine: the chart describes 

the detachment kinetics of the D-Alg membranes with respect to the control material (membrane without 

dopamine). 

 

The test showed that the detachment of the D-Alg membranes occurs with a kinetic that 

reflects the substitution degree: in particular, the higher the latter, the higher the percentage of 

D-Alg membranes attached to the intestine. The behaviour of the membranes based on D-

Alg1 was comparable to that of the membranes devoid of dopamine (control membranes). At 

variance, when higher dopamine contents were used, the detachment profiles of the 

membrane (D-Alg2M, D-Alg3M and D-Alg4M) showed an enhanced adhesiveness. Hence, 

the D-Alg1 formulation was not considered for further investigations.  

Considering the experimental setup, it is reasonable to assume that this adhesion process 

could be enhanced in vivo, since the oxidizing environment in the human body might 

accelerate the oxidation of the hydroxyl groups of the catechol rings of dopamine, thus 

boosting the adhesion process. Finally, it should be considered that these test conditions put 

the membranes in contact with a volume of fluid higher than those generally found in the 

intraperitoneal cavity. For such reasons, this in vitro model is supposed to overestimate the 

rate of the detachment process with respect to in vivo conditions. 
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4.4.3.3. Mechanical characterization of membranes 

The mechanical properties of the D-Alg membranes were tested at the dry state under uniaxial 

tensile conditions, in order to evaluate the effect of different substitution degrees on the 

mechanical performances of the modified membranes. Figure 34 shows the values of stress 

and strain at break of the membranes. 

 

Figure 34. Mechanical properties of membranes based on dopamine-modified alginates (D-Alg): a) stress at 

break, b) strain at break. 

 

The results show that the amount of grafted dopamine affects the tensile properties of the D-

Alg membranes in the terms of mechanical resistance and deformation. This analysis pointed 

out that the parent membranes (i.e. having the same composition of D-Alg membranes, except 

for the polysaccharide being unmodified), displayed higher strength at break (1.31 ± 0.19 

MPa) with respect to the D-Alg membranes. Moreover, the higher the substitution degree of 

D-Alg membranes, the lower the ultimate tensile strength of the membranes (figure 34a). This 

behaviour can be related to the fact that the chemical modification of alginate is known to 

influence its Ca2+-coordination ability, which affects the reticulation process (330;331). In 

fact, given the key role played by guluronic acid sequences in determining such egg-box 

structures, it is reasonable to expect that an in principle random distribution of the dopamine 

residues on the alginate chains may affect a non-negligible number of such residues, thus 

preventing them from participating to the calcium-mediated interchain cross-links.  

Considering the results from the in vitro adhesion test and the mechanical characterization, 

the D-Alg2 membranes were considered as the best performing, since they combine good 

mechanical resistance and improved adhesiveness. Thus, this membrane formulation was 

selected for the in vitro biocompatibility studies and for the evaluation of the in vivo 

adhesiveness. 
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4.4.3.4. In vitro biocompatibility (MTT assay) 

To investigate the influence of the dopamine-modified alginate on cell viability, a 

colorimetric assay (MTT) was carried out on primary fibroblasts (HDFa) and on a fibroblast 

cell-line (NIH-3T3). The modified alginate (D-Alg2) was dissolved in cell medium at various 

concentrations  and the cell viability was evaluated at 24, 48, and 72 hours after the treatment. 

As a positive control of cell viability, cells treated with a detergent that induces cell lysis 

(Triton X-100) were used. The results are reported in figure 35.  

In the case of NIH-3T3 (figure 35a), there is no significant reduction of cell viability when 

comparing treated cells to control cells (p-value > 0.05), which indicates the non-cytotoxicity 

of the tested compound at each time intervals considered; the same results were obtained for 

HDFa primary fibroblasts at 24 hours. However, at 48 and 72 hours after treatment a slight 

reduction  (12-16%) of the viability of treated cells could be observed at each concentration 

compared to untreated cells (p-value < 0.01) (figure 35b). As a mean of comparison, the 

viability of cells treated with the positive control (Triton) was reduced of more than 50% for 

both NIH-3T3 and HDFa cells. A qualitative evaluation of cell viability was performed by a 

visual analysis of the cell cultures through a microscope, in order to provide additional 

information on the potential cytotoxic effect of the modified alginates (figure 35c and 35d).  

 

Figure 35. Cell viability (MTT test) of NIH-3T3 (a) and HDFa cells (b) treated with dopamine-modified alginate 

(D-Alg2) at various concentrations (0.2 %, 0.1 %, 0.05 % and 0.02 %). Optical images of untreated HDFa cells 

after 72 hours of culture (c) and cells treated with a dopamine-modified alginate at 0.2% (d). 
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Despite the slight decrease in the cell viability, it should be considered that, according to the 

ISO 10993-5:2009 method for the evaluation of the cytotoxicity of a compound, only a 30% 

or higher percentage of reduction of cell vitality is considered as a cytotoxic effect. Moreover, 

optical images of untreated cells (figure 35c) and of cells treated with dopamine-alginate after 

72 hours of culture (figure 35d), points out no visible signs of cell suffering such as change of 

cell morphology, cell detachment, chromatin aggregates and apoptotic bodies, thus supporting 

the non-cytotoxic effect of the compound. 

 

4.4.3.5. In vivo adhesion studies 

The adhesiveness of the dopamine-modified membranes (D-Alg2M) was evaluated in vivo on 

a pig model. As a control, membranes prepared with non-modified alginate (Formulation D) 

were used. The materials were wrapped around the pig’s intestine and kept in place for 7 

hours after the operation. In both cases, the membranes displayed a good initial adhesion 

when in contact with the moist tissue and a good ability to adapt to the anatomy of the 

intestinal walls as neither alteration of the intestinal motility nor stenosis of the treated tract 

were observed. Interestingly, an increased stickiness was qualitatively observed in the case of 

the dopamine-containing membrane upon contact with the intestinal serosa. After 7 hours, the 

pig’s abdomen was re-opened and the dopamine-containing membrane (D-Alg2M) was still 

found in place, appearing as a flexible and soft layer surrounding the intestinal walls. 

Moreover, the material could not be manually detached and a slight brownish colour was 

observed, indicating that a possible oxidation of the modified-polysaccharide occurred within 

the body (figure 36). At variance, the unmodified membrane was not found in place anymore 

when the abdomen was re-opened, pointing out an insufficient long-term adhesiveness of the 

material in such conditions.  

 

Figure 36. In vivo adhesiveness of dopamine-containing membrane (D-Alg2M): the white arrows indicates the 

dopamine-containing membrane adhering to the intestinal serosa after 7 hours of implantation.  
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After the animal sacrifice, the tract of the intestine in contact with the dopamine-containing 

membrane was harvested and stained with hematoxylin and eosin for the morphological 

analysis. Hematoxylin and eosin are basic and acid dyes that are able to stain the cellular 

structures through charge interactions in a non-specific manner; so these compounds were 

employed to stain the negatively charged polysaccharides of the membrane in contact with the 

tissue (figure 37).  

 

Figure 37. Histological analysis of the intestine-membrane interface (H&E staining). 

The histological assessment pointed out the absence of early adverse tissue reactions upon the 

contact with the modified-membrane (figure 37) and the presence of the D-Alg2M membrane 

appearing as a purple layer grafted on the intestinal epithelium (serosa), showing the deep 

compenetration between the material and the intestinal epithelium.  

 

4.4.4. CONCLUSIONS 

In this study, the long term adhesiveness of polysaccharidic membranes to the intestinal 

epithelium was improved by exploiting a bio-inspired adhesive strategy. Dopamine moieties 

were chemically grafted on alginate, in order to endow the membrane with adhesive 

functionalities enabling an improved bioadhesion in wet conditions. The main points 

addressed by this study were the followed: 

- alginate modified with dopamine moieties (D-Alg) can be synthetized by chemical 

coupling. The linear correlation between the initial concentration of dopamine and the 

substitution degree of the modified polymers was pointed out by 1H-NMR and UV 

spectroscopy; 
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- the grafting of dopamine on alginate significantly improves the adhesiveness of the 

biomaterial to the intestinal tissue, as proved by both in vitro and in vivo tests; 

- the mechanical properties of the D-Alg membranes are affected by the grafted 

dopamine residues, which can be ascribed to the inability of guluronic sequences of 

modified-alginate to coordinate Ca2+ ions, thus leading to the formation of weaker 

junctions within the hydrogels; 

Overall, these engineered membranes enhanced adhesiveness in wet environment and showed 

good in vitro biocompatibility, thereby holding great promise for the development of adhesive 

biodegradable biomaterials for general surgery applications.  
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4.5. DEVELOPMENT OF ADHESIVE COATINGS BASED ON 

MELANIN NANOPARTICLES FOR POLYSACCHARIDE-BASED 

MEMBRANES 

 

4.5.1. LIST OF ABBREVIATIONS 

- DHI  5,6-dihydroxyindole; 

- IQ  indo-5,6-quinone; 

- MNPs melanin-like nanoparticles; 

- PdI  polydispersivity index. 

 

4.5.2. AIMS 

The development of adhesive coatings for soft membranes represents an alternative to the 

functionalization of polysaccharides with chemicals. In this section, adhesive coatings based 

on melanin-like nanoparticles (MNPs) were prepared and characterized. The main aims of this 

study were to: 

- synthetize and characterize MNPs suspensions (size dimension and surface charge); 

- evaluate the stability of MNPs at different pH and ionic strength; 

- set-up the manufacturing of membranes coated with MNPs and evaluate the adhesive 

properties in simulated physiological conditions; 

- investigate the biological properties of MNPs in terms of in vitro biocompatibility and 

antimicrobial activity. 

 

4.5.3. RESULTS AND DISCUSSION 

4.5.3.1. Synthesis and characterization of MNPs 

MNPs are catechol-based nanoparticles whose reactivity might offer novel solutions for the 

development of novel adhesive systems. Indeed, these nanoparticles expose reactive               

o-quinone groups on their surface, which enable the formation of covalent bonds with amines 

or thiols of tissue proteins; this property might be exploited to prepare adhesive coatings for 

implantable biomaterials (238;313). The use of MNPs for adhesive purposes provides several 

advantages over catechol-functionalized polymers. First, the chemical modification of 

polymers can modify the properties of the native molecules, which may lead to unpredictable 
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outcomes. As a second main point, nanoparticle suspensions are suitable for the development 

of uniform coatings and the high active surface of nanoparticles together with the presence of 

a higher number of quinone reactive groups exposed on their surface can ensure the 

establishment of an increased number of covalent interactions, thus strengthening the adhesive 

bonds.   

The synthesis of MNPs was performed through the addition of NaOH to an aqueous solution 

of dopamine, as described in the literature (299). Dopamine-containing solutions are colorless 

at slightly acidic pH. The addition of NaOH triggers the formation of MNPs: the color of the 

solution immediately turns to pale yellow and then to black. At the same time, the pH of the 

solution decreases from basic to acidic values over prolonged polymerization time (figure 

38a).  

 

Figure 38. pH variation over MNPs formation (a); UV-visible spectrum of MNPs (b); FTIR spectrum of MNPs 

(c). 

 

The decrease of the pH over time can be ascribed to the deprotonation of the amino group of 

dopamine (299). The addition of NaOH induced the synthesis of MNPs through the 

spontaneous oxidation of dopamine, leading to the formation of 5,6-dihydroxyindole (DHI) 

that can be further oxidized to indo-5,6-quinone (IQ). DHI units can assemble together to 
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form oligomers which are further linked through - stacking interactions and covalent 

bonds, leading to the formation of the nanoparticles (304) (see the section “1.9.4 Catechol-

based nanoparticles”). The chemical reactions that take place after the addition of NaOH and 

the main intermediates that form during the synthesis are reported in figure 39. 

 

 

Figure 39. Chemical intermediates that form during the synthesis of MNPs. 

 

 

The UV-visible and FTIR spectra of MNPs were measured after the nanoparticles 

purification, to confirm the melanin-like structure. The former spectrum showed a broad 

absorption band in the UV-visible spectrum, which has been reported in the literature for both 

synthetic (303;308;332) and natural melanins (303;333;334) (figure 38b). 

The FT-IR spectrum of MNPs showed a broad band at 3000-3500 cm-1 corresponding to NH 

and OH stretching of indoles. The signal at 1608 cm-1 can be attributed to the C=C stretching 

vibration of phenolic ring, and those at 1506 cm-1 and 1405 cm-1 can be assigned to the NH 

bending and CH2 bending respectively (figure 38c). These peaks were reported as 

characteristic of natural melanins (335;336). 

 

4.5.3.2. Analysis of MNPs stability 

Morphological analyses of MNPs pointed out that they are uniform, round shaped and well 

dispersed (figure 40).  

 
 

Figure 40. SEM images of MNPs. 
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The hydrodynamic diameter of the MNPs determined by means of DLS was 222.93 ± 12.29 

nm, with a polydispersivity index (PdI) of 0.19, indicating the narrow size distribution. MNPs 

are negatively charged: the mean -potential value was -26.97 ± 1.25 mV showing that a good 

nanoparticle dispersion stemmed from electrostatic repulsion. The analysis of the MNPs size 

pointed out that no significant variation of the mean z-average values occurred up to 80 days: 

at this time interval, the mean z-average value of the same formulation was 248.07 ± 65.41 

nm). The stability of MNPs was also evaluated in the presence of aqueous NaCl at the 

concentrations of 1.5 mM, 150 mM (which corresponds to the ionic strength of the biological 

fluids) and 500 mM (figure 41). The result shows that the addition of NaCl 1.5 mM does not 

significantly modify both the mean z-average and the surface charge values of MNPs. 

Conversely, when higher concentrations of NaCl are used, the mean dimensions of MNPs 

increase, indicating their tendency to aggregate. The effect of NaCl on MNPs dimensions is 

paralleled by the -potential, which points out that the presence of aqueous NaCl at 

concentrations equal to and higher than 150 mM, the surface potential of MNPs tends to 

decrease. In these cases, the ions in solution are likely to screen the repulsion forces among 

surface charges of the MNPs, thus causing their aggregation as confirmed by the increased 

PdI (0.40 ± 0.04). These results indicate that MNPs display a good stability in water, although 

in the presence of NaCl at concentrations equal and higher than that of the biological fluids 

(i.e. 150 mM), the tendency to aggregate occurred. 

 

Figure 41. Analysis of MNPs dimension (black squares) and surface potential (blue squares) in water and in 

NaCl at different concentrations (***: p-value < 0.001). 
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The stability of MNPs at pH values ranging from 2 to 10 was evaluated by measuring size 

dimension and surface potential (figure 42). The analysis of the latter shows that a monotonic 

increase towards negative values of the mean surface charge values occurs upon increasing 

the pH. In particular, at pH 2 the -potential reaches positive values, while a conversion to 

negative ones is observed at pH 6, 7, 8, 10.  

At pH 5, the -potential approaches the zero value (0.8 ± 0.2 mV), indicating the neutral 

surface charge of MNPs. At this condition, the dimensions of MNPs significantly increase 

with respect to the control (i.e. MNPs at pH 6), due to the absence of repulsion forces among 

MNPs, which favors their aggregation as confirmed by both the presence of micrometric 

structures and the higher PdI (0.41 ± 0.04). Hence, pH 5 has been identified as the least stable 

condition for MNPs, since in that condition the tendency to aggregate occurs. 

At variance, at pH 2, 7 and 10 the particles dimensions do not differ significantly from those 

of the control. This result matches with the analysis of the surface potential showing that at 

these conditions MNPs reach a high surface charge density. A slight increase of the mean z-

average value was observed at pH 8 (p-value < 0.01); at this conditions, the negative -

potential of MNPs indicates the presence of repulsion forces, although the increase of the PdI 

(0.23 ± 0.02) seems to indicate that small aggregates are formed.  

 

Figure 42. Analysis of MNPs dimension (squares) and surface potential (triangles) at different pH conditions (*: 

p-value < 0.05; ***: p-value < 0.001). 

 

To explain these results, we hypothesized that at pH 2 the OH and NH groups of catechol 

moieties of MNPs are protonated, thus conferring a positive charge to the system; at variance, 

at pH higher than 6, the OH groups are deprotonated, so that MNPs display a negative charge 

(figure 43).  
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Figure 43. -potential, size dimensions and PdI variations according to the pH. 

 

In both situations, the high positive and negative charges of the system determine the 

repulsion of the MNPs from each other, leading to a good dispersion of the nanoparticles with 

no tendency to aggregate. This feature is confirmed by the dimensions of MNPs that do not 

differ significantly from that of the control, and by the low PdI of the nanoparticle 

suspensions that ranges from 0.14 ± 0.07 at pH 2 to 0.23 ± 0.02 at pH 8. 

Overall, the analyses of the MNP dimensions and surface charge show that MNPs are stable 

at the selected conditions, except at pH 5 when the neutral surface charge induce the 

formation of MNPs aggregates.  

 

4.5.3.3. Bioadhesion of MNPs coated membranes 

Given the reactivity of MNPs and the exposure of quinones enabling the formation of 

covalent bonds with nucleophiles such as amino groups of tissue proteins, MNPs were 

employed for the manufacturing of adhesive coatings, by spreading MNPs on the surface of 

membranes. SEM analyses showed that MNPs can form a uniform layer on the membrane 

surface and that they are entrapped on the surface of the membrane (figure 44).  
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Figure 44. Top view (a. and b.) and cross-section (c. and d.) images of MNPs-coated membranes. 

 

MNPs-coated 4.1.3.6.membranes (Formulation D) were characterized as to their bioadhesive 

properties to the intestinal tissue, in simulated physiological conditions. These membranes 

were placed on freshly harvested pig’s intestine prior to immersing the system in a HBSS 

solution. As a control, uncoated membranes (Formulation D) were used and the time required 

for detachment of the specimens was measured. As shown in figure 45, the detachment 

kinetic of membranes coated with MNPs is slower than that of the uncoated membranes. 

Indeed, the latter membranes detached within 90 minutes of incubations. Conversely, in the 

presence of MNPs-based coating, the bioadhesion to the tissue is significantly increased and it 

is extended up to 24 hours. Considering the results from the scratch test (see section “4.1.3.6. 

In vitro wound healing”), this time frame is sufficient to achieve a cell gap closure of 

approximately 85%. Overall, these results demonstrated that MNPs-based coatings increase 

the adhesion ability of the membranes over time, probably owing to the presence of reactive 

chemical functionalities exposed on their surface that enabled the formation of covalent bonds 

with tissue counterparts (334). Moreover, it is worthwhile to note that in the proposed 

experimental set-up, the tissue-membrane system is completely immersed in a HBSS solution, 

thus empathizing the in vivo conditions. Therefore, as for the detachment of dopamine-

containing membranes, in an in vivo model the adhesion properties of the coated membranes 

would be higher. 
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Figure 45. Detachment kinetics of uncoated (squares) and MNPs-coated membranes (rounds). 

 

4.5.3.4. Antimicrobial effect of MNPs 

Antimicrobial test were performed on E. coli and S. aureus strains to evaluate the bactericidal 

properties of MNPs at different concentrations (figure 46a). The results pointed out that at the 

highest tested concentrations (200 g/ml and 50 g/ml) MNPs display a strong antimicrobial 

activity on both bacterial strains. The results show that MNPs exert a bactericidal effect in a 

dose-dependent manner. At the highest tested concentrations (50 g/ml and 200 g/ml) the 

MNPs completely prevent the bacterial growth, whereas at the concentration of 20 g/ml 

MNPs had no effect. Thus, MNPs at 50 g/ml was selected as the lowest concentration of 

MNPs that effectively kills bacteria. In order to determine whether this effect was related to 

the MNPs chemical reactivity or to their physical presence causing a mechanical stress on 

cells, bacteria were treated with latex beads, which do not display any chemical reactivity 

(figure 46b). Latex beads were added to the bacteria suspension in a number corresponding to 

the number of MNPs in 50 g/ml, showing that these nanoparticles do not affect the growth 

of the treated bacteria, thus proving that the bactericidal mechanism caused by MNPs could 

be ascribed to their chemical reactivity and not to dimensions.  
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Figure 46. Bacterial growth after 24 hours treatment with MNPs. E. coli (pink bars) and S. aureus (blue bars) 

treated with MNPs in suspension at various concentrations (a) and in the presence of latex beads in number 

corresponding to the number of MNPs in 50 g/ml (b). (**: p-value < 0.01).  

 

DLS measurement showed that, when resuspended in LB broth, the MNPs tend to aggregate 

to form micrometric structures (the mean z-average value is 1.595 ± 0.105 m). Although 

these aggregates are not able to cross the cell membrane because of their dimension, we 

hypothesized that after surrounding of bacteria, MNPs can bind to thiol groups of proteins 

exposed on bacterial membrane through their o-quinone groups. Morphological images of 

MNPs treated bacteria support this hypothesis showing the interaction of nanoparticles with 

the cell membrane (figure 47c, 47d, 47e, 47f). These results are consistent with the findings of 

Zhao et al who reported the antibacterial activity of DHI on both gram-positive and gram-

negative bacteria: the treatment of bacteria with these compounds leads to the formation of 

aggregates of bacteria, together with the increased roughness of cell membrane (337). Once 

the membrane has been damaged, MNPs can cause further damages such as affecting the 

structure of DNA and of intracellular proteins (338). 
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Figure 47. SEM images of untreated E. coli (a) and S. aureus (d) and E. coli treated with MNPs 200 g/ml (b) or 

50 g/ml (c.) and S. aureus treated with MNPs 200 g/ml (e.) or 50 g/ml (f.). 

 

Antimicrobial tests were performed on MNPs-coated membranes. The results showed no 

significant variation in the terms of bacterial growth in the treated samples with respect to the 

untreated one (data not shown).  

We hypothesize that in the case of MNPs-based coatings, the nanoparticles were not able to 

surround bacterial cells and to cross the membrane, since they were entrapped over the 

surface of the membrane. In this conformation, the number of reactive species which are 

effective on bacteria decreases dramatically with respect to the number of reactive groups 

available on MNPs suspensions. Thus, it is likely that only few bacteria can be recruited by 

reactive o-quinone of MNPs, resulting in no significant effect on the overall bacterial growth. 

 

4.5.3.5. In vitro biocompatibility of MNPs 

The LDH assay was performed on fibroblast cells to evaluate the cytotoxic effect of the 

MNPs suspensions and of MNPs-coated membranes, 24 and 72 hours after treatment (figure 

48). The effect of MNPs at the final concentrations of 5 g/ml and 50 g/ml was evaluated in 

terms of LDH release. As a negative control of chemical reactivity induced by nanoparticles, 

cells treated with latex beads in an equal number as those of MNPs 50 g/ml were considered.  
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Figure 48. In vitro biocompatibility (LDH test) on primary human dermal fibroblasts (HDFa) treated with MNPs 

24 hours (yellow bars) and 72 hours (grey bars) after treatment (***: p-value < 0.001).  

 

The results point out that MNPs induce the release of the LDH enzyme in a dose-dependent 

manner: the higher the concentration of MNPs, the higher the cytotoxic effect on cells. 

Although at the highest concentration (50 g/ml) an increased level of cytotoxicity was 

observed, the cytotoxic response of MNPs-treated cells is far lower than that of the positive 

control of cell death (Triton X-100) and no enhancement of cell cytotoxicity after 72 hours 

was observed with respect to 24 hours. It can be hypothesized that, as for the bacterial cells, 

the cytotoxicity caused by MNPs can be ascribed to their chemical reactivity, since no 

difference in the terms of LDH release was observed in the presence of latex beads. With 

respect to the cytotoxic mechanism, it has been reported that catechols can be internalized by 

cells and undergo redox reactions once inside a biological system. These reactions allow the 

formation of reactive byproducts that can inactivate enzymes or proteins, trigger the formation 

of ROS and affect the structure of macromolecules such as DNA (339). All these events can 

be responsible for the cytotoxic response of cells treated with MNPs. This hypothesis is 

supported by literature evidences stating that DHI-based compounds display a chemical 

toxicity to human cells (340-342), although at low concentrations these molecules exert 

protective effects to retinal cells (340). 

 

4.5.4. CONCLUSIONS 

In this study, an adhesive coating based on MNPs was developed to improve the adhesive 

properties of polysaccharide-based membranes for wound healing applications. These studies 
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were performed to characterize the features of MNPs and of the MNPs-coated membrane. The 

test performed pointed out that: 

- synthetized MNPs are uniform, well dispersed and round shaped. When resuspended 

in water, they display a mean diameter of 222.93 ± 12.29 nm, with a polydispersivity 

index (PdI) of 0.19, indicating the narrow size distribution of the MNPs; 

- MNPs are negatively charged particles (-potential is -26.97 ± 1.25 mV); 

- MNPs display a good stability in water, although in the presence of NaCl at 

concentrations higher than that of the biological fluids (i.e. 150 mM), aggregation 

phenomena occur; 

- the surface charge of MNPs reaches positive values at acid pH, while negative ones 

were observed at basic values. At pH 5 the MNPs are unstable, as confirmed by the 

neutral surface charge and by the formation of larger aggregates; 

- MNPs-based coatings confer increased adhesive properties to the membrane in 

simulated physiological conditions. The adhesion to the intestinal tissue was proved 

over time and this data can be ascribed to the presence of reactive chemical moieties 

exposed on the MNPs surface, which enables the formation of covalent bonds with 

tissue counterparts (proteins); 

- MNPs exert an antimicrobial effect on both gram-positive and gram-negative bacteria 

in a dose dependent manner, through a mechanism that may involve the inactivation of 

metabolic enzymes and the damage of the cellular structures. No effect in terms of 

bacterial growth was observed after the treatment with MNPs-coated membranes; 

- MNPs induces a low cytotoxic response on cells at high concentrations. The MNPs 

cytotoxicity can be ascribed to the chemical reactivity of MNPs that can be uptaken by 
cells, damage the cellular structures and lead to cell death.  
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5. CONCLUDING REMARKS 

Despite the recent efforts in the development of tissue adhesives for biomedical use, novel 

solutions are required to improve the adhesion ability in the moist environment of the human 

body. These adhesives can be used as a glue at the biomaterial-tissue interface or embedded 

within the medical device, thus tailoring the adhesive properties of the system to the final 

medical application. The present work aimed at the manufacturing of a bioactive, bioadhesive 

and biodegradable membranes based on polysaccharides, for wound healing applications. 

Despite a good initial tackiness of the native membrane was proved on ex vivo tissue explants, 

the adhesive properties needed to be implemented in the long term, in order to enable the 

release of the bioactive component at the wound site. In this regard, the first part of this thesis 

was focused on the development and characterization of the membranes, while the second 

part was focused on the adhesion aspects. 

 

In particular, it was demonstrated that: 

 

- polysaccharide-based membranes can be manufactured by freeze-drying alginate-HA 

hydrogels crosslinked with calcium. The final constructs were proved to be 

biocompatible and bioactive in vitro, thus sustaining and accelerating fibroblasts 

activity (wound healing); 

 

- the sterilization of the membranes with terminal sterilization techniques (i.e. -rays 

and H2O2 gas plasma) affects the properties of the final product. Thus, a sterilization 

based on scCO2 was successfully employed to limit the impact on the polysaccharide 

matrix. This method was proved to be the most suitable for the alginate-HA 

membranes developed in this work; 

 

- the presence of H2O2 at the biomaterial-tissue interface enhances the short term 

adhesiveness of the membrane through a mechanism that mainly involves the 

structural modification of tissue collagen to adhesive gelatin; 

 

- the implementation of alginate modified at the nanoscale by the grafting of dopamine 

moieties improved the adhesiveness of the membranes to the intestinal tissue. 
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Preliminary in vivo adhesion test supported the in vitro results and indicated the 

biocompatibility of the dopamine-containing membranes. 

 

- membranes coated with MNPs displayed an enhanced adhesion to tissue explants, 

providing a powerful tool for the enhancement of the adhesive features of the 

membranes without modifying the chemical structure of the main components. MNPs 

were shown to exert a bactericidal effect on both gram-positive and gram-negative 

bacteria in a dose-dependent fashion, and to induce a low cytotoxic response towards 

fibroblasts.  
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