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Glacial isostatic uplift of the European Alps
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Following the last glacial maximum (LGM), the demise of continental ice sheets induced

crustal rebound in tectonically stable regions of North America and Scandinavia that is still

ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured

uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading

due to deglaciation and erosion. Here we show that B90% of the geodetically measured rock

uplift in the Alps can be explained by the Earth’s viscoelastic response to LGM deglaciation.

We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial

erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of

excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially

affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows

that even small LGM ice caps can dominate present-day rock uplift in tectonically active

regions.
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R
ecent vertical movements of the Earth’s crust are mostly
due to tectonic deformation along plate boundaries,
volcanism and changes in crustal loading from water, ice

and sediments1. The decay of continental ice sheets caused uplift
of the formerly glaciated regions and was the primary cause for
the Holocene eustatic sea level rise, which is one of the main
concerns of the impacts of global warming on coastal
communities worldwide2. Changes in the ice load of
tectonically active mountain ranges, such as the Alps, the
Alaska Range or the Himalaya, although much smaller,
nevertheless trigger an isostatic response. The induced surface
uplift and/or subsidence is thought to have caused changes in
fluvial networks3, and the resulting stress changes in the Earth’s
crust can influence crustal deformation and seismicity4 and might
have triggered some of the largest intraplate earthquakes since

last glacial maximum (LGM) deglaciation5. The key controls on
how the Earth responds to changes in crustal loading are the
viscosity of the upper mantle and the lithospheric effective elastic
thickness (EET)—a geometric measure of the flexural rigidity of
the lithosphere, which describes the resistance to bending under
the application of vertical loads1. Most previous estimates of
mantle viscosity come from old and tectonically stable continents,
where the vertical motion can almost entirely be attributed to
postglacial rebound6. In contrast, the complexity of the uplift signal
in tectonically active orogens requires the relative contribution of
different potential driving mechanisms to be disentangled.

For half a century, the cause for recent uplift of the
European Alps has been debated. Possible drivers of uplift
include postglacial rebound7, erosional unloading8, tectonic
deformation9, lithospheric slab dynamics10 and combinations
thereof (Fig. 1). Some of these processes, such as lithospheric
delamination, manifest themselves on timescales of B106–107

years, whereas others, such as postglacial rebound, occur
relatively rapidly (B103 years). New approaches to modelling
orogen-scale sediment storage11, glaciation12 and spatial
variations in EET (ref. 13) provide new constraints for
estimating the contribution of glacial isostatic adjustment (GIA)
to present-day uplift rates in the European Alps.

Mountain building in the European Alps is due to the
convergence of Africa and Eurasia beginning in the Mesozoic
with continental collision culminating in the Eo-Oligocene14.
A late phase of outward tectonic growth in the Early Miocene
created the Jura Mountains and thrusting of the Swiss Plateau14

(Fig. 2). Further tectonic shortening was accompanied by
eastward extrusion of the Eastern Alps and exhumation of
metamorphic domes in the Central Alps15. The cessation of
outward tectonic expansion of the Western and Central Alps
during the Late Miocene might reflect an increase in the ratio of
erosional to accretionary material flux and the onset of orogenic
decay16. During the Pleistocene, the Alps were repeatedly
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Figure 1 | Processes contributing to rock uplift in a contractional orogen.

The individual components are interdependent and their relative

contribution to rock uplift changes over time. Blue and orange polygons

indicate glaciers and alluvial fans, respectively.
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Figure 2 | Seismotectonic setting. Seismicity (grey dots, NEIC, 1973–2008), focal plane solutions63 and seismogenic faults (black solid lines,

http://diss.rm.ingv.it/share-edsf/) superimposed over a DEM of the study area. Red arrows depict the horizontal velocity field of permanent GPS stations

in a Europe-fixed reference frame64. Error ellipses show 1-sigma (67%) confidence level. Stars indicate locations of the reference points for the Swiss and

Austrian precise levelling data, respectively. ‘L’ and ‘Z’ are the locations of the permanent GPS stations used to adjust the levelling data to the global

reference frame IGb08. Fr., Friuli; Lo., Lombardy; TW, Tauern Window.
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glaciated with ice caps that covered almost the entire mountain
belt and substantial parts of the northern foreland17. Locally,
glaciation was presumably associated with a twofold increase in
exhumation rates18,19 and topographic relief20, which may be
controlled by feedbacks between glacial erosion, crustal
unloading, isostatic uplift and deep-seated processes.

Permanent global positioning system (GPS) stations indicate
ongoing crustal convergence of 1–2 mm yr� 1 across the Eastern
Alps (Fig. 2) that is controlled by the counterclockwise rotation of
the Adriatic plate21. The convergence is accommodated by
thrusting in the Italian Friuli and Lombardy regions and by
eastward extrusion along strike-slip faults15,21. In the Central and
Western Alps, however, only minor or no crustal shortening can
be detected22 and earthquake focal plane solutions are dominated
by extensional and strike-slip mechanisms (Fig. 2).

In this study, we re-evaluate the effect of GIA on the present-
day rock uplift in the Alps while accounting for postglacial
erosion, sediment deposition and variations in lithospheric
strength. We show that most of the postglacially eroded material
was trapped within the mountain belt and did not contribute to
erosional unloading as previously suggested8. Instead our results
demonstrate that the long-wavelength uplift signal is best

explained by the Earth’s viscoelastic response to ice unloading
after the LGM. We conclude that present-day uplift rates in other
tectonically active and glaciated mountain belts could also carry a
component related to LGM deglaciation.

Results
Alpine valley fills and postglacial erosion. Among the most
prominent features of the Alpine landscape are overdeepened
valleys that were carved by glaciers and are now partially buried
by thick sedimentary deposits. The isostatic adjustment to
deglaciation was likely attenuated by the postglacial accumulation
of sediments in these valleys8. We used an artificial neural
network (ANN) algorithm11 to estimate the sediment thickness
within all Alpine valleys (see ‘Methods’ section; Fig. 3a). Our
estimates agree well with fill thicknesses observed in boreholes or
estimated from seismic and gravimetric surveys (Supplementary
Table 1), and they yield consistently similar or higher thicknesses
where boreholes did not reach bedrock (Fig. 3c). Very shallow
valley fills (o200 m) show the largest relative discrepancies,
which can be attributed to distances between observation
sites and valley walls that are smaller than the spatial resolution
of the model (90 m). Compared with an independent sediment-
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Figure 3 | Valley-fill thickness and postglacial erosion rates. (a) Present-day ice cover65 (white), LGM ice extent31 (black outline), distribution of

sedimentary valley fills and locations of fill-thickness measurements (see legend). (b) Map of postglacial erosion rates derived from the sediment

distribution in a and an additional 10% of exported material (see text for details). Data from catchments 1 to 6 (highlighted with red boundaries) are

provided in d. The eroded mass in catchments 7 and 8 was manually increased to smooth abrupt changes in erosion rates across the corresponding basin

boundaries. (c) Comparison of estimated and measured valley-fill thicknesses (see key in panel a for symbol details). See Supplementary Table 1 for data

sources. (d) Comparison of the derived erosion rates with data from modern river loads26, cosmogenic nuclides27–29 and thermochronology18. On each

box, the central red mark is the median, the edges of the box are the 25th and 75th percentiles and the whiskers extend to the minimum and maximum

values. Rivers and corresponding marginal lakes are indicated. L., Lake.
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thickness reconstruction at much higher spatial resolution (10 m)
in the region around Bern23 our reconstruction yields a fill
volume of 29 km3, which is B20% higher than the previous
estimate of 24 km3, and thus reasonably consistent when
considering the differences in spatial resolution. According to
our estimate, the total volume of valley-filling sediments is
1,800±202 km3. This volume is a minimum bound on postglacial
erosion; yet it is likely only a small underestimate because a large
fraction of all postglacially eroded material was trapped in a
closed system of overdeepened valleys and marginal lake basins24.
To account for dissolved fluxes and for catchments that were only
temporarily closed, we added another 10% to our volume
estimate24, resulting in 1,980±222 km3 of material eroded after
deglaciation. Assuming mean densities of 2,000 kg m� 3 for
unconsolidated sediments and 2,700 kg m� 3 for bedrock, we
computed a total eroded mass of B4� 103 Gt. Evenly distributed
over the Alps (B123,000 km2, excluding valley-fill areas) this
volume corresponds to a rock column of 11.9±1.3 m. With the
assumption that the valley fills have formed following ice retreat
B17 kyr before the present (BP) (ref. 24), this eroded column
corresponds to a mean postglacial denudation rate of
0.7±0.08 mm yr� 1. To create a mass-conserving topographic
basis for modelling the Alpine ice cap, we redistributed the
calculated sediment volume catchment-wise and as a power-law
function of local relief25 back onto the hillslopes (Fig. 3b). Our
valley fill-derived erosion rates from six lake-bordered
catchments are comparable to or somewhat higher than erosion
rates estimated from modern river loads26, cosmogenic
nuclides27–29 and thermochronology18 (Fig. 3d). Furthermore,
because there might be also older sediments that predate the
LGM30 incorporated in our valley-fill estimate, our estimate of
postglacial erosion and sediment redistribution is at the upper
limit of probable values.

Reconstructing the LGM ice cap. Based on mapped ice extent
and thickness indicators, such as terminal moraines31 and
trimline elevations32–34, we reconstructed the LGM ice cover
using a numerical ice-flow model12. Because it is not our aim to
derive paleoclimatic conditions during the LGM, we used modern
precipitation maps and an Alpine-wide average glacial mass-
balance profile together with an iteratively adjusted equilibrium-
line altitude to fit the observations (see ‘Methods’ section). The

steady-state LGM ice cap, which best fits available ice-extent
indicators (Fig. 4) has a mean and a maximum ice thickness of
415 and 2,445 m, respectively. The maximum ice thickness is
higher than previously reported values of B2,000 m (refs 32,34)
due to our removal of thick post-LGM valley fills from the
underlying topography. When compared with the existing
reconstruction of the LGM ice cover in the Central Alps35

(V¼ 25,000 km3), our modelled ice volume is only B8% larger
(27,000 km3), which has negligible effects on our final results. The
total reconstructed ice mass is 62� 103 Gt, which is B16 times
the mass of the postglacially eroded sediments.

Lithospheric deflection. The LGM Alpine ice cap started growing
before 30 kyr BP and reached its maximum B21 kyr BP, followed
by rapid deglaciation with B80% ice loss over the course of 3 kyr
(ref. 36). This chronology is consistent with the dated onset of
marginal lake formation, which indicates ice retreat to the
mountain interior at 16–18 kyr BP (ref. 24). Because durations of
ice-cap growth are long (410 kyr) compared with maximum
expected viscoelastic relaxation times of 3–6 kyr6, we assume that
the Alpine ice cap reached full isostatic compensation. We
calculated the lithospheric equilibrium deflection37, due to the
ice loading, while accounting for a variable EET13. Although
relative spatial variations in EET are well constrained13, the
absolute values are not, because they strongly depend on the
assumed rheology and geothermal gradient. For the Alps, a range
of 10–50 km has been reported in previous studies1. Therefore, we
solve for a range of possible average EETs while maintaining the
spatial pattern (see ‘Methods’ section). An increase of the EET
results in a smaller amplitude but a larger wavelength of the
deflection, which approximately follows the ice extent. With an
EET of 10 km (70 km), the maximum depression is 279 m (105 m)
near the centre of the ice cap and the elevated forebulge has a
height of 7 m (3 m), (Supplementary Fig. 1). The effect of spatial
variations of the EET on the deflection decreases with an
increasing average EET. Compared with the flexural pattern that
results from a constant EET of 70 km, the deflection using a
variable EET of 61–80 km is up to 2 m higher in the centre, and
1.5 m lower at the periphery (Supplementary Fig. 2). Because
the EET only reflects the flexural properties of the lithosphere,
it does not account for deeper-seated processes, which potentially
modulate the isostatic response to loading and unloading. We
address these aspects in the ‘Discussion’ section.
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Isostatic rebound. Due to the relatively small dimensions of the
Alpine ice cap, the upper mantle viscosity determines isostatic
uplift and relaxation rates. For a range of mantle viscosities of
1019–1021 Pa s, we calculated the corresponding uplift rates
associated with deglaciation, which we assume to have occurred
at 17±2 kyr BP (see above paragraph on postglacial erosion).
To account for the isostatic component related to erosional
unloading, we calculated the lithospheric response to the
estimated erosion/deposition for average EETs of 10–70 km,

assuming that the erosional mass redistribution is compensated
by the mantle at a steady rate. We finally compared the combined
uplift signal of GIA and erosional unloading with measurements
obtained from precise levelling38–40, which were adjusted to a
common reference frame using data from permanent GPS
stations41 (see ‘Methods’ section).

With an average EET of 50 km and an upper mantle
viscosity of 2.2±0.5� 1020 Pa s, we are able to reproduce virtually
all of the geodetically measured uplift with B90% of this uplift
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caused by deglaciation and only B10% by erosional unloading
(Fig. 5f). Comparison with independent measurements from the
French Alps42 shows that 70% of the observed uplift rates are
near the model-predicted values (Fig. 5f). The derived viscosity is
reasonable, as it is lower than the viscosity estimated for an old
craton (3–10� 1020 Pa s, Fennoscandia), but higher than that for
a region with recent crustal thinning (0.18� 1020 Pa s, Basin
and Range province, Supplementary Table 2). For illustrative
purposes, we repeated our calculation assuming that 90% of the
postglacially eroded material has been exported from the Alps.
Similar to our previous results, the best fit with the data is
achieved with an EET of 50 km and an upper mantle viscosity of
1.8� 1020 Pa s, whereas the erosional contribution to the total
uplift rates increases to a maximum of 35% (Supplementary
Fig. 3).

Discussion
It has been argued that the geodetically measured uplift of
the Alps is dominated by its isostatic response to erosional
unloading8, which is supposed to have increased threefold from
Pliocene to Quaternary times43, although some of this increase
may be an artefact of incomplete preservation of older
deposits44,45. Several thermochronometric studies point to an
increase in exhumation rates of similar magnitude over the last
2 Ma, which has been attributed to a positive feedback between
glacial incision, isostatic rebound, rock uplift and exhumation
rates18–20. However, we argue that much of the material eroded
from the Alps since deglaciation was deposited within Alpine
valleys and therefore does not contribute to erosional unloading.
Our models show that the LGM ice load (B62� 103 Gt) was much
larger than postglacially eroded sediments (B4� 103 Gt) and
suggest the dominance of ice melting over erosional unloading in
contributing to the total recent uplift rate. Furthermore, erosion
rate estimates based on our valley-fill volumes exceed long-term
rates based on thermochronology (Fig. 3d). This could be
explained by a peak in erosion rates at the onset of deglaciation
due to intensified paraglacial processes that can be expected for a
landscape that is adjusting to new boundary conditions. Even in
the unreasonable case that 90% of the postglacially eroded material
had been exported from the orogen, the erosional contribution to
the recent uplift rate would not exceed 35%.

The most sensitive parameter in our modelling that is not
well constrained is the average EET. A low average EET does
not change the best-fit viscosity by much (1.7–2.2� 1020 Pa s),
but leads to systematically lower modelled uplift rates in the
northwestern periphery of the Alps (Fig. 6a). Active tectonic
shortening across this region is o1 mm yr� 1 and contributes
o0.2 mm yr� 1 of rock uplift8. If other processes, such as
lithospheric delamination10 or ongoing tectonic shortening46

were to account for some of the observed uplift in the
northwest periphery of the Alps, these would have to generate
the same uplift pattern as the ice unloading, which we think is
rather unlikely. We therefore favour our model results with a
relatively thick EET (50 km), in which B90% of the present-day
uplift of the Alps is due to GIA. However, we acknowledge that
the Alpine lithosphere has a complex architecture47 that our
elastic thin-plate approach may not be able to fully account for.

For example, we observe a conspicuous cluster of residual uplift
in the Swiss Rhône Valley, which is close to a zone of enhanced
seismicity and may thus have a tectonic origin (Supplementary
Fig. 4). Recent analysis of geodetic data in the Western Alps
has revealed a narrow zone of particularly high uplift rates
(1.5–2.5 mm yr� 1) that exceed the combined signal of GIA
and erosional unloading by up to 1.5 mm yr� 1 (ref. 22)
(Supplementary Fig. 4b). This excess uplift may be attributed to
a contrast in crustal viscosities between the foreland and the

mountains, which could enhance the isostatic response to crustal
unloading48. Because the zone of high uplift coincides with a
low-P-wave velocity anomaly at 100–150 km depth10 and with
high Quaternary exhumation rates18, it may also (or alternatively)
be related to deep-seated mantle processes that act on million-
year timescales22. We thus speculate that the excess rock uplift we
observe in the Swiss Rhône Valley may be linked to crustal
heterogeneity, or deep-seated processes.

Because of the ongoing N–S convergence, we expect a larger
tectonic contribution to the recent uplift rates in the Eastern Alps.
Estimated rock uplift rates in the Tauern Window (Fig. 2) and
along the eastern edge of the Alps since 4 Ma are o1 mm yr� 1

(ref. 9) and 0.1–0.15 mm yr� 1 (ref. 49), respectively, and thus one
order of magnitude lower than geodetically observed uplift rates.
Adding this tectonic component to our modelled uplift rate
would in both cases improve the fit with the measurements.
Therefore, the mismatch between modelled and observed
uplift rates in parts of Austria could be explained by the
ongoing convergence in the Eastern Alps that is related to the
counterclockwise rotation of the Adriatic microplate, and by
the eastward extrusion of the Eastern Alps that is associated
with a complex pattern of transtensional and transpressional
zones15,21(Fig. 2). We thus conclude that the recent
long-wavelength uplift of the European Alps is predominantly
due to GIA with a small erosional contribution of probably
o10% and that observed residuals are likely due to local tectonic
activity and deep-seated mantle processes.

Although the Alpine LGM ice cap was much smaller than the
northern hemisphere ice sheets, the Earth’s response to its demise
dominates the vertical motion over broad regions of the Alps
even today. Other mountain belts that were similarly affected by
glaciation, such as the Alaska Range, the Himalaya or the
Southern Alps in New Zealand, might therefore also exhibit such
a long-wavelength uplift component.

Methods
Estimation of valley-fill thicknesses. Based on the assumption of geometric
similarity between the exposed and the buried parts of the landscape, we used an
ANN algorithm11 and a 90- m-resolution digital elevation model (DEM) to
explicitly estimate the depth to bedrock for grid cells that include valley fill. We
expect geometric similarity of the bedrock surface, because the entire landscape was
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subject to glacial erosion before deposition of the valley fill. For each cell in the
DEM that is part of a valley fill, the depth to bedrock is estimated from the
horizontal distance to the nearest hillslope, calculated for different directions.
Training and validation of the ANN was initially performed on the presently
exposed topography using synthetic fills. We created a mask of all valley fills by a
combination of slope thresholds and manual digitization using geological maps
with a scale of 1:25,000 (https://map.geo.admin.ch) and 1:50,000 (https://
www.geologie.ac.at, http://infoterre.brgm.fr, http://www.geoviewer.isprambiente.it).
To calculate the eroded rock column for each cell since the LGM, we adopted the
proposed relation between erosion rate (E) and mean local relief (R, determined in
a window with 10 km diameter) of E¼ 1.4� 10� 6 R1.8 (ref. 25) and multiplied this
by 17,000 years. We then calculated the fractional contribution of each cell by
multiplying with the rock volume derived from the valley-fill approach.

Ice-cap reconstruction. To reconstruct the Alpine ice cap during the LGM,
we employed a numerical ice-flow model12 to solve the shallow ice approximation
(SIA)50. The SIA simplifies ice dynamics but allows for computational efficiency at
sufficiently high spatial resolution (3 km). We acknowledge that the SIA-approach
may not be suitable concerning the calculation of the ice velocity and flow patterns
in steep terrain. GIA, however, is ultimately controlled by the ice geometry and is
insensitive to the ice velocity and flow pattern. Compared with higher-order
models, only slight differences in glacier geometry are expected during steady-
state51. The ice rheology is governed by Glen’s flow law, eij¼Ate

2 tij, where eij are
the components of the strain rate tensor, tij are the components of the deviatoric
stress tensor, te is the effective stress and A¼ 1� 10� 16 Pa� 3 yr� 1. The sliding
velocity us is assumed to be proportional to the basal shear stress ts, and given by:
us¼Asts

2 N� 1. As is a sliding coefficient depending inversely on the bed roughness
and N is the effective pressure at the base of the ice and set to 40% of the ice
overburden pressure. In reality N would be highly variable in both space and time52

with lower values leading to increased decoupling between ice and bed, which
permits faster sliding. Tests with N being 80% of the ice overburden pressure
indicate only a small increase in the resulting ice volume. The surface mass balance
is modelled with an accumulation/ablation gradient of 0.7 m snow water equivalent
per year (100 m)� 1 (ref. 53) and a spatially variable maximum accumulation rate,
using the recent pattern of mean annual precipitation54 (Supplementary Fig. 5).
To achieve the best match between modelled and mapped ice extent and
thickness, we iteratively adjusted equilibrium line altitudes for each catchment that
drains the Alps according to the areal misfit determined after each model run
(Supplementary Fig. 6). This adjustment was repeated for As¼ 25, 75, 100,
150 and 200� 10� 10 m yr� 1 Pa� 2. The best agreement between mapped
trimline elevations32–34 and the modelled ice-surface was reached with
As¼ 100� 10� 10 m yr� 1 Pa� 2. Furthermore, we increased As stepwise within the
foreland to prevent the Alpine ice cap from overtopping the Jura Mountains. Field
observations clearly document that two branches of ice were flowing to the
northeast and to the southwest of the Jura Mountains55. This pattern was
reproduced when As in the foreland was increased by a factor of 15, which
is similar to the value used in a reconstruction of the Laurentide ice sheet56.
We attribute differences in the sliding coefficient between the foreland and
mountain interior to deformable sediments57 and higher amounts of meltwater52,
which both are likely associated with higher sliding velocities.

Flexure of the lithosphere. Because the lithospheric deflection due to glacier
growth has a direct effect on the slope and elevation of the ice surface and hence on
the ice flow and mass balance, we reconstructed the ice cap for uniform EETs of 20,
30, 40 and 50 km, respectively. We calculated the flexural isostatic adjustment,
Wf(x,y), for every 10 model time steps (B30 days) using the two-dimensional
elastic thin-plate equation:

@4Wf

@x4
þ 2

@4Wf

@x2@y2
þ @4Wf

@y4
¼ Lðx; yÞ

Df
ð1Þ

Here Df¼YEET3/12(1� n) denotes the flexural rigidity, where EET is the effective
elastic thickness of the lithosphere, Y¼ 100 GPa is Young’s modulus and n¼ 0.25 is
the Poisson ratio. L(x,y)¼rigH(x,y)� ragWf(x,y) is the vertical load where
ri¼ 917 kg m� 3 is the density of ice, H(x,y) is the ice thickness in each model cell
and ra¼ 3,300 kg m� 3 is the density of the compensating asthenosphere. The
variation in total ice volume and maximum ice thickness due to an increase of the
EET from 20 to 50 km is o5%. To further investigate the effect of a laterally
heterogeneous lithosphere, we introduced variations in EET13, and calculated the
isostatic depression due to the load of the steady-state ice cap using the algorithm
gFlex37, which uses finite difference solutions for the problem of elastic plate
bending under arbitrarily shaped surface loads. To account for the effect of the
differences in the resulting flexural patterns on the ice geometry, we adjusted the
glacier bed according to the results from gFlex and continued running the ice
model to find the new steady-state ice geometry (Fig. 4). Imposing a variable EET
results in 1� 103 km3 more ice, which is small when compared with the total ice
volume of 68� 103 km3. The larger ice volume can be attributed to thicker ice
(up to 160 m) in the foreland lobes.

Effective elastic thickness. EET of the lithosphere exerts a primary control on the
plate’s flexural rigidity, which in turn determines the magnitude and pattern of the
isostatic response. Reflecting the long-term and often complex history of the
continental plate, the EET depends mostly on the combined effects of rheological
and thermal heterogeneity. In this study we use EET estimates13 obtained by
following the approach of ref. 58. The crustal rheology, corresponding to quartzite
in the upper crust and diorite in the lower crust59, was assigned using the velocity
distribution of the crustal model EuCRUST-07, which is based on integration of
several hundred seismic profiles and receiver-function data60. For the mantle
lithosphere, a ‘dry’ olivine rheology was used. Lithospheric temperatures were
derived from the inversion of a tomographic model of seismic velocities for
Europe61. The EET ranges from 14 to 27 km in the Alpine region, with overall
higher values in the Eastern Alps compared with the Central and Western Alps
(Supplementary Fig. 1a). However, these values reflect only a lower bound
endmember, assuming a high geothermal gradient and a ‘soft’ rheology (‘dry’
quartzite and ‘wet’ diorite)13. Therefore, we modified the corresponding EET by
adding 10, 20, 30, 40 and 50 km to the absolute values to account for lower
geothermal gradients and a stiffer rheology. Larger values of EET than 50–70 km
imply a significant contribution of the upper mantle to the rigidity of the
lithosphere and are likely more representative of the Precambrian cratons than of
active Phanerozoic regions like the Alps59.

Rebound model. The viscoelastic decay of the lithospheric deflection after removal
of the surface load results in uplift at a rate u, which we calculated with an
exponential decay model:

u ¼ �W0=t�exp � t=tð Þ ð2Þ

where W0 is the equilibrium deflection, t is a characteristic timescale of relaxation
and t is the time since unloading62. The timescale of relaxation is defined as:

t ¼ 4pm=rgl ð3Þ

where m is the mantle viscosity, r¼ 3,300 kg m� 3 is the mantle density, g is the
gravitational acceleration and l¼ 320 km is the wavelength of the load, which we
calculated from the average transverse extent of the LGM ice cap. We used uplift
rates determined by precise levelling in Switzerland38,39 and Austria40, obtained
from repeated measurements of benchmarks since the beginning and the middle of
the 20th century, respectively. Thus, they represent vertical velocities in relation to
arbitrarily chosen reference points. The reference point for the Swiss data is located
near the city of Aarburg on the Swiss Plateau and the Austrian data refer to a point
near the city of Horn B70 km northwest of Vienna (Fig. 3a). Direct comparison of
both datasets requires that the vertical velocities of the respective reference points
can be determined. For this purpose, we used data from the permanent GPS
stations Zimmerwald (Z) and Linz (L), which are located on the Swiss Plateau and
the Bohemian Massif, respectively. Both stations provide continuous time series of
ground motion from 1998to 2015 (17 yr) and from 2005 to 2013 (8 yr), with
vertical velocities of 1±0.08 mm yr� 1 (Z) and 0.8±0.15 mm yr� 1 (L) in the
global reference frame IGb08 (ref. 41). To adjust the measurements to a common
reference frame we subtracted the GPS rates with the uplift rates of the nearest
levelling benchmarks, which resulted in uplift of 0.94±0.08 mm yr� 1 for the Swiss
reference point and 1±0.15 mm yr� 1 for the Austrian reference point. We
inverted the adjusted uplift rates for the mantle viscosity using equation (2) with
t¼ 17±2 kyr, resulting in a viscosity of 1.4–2.8±0.5� 1020 Pa s, depending on the
assumed EET (20–50 km), with larger EETs leading to higher viscosities
(Supplementary Fig. 7).

Code availability. gFlex is available from Andrew Wickert’s GitHub repository at
https://github.com/awickert/gFlex.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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