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A MIXTURE MODEL FOR PAYMENTS AND PAYMENT NUMBERS IN
CLAIMS RESERVING
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PATRIZIA GIGANTE, LIVIANA PICECH AND LUCIANO SIGALOTTI

ABSTRACT

We consider a Tweedie’s compound Poisson regression model with fixed and
random effects, to describe the payment numbers and the incremental pay-
ments, jointly, in claims reserving. The parameter estimates are obtained within
the framework of hierarchical generalized linear models, by applying the h-
likelihood approach. Regression structures are allowed for the means and also
for the dispersions. Predictions and prediction errors of the claims reserves are
evaluated. Through the parameters of the distributions of the random effects,
some external information (e.g. a development pattern of industry wide-data)
can be incorporated into the model. A numerical example shows the impact of
external data on the reserve and prediction error evaluations.
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1. INTRODUCTION

The evaluation of claims reserves, which are set aside to meet the liabilities for
outstanding claims, is one of the main actuarial tasks in non-life insurance. In
recent years, also because of the new solvency regulations, insurance companies
are interested in providing best estimates of the outstanding claims and also
in quantifying the uncertainty of such estimates. For this purpose, appropri-
ate stochastic claims reserving models are needed (England and Verrall, 2002;
Wüthrich and Merz, 2008).

In classical reserving methods, the prediction of future payments usually re-
lies on run-off triangles of payments. However, it is quite common for the insur-
ers to have available more information on the claims development process, e.g.
the numbers of reported claims, the numbers of payments, the incurred losses.
Therefore, it emerges the need of introducing stochastic models designed to in-
corporate such additional data in order to get more accurate models for the
reserve evaluation.
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In this paper, we assume that the available data consist of the two run-off tri-
angles of the payment numbers and of the standardized incremental payments.
Models for standardized claim payments, with respect to some exposure mea-
sure, are often used in the literature (see e.g. Taylor, 2000).

The reserving problem with payment numbers and standardized incremen-
tal payments is addressed in Wüthrich (2003) and Boucher and Davidov (2011)
in the context of regression models and under the assumption that the stan-
dardized incremental payments are Tweedie’s compound Poisson distributed.
In Wüthrich (2003), the model is estimated within the framework of General-
ized Linear Models (GLMs) with constant dispersion parameter. In Boucher
and Davidov (2011), the model introduced by Smyth and Jørgensen (2002) for
tarification is applied to claims reserving. Besides of the means, also the disper-
sion parameters are modeled through a regression structure in order to enhance
the variance estimation. In fact, in some situations, models with constant dis-
persion could be inappropriate. The parameter estimates are obtained by two
interconnected GLMs in the framework of Double Generalized Linear Mod-
els (DGLMs, see e.g. Smyth, 1989; Smyth and Verbyla, 1999; Nelder and Lee,
1991).

In recent papers (see Verrall et al., 2010; Miranda-Martinez et al., 2011;
Miranda-Martinez, Nielsen and Verrall, 2012; Miranda-Martinez, Nielsen and
Wüthrich, 2012), the Double Chain Ladder (CL) approach is used to evaluate
the claims reserve through a micro-level description of the claim development
process, based on the numbers of reported claims and the numbers of payments,
in addition to the payments.

In the above papers, the regression parameters are fixed effects related to
observable covariates, typically the origin and the development years. In the
literature, models with random effects related to unobservable risk parameters
are also considered. Such models are studied by following the Bayesian or the
credibility approaches (e.g.Mack, 2000; deAlba, 2002;Ntzoufras andDellapor-
tas, 2002; Verrall, 2004; Verrall and England, 2005; England and Verrall, 2006;
England et al., 2012; Bühlmann and Moriconi, 2015; Taylor, 2015). Within re-
gressionmodels, the techniques of GLMs are combined with those of credibility
theory (e.g. Nelder and Verrall, 1997; Ohlsson and Johansson, 2006; Ohlsson,
2008) or the Generalized Linear Mixed Models are used (Antonio et al., 2006;
Antonio and Beirlant, 2007). To estimate GLMs with random effects, Lee and
Nelder (1996), Lee and Nelder (2001), Lee et al. (2006) suggest the hierarchical
or h-likelihood approach. Suchmodels are called Hierarchical Generalized Lin-
earModels (HGLMs). The use ofHGLMs in loss reserving has been considered
in Gigante et al. (2013a) and Gigante et al. (2013b).

In this paper, we assume for the couples payment numbers and standard-
ized payments a mixture model with risk parameters related to the origin or the
development year or both of them. The risk parameters are introduced in the re-
gression structure through random effects, hence the model belongs to the class
ofmixedmodels. It extends the fixed effectmodel in Smyth and Jørgensen (2002)
and Boucher and Davidov (2011) to a model with random effects for the means
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of the payments, whereas the dispersion parameters follow a regression structure
with fixed effects. The payment numbers and the incremental payments condi-
tioned to the risk parameters are independent and the conditional incremental
payments are compound Poisson distributed.

Because of the risk parameters, the couples number of payments and incre-
mental payments in the run-off table are not independent. In this way, we can
take account of dependencies due to unobservable effects related to the origin
years and to the development years, such as correlation patterns among pay-
ments of a given origin year, or residual heterogeneity.

Through the parameters of the distributions of the random effects, themodel
allows us to incorporate some external information. This can be useful, in par-
ticular, when the observed development figures within a given run-off triangle
are scarce or when they fluctuate, so that it can be important to rely on industry-
wide development patterns or on development patterns of other similar lines
of business. The need of taking account of external data (e.g. initial estimates
of the ultimate claim amount, the development pattern of industry wide-data,
market information or expert opinion) when assessing the claims reserve is a
well-known problem. Some recent references on these aspects are Gisler and
Wüthrich (2008), Saluz et al. (2011), Saluz (2015).

To estimate the model parameters, we follow the h-likelihood approach. In
this way, we get estimates of the fixed and random effects, and also estimates of
the variance–covariance matrix of the estimators, that can be used to evaluate
prediction errors.

Some numerical results are supplied for illustrative purposes.
The rest of the paper is structured as follows. In Section 2, we introduce the

model assumptions and we describe the estimation procedure based on the h-
likelihood. By appropriately assessing the distributions of the risk parameters,
themodel h-likelihood coincideswith that of anHGLM. In Section 3, regression
structures for the dispersion parameters of the payments and of the risk param-
eters are added to themodel. To estimate themodel, by following a suggestion in
Lee et al. (2006), we approximate the h-likelihood components related to the risk
parameters by the respective extended quasi-likelihoods. The estimation proce-
dure is reduced to fitting four interconnected GLMs, iteratively. In Section 4, we
discuss the prediction problem in claims reserving and give approximate formu-
lae, that can be easily calculated, in order to evaluate the prediction uncertainty.
In Section 5, some numerical results are provided by using the data inWüthrich
(2003) and in Taylor (2000), and by assuming that external information on the
claims development pattern is available. The results are compared with those
obtained by DGLMs.

2. MODEL ASSUMPTIONS

We assume that the data of a portfolio consist of the two run-off triangles of
the payment numbers and of the incremental payments standardized with re-
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spect to some exposure measure. Let ni j be the number of payments, pi j the
incremental payments, ωi j the exposure measure and yi j = pi j/ωi j the stan-
dardized payments, i, j = 0, . . . , t, i + j ≤ t, where i denotes the origin year
(accident year, underwriting year, . . . ), j the development year and t the most
recent origin year, assumed to be equal to the latest development year (we do
not consider tail factors).

We note that the data could have a more general shape i.e. i = 0, . . . , t1,
j = 0, . . . , t2, with t1 �= t2, as in the examples discussed in the last section of
the paper. However, in the model description, we assume the usual triangular
shape, to simplify the notations.

In connection with the above data set, we introduce the random process
{(Ni j ,Yi j ), i, j = 0, . . . , t}, where Yi j = Pi j/ωi j and the exposure measure ωi j is
assumed to be known for any i, j = 0, . . . , t.

For this process, we consider a mixture model depending on a vector of risk
parameters connected with the origin and the development years. Let (U,V) =
(U0, . . . ,Ut,V0, . . . ,Vt) the vector of the risk parameters, whereUi is related to
the origin year i and Vj to the development year j .

We assume that, conditionally on (Ui ,Vj ), the incremental payments
Pi j = ∑Ni j

h=1 Z
(h)
i j are compound Poisson distributed and that the size of each

claim is gamma distributed with shape parameter α. From Jørgensen (1987,
1997) and Jørgensen and de Souza (1994), it is known that conditionally on
(Ui ,Vj ), the distribution of Yi j = Pi j/ωi j belongs to an Exponential Dis-
persion Family (EDF) with var[Yi j |(Ui ,Vj ) = (ui , v j )] = φi jμ

p
i j/ωi j , where

μi j = E[Yi j |(Ui ,Vj ) = (ui , v j )], p = (α + 2)/(α + 1) and φi j is the dis-
persion parameter. Hence, Yi j |(Ui ,Vj ) = (ui , v j ) follows a Tweedie’s model,
with 1 < p < 2 implied by the positivity of α. Moreover, the joint density of
(Ni j ,Yi j )|(Ui ,Vj ) = (ui , v j ) can be parameterized in terms of μi j , φi j and p,
that characterize the mean and the variance of the standardized incremental
payments Yi j |(Ui ,Vj ) = (ui , v j ). In fact, we have

f(Ni j ,Yi j )|(Ui ,Vj )=(ui ,v j )(n, y; θi j , φi j , p) = a(n, y) exp
{

ωi j

φi j
(yθi j − bp(θi j )

}
, (2.1)

where

a(n, y) =
{
1 n = 0, y = 0

1
n!�(αn)y

[
yα(ωi j /φi j )

(α+1)

(p−1)α(2−p)

]n
n > 0, y > 0,

with 1 < p < 2, α = (2− p)/(p− 1), θi j = μ
1−p
i j

1−p and bp(θ) = 1
2−p [(1 − p)θ ]

2−p
1−p .

In terms of μi j , the density is

f(Ni j ,Yi j )|(Ui ,Vj )=(ui ,v j )(n, y; μi j , φi j , p) = a(n, y) exp

{
ωi j

φi j

(
y

μ
1−p
i j

1 − p
− μ

2−p
i j

2 − p

)}
.

(2.2)
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For the means of the conditional standardized payments, we assume a re-
gression structure as in GLMs, μi j = g−1(ηi j ), where g is a link function and
ηi j is a linear predictor that depends on the values of observable covariates xi j ,
but, differently from GLMs, also on random effects. The observable covariates
that can be numerical or categorical are chosen among the origin year, the de-
velopment year and the payment year. The random effects are additive terms
obtained by transforming the risk parameters by means of strictly monotone
and regular functions.

Now, we state the whole model.

a1. Independence assumptions
The components of the risk parameter (U,V) = (U0, . . . ,Ut,V0, . . . ,Vt)
are independent.
Conditionally on (U,V), the couples (Ni j ,Yi j ), i, j = 0, . . . , t, are inde-
pendent.
With respect to the risk parameters (U,V), the distribution of
(Ni j ,Yi j )|(U,V) = (u, v) only depends on Ui = ui and Vj = v j ; i.e.[
(Ni j ,Yi j )|(U,V) = (u, v)

] d= [
(Ni j ,Yi j )|(Ui ,Vj ) = (ui , v j )

]
.

a2. Distributional assumptions for the responses conditional on the risk param-
eters
The distribution of (Ni j ,Yi j )|(Ui ,Vj ) = (ui , v j ) has density (2.1) or,
equivalently, (2.2), for a given parameter p.

a3. Structural assumptions for the expected standardized payments
The expectations of the conditional standardized payments are given by

E[Yi j |(Ui ,Vj ) = (ui , v j )] = μi j = g−1(xTi jβ + zTi jw),

where xi j and zi j are vectors of covariates;β are the regression parameters,
called fixed effects; w = (wU, wV) = (wU,0, . . . , wU,t, wV,0, . . . , wV,t) are
the random effects, with wU,i = gU(ui ) and wV, j = gV(v j ). The functions
g, gU and gV are strictly monotone with first- and second-order continu-
ous derivatives.
The vector zi j is such that zTi jw = wU,i + wV, j or zTi jw = wU,i or zTi jw =
wV, j . In the following, we assume that zTi jw = wU,i + wV, j ; the other two
cases can be treated by simple adjustments.

a4. Distributional assumptions for the risk parameters
Let WU,i = gU(Ui ) and WV, j = gV(Vj ). We assume that the densities of
WU,i andWV, j are

fWU,i (w) = exp
{

1
λU,i

(
ψU,iθU − bU(θU)

)}
cU(ψU,i , λU,i ),

fWV, j (w) = exp
{

1
λV, j

(
ψV, jθV − bV(θV)

)}
cV(ψV, j , λV, j ),

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2016.30
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale di Medicina, on 28 Jul 2017 at 10:38:47, subject to the Cambridge Core



6

6 P. GIGANTE, L. PICECH AND L. SIGALOTTI

where bU , bV are cumulant functions of EDFs, θU = b�−1
U (g−1

U (w)), θV =
b�−1
V (g−1

V (w)), ψU,i , λU,i , ψV, j , λV, j are parameters and cU(ψU,i , λU,i ),
cV(ψV, j , λV, j ) are normalizing functions.

The above assumptions define a mixture model with mixing distribution the
distribution of W = (WU,0, . . . ,WU,t,WV,0, . . . ,WV,t).

If, in particular, gU is the canonical link of bU , that is gU = b�−1
U , then we

have θU = w and the distribution of WU,i = b�−1
U (Ui ) belongs to the conjugate

family of the EDF with cumulant bU . Its density is

fWU,i (w) = exp
{

1
λU,i

(
ψU,iw − bU(w)

)}
cU(ψU,i , λU,i ). (2.3)

In this case, under suitable hypotheses, the so-called hyperparameters ψU =
(ψU,0, . . . ψU,t), λU = (λU,0, . . . λU,t) are related to the moments of the risk pa-
rameter U. Indeed, if fWU,i disappears on the boundary of the canonical pa-
rameter space of the EDF with cumulant bU , for any ψU,i , then ψU,i = E(Ui )

(see e.g. Jewell, 1974; Bühlmann and Gisler, 2005). If, in addition to the above
hypothesis, the first derivative of fWU,i disappears on the boundary of the canon-
ical parameter space, then λU,i = var(Ui )/E(Up

i ) (see Ohlsson and Johansson,
2006). Similar considerations apply toWV, j .

In the following, we assume that the parametersψU,ψV are given, so that the
distribution ofW only depends on the dispersion parameters λU, λV . We remark
that the values of the parameters ψU, ψV can be used to incorporate external
information into the model (see the examples in Section 5).

If bp = bU = bV and g = gU = gV = b
�−1
p , then the distributions of

both WU,i = b
�−1
p (Ui ) and WV, j = b

�−1
p (Vj ) are conjugate of the distribution of

Yi j |(Ui ,Vj ) = (ui , v j ). We have

fWU,i (w) = exp
{

1
λU,i

(
ψU,iw − bp(w)

)}
c(ψU,i , λU,i ), (2.4)

fWV, j (w) = exp
{

1
λV, j

(
ψV, jw − bp(w)

)}
c(ψV, j , λV, j ). (2.5)

We remark that the model hypotheses for the process {(Ni j ,Yi j ), i, j =
0, . . . , t}, conditional on (U,V), are the same as in Smyth and Jørgensen (2002).
Moreover, if the random effects are only those related to the origin years, that
is zTi jw = wU,i , the process {Ui ,Yi j , i, j = 0, . . . , t} falls within the models dealt
with in Gigante et al. (2013a).

In order to estimate the parameters in models with fixed and random effects,
Lee and Nelder (1996), Lee and Nelder (2001), Lee et al. (2006) introduced the
hierarchical log-likelihood or h-loglihood. In our problem, the h-loglihood is the
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joint log-density evaluated at the data n = (ni j , i + j ≤ t), y = (yi j , i + j ≤ t),

h = log f(N,Y,W) = l(N,Y)|W=w + lW

=
∑

i, j :i+ j≤t

{
ni j log

(ωi j/φi j )
α+1yα

i j

(p − 1)α(2 − p)
− log

(
ni j !�(αni j )yi j

)

+ωi j

φi j

[
yi jθi j − bp(θi j )

]}

+
t∑

i=0

{
1

λU,i

[
ψU,iθU,i − bU(θU,i )

] + log cU(ψU,i , λU,i )

}

+
t∑
j=0

{
1

λV, j

[
ψV, jθV, j − bV(θV, j )

] + log cV(ψV, j , λV, j )

}
, (2.6)

where f(N,Y,W) denotes the joint density of (N,Y,W), l(N,Y)|W=w the log-
likelihood of (N,Y)|W = w, which is equal to the log-likelihood of
(N,Y)|(U,V) = (u, v), and lW is the logarithm of the density of W and

θi j = b�−1
p (g−1(xTi jβ + wU,i + wV, j ),

θU,i = b�−1
U (g−1

U (wU,i )),

θV, j = b�−1
V (g−1

V (wV, j )).

Hence, if in addition to p, ψU, ψV and ω = (ωi j , i, j = 0, . . . , t), also the
dispersion parameters φ = (φi j , i, j = 0, . . . , t), related to the standardized
payments, and λU , λV, related to the risk parameters, are known, ignoring irrel-
evant constant terms, we get

h(β, w;φ, λU, λV; n, y, ψU, ψV, ω) =
∑

i, j :i+ j≤t

ωi j

φi j

[
yi jθi j − bp(θi j )

]

+
t∑

i=0

1
λU,i

[
ψU,iθU,i − bU(θU,i )

] +
t∑
j=0

1
λV, j

[
ψV, jθV, j − bV(θV, j )

]
.

(2.7)

The h-loglihood (2.7) formally coincides with that of an HGLM with re-
sponses the standardized payments and with random effects the vector w. Re-
mark that it is the same as if the ni j were not observed. It can be viewed as
the log-likelihood of an augmented GLM for the data y and pseudo-data ψU,
ψV , with weights ωi j/φi j , i + j ≤ t, 1/λU,i , i = 0, . . . , t, 1/λV, j , j = 0, . . . , t,
respectively, and dispersion parameter 1. Notice that we use this terminology
even if, in order to interpret (2.7) as the log-likelihood of a GLM, we should
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have bp = bU = bV and g = gU = gV. In this case, if g is the canonical link, the
HGLM is called conjugate.

The augmented GLMhas the following structure, denoting byYi j , i+ j ≤ t,
�U,i , i = 0, . . . , t, �V, j , j = 0, . . . , t, the response variables and by V, VU , VV
the variance functions of the EDFs with cumulants bp, bU , bV, respectively, the
expected values and the variances of the response variables are

E(Yi j ) = μi j , var(Yi j ) = φi j
ωi j
V(μi j ), i + j ≤ t,

E(�U,i ) = ui , var(�U,i ) = λU,i VU(ui ), i = 0, . . . , t,
E(�V, j ) = v j , var(�V, j ) = λV, j VV(v j ), j = 0, . . . , t.

The linear predictors are

ηi j = g(μi j ) = xTi jβ + wU,i + wV, j , i + j ≤ t,
ηU,i = gU(ui ) = wU,i , i = 0, . . . , t,
ηV, j = gV(v j ) = wV, j , j = 0, . . . , t.

The design matrix of the model is

T =
⎡
⎣
X ZU ZV
0 I t+1 0
0 0 I t+1

⎤
⎦ , (2.8)

where X = [xTi j ] denotes the designmatrix for the fixed effects, I t+1 is the identity
matrix of order t + 1, ZU is the design matrix for the random effects wU , i.e. a
((t + 1)(t + 2)/2) × (t + 1) block indicator matrix, whose element in column k
(k = 0, . . . , t) corresponding to the observation yi j is 1 if k = i , and ZV is the
design matrix for the random effects wV, i.e. a ((t+ 1)(t+ 2)/2) × (t+ 1) block
matrix where the block corresponding to the payments of the origin year i is the
identity matrix of order t − i + 1 followed by null columns.

The maximum h-loglihood estimates of the fixed and random effects δ =
(βT, wT)T are the solutions of the system

�
∂h/∂β = 0
∂h/∂w = 0,

that can be solved by the Iterative Weighted Least Squares (IWLS) algorithm.
The updating step of the algorithm is

TTWaTδ = TTWa za, (2.9)
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where T is the matrix in (2.8), Wa is a diagonal block matrix where the three
non-null blocks are

diag
[

ωi j

φi j g�(μi j )2V(μi j )

]
, diag

[
1

λU,i g�
U(ui )2VU(ui )

]
,

diag
[

1
λV, j g�

V(v j )2VV(v j )

]
.

The dependent variables are defined by za = (zT, zTU, zTV)T, where the com-
ponents of z, zU , zV are, respectively,

zi j = ηi j + g�(μi j )(yi j − μi j ), i + j ≤ t,
zU,i = wU,i + g�

U(ui )(ψU,i − ui ), i = 0, . . . , t,
zV, j = wV, j + g�

V(v j )(ψV, j − v j ), j = 0, . . . , t.

We remark that the inverse I(δ̂)−1 of the Fisher information matrix of the
augmented GLM, evaluated at the estimate δ̂, is an estimate of the variance–
covariance matrix

var
[

β̃

w̃ − W

]
,

where β̃, w̃ are the estimators of the fixed and random effects. Note that the
estimator w̃ of the parameterw is a predictor of the unobservable randomvector
W.

In this way, by estimating the augmented GLM, we get estimates of the
model parameters and of the standard errors of their estimators.

3. THE MODEL WITH STRUCTURED DISPERSION

In Section 2, we have assumed that the dispersion parameters φ, λU and λV
are known. However, in practice, also these parameters should be estimated.
As it has been pointed out by Smyth and Jørgensen (2002) and Boucher and
Davidov (2011), sometimes models with constant dispersion could be inappro-
priate. Therefore, we assume a model that allows the μi j and also the dispersion
parameters to vary depending on the values of the covariates. In addition to
(a1)–(a4) in Section 2, here we assume

a5. Structural assumptions for the dispersion parameters
The dispersion parameters are given by

φi j = g−1
φ (x(φi j )Tγ φ), i + j ≤ t,

λU,i = g−1
λU

(x(λU,i )Tγ λU
), i = 0, . . . , t,

λV, j = g−1
λV

(x(λV, j )Tγ λV
), j = 0, . . . , t,
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where x(φi j ), x(λU,i ), x(λV, j ) are vectors of covariates and gφ , gλU , gλV are link
functions.

We note that in claims reserving, because of the scarcity of data, all the re-
gression structures of the model must be chosen appropriately to avoid over-
parameterization.

When also the dispersion parameters have to be estimated, the normaliz-
ing functions in the h-loglihood (2.6) cannot be neglected anymore. However,
an explicit form for such functions could not be available. Hence, to get a
log-likelihood-based estimation of the dispersion parameters, some approxima-
tions are needed. By following the suggestion in Lee et al. (2006) for the quasi-
HGLMs, we approximate the h-loglihood components concerning the random
effects with the respectiveExtendedQuasi Likelihoods (seeNelder and Pregibon,
1987). The approximation of h in (2.6), denoted by h̄, is

h̄(β, w;φ, λU, λV; n, y, ψU, ψV, ω)

=
∑

i, j :i+ j≤t

{
ni j log

(ωi j/φi j )
α+1yα

i j

(p − 1)α(2 − p)
+ ωi j

φi j

[
yi jθi j − bp(θi j )

]}

− 1
2

t∑
i=0

{
dU,i

λU,i
+ log

[
2πλU,i VU(ψU,i )

]}

− 1
2

t∑
j=0

{
dV, j

λV, j
+ log

[
2πλV, j VV(ψV, j )

]}
, (3.1)

where

dU,i = −2
∫ ui

ψU,i

ψU,i − s
VU(s)

ds, dV, j = −2
∫ v j

ψV, j

ψV, j − s
VV(s)

ds,

are the deviances of the GLM components related to Ui and Vj , respectively.
The parameter estimates are obtained by maximizing the function h̄.
The derivatives of h̄ with respect to the fixed and random effects (β, w) are

equal to the derivatives of the h-loglihood (2.7). The derivatives of h̄ with re-
spect to γ λU

and γ λV
can be seen as the derivatives of the log-likelihoods of two

GLMs with gamma distributed responses. If we properly define weights and
responses, also the derivatives of h̄ with respect to the regression parameters γ φ

can be seen, formally, as the log-likelihood derivatives of a GLM. Therefore,
the parameter estimates can be found through an algorithm in which four in-
terconnected GLMs are fitted iteratively, according to the following steps (see
Appendix A for the details).

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2016.30
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale di Medicina, on 28 Jul 2017 at 10:38:47, subject to the Cambridge Core



11

A MIXTUREMODEL FOR PAYMENTS AND PAYMENT NUMBERS 11

Step 1 Given the dispersion parameters φ, λU, λV, the fixed and random ef-
fects δ = (βT, wT)T can be estimated bymeans of an augmentedGLM.
The IWLS equations are in (2.9).

Step 2 Given δ, λU, λV, the parameters γ φ , and hence φ, can be estimated by
a proper GLM with gamma distributed responses.

Step 3 Given δ, φ, the parameters γ λU
, γ λV

, and hence λU ,λV, can be estimated
by the two proper GLMs with gamma distributed responses.

At convergence, we can compute the standard errors of (β̃
T
, (w̃ −W)T)T by

means of the inverse I(δ̂)−1 of the Fisher information matrix of the augmented
GLM in Step 1.

However, the estimates of the dispersion parameters provided by the above
algorithm could under-estimate the variances. As recommended in Lee et al.
(2006), in order to reduce the bias in estimating the dispersion parameters, we
consider the REML estimation by using the adjusted profile loglihood

pβ,w(h̄) =
{
h̄ − 1

2
log

[
det

(I(δ)

2π

)]} ∣∣∣δ=δ̂(γ φ,γ λU
,γ λV

) , (3.2)

where δ̂(γ φ, γ λU
, γ λV

) solves ∂ h̄/∂β = 0, ∂ h̄/∂w = 0, for fixed γ φ, γ λU
, γ λV

;
hence, it is the estimate of the parameter vector δ of the augmented GLM in
Step 1. The matrix I(δ̂(γ φ, γ λU

, γ λV
)) = TTŴaT is the Fisher information

matrix of the same GLM (see Appendix A for the details).
In the fitting algorithm, the Steps 2 and 3 above have to be adapted

accordingly.
Finally, we note that the estimation of the parameter p could be obtained

by maximizing the adjusted profile loglihood with respect to the parameters p
and φ.

4. RESERVE PREDICTION AND PREDICTION ERROR

In claims reserving, we need to predict the outstanding claims and evaluate the
quality of the prediction.

To tackle this issue, we restrict ourselves to considering the exposures de-
pendent on the origin years only. Note that if the exposures also depend on the
development years, forecast of the exposures in future cells are needed and an
additional source of error arises.

Let

Ri =
t∑

i=t−i+1

Pi j =
t∑

i=t−i+1

ωiYi j ,

denote the outstanding claims of the origin year i , i = 1, . . . , t, and

R=
t∑

i=1

Ri =
∑

i, j :i+ j>t

Pi j =
∑

i, j :i+ j>t

ωiYi j .

the total outstanding claims.
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The conditional expectation of R, at time t, is

E(R|Dt) =
∑

i, j :i+ j>t

ωi E(Yi j |Dt), (4.1)

where Dt = {
(Ni j ,Yi j ), i + j ≤ t

}
.

By the tower property of the conditional expectation and the conditional
independence of the Yi j , given (U,V), we get

E(Yi j |Dt) = E
[
E(Yi j |Dt,U,V)|Dt

] = E
[
g−1(xTi jβ + WU,i + WV, j )|Dt

]
.

(4.2)
Now, we assume that the parameter estimates δ̂ = (β̂

T
, ŵT)T and the cor-

responding estimators δ̃ = (β̃
T
, w̃T)T provide estimates and estimators of the

linear predictors xTi jβ + wU,i + wV, j , also for i + j > t. Note that this does not
allow the payment year to be considered as a categorical covariate.

As a predictor for Yi j , we consider the following estimator of E(Yi j |Dt):

Ỹi j = g−1(xTi j β̃ + w̃U,i + w̃V, j ).

The predictor of the total outstanding claims is

R̃=
∑

i, j :i+ j>t

ωi g−1(xTi j β̃ + w̃U,i + w̃V, j ), (4.3)

and the predicted value or the total claims reserve estimate is

R̂=
∑

i, j :i+ j>t

ωi g−1(xTi j β̂ + ŵU,i + ŵV, j ). (4.4)

As a measure of the prediction uncertainty, we use the conditional mean
square error of prediction which is defined by

MSEPR|Dt(R̃) = E
[
(R− R̃)2|Dt

]
. (4.5)

It takes account of the fluctuations of the outstanding claims around the
predictor R̃. Since the predictor R̃ is Dt-measurable, we get

MSEPR|Dt(R̃) = var(R|Dt) + E
[(
E(R|Dt) − R̃

)2 |Dt

]

= var(R|Dt) + (
E(R|Dt) − R̃

)2
. (4.6)

By the tower property of the conditional expectation and the conditional in-
dependence of the Yi j , given (U,V), the conditional MSEP (4.6) can be written
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as a sum of three terms as follows:

MSEPR|Dt (R̃) = E[var(R|U,V)|Dt]

+ var[E(R|U,V)|Dt] +
(
E(R|Dt) − R̃

)2
. (4.7)

In order to estimate the conditional MSEP, we approximate the three terms
as in Gigante et al. (2013a) and we get the following estimates:

Ê[var(R|U,V)|Dt] =
∑

i, j :i+ j>t

φ̂i j

ωi
V

(
g−1(xTi j β̂ + ŵU,i + ŵV, j )

)
,

v̂ar[E(R|U,V)|Dt] = {
J r (w)H−1

22 J r (w)T
} ∣∣

δ̂ ,

̂(
E(R|Dt) − R̃

)2 = {
J f (β)G−1 J f (β)T

} ∣∣
δ̂ , (4.8)

where J r and J f denote the Jacobian matrices of the functions

r(w) =
∑

i, j :i+ j>t

ωi g−1(xTi jβ + wU,i + wV,i ),

f (β) =
∑

i, j :i+ j>t

ωi g−1(xTi jβ + w̃U,i (β) + w̃V, j (β)),

with w̃(β) denoting themaximum h-loglihood estimator ofw obtained for given
β. The Jacobian matrix of w̃(β) is given by −H−1

22 H
T
12 (Lee and Nelder, 1996,

Appendix C; Lee and Ha, 2010). The matrices H−1
22 , G

−1 and HT
12 are obtained

from the Fisher information matrix of the augmented GLM and its inverse

I(δ) =
[
H11 H12

HT
12 H22

]
, I(δ)−1 =

[
G−1 F
FT C

]
, (4.9)

where H11 denotes the block of the derivatives of the h-loglihood taken both
with respect to β, H22 denotes the block of the derivatives taken both with re-
spect to w and H12 the block of the mixed derivatives. The estimates in (4.8)
can be easily obtained by matrix calculus, once the parameter estimates and the
Fisher information matrix at the estimates are available.

The estimate of the conditional MSEP (4.6) takes account of the variability
in the estimates of both the regression parameters β and the random effects
w. However, it does not allow for the variability in the dispersion parameter
estimates, γ̂ φ , γ̂ λU

and γ̂ λV
. An insight into this aspect can be obtained from

the standard errors estimated through the Fisher information matrices of the
GLMs used to estimate such parameters: high standard errors with respect to
the parameter estimates could indicate low accuracy and reliability of the esti-
mates.

Finally, we note that the conditional MSEP has been estimated by tak-
ing first-order approximations in the three terms in (4.7) and plugging the
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parameter estimates into the formula. The estimator is biased, as arises in simi-
lar cases (see e.g. Booth andHobert, 1998,Maiti et al., 2014). A better estimator
could be obtained by introducing correction terms or resorting to simulation.
However, developing a correction term could be a difficult task. On the other
hand, simulation requires repeated estimation of the model parameters on the
basis of re-sampled data and this is often computationally demanding in mix-
ture models. The advantage of the approximations in (4.8) is to have a simple
formula to evaluate the quality of the predictions, that takes into account both
the process and the estimation error. InAppendix B, we have reported the results
of a simulation study in order to appreciate the effect of the approximations.

5. NUMERICAL RESULTS

We illustrate the model by applying it to two data sets.

Example 1. The first data set concerns the claims development figures of a
SwissMotor Insurance portfolio, given inWüthrich (2003). The same data have
been used by Boucher and Davidov (2011) to estimate a Tweedie’s compound
Poisson model where, in addition to the means of the payments, also the disper-
sion parameters follow a regression structure, through a DGLM. Note that in
our mixture model, conditionally on the risk parameters, we assume the same
hypotheses, so that the results can be compared.

The observations consist of the number of payments and the incremental
payments for nine accident years and eleven development years. The number
of reported claims for accident year i , approximated by the number of claims
reported in the first two development years of the same accident year, is assumed
as exposure measure wi .

We have pointed out in the introduction that in some situations, in particular,
when the observed development figures within a given run-off triangle are scarce
or fluctuate, the actuaries often rely on industry-wide development patterns or
on development patterns of other similar lines of business. Similarly, when a
business line of a portfolio consists of different business units, the actuary typi-
cally sets up reserves for each business unit, but he could also rely on the claims
development figures of other business units (see Gisler and Wüthrich, 2008).

The model presented in this paper is suitable to be applied in such situa-
tions. To illustrate this aspect, we assume that, in addition to the specific claims
data described above, we have some external information on the CL develop-
ment factors, f0, . . . , ft−1, of similar business units, obtained from industry-
wide or company data. Such external development factors are reported in the
first column in Table 1 and they are compared with the CL development factors
f P0 , . . . , f Pt−1, obtained from the payment data of the specific portfolio under
consideration. As it is well known, the CL development factors can be related
to the proportions, r0, . . . , rt, of the expected ultimate claim amounts, E(Cit),
settled in the different development years: E(Pi j ) = E(Cit)r j . We note that the
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TABLE 1

CL DEVELOPMENT FACTORS AND PROPORTIONS.

External Data Portfolio Data
Development Year
j f j r j f Pj r Pj

0 1.300 0.731211 1.327720 0.711932
1 1.020 0.219363 1.030096 0.233315
2 1.010 0.019011 1.010728 0.028449
3 1.010 0.009696 1.007601 0.010446
4 1.004 0.009793 1.002959 0.007481
5 1.003 0.003956 1.002012 0.002935
6 1.001 0.002979 1.001912 0.002001
7 1.001 0.000996 1.000766 0.001905
8 1.001 0.000997 1.000761 0.000765
9 1.001 0.000998 1.000012 0.000761
10 0.000999 0.000012

r P0 , . . . , r Pt , evaluated for the specific portfolio show a lower proportion of the
amount paid in the first development year and higher proportions settled in the
following three development years, in particular in development year 2; the pro-
portions are lower in all the following development years, except in development
year 7.

For such data, we assume the mixture model with the following specifica-
tions.

In (a2), the conditional distribution of (Ni j ,Yi j )|(Ui ,Vj ) = (ui , v j ) has den-
sity (2.1), with p = 1.7981. For the sake of comparison, the value of the param-
eter p is the same as that of theModel IV in Boucher andDavidov (2011). Some
comments on the effect of different choices for this parameter are reported at
the end of the example.

In (a3), the link function g and the functions gU , gV, that transform the risk
parameters, are the logarithm. As fixed effect, we consider only a base level μ.
Hence, we have

E[Yi j |(Ui ,Vj )] = exp(μ + log(Ui ) + log(Vj )) = eμUiVj .

We note that, the regression structure is as in Boucher and Davidov (2011),
but, instead of the fixed effects related to the origin and development years, here
we have random effects.

In (a4), the distributions of WU,i = log(Ui ) and WV, j = log(Vj ) are conju-
gate of the Poisson EDF, that is

fWU,i (w) = exp
{

1
λU,i

(
ψU,iw − exp(w)

)}
cU(ψU,i , λU,i ), (5.1)
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TABLE 2

MODEL ESTIMATES.

Mixture
i ûi j v̂ j Coefficient φ̂ j

0 0.984081 0 0.712510 0.970038 240
1 0.996163 1 0.232338 0.929956 402
2 1.016670 2 0.027861 0.937781 2,301
3 1.008071 3 0.010372 0.901602 6,374
4 1.004320 4 0.007821 0.852800 14,598
5 0.997471 5 0.003067 0.870612 23,842
6 1.003331 6 0.002211 0.785431 47,064
7 0.990424 7 0.001657 0.727510 62,122
8 0.999469 8 0.000816 0.779175 79,357

9 0.000848 0.630315 113,219
10 0.000499 0.506797 113,219

fWV, j (w) = exp
{

1
λV, j

(
ψV, jw − exp(w)

)}
cV(ψV, j , λV, j ). (5.2)

Hence, Ui and Vj are gamma distributed.
We assume ψU,i = E(Ui ) = 1 and ψV, j = E(Vj ) = r j in Table 1, so that the

external information is incorporated into the model. It follows that the expected
values of the unconditional standardized payments are E(Yi j ) = exp(μ)r j and
the expected incremental payments are E(Pi j ) = exp(μ)ωi r j . Hence, according
to the usual parameter interpretation, the expected ultimate claim amount of
origin year i is assumed to be proportional to the exposure measure ωi and the
proportion of such amount paid in development year j is given by the external
proportion r j . Note that these are initial estimates, that do not take account of
the specific payment data.

As in Boucher andDavidov (2011), we assume for the dispersion parameters
related to the standardized payments the structure φi j = φ j = exp(γφ, j ), i.e.
we suppose only a development year effect. Moreover, the parameters of the
last two development years are assumed to be equal. The dispersion parameters
related to the risk parameters are assumed constant with i and j , respectively,
i.e. λU,i = λU , λV, j = λV.

Now,we come to themodel estimate (for implementation, we have developed
our own code in SAS).

The estimate of exp(μ) is 254.62, that can be interpreted as the expected
ultimate claim amount per unit of exposure.

In Table 2 are reported the estimates of the risk parameters ûi = exp(ŵU,i )

and v̂ j = exp(ŵV, j ). Note that such estimates can be interpreted as the expected
risk parameters updated through the observations in the run-off triangles. As
for ûi , the estimate is close to the initial estimate ψU,i = 1. Hence, the origin
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TABLE 3

RESERVE AND PREDICTION ERROR ESTIMATES.

Current Model Boucher–Davidov

Origin Prediction Prediction
Year Reserve Error Reserve Error

1 13,961 21,313 325 800
2 36,755 37,916 21,357 29,928
3 56,673 44,275 40,205 37,325
4 96,846 58,461 87,224 58,549
5 155,421 73,602 138,317 71,041
6 220,232 81,908 202,512 79,777
7 393,922 107,005 359,344 101,663
8 621,890 122,057 596,578 119,780

Total 1,595,700 268,149 1,445,862 258,926

year effect is well explained by the exposure measure ωi . The estimate v̂ j can
be interpreted as the updated proportion of the ultimate claim amount to be
paid in development year j . It is interesting to compare such estimates with the
initial estimates ψV, j = r j . The updated proportions can be seen as mixtures
of the external proportions r j and the portfolio proportions r Pj ; the mixture
coefficients are reported in Table 2. The weights assigned to the portfolio pro-
portions are always greater than those assigned to the external proportions; they
are particularly high in the earlier development years for which we have more
data. However, the weights are not monotonically decreasing. Note in particu-
lar the weights for the development years 2 and 7, that show remarkably high
differences between the external and the portfolio proportions.

The last column in Table 2 shows the estimates of the dispersion parameters
φ j ; they are very close to the estimates obtained byBoucher andDavidov (2011).
As expected, the dispersion parameters related to the standardized payments are
increasing in the development year. Remark that such estimates are substantially
different and they show the importance ofmodeling the dispersion. Actually, for
these data, a constant dispersion model could be inappropriate.

As for the estimates of the dispersion parameters related to the risk param-
eters, we get λ̂U = 0.000274 and λ̂V = 0.000781. Note that, in the current
model, we have λU = var(Ui )/E(Ui ) and λV = var(Vj )/E(Vj ). It follows that,
whereas the estimates of the coefficients of variation of the risk parameters Ui ,
(λU/E(Ui ))

1/2, are low (about 1.7%), the estimates of the coefficients of vari-
ation of the risk parameters Vj are rather high for j ≥ 3 (greater than 25%).
Therefore, a model with random effects, at least for the development years,
seems suitable for such data.Moreover, the inclusion of random effects is useful,
due to the possibility of incorporating external information into the model.

The estimates of the reserves and of the prediction errors, given by the
square roots of the MSEPs (4.6), are reported in Table 3. We note that, as
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TABLE 4

STANDARD ERRORS FOR THE REGRESSION PARAMETERS OF THE DISPERSION PARAMETERS.

Parameter Estimate Standard Error

γφ,0 5.480954 0.003861
γφ,1 5.996669 0.005596
γφ,2 7.740931 0.016581
γφ,3 8.759934 0.032124
γφ,4 9.588662 0.053120
γφ,5 10.079189 0.080083
γφ,6 10.759273 0.127157
γφ,7 11.036859 0.167146
γφ,8 11.281706 0.233496
γφ,9 = γφ,10 11.637080 0.282901

γλU −8.203300 0.860619

γλV −7.155162 0.504638

usual, there is considerable uncertainty in the reserve estimates in the ear-
lier origin years and then the relative prediction errors decrease. The predic-
tion error for the whole reserve as a percentage of the claims reserve is about
16.8%. We remark that the conditional MSEP estimate allows for the vari-
ability in the estimates of the regression parameter μ and the random effects
w = (wU,0, . . . , wU,t, wV,0, . . . , wV,t), but not in the dispersion parameter esti-
mates. The uncertainty in such estimates can be provided by the standard errors
of the respective parameter estimates reported in Table 4. The relative standard
errors of the parameters γφ, j are rather low in particular for the earlier devel-
opment years for which more data are available. The relative standard errors of
the parameters γλU and γλV are higher, hence the estimates are less precise.

For a comparison, we have reported in Table 3 the reserves and the prediction
errors estimated by the DGLMModel IV in Boucher and Davidov (2011). Our
reserves are higher than those in the quoted paper, for all of the origin years.
The total reserve is 10% higher. In particular, note the reserve for origin year
1. The high value of this reserve is mainly determined by the estimate of the
risk parameter V10, v̂10 = 0.000499. In fact, such estimate takes account of
the external estimate r10 = 0.000999 which is quite higher than the portfolio
estimate r P10 = 0.000012 (see Table 1). The total prediction error is higher in
our model, whereas the prediction error as a percentage of the claims reserve
(16.8%) is lower than in the DGLM (17.9%). Notice that we estimate two more
parameters, but we usemore data, i.e. the external data in addition to the run-off
data.

The differences in the reserve estimates are mainly caused by the effect of the
external estimates. To appreciate this aspect, we have evaluated the reserve and
the prediction error estimates starting from other two different sets of external
values for the proportions of the expected ultimate claim amount to be paid in
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TABLE 5

EXTERNAL AND ESTIMATED PROPORTIONS.

Worst case Best case

Development Link External Estimated Link External Estimated
Year Ratio Proportion Proportion Ratio Proportion Proportion
j f j r j v̂ j f j r j v̂ j

0 1.417151 0.647315 0.710065 1.297105 0.745633 0.713474
1 1.041802 0.270028 0.233982 1.022409 0.221531 0.233162
2 1.015575 0.038347 0.028617 1.005731 0.021673 0.028253
3 1.014566 0.014885 0.010555 1.002547 0.005667 0.010259
4 1.004352 0.014137 0.007824 1.001381 0.002533 0.007126
5 1.004539 0.004286 0.002992 1.000595 0.001377 0.002830
6 1.004060 0.004490 0.002194 1.000353 0.000594 0.001848
7 1.001534 0.004034 0.002160 1.000046 0.000353 0.001668
8 1.000936 0.001531 0.000830 1.000582 0.000046 0.000666
9 1.000012 0.000936 0.000769 1.000012 0.000581 0.000703

10 0.000012 0.000011 0.000012 0.000011

the different development years. Just to exemplify, such proportions have been
obtained by the “worst case” and “best case” link ratios, i.e. the highest and
lowest ratios of successive cumulative payments in the specific portfolio, for any
development year. The link ratios, the external estimates, the updated estimates
that take account of the portfolio data are reported in Table 5; the reserves and
the prediction errors are reported in Table 6.

Note that, with respect to the reserve estimates in Table 3, the estimates in
Table 6 are closer to the reserves of Boucher and Davidov (2011), for the earlier
origin years. In fact, the worst and best external proportions for such origin
years aremore in line with the portfolio estimates r Pj in Table 1. The total reserve
estimated in the quoted paper is intermediate between the worst and the best
case estimates in Table 6. The same happens for the prediction errors.

Finally, we discuss the effect of different choices of the parameter p by using
again the external data in Table 1. Preliminarily, we point out that for values of
p close to 2, the convergence of the estimation algorithm is problematic, since
the variance of the risk parameters for the origin years becomes almost zero.
Possibly, in these cases, a large amount of the variability is captured by the vari-
ance of the conditional standardized payments and the risk parameters for the
origin years could be omitted. By evaluating the adjusted profile likelihood (3.2),
we find that it is increasing with p. In order to make some sensitivity analysis,
we report in Table 7 the estimates of the parameters φ j , γλU and γλV , the total
reserve and the square root of theMSEP for some large values of the parameter
p. We observe that the pattern of the estimates of the φ j is preserved, whereas
the values are quite different for the different values of p. The estimates of γλV

remain stable, whereas the estimates of γλU are decreasing and imply that the
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TABLE 6

RESERVE AND PREDICTION ERROR ESTIMATES.

Worst case Best case

Origin Prediction Prediction
Year Reserve Error Reserve Error

1 318 778 318 776
2 21,274 28,897 19,447 26,320
3 42,157 37,878 36,085 32,946
4 95,496 62,629 77,135 51,281
5 153,576 77,124 125,932 64,052
6 216,606 84,513 186,698 72,564
7 390,315 109,125 345,093 96,505
8 622,368 124,398 571,100 112,798

Total 1,542,108 268,188 1,361,808 231,682

TABLE 7

MODEL ESTIMATES BY VARYING p.

p 1.8 1.85 1.865

φ̂0 240 247 254
φ̂1 403 438 458
φ̂2 2,314 2,795 3,014
φ̂3 6,422 8,155 8,929
φ̂4 14,719 19,005 20,914
φ̂5 24,082 32,588 36,370
φ̂6 47,573 65,630 73,668
φ̂7 62,799 86,831 97,528
φ̂8 80,363 116,342 132,472
φ̂9 114,789 170,768 195,763
φ̂10 114,789 170,768 195,763

γλU −8.220515 −9.172940 −10.395696

γλV −7.156065 −7.175111 −7.179398

Reserve 1,597,066 1,637,210 1,651,221
Prediction Error 269,545 313,871 331,016

variance of the risk parameters related to the origin years becomes lower and
lower. The estimated reserves show a moderate increase with p; more remark-
able is the effect on the prediction errors.

Example 2. As a second example, we apply the model to a set of data from
Australian Auto Bodily Injury claims. As a difference to the first example, such
data come from a longer tailed line of business. The data are taken from the
Appendix B in Taylor (2000), for origin years 1979 to 1995 and development
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TABLE 8

MODEL ESTIMATES.

i ûi j r Pj r j v̂ j φ̂ j

0 0.998072 0 0.040078 0.015 0.036639 39,376
1 1.010673 1 0.088686 0.070 0.086803 9,252
2 1.055404 2 0.114870 0.120 0.114909 9,088
3 1.056602 3 0.153609 0.150 0.152054 14,622
4 1.009720 4 0.143157 0.160 0.146702 21,069
5 1.063330 5 0.127131 0.150 0.134887 27,600
6 0.989020 6 0.111240 0.120 0.113858 40,116
7 0.991417 7 0.069049 0.070 0.068578 53,009
8 0.960769 8 0.053155 0.050 0.051091 78,191
9 0.936656 9 0.035340 0.035 0.034624 99,404

10 0.952385 10 0.028272 0.025 0.025806 193,134
11 0.950014 11 0.012658 0.015 0.013813 212,893
12 0.977967 12 0.008294 0.008 0.007871 335,916
13 1.033009 13 0.009028 0.007 0.007403 419,447
14 1.004634 14 0.005432 0.005 0.004962 419,447
15 1.004855
16 1.005472

years 0 to 14 (the last development year refers to the claims with development
year 14 and later). For the incremental payments, we have taken the data from
Table B.3.3 rounded to the thousand; For the claim numbers, we have used the
numbers of claims finalized (Table B.3.7) and for the exposure measures the
vehicle years in Table B.1.

For the external data, as a possible market development pattern, we have
used the proportions r j , reported in Table 8. In the same table, the proportions
r Pj have been obtained by the CL link ratios.

The model specifications are the same as in Example 1 except for the param-
eter p of the Tweedie distribution that is p = 1.9. Such value has been obtained
by maximizing the adjusted profile likelihood (3.2) on a set of finite points in
the interval ]1,2[.

As for the estimates of the dispersion parameters related to the risk parame-
ters, nowwe get λ̂U = 0.005405 and λ̂V = 0.002998. The coefficients of variation
of the risk parametersUi (about 7%) are higher than those in Example 1, as one
could expect due to the much more uncertainty involved in bodily injury claims.
Along the development years, the coefficients of variation are high for j = 0 and
j ≥ 9, whereas they are lower for 1 ≤ j ≤ 6 where most of the claim amounts
are paid. The estimates of the risk parameters and of the dispersion parameters
φ j are reported in Table 8.

For the sake of comparison, the reserve and prediction error estimates in the
mixture model and in a DGLM are reported in Table 9. The estimated reserves
in the two models are rather close, although the mixture model takes account
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TABLE 9

RESERVE AND PREDICTION ERROR ESTIMATES.

Current Model DGLM

Origin Prediction Prediction
Year Reserve Error Reserve Error

3 200,368 406,582 214,263 493,386
4 494,851 696,729 516,346 822,097
5 880,000 945,016 997,520 1,194,046
6 1,413,344 1,165,090 1,263,704 1,158,324
7 2,617,881 1,777,678 2,426,005 1,805,546
8 4,076,876 2,136,785 3,489,083 1,995,858
9 6,403,486 2,665,481 5,255,130 2,380,593
10 10,190,977 3,358,668 8,839,950 3,177,508
11 17,045,880 4,475,855 14,686,843 4,255,008
12 25,967,900 5,579,319 23,732,131 5,747,618
13 36,701,222 6,717,698 38,273,527 8,198,109
14 46,552,267 7,388,837 45,625,040 9,162,121
15 54,596,674 7,929,020 53,276,737 11,995,003
16 60,973,369 8,436,424 64,262,059 28,665,867

Total 268,115,094 21,749,162 262,858,337 38,306,064

of the external information, whereas the other one does not. On the contrary,
the prediction errors are remarkably different even though the estimates of the
dispersion parameters φ j are very close in the two models, as happens in Ex-
ample 1. We note that the main source of such difference can be ascribed to the
last accident year. In fact, whereas the prediction errors of the mixture model
are steadily increasing along the accident years, those of the DGLM are sub-
stantially increasing along the most recent accident years and the increment is
particularly sharp in the last accident year. This is due, in part, because only
one observation is available for the estimate of the last accident year parame-
ter, and therefore a considerable amount of estimation uncertainty is involved.
Note that the same does not happen in Example 1 where for the last origin year
more information is available. Possibly, when a random effect model is applied,
part of such uncertainty could be smoothed, thanks to the random effects in-
stead of fixed effects. Moreover, the mixture model incorporates also the ex-
ternal information and this could play a role when evaluating the prediction
errors.

Finally, we note that, in order to make some comparisons, we have applied
in Example 2 the same regression structure as in Example 1, which results in
a multiplicative CL-type structure for the expected values of the conditional
responses. However, the second dataset is more critical and, as pointed out by
Taylor (2000), it provides an example for which the CL model is unsuitable.
Though the comparisons with the results of the DGLM show that the inclusion
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of random effects and external information could mitigate the consequences of
such inadequacy.

6. CONCLUSIONS

This paper addresses a stochastic model for the evaluation of claims reserves
that extends the compound Poisson model by Smyth and Jørgensen (2002) and
Boucher and Davidov (2011) in the direction of HGLMs. By exploiting the h-
likelihood approach by Lee et al. (2006), in addition to the fixed effects, random
effects related to the origin and/or the development years are introduced.More-
over, the evaluation of the prediction errors is enhanced by allowing for struc-
tured dispersions. The parameters of the distributions of the random effects can
be used to incorporate some external information into the model. The numeri-
cal examples explore the consequences of different external information on the
claims development pattern, and of different data sets. As expected, it results
that, if the external data are rather different from the portfolio data, they can
remarkably affect the reserve evaluation. On the contrary, if the external data
are quite close to the portfolio data, the reserve and prediction error evaluations
are in line with those obtained by using only the run-off data.
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APPENDIX A. TECHNICAL DETAILS

We report the technical details of the estimation procedure in Section 3.
A.1 The derivatives of the approximate h-loglihood h̄
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The derivatives of h̄ (3.1) with respect to the fixed and random effects (β, w) are

∂ h̄/∂βk =
∑

i, j :i+ j≤t
xi j,k

ωi j

φi j
(yi j − μi j )

1
g�(μi j )V(μi j )

,

∂ h̄/∂wU,k =
t−k∑
j=0

ωkj

φkj
(ykj − μkj )

1
g�(μkj )V(μkj )

+ 1
λU,k

(ψU,k − uk)
1

g�
U(uk)VU(uk)

,

∂ h̄/∂wV,k =
t−k∑
i=0

ωik

φik
(yik − μik)

1
g�(μik)V(μik)

+ 1
λV,k

(ψV,k − vk)
1

g�
V(vk)VV(vk)

.

They are equal to the derivatives of the h-loglihood (2.7).
The derivatives of h̄ with respect to the regression parameters γ φ are

∂ h̄/∂γφ,k =
∑

i, j :i+ j≤t

{
− ni jφi j
p − 1

− ωi j
[
yi jθi j − bp(θi j )

]} 1
φ2
i j g

�
φ(φi j )

x
(φi j )

k . (A.1)

Note that the observations ni j of the payment numbers, that do not appear in the deriva-
tives of h̄ with respect to the fixed and random effects, intervene in (A.1). This additional
information is important for improving the estimates of the dispersion parameters φ related
to the standardized payments.

Following Smyth and Jørgensen (2002), if we properly define weights and responses, the
derivatives (A.1) can be seen, formally, as the log-likelihood derivatives of a GLM. In fact, if
we let

ωφ,i j = 2ωi jμ
2−p
i j

(2 − p)(p − 1)φi j

and

dφ,i j = − 2
ωφ,i j

(
ni jφi j
p − 1

+ ωi j
[
yi jθi j − bp(θi j )

]) + φi j

= − 2
ωφ,i j

(
ni jφi j
p − 1

+ ωi j

[
yi j

μ
1−p
i j

1 − p
− μ

2−p
i j

2 − p

])
+ φi j ,

we get

∂ h̄/∂γφ,k =
∑

i, j :i+ j≤t
x

(φi j )

k

ωφ,i j

2
(dφ,i j − φi j )

1

g�
φ(φi j )φ

2
i j

. (A.2)

If ωφ,i j and dφ,i j are given, the derivatives (A.2) have the same expression as the deriva-
tives of the log-likelihood of a GLM with gamma distributed responses, observations dφ,i j ,
covariates x(φi j ), weights ωφ,i j/2 and link function gφ .

The derivatives of h̄ with respect to γ λU
and γ λV

are given by

∂ h̄/∂γλU ,k =
t∑

i=0

x(λU,i )

k

1
2

(
dU,i − λU,i

) 1

g�
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2
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, (A.3)
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and, similarly to (A.2), they can be seen as the derivatives of the log-likelihoods of twoGLMs
with gamma distributed responses.

The parameter estimates are obtained by maximizing the function h̄. The solutions can
be found through an algorithm in which four interconnected GLMs are fitted iteratively,
according to the following steps.

Step 1 Given the dispersion parameters φ, λU, λV , the fixed and random effects δ =
(βT, wT)T can be estimated bymeans of an augmentedGLM. The IWLS equations
are in (2.9).

Step 2 Given δ, λU, λV , the parameters γ φ , and hence φ, can be estimated by the GLM
with score function in (A.2).

Step 3 Given δ, φ, the parameters γ λU
, γ λV

, and hence λU , λV , can be estimated by the two
GLMs with score functions in (A.3).

At convergence, we can compute the standard errors of (β̃
T
, (w̃−W)T)T by means of the

inverse I(δ̂)−1 of the Fisher information matrix of the augmented GLM in Step 1.

A.2 The derivatives of the adjusted profile loglihood pβ,w(h̄)
Given the fixed and random effects, the derivatives of the adjusted profile loglihood (3.2)

with respect to γ φ , γ λU
and γ λV

give the following score equations

∑
i, j :i+ j≤t

x
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2
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t∑
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V, j − λV, j

) 1
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2
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= 0, (A.6)

where d∗
φ,i j = dφ,i jωφ,i j/(ωφ,i j − qi j ), i + j ≤ t, d∗

U,i = dU,i/(1 − qU,i ), i = 0, . . . , t, d∗
V, j =

dV, j/(1 − qV, j ), j = 0, . . . , t and qi j , qU,i qV, j are the leverages, i.e. the diagonal elements of
the hat matrix,

Ŵ
1/2
a T(TTŴaT)−1TTŴ

1/2
a ,

of the augmented GLM.
Note that (A.4) gives, formally, the score equations of a GLM for the response variables,

say D∗
φ,i j , with observed values d∗

φ,i j = dφ,i jωφ,i j/(ωφ,i j −qi j ), gamma distributed, with means
and variances

E(D∗
φ,i j ) = φi j = g−1

φ (x(φi j )Tγ φ), var(D∗
φ,i j ) = 2

ωφ,i j − qi j
φ2
i j ,

where each (ωφ,i j−qi j )/2 can be seen as a knownweight, provided that it is positive; otherwise
it is set equal to zero.

A similar argument applies to the score equations (A.5) and (A.6).
In the fitting algorithm the Steps 2 and 3 above have to be adapted accordingly.
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APPENDIX B. SIMULATION STUDY

In order to empirically test the effect of the approximations in the evaluation of the condi-
tional MSEP in Section 4, we have applied the estimation procedure to simulated data.

We have used the data of the first example in Section 5 as reference data. For the stochastic
process

{U0, . . . ,U8,V0, . . . ,V10, (N00,Y00), . . . , (N8,10,Y8,10)},
we have assumed the distribution estimated in the example with expected values of the ran-
dom effects Ui and Vj the estimates ûi and v̂ j in Table 2.

From this process, we have generated 20,000 (9 × 11) run-off tables of simulated pairs
(n∗

i j , y
∗
i j ). The sum of the y∗

i j in the lower part of each table provides us with the simulated
portfolio outstanding claims. Their average amounts to 1,599,167: very close to the reserve
estimate in Table 3. Since our estimation algorithm applies only to positive incremental pay-
ments, we have kept only the tables with positive figures in the upper part, their number
is H = 15, 637. The corresponding simulated outstanding claims, Rsim = 1

H

∑H
h=1 Rsimh ,

where Rsimh is the sum of the simulated payments in the lower table in the hth replication,
amounts to 1,615,962.

Then, we have used the data in each upper table, (n∗
i j , y

∗
i j ), i + j ≤ 10, to estimate the

portfolio reserve and the conditional MSEP by using the estimators in Section 4 and the
estimation algorithm with ψUi = 1 and ψVj = r j in Table 1, as in Example 1.

In Table 10, we report Rsim and the average of the predicted reserves Rest= 1
H

∑H
h=1 R̂h ,

where R̂h is the reserve estimate in the hth replication. They are very close.
In the same table, RMSEPsim denotes the root of the MSEP estimated via simulation

i.e. the average RMSEPsim = ( 1
H

∑H
h=1(Rsimh − R̂h)2)1/2. The column RMSEPest is the root

of the average of the estimated MSEPs, RMSEPest = ( 1
H

∑H
h=1 M̂SEPh)1/2, where M̂SEPh

is the estimate of the conditional MSEP in the hth replication. The root mean square errors
relative to the respective reserves are 19.15%, for the simulated reserve, and 19.95%, for the
estimated reserve.

In order to quantify the performance of the MSEP estimator, we have also calculated the
following statistics (see Maiti et al., 2014):

• the empirical relative bias of the MSEP estimator,

RB = MSEPest − MSEPsim
MSEPsim

,

• the empirical relative root mean square error of the MSEP estimator,

RRMSEP =
(

1
H

∑H
h=1(M̂SEPh − MSEPsim)2

)1/2

MSEPsim
.

TABLE 10

RESULTS OF THE SIMULATION STUDY

Rsim Rest RMSEPsim RMSEPest RB RRMSEP

1,615,962 1,604,625 309,403 320,045 0.06997 0.62571
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TABLE 11

SUMMARY STATISTICS FOR THE STANDARDIZED DIFFERENCES.

Mean Std dev Skew Q1 Median Q3

0.07876 1.02354 0.78902 −0.63749 −0.03048 0.67027
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FIGURE 1: Standardized differences.

The relative bias, that quantifies the effect of the approximations in the estimator of the
MSEP, is moderate, about 7%. However, it has to be remarked that the dispersion of the
estimated errors measured by RRMSEP is quite high.

Finally, we have calculated the differences of simulated and estimated reserves, standard-
ized with respect to the estimated root MSEP,

Rsimh − R̂h

M̂SEP
1/2

h

.

The values are plotted in Figure 1 and some summary statistics are reported in Table 11.
We note that the points spread around zero, show positive skew and almost all of them fall
inside the interval [−3, +3]. However, a relatively small number of standardized differences
are particularly high.
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