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We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction 
of random fields based on observations of surrogate models or hierarchies of surrogate 
models. Our method builds upon recent work on recursive Bayesian techniques, in 
particular recursive co-kriging, and extends it to vector-valued fields and various types 
of covariances, including separable and non-separable ones. The framework we propose 
is general and can be used to perform uncertainty propagation and quantification in 
model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. 
We demonstrate the effectiveness of the proposed recursive GPR techniques through 
various examples. Specifically, we study the stochastic Burgers equation and the stochastic 
Oberbeck–Boussinesq equations describing natural convection within a square enclosure. 
In both cases we find that the standard deviation of the Gaussian predictors as well as the 
absolute errors relative to benchmark stochastic solutions are very small, suggesting that 
the proposed multi-fidelity GPR approaches can yield highly accurate results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

High-fidelity numerical simulations of complex stochastic dynamical systems require substantial computing time and 
data storage even in modern parallel architectures. This inherently limits the number of system states we can reliably sim-
ulate, thereby affecting accuracy when inferring statistical properties of any phase space function such as the performance 
of a certain engineering design. This basic observation has recently driven an explosive growth of fundamental and prac-
tical research at the interface of high-performance scientific computing, probability theory, and applied mathematics. One 
of the main features of such research is to replace expensive computational models with cheap surrogates or hierarchies 
of surrogates, and then come up with mathematical techniques leveraging on cross-correlations between the output of dif-
ferent surrogates to infer a quantity of interest. This yields a multi-fidelity approach computational modeling, which was first 
proposed by Kennedy and O’Hagan [19,20] in a Bayesian setting, and since then used in many different disciplines (see, e.g., 
[25,9]). For example, in [3] the authors presented a non-intrusive framework based on treed multi-output Gaussian pro-
cesses, in which the response statistics are obtained through sampling a properly trained surrogate model of the physical 
system. The tree is built in a sequential way and its refinement depends on the observations through a global measure of 
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the uncertainty in the prediction, the inferred length scales, as well as the input probability distribution. Gaussian process 
regression has also been studied in the context of hierarchical multi-scale modeling of materials. For example, in [22] an 
adaptive moving kriging interpolation method was proposed to reduce the number of model evaluations at the fine-scale 
and inform the coarse-scale model with essential constitutive information. A multi-fidelity approach for minimizing the 
number of evaluations of expensive high-fidelity models was also proposed in [23], where the statistics of the high-fidelity 
model are computed based on realizations of a corrected low-fidelity surrogate. The correction function can be additive, 
multiplicative, or a combination of the two and it may be updated occasionally by high fidelity model evaluations.

In this paper we propose a new multi-fidelity Gaussian process regression (GPR) approach for predicting finite-
dimensional random fields based on observations of surrogate models or hierarchies of surrogate models. The key idea 
relies on representing the map between the space of (random) Fourier or other spectral coefficients associated with any 
series expansion (relative to a spatial basis) and the physical space in which the random field develops. In this setting, 
the multi-fidelity inference problem for a random field reduces to an inference problem of a multivariate random vector of 
Fourier coefficients given data, i.e., vector samples produced by surrogate models at different levels of fidelity. To perform 
such inference, one can apply the recursive co-kriging technique recently developed by Le Gratiét et al. [15,13] (see also 
[25]) to each component of the vector of Fourier coefficients. From a Bayesian standpoint, this is equivalent to assuming 
independent priors for each model output, which may result in loss of information. To overcome this issue, we extend 
the recursive co-kriging technique to a multivariate setting (statistical models with vector outputs), to capture the cross-
correlation structure among different vector components. We consider both separable and non-separable priors and quantify 
the advantages and trade-offs of each approach. We remark that although the main focus of this paper is revolving around 
uncertainty propagation and quantification in model-based computations, the proposed framework can be readily applied 
to more general parametric studies such as multivariate inverse problems and multi-objective surrogate-based optimization.

The paper is organized as follows. In Section 2 we introduce the general framework along with some theoretical back-
ground. In Section 3 we give a brief overview of Gaussian process regression (GPR) methods for vector-valued random fields 
and introduce our multi-fidelity recursive GPR technique. In Section 4 we evaluate the accuracy of the proposed multi-
fidelity GPR approach by applying it to the stochastic Burgers equation and a stochastic thermal convection problem. Finally, 
in Section 5 we summarize our main findings.

2. Methodology

Consider a scalar random field u(x, ξ) depending on a set of coordinates (or design variables) x ∈ R
n , as well as on a set 

of random parameters ξ ∈ R
d . The field u could be, e.g., the solution to a partial differential equation in which the boundary 

conditions are set to be random and represented in terms of ξ . Suppose that u(x, ξ) is in a separable Hilbert space. This 
allows us to write the series expansion

u(x, ξ) ∼=
k∑

i=1

ai(ξ)Li(x), (1)

where Li(x) are basis functions depending on the coordinates (or design variables) x while ai(ξ) are functions of random 
variables ξ . If u(x, ξ) is the solution to a stochastic PDE model, then Li(x) are usually set a priori (spatial basis functions), 
while the functions ai(ξ) are determined by the PDE, e.g., by computing its solution at specific values of ξ through the 
probabilistic collocation method [1,8,4]. At this point we pose the following question: can we determine a model for the 
random vector field

a(ξ) = [a1(ξ) · · ·ak(ξ)] (2)

based on data collected at a specific nodes in the ξ -space? This question is obviously not new and researchers have been 
working on it for decades. For instance, one can use polynomial interpolation of each ai(ξ ) at Chebyshev sparse grids [2]. 
However, this implicitly assumes that ai(ξ) is a multivariate polynomial (which we do not know for sure), and also that we 
can predict the value of ai(ξ) at a non-observed location with probability 1, i.e., with no uncertainty. This is obviously not 
correct from a statistical standpoint. In a more robust setting, ai(ξ ) should be considered as a random field with known 
values at observed points. Following the classical literature [18,19,6,29,12], we shall assume that the distribution of the 
vector a(ξ), conditional to the realization {a1 = a(ξ1), ..., an = a(ξn)}, is Gaussian with mean m(ξ ) and (matrix-valued) 
covariance function C(ξ i, ξ j), i.e.,

a(ξ)|a1, ...,an ∼ GP
(
m(ξ), C(ξ i, ξ j)

)
. (3)

As we shall see in the subsequent sections, this setting allows us to build a multi-fidelity Gaussian process regression 
framework, in which observations of a(ξ) obtained from models with different levels of fidelity are combined in a seamless 
way to yield a highly accurate Gaussian predictor of a(ξ ).
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2.1. Calculation of statistical moments: measuring the uncertainty of uncertainty

In the traditional uncertainty quantification setting, ai(ξ ) are considered as deterministic functions of the random vari-
ables ξ , e.g., multivariate orthogonal polynomials selected from the Askey scheme [35,33,7,32], or generalized bi-orthogonal 
series expansion [5,30]. This allows us to evaluate the statistical moments of u(x, ξ) in terms of integrals with respect to 
the probability density function of ξ (assuming it exists), i.e.,

Eξ

[
u(x, ξ)n] =

∫
u(x, ξ )n p(ξ)dξ . (4)

A substitution of (1) into (4), yields the following expressions for the first and second moment

Eξ [u(x, ξ)] =
k∑

i=1

Li(x)

∫
ai(ξ)p(ξ)dξ , (5)

Eξ

[
u(x, ξ)2

]
=

k∑
i, j=1

Li(x)L j(x)

∫
ai(ξ)a j(ξ)p(ξ)dξ . (6)

Next, suppose that ai(ξ) are Gaussian random fields, with mean m and cross covariance C (see Eq. (3)). Under this assump-
tion, the first- and second-order moments (5)–(6) are no longer deterministic quantities, but they are rather random fields. 
In fact, the expectation Eξ [·] becomes a conditional expectation, i.e., Eξ |a[·] (integral with respect to ξ given a realization 
of the Gaussian random field a(ξ)). This yields a Gaussian distribution for the mean field (5) (infinite sum of Gaussian 
random variables), while the second-order moment has the distribution of an indefinite quadratic form in Gaussian random 
variables [26,28]. With such distributions we can measure the uncertainty of uncertainty, i.e., how accurate we can be when 
we compute the statistical properties of the random field u(x, ξ) given that we are using a stochastic (Gaussian) model 
for the functions ai(ξ), which depend on the random variables ξ . These observations can be generalized, and new ways of 
approximating integrals and derivatives of functions based on stochastic interpolants can be built (see, e.g., [16]). If we take 
the average of (1) relative to the conditional distribution (3), then we immediately obtain

Eξ |a [u(x, ξ)] =
k∑

i=1

mi(ξ)Li(x), (7)

Eξ |a
[

u(x, ξ)2
]

=
k∑

i, j=1

Cij(ξ , ξ)Li(x)L j(x), (8)

where Cij is the cross-covariance of the random fields ai(ξ) and a j(ξ). In the next section, we discuss different Gaus-
sian process regression (GPR) methods – including the proposed multivariate recursive co-kriging approach – to infer the 
conditional distribution (3) in a multi-fidelity setting.

3. Gaussian process regression (GPR)

In this section, we give a brief overview of Gaussian process regression methods (GPR) for scalar and vector-valued fields 
depending on an arbitrary number of variables. We also introduce our multi-fidelity recursive GPR method.

3.1. Kriging and recursive co-kriging for scalar fields

Consider a deterministic real-valued scalar field A(ξ) depending on k variables ξ = (ξ1, ..., ξk). We think of A(ξ) as a 
realization of a Gaussian random field a(ξ ) in the form

a(ξ ) = m(ξ) + y(ξ), (9)

where m(ξ) is a deterministic function, usually called trend function, representing the mean of a(ξ ), while y(ξ) is a zero-
mean Gaussian random field with covariance function

C(ξ , ξ ′; θ) = σ 2r(ξ , ξ ′; θ). (10)

Here σ 2 is a scale parameter – the process variance – and r is a symmetric and positive definite kernel depending on a set 
of hyperparameters θ . The function m(ξ ) in (9) can have different forms. In simple kriging we assume m(ξ ) = μ, where μ
is a known constant. A more popular choice is m(ξ) = β , where β is a regression parameter learned from data (ordinary 
kriging). More generally, we can model m(ξ) in terms of series expansions relative to known basis functions h j(ξ) (universal 
kriging) as [13]
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m(ξ) =
p∑

j=1

β jh j(ξ). (11)

The basis functions {h1(ξ), ..., hp(ξ)} are often chosen to be polynomials,1 while the expansion coefficients β = [β1 · · ·βp]T

depend on data and they are usually learned though maximum likelihood estimates. Now, suppose we have available obser-
vations of A(ξ ) at n distinct nodes (ξ1, ..., ξn), i.e., observations of the random field (9) at ξ i (i = 1, ..., n). It is well-known 
that the (conditional) posterior distribution of a(ξ ) given data A = [A(ξ1) · · · A(ξn)]T and the regression parameters θ , β
and σ 2 is Gaussian with mean

ma(ξ) = h(ξ)β + rT (ξ)R−1 (A − Hβ) , (12)

and variance

s2
a(ξ) = σ 2

[
1 − rT (ξ)R−1r(ξ) + q(ξ)

(
H T R−1 H

)−1
q(ξ)T

]
. (13)

In equations (12) and (13) we defined h(ξ) = [h1(ξ) · · ·hp(ξ)],

q(ξ) = h(ξ) − rT (ξ)R−1 H , (14)

and

r(ξ) =
⎡
⎢⎣

r(ξ , ξ1; θ)
...

r(ξ , ξn; θ)

⎤
⎥⎦ , R =

⎡
⎢⎣

r(ξ1)
T

...

r(ξn)
T

⎤
⎥⎦ H =

⎡
⎢⎣

h(ξ1)
...

h(ξn)

⎤
⎥⎦ (15)

All parameters θ , β and σ 2 are learned from data by classical maximum likelihood estimation. We remark that equations 
(12)–(13) hold for the universal kriging model, i.e., when m(ξ ) is given in (11). Similar equations can be obtained for the 
simple kriging by simply integrating out β from the conditional posterior of the universal kriging.

3.1.1. Multi-fidelity recursive co-kriging for scalar fields
Co-kriging was originally proposed for enhancing the accuracy of a high-fidelity surrogate using supplementary observa-

tions of low-fidelity models. In essence, it aims at exploiting the cross-correlation between two or more Gaussian process 
surrogates through a stochastic auto-regressive scheme, and it yields a predictive posterior distribution for the high-fidelity 
model output that encodes the contribution of lower fidelity levels with quantified uncertainty. Co-kriging was first pro-
posed by Kennedy and O’Hagan in the landmark paper [19], and since then it has been used in many different applications, 
such as surrogate-based optimization [9]. Unfortunately, the algorithm described in [19] has an unfavorable cubic scaling 
with the number of observed data and the number of surrogate models. To overcome this issue, Le Gratiét et al. [15,13]
recently proposed a recursive version of the co-kriging algorithm, which allows us to break up the computation of posterior 
distribution into a sequence of distinct inferences of smaller dimensions. The advantage of this approach is clear: the inver-
sion of the small covariance matrices associated with the sequence of inferences is less expensive and better conditioned 
than the inversion of the large covariance matrix associated with the full inference problem.

To describe the recursive co-kriging approach, suppose we have available multiple models, say s-models, providing an 
estimate of the real-valued scalar field

A : Rd →R

ξ → A(ξ)

We denote by A(1)(ξ ), ..., A(s)(ξ) the output of such models, ranked in terms of increasing fidelity,2 A(1)(ξ) being the model 
with lowest level of fidelity. Usually, the computational cost of a model is proportional to its fidelity, i.e., the higher the 
fidelity the higher the computational cost. This means that we cannot usually afford sampling A(s)(ξ ) extensively. On the 
other hand, we can usually afford many samples of A(1)(ξ ), but such samples will not be accurate. The recursive co-kriging 
technique proposed in [14,13] aims at constructing an accurate estimate of A(ξ) by leveraging on data from all models 
A( j)(ξ) ( j = 1, ..., s), in a computationally efficient way. The key idea is to represent each model output in terms of a Gaussian 
random field a( j)(ξ) and then make the hypothesis that such fields are related to each other by the autoregressive model

a( j)(ξ) = ρ( j−1)(ξ)ã( j−1)(ξ) + z( j)(ξ), j = 2, .., s (16)

1 For example, a linear basis in one dimension is h(ξ) = [1, ξ ].
2 Assessing the level of fidelity of mathematical model in the absence of prior information or data is a challenging problem.
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where ã( j−1)(ξ) and z( j)(ξ) are appropriate Gaussian random fields, while ρ( j−1)(ξ) are deterministic scaling fields (see 
[15,14,13] for further details). It can be shown that the posterior distribution of a( j)(ξ), conditional on the observations and 
parameters of all lower-fidelity models, is Gaussian with mean and variance given by

m( j)(ξ) = ρ( j−1)(ξ)m( j−1)(ξ) + Z ( j)(ξ), (17)

s( j)(ξ)2 = ρ( j−1)(ξ)2s( j−1)(ξ)2 + W ( j)(ξ), (18)

where Z ( j)(ξ) and W ( j)(ξ ) are functions that can be explicitly computed based on univariate GPR results at fidelity levels j
and j −1 (see [15,14,13] for further details). Note that the mean (17) and the variance (18) satisfy a Markov property, which 
in turn allows us to break up the co-kriging problem as formulated in [19] into a sequence of univariate GPR (single-level 
kriging). This is very convenient from a computational viewpoint. In [13], a fully Bayesian formulation of recursive co-kriging 
which incorporates prior information in the maximum likelihood estimation of the model hyperparameters is given. This 
allows us to speed up the estimation process by leveraging on analytical expressions.

3.2. Multi-fidelity recursive co-kriging for vector-valued fields

In this section, we generalize the recursive co-kriging approach discussed in the previous section to systems with multi-
ple (vector) outputs. To this end, consider the real-valued vector field

A : Rd →R
k,

ξ → A(ξ).

Suppose we have available s different models of A, i.e., A(1)(ξ ), ..., A(s)(ξ), ranked in terms of increasing fidelity, with 
A(1)(ξ ) being the model with lowest fidelity. As before, we assume that the computational cost of a model is proportional 
to its fidelity, i.e., the higher the fidelity the higher the computational cost. We represent the output of each model in terms 
of a vector-valued Gaussian random field a( j)(ξ ) and make the hypothesis that such fields are related to each other by the 
autoregressive model

a( j)(ξ) = ρ( j−1)(ξ) ◦ ã( j−1)
(ξ) + z( j)(ξ), j = 2, .., s (19)

where ◦ denotes the componentwise product between two vectors or matrices, i.e., the Hadamard product,

ρ( j−1)(ξ) =
(

Ik ⊗ gT
j−1(ξ)

)
α j−1 (20)

is a deterministic scaling vector field represented in terms of known basis functions g j−1(ξ ) = [g j−1,1(ξ) · · · g j−1,p(ξ)]
(⊗ the tensor product operator, Ik is the k × k identity matrix and α j−1 are regression coefficients). Also, we assume that

z( j)(ξ) ∼ GP
((

Ik ⊗ f T
j (ξ)

)
β j, C ( j)(ξ , ξ ′)

)
, (21)

a(1)(ξ) ∼ z(1)(ξ), (22)

and that ã( j−1)
(ξ) has the conditional distribution

ã( j−1)
(ξ) ∼ a( j−1)(ξ)

∣∣∣ z( j−1)(D j−1) = A( j−1)(D j−1), β j−1, α j−2, C j−1(ξ , ξ ′; θ j−1). (23)

In these equations, f j(ξ) = [ f j,1(ξ) · · · f j,q(ξ)] is a vector of known basis functions whose linear combination represents 
the mean of z( j) , C j is the covariance of z( j) and D j−1 is a set of nodes {ξn} in which we evaluate the output of the model 
A( j−1)(ξ). We assume that such sets are nested, i.e.,

Ds ⊆ Ds−1 · · · ⊆ D1. (24)

The hypothesis (23) allows us to break up the full multi-fidelity GPR regression for random vector fields into a sequence 
of independent GPRs at each level of fidelity. The posterior distribution of a( j)(ξ), conditional to data at level j and model 
parameters is Gaussian, i.e.,

a( j)(ξ)

∣∣∣ z( j)(D j) = A( j)(D j), β j, α j−1, C j(ξ , ξ ′; θ j) ∼ GP
(

m( j)(ξ), C ( j)(ξ , ξ ′)
)

. (25)

The mean and variance have expressions

m( j)(ξ) = ρ( j−1)(ξ) ◦ m( j−1)(ξ) + M ( j)(ξ), (26)

C ( j)(ξ , ξ ′) = ρ( j−1)(ξ)2 ◦ C ( j−1)(ξ , ξ ′) + V ( j)(ξ , ξ ′). (27)

Note that the mean and the variance of the predictive distribution have a Markovian structure, which allows us to perform 
GPR across different levels of fidelity independently. Regarding M ( j)(ξ) and V ( j)(ξ , ξ ′), a lengthy calculation shows that,
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M ( j)(ξ) = f̂
T
j (ξ)β j + cT

j (ξ)Ĉ
−1
j

[
A( j)(D j) − P j−1 ◦ A( j−1)(D j) − f T

j (D j)β j

]
, (28)

V ( j)(ξ , ξ ′) = C j(ξ , ξ ′; θ j) − cT
j (ξ)Ĉ jc j(ξ

′), (29)

where

f̂ j(ξ) = Ik ⊗ f j(x), c j(ξ) = C j(ξ , D j; θ j), Ĉ j = C j(D j, D j; θ j), (30)

and

P j = (
Ik ⊗ g j(D j)

)T
α j . (31)

We remark that equation (29) holds for simple kriging. We have also obtained the analytical expression of V ( j)(ξ , ξ ′) corre-
sponding to universal kriging (not shown here). So far, we have made no assumption on the covariance model C j(ξ , ξ ′; θ j)

we use for GPR at each level of fidelity. In the next subsection we discuss two important cases.

3.2.1. Separable covariance function
Suppose that covariance model C j(ξ , ξ ′) is separable, in the sense that

C j(ξ , ξ ′; θ j) = r j(ξ , ξ ′; θ j)� j, (32)

where r j is a correlation function and � j is a matrix with fixed entries. The assumption (32) implies that there is only one 
spatial correlation function representing the cross covariance between all components of the model a( j)(ξ). The separable 
covariance has a conjugate prior for � j , which allows us to integrate out � j analytically from the posterior (25). This yields 
a multivariate Student-t conditional posterior [11,24] with mean and variance that can be computed analytically.

3.2.2. Non-separable covariance function
Unlike the separable case, a non-separable covariance function can have a different spatial correlation function for each 

component of the model output. In particular, we consider here the linear model of coregionalization (LMC), where

C j(ξ , ξ ′; θ j) = B
[
diag

(
r1(ξ , ξ ′; θ1), ..., rk(ξ , ξ ′; θk)

)]
BT . (33)

As is well known [21], depending on the matrix B we can have different models of coregionalization. For example, if the 
choose B to be diagonal (with positive entries), then the LMC is called independent; on the other hand, if we assume that B
is symmetric and positive definite then the LMC is called dependent. In the latter case we can use the spectral decomposition 
of B BT to represent B efficiently. In both cases, the coefficients of the matrix B become additional parameters that have to 
be estimated when performing GPR at each level of fidelity.

4. Numerical results

In this Section we provide numerical results and study the accuracy of the multi-fidelity GPR approach we presented in 
this paper. To this end, we first study a simple pedagogical example, i.e., a real function in [0, 2π ] depending on one random 
parameter ξ . This allows us to validate our methods and assess their accuracy and computational efficiency. Subsequently, 
we apply our multi-fidelity GPR approach to the stochastic Burgers equation in 1D and to a stochastic thermal convection 
problem in 2D.

4.1. A pedagogical example

Consider a real function u(x, ξ), periodic in x ∈ [0, 2π ], and depending on one random parameter ξ , which we assume 
to be uniformly distributed in [−1, 1]. Such function can be approximated by the Fourier series

u(x, ξ) =
k∑

i=1

ai(ξ)Li(x), (34)

where Li(x) are trigonometric polynomials (odd expansion) ([17], p. 29). The number of modes k here defines the “fidelity” 
of the model, i.e., higher k corresponds to higher fidelity. Our goal is to predict u(x, ξ) based on samples in the ξ -space ob-
tained from series expansions with different number of modes, i.e., different fidelity. In particular, we consider the following 
prototype low-fidelity model

uL(x, ξ) =
kL∑

i=1

a(L)
i (ξ)Li(x), (low-fidelity model) (35)

where kL = 5 and
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Fig. 1. Prototype high-fidelity (left) and low-fidelity (right) models defined in equations (36) and (35), respectively.

a(L)
1 = cos (1.5ξ) , a(L)

2 = −ξ2, a(L)
3 =

(
0.5ξ2 + 1

)−1
, a(L)

4 = e−ξ , a(L)
5 = ξ2 − ξ.

On the other hand, the high-fidelity model is defined as

uH (x, ξ) =
kH∑
i=1

a(H)
i (ξ)Li(x), (high-fidelity model) (36)

where kH = 9 and

a(H)
j =

kL∑
i=1

a(L)
i (ξ)Li(x j) − 0.5ξx j + 0.2 j = 1, . . . ,kH . (37)

Note that the coefficients a(H)
j are defined in terms of a(L)

j . This makes the low-fidelity and high-fidelity models (35)–(36)
correlated in both x and ξ . In Fig. 1 we plot uL(x, ξ) and uH (x, ξ) versus x and ξ . To determine the accuracy of the proposed 
multi-fidelity GPR3 methods, we have computed the absolute error of both the predicted coefficients a j(ξ) and the predicted 
random function u(x, ξ) relative to a(H)

j (ξ) and uH (x, ξ), respectively. In particular, we have used the root-mean-square 
errors (RMSE) defined as

RM S E(a j) =

√√√√√ 1

Np

N p∑
p=1

(
a(s)

j (ξp) − a(H)
j (ξp)

)2
j = 1, . . . ,kH , (38)

and

RM S E(u) =

√√√√√ 1

Np Nq

N p∑
p=1

Nq∑
q=1

(
us(xq, ξp) − uH (xq, ξp)

)2
. (39)

In the last two equations, {xq}q=1,...,Nq and {ξp}p=1,...,N p are evenly spaced nodes in [0, 2π ] and [−1, 1], respectively, while 
Np = Nq = 51. a(s)

j indicates the surrogate of the j-th coefficient a(H)
j and us the surrogate of high-level function uH . Next, 

we compare the performance of different GPR approaches in reconstructing the high-fidelity model uH based on samples of 
uL and uH . Specifically, we consider

1. Univariate co-kriging (Section 3.1);
2. Multivariate co-kriging with separable or non-separable covariance function (Section 3.2).

In each approach we studied the effects of different covariance models, i.e., Gaussian, 5/2-Matérn and Wendland [27,34], 
as well as the effects of different orders in the regressors of the trend function (see Section 3.1). Such effects are shown 
in Fig. 2 and Fig. 3 in the case of univariate kriging and co-kriging, respectively. It is seen that a high-order regressor of 
the trend function yield better accuracy, i.e., predictors with smaller standard deviation (see Fig. 2). Regarding the choice 
of the covariance model, our numerical results suggest that the Gauss and the Wendland models yield the most accurate 

3 In this example we have only two levels of fidelity defined by the models uL and uH .
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Fig. 2. Effect of the trend function in the univariate kriging model. We plot the mean and the standard deviation of the Gaussian predictor of a3(ξ)

obtained with 4 evenly-spaced samples, 5/2-Matérn covariance and different polynomial order in the trend function (11): zero-order universal kriging 
(left), second-order universal kriging (right).

Fig. 3. Convergence of the univariate co-kriging model with respect to the number of low-fidelity samples for different covariance kernels. We plot Root-
mean-square errors (38) of the coefficient a3(ξ) versus the number of low-fidelity samples (NL ). We show results obtained by using a different number of 
high-fidelity samples (NH ) and different covariance kernels: Gaussian, 5/2-Matérn and Wendland.

Fig. 4. Multivariate recursive co-kriging with non-separable covariance. Shown are results for the coefficient a1(ξ) obtained with NH = 5 high-fidelity 
samples and a different number of low-fidelity samples. It is seen that as we increase NL the co-kriging predictor becomes more and more accurate (the 
standard deviation of the high-fidelity predictor decreases).

predictions, but in terms of computational time 5/2-Matérn is more efficient. Also, the 5/2-Matérn and Wendland covariance 
models are better conditioned than the Gaussian models. As is well known, the accuracy of GPR depends on the functions 
we aim to predict as well as on the location of the sample points. Therefore, the conclusions we have just drawn about 
accuracy and efficiency may not be extended to other cases.

Next, we compare the accuracy of different GPR models in reconstructing the high-fidelity model uH based on samples 
of uL and uH . We assume a 5/2-Matérn covariance and an order 2 for the regressors of the trend functions. A typical plot 
we obtained when inferring the modes a(H)

i (ξ) from multi-fidelity data is shown in Fig. 4. We see that for a fixed value of 
high-fidelity samples, the multi-variate recursive GPR with non-separable covariance converges to the high-fidelity model as 
we increase the number of low-fidelity runs. In Fig. 5 we compare the accuracy of the proposed GPR approaches. It is seen 
that univariate co-kriging and multivariate co-kriging with non-separable covariance functions yield similar convergence 
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Fig. 5. Accuracy of different GPR approaches in reconstructing the high-fidelity model uH based on samples of uL and uH . Shown are RMSEs (39) versus 
the number of low fidelity samples NL . Each curve corresponds to a different number of high-fidelity samples.

rates. The multivariate co-kriging with separable covariance function in this case yields a plateau in the error slopes. This 
is due to the fact that the coefficients ai(ξ) have different correlation lengths, which cannot be effectively captured by 
a single correlation function (see Section 3.2.1). Regarding the computational time, univariate GPR is usually faster than 
multivariate GPR with non-separable covariances. The main bottleneck of the multivariate GPR is the optimization of the 
likelihood function, which depends on the model parameters of all functions ai(ξ). On the other hand, multivariate GPR 
with separable covariance function can be very efficient in situations where there is a strong statistical correlation between 
different ai(ξ), i.e., when all modes ai(ξ) can be modeled by a single correlation function at each fidelity level.

4.2. Stochastic Burgers equation

Consider the following initial/boundary value problem for the Burgers equation
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
= 1

2

∂2u

∂x2
+ f (x, t) x ∈ [0,2π ] t ≥ 0

Periodic B.C.

u(x,0, ξ ) = u0(x; ξ)

(40)

where u0(x, ξ) is a random initial condition depending on two uniformly distributed random variables (ξ1, ξ2) (uniform in 
[−√

3, 
√

3])
u0(x, ξ ) = 1 + ξ1(ω) sin(x) + ξ2(ω) cos(x) (41)

and f (x, t) is a deterministic forcing term defined as

f (x, t) = 8 sin(10x) sin(5t) + 8 cos(7x)e− sin(t). (42)
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Fig. 6. Stochastic Burgers equation: Sample locations in (ξ1, ξ2)-space for each level of fidelity superimposed to the contour plots of the field a35(1, ξ1, ξ2)

(see Eq. (43)).

Fig. 7. Stochastic Burgers equation: Univariate recursive co-kriging. Predictor mean and standard deviation of the coefficient a35 at time t = 1. To determine 
the recursive co-kriging model, we computed 11 high-fidelity, 29 medium-fidelity and 64 low-fidelity solution samples of (40)–(42). The sample locations 
in the (ξ1, ξ2)-space are shown in Fig. 6.

We would like to use multi-fidelity GPR to infer the statistics of the random field u(x, t, ξ ) at time t = 1. To this end, we 
represent u in terms of the Fourier series

u(x, t, ξ1, ξ2) =
N/2∑

q=−N/2

aq(t, ξ1, ξ2)eiqx (43)

and run stochastic simulations of (40) by using the probabilistic collocation method with a different number of spatial 
modes N , i.e., a different resolution in space. Specifically, we considered N = 15 (low-fidelity), N = 20 (medium-fidelity) 
and N = 60 (high-fidelity). We study the accuracy and the computational cost of multi-fidelity GPR in modeling the solution 
to (40)–(42) at t = 1. In particular, we consider the univariate recursive co-kriging approach,4 in which we determine (in 
a multi-fidelity setting) each function aq(1, ξ1, ξ2) (q = −N/2, ..., N/2) appearing in (43) independently of the others. We 
remark that in principle one can derive the analytical solution to the initial/boundary value problem (40) and determine 
aq(ξ1, ξ2, t). In this study, however, we rely on the accurate numerical stochastic solution we obtained on a tensor product 
Gauss–Legendre Lobatto grid of 40 × 40 points in (ξ1, ξ2) (see also [25]).

To determine the recursive co-kriging model of each aq(1, ξ1, ξ2), we computed 11 high-fidelity (N = 60), 29 medium 
fidelity (N = 20) and 64 low fidelity (N = 15) solution samples of equation (40). In Fig. 6 we show the sample locations 
for each level of fidelity superimposed to the contour plots of the field a35(1, ξ1, ξ2) we obtained from high-fidelity runs. In 
Fig. 7 we plot the mean and standard deviation of the Gaussian random field representing the coefficient a35(1, ξ1, ξ2) we 
obtained form the recursive co-kriging approach. It is seen that univariate GPR yields a predictor with good approximation 
properties, with relatively small standard deviation. Similar results are obtained for other coefficients aq(1, ξ1, ξ2). In Fig. 8
we plot the mean and standard deviation of the velocity field u(x, t, ξ1, ξ2) at t = 1 we obtained from GPR modeling.

4.3. Stochastic Rayleigh–Bénard convection

In this section we study stochastic Rayleigh–Bénard convection of a Newtonian incompressible fluid within two-
dimensional square enclosures. In particular we consider steady state solutions corresponding to a random (uniformly

4 In this case multivariate recursive co-kriging is not practical. In fact, if we set N = 60 (high-fidelity simulation), we obtain a set of 121 functions 
aq(1, ξ1, ξ2), which yields a multivariate covariance model represented by a matrix 7381 times bigger than the univariate case (if we sample each aq at the 
same set of nodes).
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Fig. 8. Stochastic Burgers equation: Univariate recursive co-kriging. Shown are the predictor mean, the predictor standard deviation and the absolute error 
of the predictor mean relative to the exact solution to (40)–(42) at t = 1 and for two different sections: x = 0 (first row), x = π (second row). To determine 
the recursive co-kriging model, we computed 11 high-fidelity, 29 medium-fidelity and 64 low-fidelity solution samples of (40)–(42). The sample locations 
in the (ξ1, ξ2)-space are shown in Fig. 6.

Fig. 9. (a) Schematic of dimensionless geometry and temperature boundary conditions. The sidewalls of the cavity are assumed to be adiabatic while 
the horizontal walls are kept at constant temperature. The velocity boundary conditions are of no-slip type, i.e. ∂ψ/∂x = 0 and ∂ψ/∂ y = 0 at the walls. 
(b) Spectral element mesh we used for the local modeling of the temperature field.

distributed) Rayleigh number [31]. Such solutions are governed by the Oberbeck–Boussinesq equations

∂ψ

∂ y

∂
(∇2ψ

)
∂x

+ ∂ψ

∂x

∂
(∇2ψ

)
∂ y

= −Pr∇4ψ + Ra(ω)Pr
∂T

∂x
, (44)

∂ψ

∂ y

∂T

∂x
− ∂ψ

∂x

∂T

∂ y
= ∇2T , (45)

where ψ denotes the dimensionless stream function, T the dimensionless temperature field, while Ra and Pr are the 
Rayleigh and the Prandtl numbers, respectively. A sketch of the geometry together with the boundary conditions associated 
with the system (44)–(45) is shown in Fig. 9. We represent the temperature and velocity fields in terms of series expansions 
relative to globally defined eigenfunctions ψn (x, y) and 
m (x, y) as (see [31])

ψ (x, y) =
Nv∑

An (Ra)ψn (x, y) , T (x, y) =
NT∑

Bm (Ra)
m (x, y) . (46)

n=1 m=1
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Fig. 10. Stochastic Rayleigh–Bénard convection. Steady-state temperature field corresponding to one-roll convection patterns within a wide range of Rayleigh 
numbers, i.e., between 2.6 × 103 and 105. Shown are simulations results with different resolutions in physical space.

Fig. 11. Stochastic Rayleigh–Bénard convection. GP representation of the coefficient a(loc)
12 (Ra) in the expansion of the local temperature field (47) within 

the spectral element 25 shown in Fig. 9. We plot the predictor means (lines) and standard deviations (bands) obtained with univariate recursive co-kriging 
and multivariate recursive co-kriging with non-separable covariance model.

Our goal is to represent the steady-state temperature field corresponding to the one-roll flow pattern by using GPR within 
a wide range of Rayleigh numbers, i.e., between 2.6 × 103 and 105. To this end, we performed variable fidelity simulations 
of the system (44)–(45) both in physical space (i.e., by varying Nv and NT in (46)) as well as in probability space, (i.e., 
by sampling Ra at a different number of collocation points). In particular, we considered three levels of fidelity in physical 
space: the low-fidelity solution is obtained by setting Nv = NT = 20 in (46), the medium fidelity solution is obtained with 
Nv = NT = 50 and the high-fidelity solution is obtained with order Nv = NT = 100 (see Fig. 10).

To model the temperature field within the GPR framework we first decompose the spatial domain [0, 1]2 into 49 square 
spectral elements of equal size. In each element we approximate the temperature field by using a fourth-order Legendre 
polynomial expansion. This yields NTl = 25 local degrees of freedom, i.e. 25 functions of the Rayleigh number representing 
the local temperature as

Tloc(x, y) =
NTl∑
j=1

a(loc)
j (Ra)φ j(x, y), (47)

where φi(x, y) are polynomial basis functions (tensor product of Legendre polynomials).
To perform GPR in multi-fidelity setting we sampled the solution of (44)–(45) at different Rayleigh numbers within the 

range [2.6 × 103, 105]. In particular, we computed 5 equally-spaced samples of the high-fidelity model (Nv = NT = 100), 
9 equally-spaced samples of medium-fidelity model (Nv = NT = 50) and 17 equally-spaced samples of the low-fidelity 
model. In Fig. 11 we plot one coefficient in the expansion of the local temperature field (47), i.e., a(loc)

12 (Ra) in the spectral 
element 25 (see Fig. 9), versus the Rayleigh number. Other coefficients have similar trend. We also compare such exact 
results with GPR models obtained by using univariate recursive co-kriging and multivariate recursive co-kriging with non-
separable (independent coregionalization) covariance. It is seen that both these GPR approaches yield relatively accurate 
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Fig. 12. Stochastic Rayleigh–Bénard convection. Mean and standard deviation of the Gaussian process representing the temperature field as a function of 
the Rayleigh number. Shown are results obtained with univariate recursive co-kriging and multivariate recursive co-kriging with non-separable covariance.

results. By taking the linear combination of all GPs representing the coefficients a(loc)
j (Ra) we can represent the local tem-

perature field (47) as well as the global one in terms of GPs. This is done in Fig. 12 for GPR models obtained by using 
univariate recursive co-kriging and multivariate recursive co-kriging with non-separable covariance functions. It is seen that 
in both cases the maximum standard deviation of the predictor is within 3% of the maximum mean temperature while the 
absolute errors relative to the high-fidelity benchmark solution are smaller than 1.5e-1 (univariate co-kriging) and 8.6e-2 
(multivariate co-kriging with non-separable covariance), respectively. The absolute errors here are computed by taking the 
absolute value of difference between the high fidelity solution and the mean temperature field obtained from GPR. The 
standard deviation of univariate co-kriging predictor, however, is very small compared with the absolute error, especially 
for Ra 
 5600. On the other hand, the multivariate predictor produces uncertainty estimates which are in much better 
agreement with the absolute error.

5. Summary

In this paper we proposed a new multivariate recursive co-kriging approach for prediction of random fields. Our method 
builds upon recent work on recursive co-kriging [12] and extends it to vector valued functions and various types of covari-
ances, including separable and non-separable covariances. The framework we proposed is general and it can be employed to 
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perform multi-fidelity data fusion, i.e., prediction of vector-valued fields based on variable-fidelity models. We applied the 
proposed multivariate recursive GPR approach to the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq 
equations. In both cases the predictor mean and standard deviation as well as the absolute error relative to the benchmark 
stochastic solution are very small, suggesting that the proposed methods can yield highly accurate results. Regarding the 
computational cost, the multivariate GPR approach with non-separable covariance functions is more expensive than the uni-
variate GPR approach applied to each component of the vector output. The main reason is that in the multivariate approach 
we model all cross-correlations between different vector components, which yields a large matrix of cross-covariances that 
needs to be trained on data. There is no consensus on whether multivariate GPR can achieve better accuracy than univariate 
GPR applied independently to each component of the vector output (see, e.g., [21]). The numerical results presented in this 
paper indeed show that they have comparable accuracy. On the other hand, if the components of the vector output are 
highly correlated then the multivariate GPR approach with separable covariance function can outperform univariate GPR as 
well as multivariate GPR with non-separable covariances (see [10]), both in terms of accuracy and computational cost. The 
main reason is that in the separable approach the same covariance model is applied to all components of the vector output, 
yielding significant computational savings when learning the model parameters from data (it has the same cost of a single 
univariate GPR). This approach, however, is accurate only if the components of the vector output are highly correlated.
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