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Abstract

Argonaute (AGO) family proteins play many roles in epigenetic programming, genome rearrangement, mRNA breakdown, inhibi-

tion of translation, and transposon silencing. Despite being a hotspot in current scientific research, their evolutionary history is still

poorly understood and consequently the identification of evolutionary conserved structural features should also generate useful

information for better understanding their functions. We report here for the first time the transcript sets of the two subfamilies, Ago

and Piwi, in the West African lungfish Protopterus annectens and in the Indonesian coelacanth Latimeria menadoensis, two key

species in the evolutionary lineage leading to tetrapods. The phylogenetic analysis of 142 inferred protein sequences in 22 fully

sequenced species and the analysis of microsynteny performed in the major vertebrate lineages indicate an intricate pattern for

the evolution of both subfamilies that has been shaped by whole genome duplications and lineage specific gains and losses. The

argonaute subfamily was additionally expanded by local gene duplications at the base of the jawed vertebrate lineage. The subfamily

of Piwi proteins is involved in several processes such as spermatogenesis, piRNA biogenesis, and transposon repression. Expression

assessment of AGO genes and genes coding for proteins involved in small RNA biogenesis suggests a limited activity of the

Piwi pathway in lungfish in agreement with the lungfish genome containing mainly old and inactive transposons.
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Introduction

RNA interference (RNAi) is a mechanism by which small

RNAs are used as a guide in a broad range of processes

such as mRNA breakdown, inhibition of translation, induc-

tion of histone and DNA methylation, heterochromatin for-

mation as well as germline development, stem-cell

self-renewal, and transposon silencing (Aravin et al. 2007;

Höck and Meister 2008; Ross et al. 2014; Biscotti et al.

2015). Argonaute (AGO) proteins are highly specialized in

binding these small RNA molecules. Members of this pro-

tein family can be divided into Argonaute subfamily (Ago)

proteins (named after the identification of “Argonaute”

subfamily in Arabidopsis thaliana) and PIWI proteins

(named accordingly after the identification of the “Piwi”

subfamily in Drosophila melanogaster). The former, also

known as Eukaryotic translation initiation factors 2C

(EIF2Cs) in vertebrates, are ubiquitously expressed and

bind small interfering RNAs (siRNAs) and micro RNAs

(miRNAs) (Carmell et al. 2002), while the latter are mainly

expressed in germline cells and interact with PIWI-interact-

ing RNAs (piRNAs) (Hutvagner and Simard 2008).
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siRNAs and microRNAs (miRNAs) are produced by Dicer

and Drosha and are loaded onto Ago proteins contained

either in the RNA-induced initiation of transcriptional gene

silencing complex (RITS) or in the RNA induced silencing com-

plex (RISC). DiGeorge Syndrome Critical Region Gene 8

(DGCR8) encodes for a protein, which is a component of

the microprocessor complex involved in miRNA biogenesis.

This protein is required for binding the double-stranded RNA

substrate and facilitates the cleavage by Drosha (Gregory et al.

2004). The small RNA molecules contained in the RITS and

RISC complexes guide them to specific chromosome regions

and to specific mRNAs by base-pairing interactions (fig. 1A).

piRNAs are produced by the slicer activity of PIWI proteins

or through the nuclease PLD6 (Nishimasu et al. 2012), which is

involved in primary piRNA production, and the HMG protein

Maelstrom (Mael), which is involved in the primary and sec-

ondary piRNA production (Aravin et al. 2009; Castañeda et al.

2014). Moreover Mael is also a nucleo-cytoplasmic shuttling

protein able to bind piRNA precursor transcripts and deliver

them to cytoplasm (Pandey and Pillai 2014). This gene has

been lost in teleost (Zhang et al. 2008). Recently, the deposi-

tion of H3K9me3 by the protein SETDB1 has been related with

the activation of piRNA clusters, which generate the precur-

sors of primary piRNAs (Rangan et al. 2011) (fig. 1B). piRNAs

play a role in transposon silencing and spermatogenesis

(Houwing et al. 2007; Malone and Hannon 2009; Thomson

and Lin 2009; Yadav and Kotaja 2014).

The eukaryotic Argonaute proteins share a common

structure characterized by a Piwi-Argonaute-Zwilli (PAZ)

domain of about 120 aa, located in the N-terminal

region, which binds the 30 end of small RNAs. This

domain appears to be absent in most prokaryotic Ago

proteins (Wei et al. 2012). A 300 aa long PIWI domain,

showing similarities to the RNase H catalytic domain, is

usually conserved at the C-terminus, suggesting a possible

role in the slicer activity for miRNAs and piRNAs biogenesis

(McFarlane et al. 2011). The MID domain is located be-

tween the PAZ and PIWI domains and is around 120 aa

long. It loads the small RNA onto Ago proteins, which then

bind the 50 end of the nucleic acid (Chen et al. 2008).

Phylogenetic analyses provided evidence for the presence

of four groups corresponding to the worm-specific WAGO

subfamily, the Trypanosome AGO family, the Ago subfamily,

and the Piwi subfamily (Hernández and Jagus 2016). The

former two are the result of lineage-specific duplications

while the latter two are widespread among all kingdoms of

living organisms suggesting that the last common ancestor of

eukaryotes already had at least one Argonaute-like and one

FIG. 1.—Biogenesis of small RNAs and cellular localization of proteins involved. (A) Biogenesis of miRNAs and siRNAs modified from Ender and Meister

(2010). (B) Biogenesis of piRNAs modified from Ender and Meister (2010), Nishimasu et al. (2012), Weick and Miska (2014), and Pandey and Pillai (2014).
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Piwi-like gene which probably originated by duplication from

an ancestral prokaryotic gene (Cerutti and Casas-Mollano

2006; Hutvagner and Simard 2008; Murphy et al. 2008,

Swarts et al. 2014). Moreover the extant eukaryotic species

display different gene numbers and lineage-specific loss or ex-

pansions of Ago-piwi genes (Cerutti and Casas-Mollano 2006;

Höck and Meister 2008; McFarlane et al. 2011): for instance 8

AGO genes have been described in Homo sapiens, 5 genes

have been recorded in D. melanogaster, 27 in Caenorhabditis

elegans, 1 in Schizosaccharomyces pombe, and 10 in A. thali-

ana (Höck and Meister 2008; Zhou et al. 2010; Zheng 2013).

However, little is known about the evolutionary diversification

within each ago and piwi subfamilies across vertebrates.

The members of the Argonaute family have been identified

in several jawed vertebrates (Gnathostomes), from teleosts to

tetrapods (Cerutti and Casas-Mollano 2006; Höck and Meister

2008; McFarlane et al. 2011). No Argonaute gene has ever

been reported in the two basal sarcopterygians, the coela-

canths, and lungfish. The coelacanth Latimeria menadoensis

and the lungfish Protopterus annectens offer unique opportu-

nities to explore vertebrate gene evolution and function given

their key phylogenetic position in the evolutionary lineage

leading to tetrapods. The genus Latimeria is also of interest

because, despite analyses on coding genes indicated a slowly

evolving genome (Amemiya et al. 2013; Nikaido et al. 2013),

transposable element (TE) activity appears to be comparable

to "nonliving fossil" fish and would not indicate inertia of the

coelacanth genome (Bejerano et al. 2006; Xie et al. 2006;

Chalopin et al. 2014; Forconi et al. 2014; Naville et al.

2014). This raises the question of TE control through piRNAs

and the associated enzymes. The West African lungfish

P. annectens is one of the six extant species of dipnoi. This

taxonomic group is characterized by a large genome, reaching

even 38 folds the size of the human genome (Gregory 2014;

Canapa et al. 2016). The outstanding increase in genome size

has been related to uncontrolled proliferation of transposable

elements within lungfish genomes (Metcalfe et al. 2012;

Metcalfe and Casane 2013; Canapa et al. 2016). However,

analyses of the P. annectens transcriptome revealed a low

activity of TEs (Biscotti et al. 2016). No information on the

TE silencing machinery in lungfish is currently available.

We performed a comprehensive phylogenetic analysis of

the AGO gene family utilizing 142 protein sequences from 22

fully sequenced species. Synteny analyses supported our phy-

logenetic data and indicate an intricate pattern for the evolu-

tion of both subfamilies that has been shaped by whole

genome duplications (WGD) and lineage specific gains and

losses. The argonaute subfamily was additionally expanded

by local gene duplications at the base of the jawed vertebrates

lineage. The expression levels of AGO transcripts as well as of

genes coding for proteins involved in small RNA biogenesis

were investigated to detect the activity of the silencing path-

ways in which these proteins are involved. The activity of the

Piwi pathway in lungfish suggests that large parts of its

genome are made up of old and inactive transposons in agree-

ment with previous hypotheses (Metcalfe et al. 2012;

Metcalfe and Casane 2013; Biscotti et al. 2016).

Materials and Methods

AGO, PIWI, DGCR8, Dicer, Drosha, PLD6, SETDB1, and Mael

transcripts were obtained from the L. menadoensis (Canapa

et al. 2012; Pallavicini et al. 2013) and P. annectens transcrip-

tomes (Biscotti et al. 2016) (supplementary table S1,

Supplementary Material online; Accession numbers from

LT674425 to LT674451). The raw sequence reads of the ob-

tained transcriptomes were deposited in the NCBI BioProject

and SRA databases under the accessions PRJNA175365 and

PRJNA282925, respectively. Given the high sequence identity

within the genus Latimeria (Inoue et al. 2005; Pallavicini et al.

2013), the genome of the congeneric species L. chalumnae

was used to obtain synteny information of members belong-

ing to the AGO family in coelacanths (Amemiya et al. 2013;

Nikaido et al. 2013). The syntenic positions of the correspond-

ing genes from the other vertebrates were collected from

ENSEMBL (http://www.ensembl.org) (supplementary tables

S2 and S3, Supplementary Material online) and checked

through Genomicus (http://www.genomicus.biologie.ens.fr/

genomicus-84.01/cgi-bin/search.pl).

The correct orthology of transcripts obtained in both spe-

cies was assessed by homology using NCBI BLAST (http://blast.

ncbi.nlm.nih.gov/Blast.cgi) while for Dicer and SETDB1, given

the presence of several paralogous genes, the orthology was

assessed by phylogenetic analyses (supplementary figs. S1 and

S2 and table S4, Supplementary Material online). PAZ, MID,

and PIWI domains of members of the AGO family were in-

ferred through InterPro (http://www.ebi.ac.uk/interpro).

The phylogenetic analyses of the AGO family was per-

formed on amino acidic sequences using MrBayes (version

3.1; Huelsenbeck et al. 2001). Substitution models, posterior

probabilities, stationarity, generations, sampling, burnin, spe-

cific tree building parameters, and rooting details are reported

in the tree legend. Moreover, the Maximum likelihood was

performed using MEGA7 (Kumar et al. 2016) with Jones–

Taylor–Thornton (Jones et al. 1992) model and the bootstrap

support for the ML tree was determined using 1000 replica-

tions. The topology of ML tree (data not shown) is similar to

that obtained with Bayesian analysis. The Ago and Piwi ortho-

logous sequences were collected from ENSEMBL or NCBI

databases. Callorhinchus milii sequences were obtained from

http://esharkgenome.imcb.a-star.edu.sg/ (Venkatesh et al.

2014). Little skate, Leucoraja erinacea, Ago subfamily was in-

ferred from the transcriptome at Skatebase (Skatebase.org,

Wang et al. 2012), Argonaute RISC catalytic component 1

or EIF2C1 (AGO1): contig 19580, contig 18487, contig 349,

contig 28154; Argonaute RISC catalytic component 2 or

EIF2C2 (AGO2): contig 89915; Argonaute RISC catalytic com-

ponent 3 or EIF2C3 (AGO3): contig 22246, contig 15246,
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contig 11106; Argonaute RISC catalytic component 4 or

EIF2C4 (AGO4): contig 90274, contig 89949. Accession num-

bers of the sequences used in the phylogenetic analysis are

reported in supplementary tables S2 and S3, Supplementary

Material online. The accession number for the WAGO se-

quence of Caenorhabditis elegans used a outgroup is

Q21770. Clustal OMEGA was used to build the alignments

(http://www.ebi.ac.uk/Tools/msa/clustalo/; Sievers et al. 2011).

The assignment of the Ago and Piwi genes to ohnolog families

was checked using the ohnolog database (http://ohnologs.

curie.fr/) by Singh et al. (2015) and the data provided in

Kasahara et al. (2007) and Nakatani et al. (2007).

The expression values in L. menadoensis male liver, testis,

and muscle, in P. annectens brain, liver, and gonads of male

and female specimens, and in Danio rerio brain, liver, muscle,

and gonads of female specimen and gonads of a male speci-

men (BioProject PRJNA255848) are reported as transcripts per

million (TPM). Expression levels were calculated following the

procedure described in Biscotti et al. (2016) to allow inter-

species comparison.

Omega (dN/dS) rates were calculated with CODEML, in-

cluded in the PAML 4.8 package (Yang 2007), starting from

the codon-based alignment of the coding nucleotide se-

quences of the target genes obtained with MUSCLE (Edgar

2004). Coding sequences were retrieved from ENSEMBL for

Mus musculus, Loxodonta africana, Monodelphis domestica,

Pelodiscus sinensis, Gallus gallus, Xenopus tropicalis, D. rerio,

Lepisosteus oculatus, and Tetraodon nigroviridis, from http://

esharkgenome.imcb.a-star.edu.sg/ (Venkatesh et al. 2014) for

C. milii and from SkateBase (Skatebase.org, Wang et al. 2012)

for L. erinacea and Scyliorhinus canicula. The accession IDs of

the sequences used for each of the 15 genes selected (AGO1,

AGO2, AGO3a, AGO3b, Piwi-like RNA-mediated gene silen-

cing 1 (PIWIL1), Piwi-like RNA-mediated gene silencing 2

(PIWIL2), Piwi-like RNA-mediated gene silencing 4 (PIWIL4),

Dicer, Drosha, PLD6, Mael, SETDB1, and DGCR8) are reported

in supplementary table S4, Supplementary Material online.

Missing data (gaps) were not considered and incomplete se-

quences (corresponding to less than 75% of the expected

length) were discarded. Only informative codons were re-

tained with Gblocks (Talavera and Castresana 2007) and the

resulting alignments were converted in a Phylip format. We

used the topology of species tree from Biscotti et al. (2016) to

test the null (one-ratio model) and the alternative (multiple-

ratio model) model hypotheses for each gene. The alternative

hypothesis assumed different omega rates for the tetrapod,

Actinopterygii, lungfish and coelacanth lineages. A likelihood

ratio test was used to determine the significance of the data

obtained, by comparing 2�logL with a �2 distribution. The

two models were considered as producing statistically signif-

icant likelihoods for P-values lower than 0.05. b-actin (ACTB)

was used as control gene.

The same data set was subjected to a Tajima’s Relative Rate

Test (RRT) analysis (Tajima 1993), using the sequences of the

three chondrichthyan species (whenever available) as out-

groups. Differences in the rate of evolution of lungfish se-

quences (ingroup I) compared to other vertebrate species

(ingroup II) were considered as significant at Pe<0.05. In par-

allel, a Maximum Likelihood Molecular Clock analysis was per-

formed with MEGA 7 (Kumar et al. 2016) to test the null

hypothesis of an equal evolutionary rate throughout the

tree. This analysis was based on a NJ tree topology, under

the general time reversible model of evolution with a discrete

Gamma distribution of rates across sites (supplementary table

S5, Supplementary Material online).

Results

Identification of AGO Family Genes in Latimeria and in
Protopterus

Six transcripts related to the AGO protein family were re-

trieved in the Indonesian coelacanth transcriptome (fig. 2A,

supplementary table S1, Supplementary Material online):

three belonging to the Ago subfamily (AGO2, AGO3, and

AGO4), and three from the Piwi subfamily (PIWIL1, PIWIL2,

and PIWIL4). With the exception of PIWIL2, which is incom-

plete at the 50 end, all transcripts harbored a complete coding

sequence (CDS). Moreover, the assembly of PIWIL1 uncovered

multiple splicing isoforms with one of them only found in liver

(supplementary fig. S3, Supplementary Material online).

Our analyses revealed that the ENSEMBL gene prediction of

the African coelacanth genome was accurate for AGO1,

AGO2, AGO4, PIWIL1, and PIWIL2. Discrepancies were de-

tected for the other two genes: AGO3, so far not annotated

in ENSEMBL, was identified on contig JH126588: 1,908,252–

1,984,196. PIWIL4 is truncated at its 50 end in ENSEMBL gene

predictions. Using our transcriptome sequence the missing

coding region was identified on a different scaffold and was

therefore manually assembled (table 1, supplementary table

S6, Supplementary Material online).

Seven AGO transcripts displaying a complete CDS were

detected in the West African lungfish (fig. 2B, table 1, supple-

mentary table S1, Supplementary Material online): four be-

longing to the Ago subfamily (AGO1-4) and three to Piwi

subfamily (PIWIL1, PIWIL2, and PIWIL4).

Piwi-likeRNA-mediatedgenesilencing3(PIWIL3)wasneither

retrievedfromthetranscriptomesoflungfishandcoelacanthnor

from the noneutherian vertebrate genomes scrutinized here.

This is in line with earlier data that piwil3 is a eutherian-specific

novelty subsequently lost in mouse (Murchinson et al. 2008).

The prediction of conserved protein domains revealed the

presence of a GAGE domain in PIWIL1 of both species, a

feature which has never been described before in any other

organism. This domain is common to proteins from the GAGE

family, which so far reported have been only in humans and

which are characterized by an antigenic peptide recognized by

cytotoxic T-cells (Zendman et al. 2002). Our analysis shows

AGOs in Coelacanth and Lungfish GBE
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that this domain is present in all PIWIL1 proteins from

Actinopterygii and Sarcopterygii.

Phylogeny and Microsynteny Conservation of the AGO
Family

A phylogenetic analysis was performed to gain further infor-

mation into the evolutionary history of the AGO family (fig. 3).

The analysis revealed two main clades, one corresponding to

Ago genes and the other to Piwi genes allowing the

attribution of the identified sequences of coelacanth and lung-

fish to the two subfamilies.

For the Ago subfamily, the analysis revealed four distinct

clades representing AGO1, AGO2, AGO4, and AGO3 with the

Ciona intestinalis argonaute 2 sequence located external. All

clades are supported by high values of posterior probability.

Each group presents a similar topology: the chondrichthyan

sequences are external and tied to a node, which includes

Actinopterygii and Sarcopterygii. In all Ago sub-trees the

FIG. 2.—Schematic representation of AGO proteins. (A) Schematic representation of AGO members identified in the L. menadoensis transcriptome.

(B) Schematic representation of AGO members identified in the P. annectens transcriptome. Dashed lines indicate a region of the piwil2 sequence which was

not identified in the L. menadoensis transcriptome but which is present in the L. chalumnae genome.
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sequences of Protopterus and Latimeria form a sister group of

tetrapods, with the exception of AGO3 where these se-

quences are located basal to the Actinopterygian clade. In

teleosts AGO3 presents a duplication as result of the teleost-

specific WGD. Indeed the two Ago3 genes are located on

chromosomes 11 and 16 in medaka and on chromosomes

16 and 19 in zebrafish. These two chromosome pairs are de-

rived from the Teleost-specific Genome Duplication (TSGD) as

described in Kasahara et al. (2007) and Nakatani et al. (2007).

The microsynteny analysis of Ago subfamily members evi-

denced a higher conservation in Sarcopterygians than teleosts.

In shark and sarcopterygians AGO4, AGO1, and AGO3 belong

to the same cluster while in ray-finned fishes this cluster is

disrupted. The microsynteny of Ago genes in Chondrichthyes

and Sarcopterygii suggests that this arrangement was already

present in the common ancestor of Gnathostomes.

In all analyzed species AGO2 is located in a separate geno-

mic region leading to the hypothesis that AGO2 and the

AGO1/3/4 ancestral gene might be derived from a genome

duplication event (fig. 4). The presence of only one Ago gene

in Ciona which is located outside the other Ago clades in the

tree suggests that AGO2 and the AGO 1/3/4 ancestor would

be the result of 1R or 2R WGD and then local gene duplica-

tions generated AGO1, AGO3, and AGO4. This view is also

supported by the results retrieved from the ohnolog database

(Singh et al. 2015) that reports AGO1/3/4 and AGO2 as be-

longing to a same ohnolog family (families composed of para-

logous genes derived from WGD events).

Phylogenetic analysis for the Piwi subfamily showed the

presence of three distinct clades related to PIWIL1/PIWIL3,

PIWIL2, and PIWIL4. PIWIL1/3, and PIWIL4 are sister groups

and PIWIL2 is an external branch to both. Of the two Piwi

sequences of C. intestinalis one is external to the other Piwi

sequences and one is a sister branch of the Piwil2 clade.

In the PIWIL1, PIWL2, and PIWIL4 branches the topology is

similar: the chondrichthyan, coelacanth and lungfish se-

quences are always external to tetrapods.

The microsynteny of PIWIL1 is conserved between sarcop-

terygians, L. oculatus, and teleosts (fig. 5). The genomic ar-

rangement of genes flanking PIWIL2 and PIWIL4 is less

conserved. Indeed in L. oculatus, C. milii, and

Sarcopterygians PIWIL2 has a different upstream gene while

in spotted gar microsynteny represents an intermediated pat-

tern sharing the downstream gene with both shark and

Sarcopterygians and the upstream gene with teleosts. The

microsyntenic arrangement of PIWIL4 is conserved in

Chondrichthyes and Sarcopterygians suggesting that it was

already present in the common ancestor of Gnathostomes

and that the lack in the basal fish L. oculatus and in teleosts

is specific to this lineage.

Even the genes belonging to the Piwi subfamily could be

derived from WGD events as suggested from the results of the

ohnolog database that, however, do not support an origin for

PIWIL2 from these events.

Expression of AGO Gene Family in Latimeria and in
Protopterus

The evaluation of Ago gene transcripts revealed expression in

all examined tissues (fig. 6A and B); while Piwi gene expression

is restricted to gonad tissues with the exception of Latimeria

Table 1

Presence and Copy Number of AGO Genes in Representative Gnathostomes

Class Species Common Name AGO1 AGO2 AGO3 AGO4 PIWIL1 PIWIL2 PIWIL3 PIWIL4

Chondrichthyes Callorhinchus milii Elephant shark 3 3 3 3 3 3 3

Actinopterygians Danio rerio Zebrafish 3 3 33 3 3 3

Gadus morhua Cod 3 3 33 3 3 3

Gasterosteus aculeatus Stickleback 3 3 33 3 3 3

Oreochromis nilotica Tilapia 3 3 33 3 3 3

Lepisosteus oculatus Spotted gar 33 3 3 3 3

Oryzias latipes Medaka 3 3 33 3 3 3

Xiphophorus maculatus Platyfish 3 3 3 3 3 3

Sarcopterygians Anolis carolinensis Anole lizard 3 3 3 3 33 3

Bos taurus Cow 3 3 3 3 3 3 3 3

Canis familiaris Dog 3 3 3 3 3 3 3 3

Gallus gallus Chicken 3 3 3 3 3 3

Homo sapiens Man 3 3 3 3 3 3 3 3

Latimeria Coelacanth 3 3 3 3 3 3 3

Mus musculus Mouse 3 3 3 3 3 3 3 3

Ornithorhynchus anatinus Platypus 3 3 3 3 33 3

Protopterus annectens West African lungfish 3 3 3 3 3 3 3

Sarcophylus harrisii Tasmanian devil 3 3 3 3 3 3 3 3

Xenopus tropicalis Western clawed frog 3 3 3 3 3 3 3

NOTE.—Check signs indicate the presence of a gene/transcript in public databases. Multiple check signs indicate gene duplication events in the species. The species
analysed in this work are in bold.
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FIG. 3.—Phylogenetic tree of the AGO family. Bayesian inference. Amino-acidic model applied (mixed: Jones = with posterior probability 1.00, standard

deviation 0.00). 6,000,000 generations, 15,000 as the burning. Stationarity defined as when the standard deviation of split frequencies reached 0.007,

PSRF = 1.000. Mid-point rooting. The sequences in bold were obtained in this work. Black bars on the right represent the paralogy groups. Numbers close to

nodes indicate posterior probability values. Only values > 95 are reported.
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PIWIL1 that additionally shows expression in liver due to a

specific isoform resulting from alternative splicing (fig. 6C

and D, supplementary fig. S3, Supplementary Material online).

In L. menadoensis, the expression levels of Ago and Piwi

genes in three tissues are particularly high for AGO2 and

PIWIL1 in testis (fig. 6A and C).

FIG. 4.—Synteny conservation of Ago genes in Gnathostomes. Arrowheads indicate 50–30 gene direction. Lines underneath genes indicate syntenic

arrangement. *Indicates that this gene is annotated on multiple scaffolds (the mapping of the complete L. menadoensis AGO2 cDNA to its African congener

genome allowed to identify the 50 UTR at the beginning of another scaffold JH127518, a region close to Protein tyrosine kinase 2 (PTK2), the tetrapod

downstream flanking gene). Syntenic maps are reported for C. milii, L. chalumnae, D. rerio and L. oculatus. Consensus syntenic maps are reported for

sarcopterygian and teleost clades, respectively. Genomic localizations of Ago genes in the analyzed vertebrate species are reported in supplementary table

S2, Supplementary Material online.
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In P. annectens, Ago genes show comparable expression in

brains and livers of both sexes and in male gonads. In female

gonads, AGO1, AGO2, and AGO4 have a significantly high

activity, with the exception of AGO3, which in turn displays an

expression level similar to other tissues (fig. 6B). In male

gonads all three Piwi genes are expressed with the mature

male gonad showing higher levels than the immature

gonad. However, in female gonads PIWIL4 is not expressed

and PIWIL1 shows values about twenty fold higher than

PIWIL2 (fig. 6D).

In coelacanth and in the mature male lungfish the

expression patterns of the Piwi genes are similar, while

the different expression values observed in the two lung-

fish male specimens could be related to the develop-

mental stage (Kowalczykiewicz et al. 2012) (fig. 6C

and D).

FIG. 5.—Synteny conservation of Piwi genes in Gnathostomes. Arrow heads indicate gene direction. Lines underneath genes indicate syntenic arrange-

ment. * indicates that this gene is annotated on multiple scaffolds (JH128514, JH130604, JH134549). Syntenic maps are reported for C. milii, L. chalumnae,

D. rerio, and L. oculatus. In addition, consensus syntenic maps are reported for the sarcopterygian and teleost clades, respectively. Genomic localizations of

Piwi genes in the analyzed vertebrate species are reported in supplementary table S3, Supplementary Material online.
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Identification and Expression of Genes Involved in Small
RNA Processing

Six transcripts coding for proteins involved in small RNAs pro-

duction were investigated in both species. In Latimeria Drosha,

Mael, PLD6, and SETDB1 show complete coding sequence

while DGCR8 and the manually assembled Dicer transcript

have a few nucleotides missing from the CDS. In P. annectens

complete CDSs were retrieved for DGCR8, Drosha, Mael, and

SETDB1 while Dicer and PLD6 are incomplete at their 30 and 50

ends, respectively.

Expression analysis revealed that in Latimeria all six genes

are expressed in testis and muscle even though PLD6 and Mael

show very weak expression in the latter. In P. annectens

DGCR8, Drosha and SETDB1 show expression in all analyzed

tissues; Mael is significantly expressed only in gonads; Dicer is

expressed with very low levels in all tissues with the exception

of male and female livers; PLD6 was detected only in male

gonads and with very low values also in female gonads.

Notably the expression levels (except for DGCR8) in male

mature gonad of lungfish are higher than in the immature

specimen (fig. 7).

To test the correlation between transposon activity and the

expression of genes involved in the silencing machinery, we

analyzed also D. rerio, a teleost with high recent transposon

activity (Chalopin et al. 2015). The comparison of the expres-

sion values, with the exception of Mael loss in teleosts, evi-

denced a higher expression in D. rerio compared to the two

living fossil species (fig. 7).

Rates of Molecular Evolution

The evolutionary rates of 14 genes involved in piRNA and

siRNA/miRNA pathways were evaluated through dN/dS,

Tajima’s RRT, and a Maximum Likelihood Molecular Clock

analyses for each gene in Actinopterygii, coelacanth, lungfish

and tetrapods. The molecular clock test revealed that genes

involved in small RNA processing, as well Ago and Piwi, are

unlikely to have evolved under molecular clock constraints

(supplementary table S5, Supplementary Material online).

Overall, Piwi genes as well as genes involved in small RNA

processing evolve more rapidly than Ago genes with the ex-

ception of AGO1 in coelacanth (fig. 8). Moreover in

Actinopterygii, coelacanth, and lungfish the dN/dS ratio of

FIG. 6.—Expression levels of AGO genes. (A) Expression values of Ago genes in the male liver, testis, and muscle transcriptomes of L. menadoensis. (B)

Expression values of Ago genes in the transcriptomes obtained from brain, liver, and gonad tissues of male and female specimens of P. annectens. (C)

Expression values of Piwi genes in the male liver, testis, and muscle transcriptomes of L. menadoensis. (D) Expression values of Piwi genes in the

transcriptomes obtained from brain, liver, and gonad tissues of male and female specimens of P. annectens.
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PIWIL1 is significantly higher than in tetrapods while coela-

canth, lungfish, and tetrapods present higher values than

Actinopterygii for PLD6 and SETDB1. However for ACTB,

Dicer, PIWIL4, and Mael genes the alternative model did not

fit sequence data significantly better than the null model, in-

dicating that these genes evolved with similar dN/dS ratios in

different lineages.

Discussion

AGO Family Evolution in Gnathostomes

The integration of our synteny conservation and phylogenetic

data allows to draw now a clearer picture of the evolutionary

history of the AGO family of the Gnathostomes. The presence

FIG. 8.—dN/dS ratio for 14 genes involved in piRNA and miRNA/siRNA pathways. dN/dS (omega) ratios observed in Actinopterygii, coelacanth, lungfish,

and tetrapods. An asterisk marks genes where the alternative (multiple rates) model did not perform significantly better than the null (single rate) model.

FIG. 7.—Expression levels of genes involved in small RNA biogenesis. Expression values of genes coding for protein involved in small RNA production in L.

menadoensis, P. annectens, and D. rerio.
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of seven genes in Latimeria and Protopterus is shared by

Chondrichthyes and tetrapods suggesting that the common

ancestor of Gnathostomes had these genes. Moreover in

Actinopterygians PIWIL4 is absent and AGO3 underwent

duplication.

The phylogenetic analyses, microsyntenic studies and the

evidence that Ago genes are located in ohnolog regions

(Kasahara et al. 2007; Nakatani et al. 2007, Singh et al.

2015) suggest that the AGO-like ancestral gene has under-

gone a WGD in Gnathostomes leading to the paralogs AGO2

and the ancestral gene of AGO1/3/4. In the latter, two suc-

cessive duplications led to the formation of AGO1 and AGO3/

4 that in turn duplicated to generate the AGO3 and AGO4

genes. This scenario is in agreement with the microsynteny

data showing that these three genes are arranged in a cluster

(fig. 4). A further gene duplication of AGO3 occurred in the

teleost lineage. The occurrence of this duplication is probably

linked to the TGD (Meyer and Schartl 1999) and the conser-

vation of both genes and the close dN/dS values may suggest

a sub-functionalization for AGO3a and b.

The Ago microsynteny analysis showed a parallel retention

of the loci positions between Chondrichthyes and

Sarcopterygians suggesting an ancestral condition in these

two groups while the pattern in Actinopterygians represents

a derived condition. Such similarity between Elasmobranchs

and Sarcopterygii at the gene and genomic level, in compar-

ison to the faster evolving modern teleosts, was also noted for

other genes (Mulley and Holland 2010; Venkatesh et al.

2014).

The phylogenetic analysis for the Piwi subfamily, composed

of three genes (PIWIL1, PIWIL2, and PIWIL4) in Gnathostomes,

suggests that the ancestral gene PIWI-like has undergone a

duplication that led to PIWIL2 and to an ancestral form of

PIWIL1/4. The occurrence of PIWIL1 and PIWIL4 seems to be

the result of a WGD event. Another interesting aspect is re-

lated to the presence of PIWIL4 in the sarcopterygian lineages

and its absence in actinopterygians. In fact, the phylogenetic

analysis as well as the microsynteny analysis suggest that this

gene was already present in the common ancestor of

Chondrichthyes and Osteichthyes, and consequently its ab-

sence in actinopterygians is due to gene loss in this lineage.

The topology of the phylogenetic tree reveals a difference in

branch lengths for the two subfamilies, namely generally

longer branches for the Piwi sequences. The molecular clock

test revealed that Piwi genes as well Ago genes and those

involved in small RNA processing are unlikely to have evolved

under molecular clock constraints which is consistent with

the fast evolutionary rates of teleost genomes

(Ravi and Venkatesh 2008; Amemiya et al. 2013; Venkatesh

et al. 2014). While the results of Tajima’s RRT were mostly

consistent with previous reports, they also revealed that such a

fast evolutionary rate also involves some components of the

small RNA processing machinery in the nonteleost fish L. ocu-

latus (namely, AGO2, AGO4, PIWIL1, and PIWIL2), whereas

others (Dicer, Drosha, DGCR8, and Pld6) specifically experi-

enced a faster evolutionary rate (compared to lungfish) in the

teleost lineage. Overall the greater accumulation of mutations

in the Piwi proteins compared with Ago proteins is due to a

different mutation rate. The greatest divergence within the

Piwi subfamily may be linked to a request for greater func-

tional flexibility, given the wide range of functions attributed

to these proteins. In particular in teleosts the rapid evolution of

Piwi and proteins involved in the piRNA pathway might be

linked to the higher diversity of transposons in this lineage

(Yi et al. 2014). Our dN/dS analysis confirms the slow evolution

of Ago genes with the exception of AGO1 in coelacanth and

evidences higher values of dN/dS ratio for Piwi genes and for

genes involved in siRNA/miRNA and piRNA processing. In par-

ticular the higher values of PIWIL1 in coelacanth and lungfish

compared to tetrapods could be due to the high variability of

transposable elements in these lineages (Forconi et al. 2014;

Biscotti et al. 2016) as also noted in teleosts (Yi et al. 2014).

Expression Patterns of AGO Family Genes

Ago genes were expressed in all examined tissues of coela-

canths and lungfish similar to other organisms (Zhou et al.

2010; McFarlane et al. 2011; Meister 2013). The different

expression levels of Ago genes observed here might be related

to the interaction of Ago proteins with different subsets of

miRNA as demonstrated for the human orthologs (Azuma-

Mukai et al. 2008). In Latimeria and Protopterus, the higher

expression of Ago genes in gonads might indicate a role in

gametogenesis. Indeed, in several organisms Ago proteins are

involved in transcriptional gene regulation processes during

oogenesis (Watanabe et al. 2008; Azzam et al. 2012;

Leebonoi et al. 2015) and spermatogenesis (Borges et al.

2001; Nonomura et al. 2007; González-González et al.

2008; Leebonoi et al. 2015). In the shrimp Penaeus monodon,

Ago proteins and in particular AGO4 have been also related to

transposon silencing in gonads, but this mechanism is not yet

understood (Leebonoi et al. 2015).

The expression pattern of Dicer, Drosha, and DGCR8 genes,

involved in siRNA and miRNA biogenesis, reveals a higher ac-

tivity of Dicer and DGCR8 in Latimeria compared to P. annec-

tens. AGO1, AGO2, AGO4, and Dicer show a gonad activity in

female lungfish, although the low values of Dicer suggest that

its function could be replaced by the slicing activity of AGO2

(Meister et al. 2004).

In male lungfish, the expression of Ago genes was not

correlated with the developmental stage of the gonad, differ-

ently from Drosha, PLD6, SETDB1, and Mael. However it

cannot be ruled out that this pattern is due to individual con-

ditions or low sample size.

Besides expression of a PIWIL1 specific alternative splic-

ing isoform in Latimeria, Piwi genes displayed a gonad spe-

cific expression pattern in L. menadoensis and in

P. annectens. The liver expression in the coelacanth
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suggests that Piwi proteins might also play an important

and different role outside gonadal tissues. Also in other

organisms the expression of Piwi genes has been observed

in somatic tissues (Yan et al. 2011; Lee et al. 2011;

Kowalczykiewicz et al. 2012).

The expression in males is in line with other data that sug-

gest an involvement of Piwi proteins in spermatogenesis

(Deng and Lin 2002; Qiao et al. 2002; Kuramochi-

Miyagawa et al. 2004; Carmell et al. 2007; ; Zhou et al.

2010; Chen et al. 2012; Zhao et al. 2012; Kowalczykiewicz

et al. 2012).

In P. annectens, we demonstrated that Piwi genes are ex-

pressed in female gonads. The expression of these genes in

ovaries is common to other oviparous species such as zebra-

fish (Houwing et al. 2007, 2008), medaka (Zhao et al. 2012)

and chicken (Kim et al. 2012). However, expression of Piwi

genes and in particular of PIWIL1 in female gonads has been

reported in pig with values significantly lower than those de-

tected in testis (Zhou et al. 2010; Kowalczykiewicz et al. 2012)

and has been detected in adult platypus and human ovaries

(Lim et al. 2013) suggesting that the role of these proteins

could be independent from the reproduction strategy. Overall,

the function of Piwi proteins in the ovary is still not completely

understood and investigation on a larger number of organ-

isms should be useful to obtain further insights (Ma et al.

2014).

A role of Piwi proteins in piRNA biogenesis has been rec-

ognized early on (Aravin et al. 2007; O’Donnell and Boeke

2007). They have been associated with primary and secondary

piRNA processing (Aravin et al. 2007; Brennecke et al. 2007;

Lim et al. 2013). Primary piRNAs derive from the cleavage of

long transcripts produced from genomic loci called piRNA

clusters. The enzyme involved is the endonuclease PLD6/

MITOPLD/Zucchini. These piRNAs initiate the production of

secondary piRNAs which self-amplify through a Ping-Pong

pathway involving Piwi proteins (Siomi et al. 2011). The pro-

tein Mael is also involved in this pathway (Aravin et al. 2009),

but not in teleost fish, where this gene has been lost (Zhang

et al. 2008). The coexpression of Mael and PIWIL2 in Sertoli

cells and granulosa cells has been related to involvement of

the encoded proteins in secondary piRNAs processing (Aravin

et al. 2009; Lim et al. 2013; Kowalczykiewicz et al. 2014).

Expression of the PLD6 gene was detected in male

gonads of both species but not in female lungfish suggest-

ing that its activity might be replaced by other enzymes.

Conversely, the coexpression of Mael and PIWIL2 in all the

samples supports a conserved role in secondary piRNA bio-

genesis in the basal sarcopterygians. The lower expression

of Mael in lungfish could indicate that the production of

secondary piRNAs is less active than in coelacanths. The

weak production of piRNAs in lungfish is also supported

by the lower expression of the methyltransferase SETDB1.

In Drosophila, this enzyme is involved in the deposition of

H3K9me3 that actives piRNA cluster transcription with

consequent production of piRNAs that control transposon

activity (Rangan et al. 2011). Recent studies have indicated

that Mael is also essential for Piwi-mediated silencing of

transposons in Drosophila (Klenov et al. 2011; Sienski

et al. 2012). Indeed another important function of Piwi

proteins in gonads is their involvement in transposon silenc-

ing to ensure genome integrity.

Coelacanths and lungfish are two organisms of out-

standing interest in evolutionary biology because of their

living fossil status. Indeed their morphology remained

highly similar to their ancestors that lived 400 MYA.

Moreover in both species the morphological stasis reflects

also a molecular stasis at the coding-gene level (Amemiya

et al. 2013; Biscotti et al. 2016). In this respect, it is inter-

esting to analyze the activity of transposable elements,

which are considered as major drivers of genome shaping

(Warren et al. 2015; Canapa et al. 2016). Despite slow

evolution of coding sequences, mobile elements show an

opposite trend in both species (Chalopin et al. 2014;

Forconi et al. 2014; Biscotti et al. 2016) and the huge ex-

pansion of the lungfish genome has been related to the

accumulation of mobile elements ( Metcalfe et al. 2012;

Metcalfe and Casane 2013; Biscotti et al. 2016; Canapa

et al. 2016). In this context, it is interesting to consider

piwi gene activity given their involvement in transposon

silencing (Houwing et al. 2007, 2008; Aravin et al. 2007;

Kuramochi-Miyagawa et al. 2008; Siomi et al. 2011).

Despite the high number of expected transposable ele-

ments responsible for the enormous size of the lungfish

genomes (Metcalfe et al. 2012; Metcalfe and Casane

2013), which is about 38 fold of the coelacanth genome

(Makapedua et al. 2011), transposable elements showed

lower expression values in P. annectens than in coelacanths

(Biscotti et al. 2016). The expression levels of the Piwi path-

way genes in P. annectens, comparable with those ob-

served in Latimeria and lower than those observed in D.

rerio, could be due to the fact that Piwis have a limited

role in transposon silencing. This finding is in agreement

with the hypothesis of a lungfish genome made up of

mainly nonactive mobile elements (Metcalfe et al. 2012;

Metcalfe and Casane 2013; Biscotti et al. 2016).

Consequently, most of the mobile elements in lungfish

genome may not need to be silenced by the Piwi pathway.

However, as also observed for Latimeria (Amemiya et al.

2013; Forconi et al. 2014), the activity of transposable el-

ements (Biscotti et al. 2016) in a lineage with apparent

morphological stasis, as typical feature of the "living fossil

status", evidences that the lungfish genome is not comple-

tely inert from the evolutionary point of view.

Similarily, the evolutionary rates of the genes for the small

noncoding RNA processing machinery are not considearbly

different for the lungfish and coelacanth orthologs. Thus,

the status of being a living fossil on the morphological level,

despite being somehow linked to decreased rates of moleular

Assunta et al. GBE

450 Genome Biol. Evol. 9(3):438–453. doi:10.1093/gbe/evx017 Advance Access publication February 16, 2017

Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: ; <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: Biscotti et&nbsp;al., 2016; 
Deleted Text: <xref ref-type=
Deleted Text: -
Deleted Text: Biscotti et&nbsp;al., 2016; 
Deleted Text: -


evolution in protein-coding genes (Amemiya et al. 2013), does

not necessarily implicate a low genomic plasticity.

Supplementary Material

Supplementary material are available at Genome Biology and

Evolution online.
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