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INTRODUCTION

The heat flow measured at the solid Earth surface is a complex superposition of
multiple contributing factors (components) spanning through the spatial scales.

Bodies at different depths and their associated heat transfer mechanisms involve
different timescales to reach equilibrium and a varying extension of the footprint
of their contribution at the surface.
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Fig. 1 Surface heat flow resulting from three different models departing from a
reference lithosphere (dashed line, see column).
A an increase in heat flow from the mantle; B crustal thickening (from 40 to 50 km,
layers uniformly scaled); C a localised near-surface condition resulting in increased
heat transfer from the basement through the sedimentary layer.

Surface heat flow for the reference lithosphere column: 55.4 mW/m?, composed of
16.3 mW/m? due to conduction from the mantle and 39.1 mW/m? due to heat

production in the crust.

All the three models result in around 7 mW/m? of increase, with a largely different

footprint.

Maps of surface heat flow are commonly obtained by interpolation of non-
homogeneously sampled measurements. In areas where samples are sparse
and/or biased towards high fluxes (e.g. due to geothermal energy wells), local
anomalies risk being smeared over distances far larger than their actual

footprint.

Estimating one of the heat flow components from proxy observables (such as
gravity) allows for a better constrained extrapolation of the available
measurements at distance.
The significant density contrast at a lithologically-defined crust-mantle boundary
is a dominant part of the signal in the highest degrees of the Bouguer anomaly
obtained from satellite-derived Global Gravity Models.

A reliable link between the crustal structure obtainable from gravity data
and radiogenic heat production in the crust is a useful constraint, both in
obtaining the long-wavelength conductive contribution from the mantle
(backstripping) and in the upward continuation of temperature estimates.

METHOD

The framework we are using involves a crustal heat production forward-
modelled estimate, scaled with a CMB depth, which in turn is obtained through
an iterative Parker-Oldenburg inversion [3] of the Bouguer anomaly.

We devised it to assess the performance of a GOCE-derived GGM for thermal
estimates [4], at a scale comparable to the half minimum resolved wavelength
(at the surface) resolved by satellite-only gravity models (e.g. 70 km for N=280).

Forward model details

We are using a 2D finite-difference solver, for steady-state heat diffusionin a
conservative, implicit form, given a model of thermal conductivity and heat
production.

The dependence of thermal conductivity on temperature is taken account of
via an iterative procedure, using a constant temperature gradient from the
surface to the LAB as a starting model.

DISCUSSION

1. Relationship between CMB depth and cumulative crustal heat production

- there is a high variance in rock composition and in their radiogenic heat production (RHP) [5]
- the real distribution of heat production with depth significantly deviates from any simple
stratigraphic model: the occurrence of high RHP rocks at the base of crust is not uncommon [6].
- the nature of the relationship in itself: it can be positive and stronger in collisional margins,
when part of the thickening is due to the thrusted crustal sequences; to weaker or inverse in

areas of thick crust. ) , . )
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CMB depth [km]
2 . A-priori thermal parameters

3. Validation of method

Synthetic model: heat flow for constant bottom lithosphere depth and 10 km crustal
thickening. Standard parameters for thermal conductivity, heat production and density of
crust and mantle.
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CONCLUSIONS

Fig. 4 Flux diagram of heat flow
recovery:

4.1 Synthetic crustal model
4.2 Forward gravity field
(anomaly against crust-mantle
reference model)

4.3 Gravity inversion of crustal
thickness

4.4 Comparison between
synthetic (red) and estimated
(blue) heat flow

Good agreement of synthetic and
estimated heat flow can be
verified.

Pitfalls:

- inhomogeneity of crustal density
and of heat production;

- effect of LAB depth variations
(thermal lithosphere thickness)

- sedimentary cover

- heat transfer in hydrothermal
complexes (generally local)

1. Link between gravity and surface heat flow: crustal thickening
produces increased radiogenic heat flow and negative Bouguer
gravity.

2. Gravity inversion can recover crustal thickness, therefore parameter-
dependent heat flow values.

Surface heat flow sensitivity to lithospheric al
thermal conductivity below a CMB undulation.

Fig. 3 The effect of varying the sub-crustal & of
lithospheric mantle conductivity (from 2 to 6 W/m'K, §

at surface conditions), underlying a 300 km wide 10 £ 4
km crustal thickening. It is expressed as an anomaly

against the constant reference lithosphere of fig. 1. 2f
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