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der Waals loop at lower temperatures. The HNC and RY equations lead to the same

phase transition scenario, with quantitative differences in the predicted temperatures

Tc and To.
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I. INTRODUCTION

When a liquid is quenched below its freezing point, it undergoes a number of successive

transformations associated with a gradual loss of ergodicity and a concomitant dramatic

slowing down of the microscopic dynamics. Below a so-called “kinetic glass-transition” at a

temperature Td, ergodicity is broken within a mode-coupling approximation, but eventually

restored via activated jump processes1. The local dynamics tends to become heterogeneous,

characterized by mesoscopic, dynamically active regions coexisting with quiescent regions

over increasingly long periods of time2,3. Upon further cooling (or compression), the Maxwell

relaxation time increases dramatically and eventually becomes comparable to experimental

time scales (say 103 s). At this point the system falls out of equilibrium on such time

scales, and thermodynamic properties (like the molar volume or the enthalpy under constant

pressure conditions) experience an abrupt change of slope at a cooling-rate dependent “glass-

transition” temperature Tg
4. The underlying free energy landscape is characterized by an

exponentially (with system size) large number of local minima, separated by high barriers5.

The supercooled liquid remains trapped in one of these metastable states for increasingly

long periods of time and the broken ergodicity entails characteristic glassy behavior, i.e.

the supercooled system behaves like a disordered (amorphous) solid. Mean-field spin-glass-

inspired theories point to the existence of an “ideal” glass transition (or “random first-order

transition”, RFOT) at a Kauzmann temperature TK
6 where the configurational entropy

of the infinitely slowly cooled system vanishes7. In view of the infinite equilibration time

required to reach the ideal glass state, the transition is not directly observable experimentally,

and even less by computer simulations.

More recently, it has been suggested that the RFOT might be preceded by a “precur-

sor transition” occurring at higher temperatures, signaling the coexistence of two phases

corresponding to low and high values of the mean overlap Q between configurations of a

supercooled system and a frozen configuration of the same system8–10. The low Q phase is

associated with the supercooled liquid, whose atoms are still capable of exploring parts of

the configuration space far removed from the frozen reference configuration, while the high

Q phase corresponds to a glass phase where the atoms remain localized close to atoms of the

frozen reference configuration, which acts like a disordered external field. Such a situation

is reminiscent of that of a fluid trapped in a porous medium11, and will be referred to as
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the “quenched case”. An alternative situation, which is more readily accessible to computer

simulations and integral equation theories, is that of two weakly coupled identical replicas

of the system. Atoms of opposite replicas attract each other via a short-ranged pair inter-

action, thus forming long-lived pairs (“molecules”) at sufficiently low temperatures, such

that the configurational overlap of the two replicas is large, as in a glass; this situation is

referred to as the “annealed case”12,13. In both quenched and annealed cases, the “precursor

transition” terminates at a critical temperature Tc, but the criticality is characterized by

different critical exponents which coincide with their Ising values only in the “annealed”

case according to a finite-size scaling analysis12,13.

In the present paper we extend our earlier integral equation work on the ideal glass

transition to investigate the “precursor transition” in the annealed case. Our earlier work

was based on a “pedestrian” model of two weakly-coupled replicas of a system of “soft

spheres”14,15 or of Lennard-Jones16 atoms. The pair structure, configurational overlap and

the free energy of this binary “mixture” were calculated from careful numerical solutions of

the hypernetted-chain (HNC) integral equation17 and of thermodynamically self-consistent

integral equations18,19 over a wide range of thermodynamic conditions and inter-replica cou-

plings ε12. Taking the ε12 → 0 limit, these calculations pointed to the existence of a su-

percooled liquid (L) phase, an “ideal” glass phase G2, and of a previously undetected glass

branch of solutions G1 of higher free energy over a range of temperatures. A first order phase

transition between L and G2 phases was found to occur at a density-dependent temperature

To(ρ), as determined by the intersection of the free energies of the two phases. The tran-

sition is characterized by a discontinuous jump of the order parameter Q (as in the related

work by Mézard and Parisi20), but also by a weak discontinuity (about 1%) of the molar

volume v = 1/ρ. To was found to be comparable to independent, approximate estimates of

the Kauzmann temperature TK
14.

In the following Sections we focus on the widely used “soft sphere” model. Exploiting our

earlier free-energy data, we construct the effective (or Landau) potential W (Q) as a function

of the overlap order parameter Q, and the thermodynamic variables ρ and T via a Legendre

transformation to switch from the variables (ρ, T, ε12) to the variables (ρ, T,Q)8–10,12,13.

The effective potential W (Q), as well as the static susceptibility χ(Q) (proportional to

the mean square fluctuation of Q) will then allow us to map out the coexistence curve and

the critical point of the “precursor transition”.
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II. THE TWO-REPLICAS MODEL

We consider a binary mixture of two weakly coupled replicas (labeled 1 and 2) of a

“soft sphere” fluid, i.e. of a system of N atoms in a volume V (number density ρ = N/V )

interacting via the purely repulsive pair potential:

v11(r) = v22(r) = v(r) = ε
(σ

r

)12

=
ε

x12
(1)

where ε and σ determine the energy and length scales, and x = r/σ. The reduced dimen-

sionless temperature and density are defined as T ∗ = kBT/ε and ρ∗ = ρσ3 = 1/v∗ (v being

the volume per particle in each replica). The reduced, excess thermodynamic properties

depend on a single dimensionless variable Γ = ρ∗/(T ∗)
1

4 . Atoms of opposite replicas interact

via the short-ranged, attractive pair potential:

v12(x) = −ε12w(x) (2)

For w(x) we have adopted the simple form20

w(x) =

[

c2

x2 + c2

]6

; (3)

the dimensionless range parameter c is chosen such that the range of the attraction is

significantly shorter than σ, to ensure that one atom of replica 1 can interact with at most

one atom of replica 2 due to the strong repulsion (1) between atoms of the same replica; in

practice c < 1. Denoting a configuration of replica α by R
α = (xα

1
, . . . ,xα

N
); α = 1, 2, the

total potential energy of the two-replicas system reads:

VN,N(R
1,R2) = VN(R

1) + VN(R
2)− ε12ΦN,N(R

1,R2) (4a)

where:

VN(R
α) =

∑

i

∑

j>i

v(
∣

∣x
α
i − x

α
j

∣

∣) (4b)

ΦN,N(R
1,R2) =

∑

i

∑

j

w(
∣

∣x
1
i − x

2
j

∣

∣)

≡ Nq1,2(R
1,R2) (4c)

q1,2 is the overlap function8. The mean overlap (or order parameter) is defined as

Q(ρ, T ; ε12) = 〈q1,2〉 = 4πρ∗
∫

∞

0

g12(x)w(x)x
2dx (5)
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where g12(x) is the inter-replica pair distribution function of the binary “mixture”; the intra-

replica p.d.f. will be denoted by g(x) = g11(x) = g22(x). The angular brackets in eqn. (5)

denote a statistical average with the Boltzmann weight exp {−βVN,N(R
1,R2)} /ZN,N , where

β = 1/kBT and ZN,N is the configuration integral

ZN,N(V, T ; ε12) =

∫

dR1

∫

dR2 exp
{

−β
[

VN(R
1) + VN(R

2)− ε12ΦN,N(R
1,R2)

]}

. (6)

Note that q1,2 = 1 in the case of perfect overlap (R1 ≡ R
2), and hence Q ≤ 1. When the two

replicas are completely decoupled (ε12 = 0), g12 = 1 for all x, and Q reduces to its “random

overlap” value Qr = 7π2ρ∗c3/128, as calculated from eqs. 3 and 5.

Starting from an initial state where the two replicas are weakly coupled (ε12 > 0), the

supercooled liquid (L) and Glass (G) branches may be distinguished by different values of

the order parameter Q in the limit ε12 → 014,15,20. In the L phase

lim
ε12→0

Q(ρ, T ; ε12) = Qr (L) (7a)

while in the ideal glass state, the positions {x1
i } and {x2

j} of the atoms of the two replicas

remain localized close to disordered equilibrium positions {Xi} ; the resulting strong inter-

replicas correlations hence imply that:

lim
ε12→0

Q(ρ, T ; ε12) ≫ Qr (G) (7b)

The RFOT is hence expected to be characterized by a discontinuous jump of the order

parameter Q in the thermodynamic limit8.

In our earlier work14,15, the HNC and the thermodynamically self-consistent Rogers-

Young (RY)18 integral equations for the pair structure of the two-replicas system were solved

numerically over a wide range of thermodynamic states Γ and ε12 (for a brief reminder, see

Appendix A). Three branches of solutions (L,G1 and G2) were mapped out and the resulting

free energies and order parameters point to an alternative RFOT scenario involving both

a strong discontinuity of Q and a weak discontinuity of the volume per particle v∗ at the

ideal glass transition. In order to gain access to the conjectured precursor transition we now

switch from a free energy analysis to an effective potential representation via a Legendre

transformation8–10,13.
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III. EFFECTIVE POTENTIAL AND OVERLAP FLUCTUATIONS

The excess Helmholtz free energy per atom is defined by:

f(ρ, T ; ε12) =
F ex(ρ, T ; ε12)

2N
= −

kBT

2N
log

[

ZN,N(V, T ; ε12)

V 2N

]

(8)

Remembering eqn.(6), it is easily verified that

Q(ρ, T ; ε12) =
〈

q1,2(R
1,R2)

〉

ε12
= −2

(

∂f(ρ, T ; ε12)

∂ε12

)

ρ,T

(9)

Notice the factor 2, due to the definition of f(ρ, T ; ε12) as free energy per particle of the

system of two coupled replicas. A Legendre transformation from the variables (ρ, T ; ε12) to

the variables (ρ, T ;Q) defines a new thermodynamic potential, usually referred to as the

effective (or Landau) potential W :

W (ρ, T ;Q) = 2f(ρ, T ; ε12(Q)) +Qε12(Q) = min
ε12

[2f(ρ, T ; ε12) + ε12Q] (10)

provided Q = 〈q1,2(R
1,R2)〉

ε12
.

Reciprocally:

2f(ρ, T ; ε12) = min
Q

[W (ρ, T ; ε12)− ε12Q] (11)

which implies that

W ′(ρ, T ;Q) =

(

∂W (ρ, T ;Q)

∂Q

)

ρ,T

= ε12 (12)

The effective potentialW (Q) may be associated with a constrained Boltzmann distribution9,12

W (ρ, T ;Q) = −
kBT

N
log

[

1

V 2N

∫

dR1

∫

dR2 exp
{

−β
[

VN(R
1) + VN(R

2)
]}

δ
(

q1,2(R
1,R2)−Q

)

]

(13)

which determines the overlap distribution function:

P0(Q) =
〈

δ
[

q1,2(R
1,R2)−Q

]〉

0
∼ exp {−βNW (ρ, T ;Q)} (14)

The subscript 0 signifies that the inter-replicas coupling ε12 is set to zero in eqns. (4a)

and (6).

Returning to the definition (9) of Q(ρ, T ; ε12) and remembering eqns. (4a, 4b) and (6),

one may easily check that:
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(

∂Q

∂ε12

)

ρ,T

= −

(

∂22f

∂ε212

)

ρ,T

= β

〈

[

q1,2(R
1,R2)−

〈

q1,2(R
1,R2)

〉

ε12

]2
〉

ε12

≡
1

NkBT
χ(ρ, T ; ε12)

(15)

where the static susceptibility χ is, as usual, determined by the mean square fluctuation of

the microscopic order parameter. Phase coexistence between low Q and high Q states is

associated with the non-convexity of the effective potential W(Q) below a critical temper-

ature Tc. In practice, for a given thermodynamic state (ρ,T ) the free energy per particle

f(ρ, T ; ε12) and the order parameter Q are calculated as functions of ε12. The Legendre

transformation (10) is then used to determine the effective potential W (ρ, T ;Q). Plotting

W (ρ, T ;Q) as function of T along a given isochore will signal non-convexity and hence phase

separation below Tc. The results obtained for the soft sphere model using the HNC or RY

integral equations are presented in the following section. In view of eqn. (12), W (Q) (for

fixed ρ, T ) may also be calculated by thermodynamic integration:

W (Qa)−W (Qb) =

∫ Qa

Qb

W ′(Q)dQ =

∫ Qa

Qb

ε12(Q)dQ (16)

IV. MAPPING OUT THE PHASE DIAGRAM

The results presented throughout this Section are for a reduced density ρ∗ = ρσ3 = 1,

so that Γ = (T ∗)−
1

4 . All energies (including ε12) are expressed in units of the soft-sphere

coupling ε. It should be kept in mind that in the limit of vanishing inter-replicas coupling

ε12, the reduced excess thermodynamic properties, e.g. f ∗ = f/kBT , and properly scaled

pair distribution functions (cf. eqn. (4) of ref.14) are functions of Γ only.

A. HNC results

The RFOT is expected to occur at Γ ≃ 1.6514,15. The “precursor transition” must hence

occur at higher temperatures, i.e. lower values of Γ. Results in the interval 1.25 < Γ < 1.35

and for a range parameter c = 0.3 in the inter-replica potential w(x) (eqn (3)) are presented

in Figs. 1-3. Along each isotherm the variation of the order parameter Q with ε12 is

monitored, using a very small increment ∆ε12 = 0.005, as shown in Fig. 1. For ε12 = 0,

the random overlap value Qr = 0.0146 is recovered; Q increases more and more rapidly
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FIG. 1. HNC results for the order parameter Q versus inter-replicas coupling ε12 ”isotherms” for

couplings Γ = 1.25, 1.27, 1.28, 1.29, 1.30, 1.31, 1.32, 1.325, 1.33, 1.335, 1.34, 1.345 (from top to

bottom) and for range parameter c/σ=0.3. A discontinuous jump of Q is observed for Γ & 1.33.The

inset shows a strongly magnified version of the jump at Gamma=1.33.

with ε12 as Γ increases. At Γ = 1.33, a clear-cut discontinuity occurs at ε12 = 0.69, where

Q jumps from Q = 0.0802 to Q = 0.109, before increasing further. Such a jump of the

Q values is due to the appearance of a region where the coupled HNC integral equations

admit no solutions. The discontinuity ∆Q increases with increasing coupling Γ (i.e. as the

temperature is lowered). In the inset of Fig. 1, an enlargement of the curve for Γ = 1.33

is shown. Such a behavior is typical for all the curves up to 1.40. Thus, the curves ε12(Q)

are reminiscent of the mechanically stable part of the mean field isotherms P (ρ) near and

below the liquid-gas critical temperature Tc below which the fluid separates into a low-

density vapor and a high-density liquid phase. However, at variance with the mean field

case, in this range of couplings, the HNC equations do not have thermodynamically unstable

solutions. The latter appear at higher couplings as discussed below. In the present case, low

Q and high Q states coexist below the precursor transition critical point characterized by a

zero slope inflection point of the ε12(Q) curve; the corresponding Γc lies between Γ = 1.32

and Γ = 1.33. Some of the resulting W (Γ;Q) vs. Q curves are plotted in Fig. 2. The

effective potential function is seen to be convex for Γ ≤ 1.32; convexity is lost for larger Γ.

A Maxwell common-tangent construction leads to values of the order parameter Q of the

coexisting states (listed in Table I) comparable to those estimated from the ε12(Q) curve;

the discrepancy reflects the thermodynamic inconsistency of HNC equation.
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FIG. 2. Effective potential W(Q) (in units of ε) versus order parameter Q for Γ = 1.30, 1.31, 1.32,

1.33 and 1.34 (from top to bottom) as calculated from HNC and c/σ = 0.3. For Γ & 1.33, W(Q)

is no longer a convex function of Q.

TABLE I. Values of T ∗, QL, QG2
, ε12 and sconf for several values of Γ and c=0.3 and 0.5 within

the HNC approximation.

Γ T ∗ c QL QG2
ε12 sconf

1.33 0.3196 0.3 0.0802 0.109 0.69 0.062

1.34 0.3102 0.3 0.0758 0.125 0.66 0.11

1.40 0.2603 0.3 0.0442 0.162 0.46 0.21

1.45 0.2262 0.3 0.0334 0.186 0.33 0.22

0.5 0.1480 0.286 0.23 0.14

1.60 0.1526 0.3 0.0171 0.248 0.054 0.082

0.5 0.0766 0.393 0.039 0.079

1.63 0.1447 0.3 0.0152 0.260 0.013 0.023

0.5 0.0698 0.408 0.010 0.023

1.64 0.1382 0.3 0.0146 0.264 0.001 0.0018

0.5 0.0675 0.413 0.0005 0.0018

The mean square fluctuation of the microscopic order parameter determines the static

susceptibility χ (cf. eqn. (15)). As Γ increases, χ(Γ; ε12) sharpens, and its amplitude

increases rapidly, but does not diverge at criticality, a well-known deficiency of the HNC
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FIG. 3. Amplitude of the dimensionless susceptibility χ(ρ, T ; ε12 ), corresponding to the maximum

of χ as a function of ε12, versus Γ (HNC and c/σ = 0.3).

FIG. 4. Same as Fig. 1, but for Γ = 1.6. ε12(Q) exhibits a marked van der Waals-like loop,

with two small discontinuities of Q between L (pluses) and G1 (circles), and between G1 and G2

(crosses) branches. The continuous horizontal line corresponds to the Maxwell construction.

equation, as illustrated in Fig. 3, where the maximum of χ(Γ; ε12) as a function of ε12 is

plotted over a range of Γ values.

The scenario illustrated in Figs. 1-3 changes drastically upon approaching the ideal

glass transition. The HNC results for ε12(Q) as a function of Q are shown in Fig. 4, for

Γ = 1.6. Above Γ = 1.4, a new branch of solutions appears, leading to the L, G1 and G2

states predicted in our earlier work14,15. Along the L branch, Q increases with ε12, up to

ε12 ≃ 0.21, where Q undergoes a small discontinuous jump towards the G1 branch, along
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FIG. 5. The effective potential W(Q) minus its value for the low Q (L) phase as a function of Q

for Γ = 1.6 (pluses), 1.63 (circles), and 1.64 (line) (HNC and c/σ = 0.3). The streight lines for the

Maxwell common-tangent constructions are also shown.

which Q decreases as ε12 increases. A second discontinuity of Q is observed at a slightly

negative value of ε12 towards the G2 branch, along which Q increases again with ε12. Overall

the ε12(Q) curves in the strong-coupling region are reminiscent of van der Waals loops in

mean-field theory of liquid-vapor coexistence. However, similarly to the case of the liquid-

gas phase coexistence in one-component systems21,22, HNC theory definitely shows a more

complex behavior with the presence of narrow intervals where no solution can be found. The

loop implies multi-valued solutions for −0.04 < ε12 < 0.205.

The corresponding effective potential calculated from eqn. (10) is plotted in Fig. 5. It

exhibits a low Q minimum associated with the L branch, a high Q minimum associated

to the G2 branch; the two minima are separated by a maximum associated with the ther-

modynamically unstable G1 branch. Convexity of W (Q) is restored by the usual Maxwell

common-tangent construction. The slope of the common tangent determines the order pa-

rameters QL and QG2
of the delocalized (supercooled liquid) and localized (glass) states, as

well as the inter-replicas coupling ε12 via eqn. (12):

W ′(Γ, QL) = W ′(Γ, QG2
) = ε12 (17)

The configurational entropy per particle sconf finally follows from9:

T ∗sconf = W (Γ, QG2
)−W (Γ, QL) (18)

The values of QL, QG2
, ε12 and sconf are listed in Table I for several values of Γ. The scenario
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FIG. 6. Dimensionless free energy per particle of the two-replicas system versus ε12 for Γ = 1.64

(HNC and c/σ = 0.3). The pluses, circles and crosses are for the L, G1 and G2 branches respectively.

is similar for Γ = 1.63 and 1.64 as shown in Fig. 5. The key parameters corresponding to a

common-tangent construction are listed in Table I.

HNC results for Γ = 1.64, i.e. close to the RFOT, are shown in the next two figures.

The excess free energies per particle F ex(Γ, ε12)/Nε12 are plotted as function of ε12 in Fig.6.

Starting from the L branch at ε12 = 0, the inter-replicas coupling is gradually increased until

the G1 branch is reached at ε12 ≃ 0.174. Upon subsequently lowering ε12, the free energy of

the G1 branch rises above that of the supercooled liquid. ε12 is extended to negative values

(corresponding to a repulsion between atoms of opposite replicas), and at ε12 ≃ −0.10,

the G2 branch is reached. Upon subsequently increasing ε12, the free energy of the G2

branch drops rapidly below that of the G1 branch and crosses the free energy curve of the

L branch very close to ε12 = 0, thus implying that the RFOT to the ideal glass occurs close

to Γ = 1.64, in agreement with our earlier prediction14,15. The variation of the inter-replicas

p.d.f. with ε12 at zero separation, g12(r = 0), is shown in Fig. 7. g12(r = 0) provides an

alternative order parameter to Q and exhibits a similar, van der Waals-like behavior (cf.

Fig.4). The variation of the effective potential W (Q) is similar to that shown in Fig. 5 for

lower values of Γ, and the values of the corresponding parameters, as determined by the

common tangent construction are listed in table I. As expected, the configurational entropy

sconf is practically zero, confirming the coincidence of the RFOT critical temperature To,

and of the Kauzmann temperature TK . A cross-over is expected to occur between the low

Γ regime (close to Γc) and the high Γ regime (just below Γo). Fig. 8 compares the HNC
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FIG. 7. Zero separation value of the inter-replicas p.d.f. g12(r = 0) as a function of ε12, for Γ =

1.64; symbols as in Fig. 6 (HNC and c/σ=0.3). Note the small discontinuities between L and G1

branches, and between G1 and G2 branches.

FIG. 8. Same as Fig. 1, but for Γ = 1.34, 1.45, 1.60, and 1.65 (from top to bottom); symbols as

in Fig. 6 (HNC and c/σ = 0.3).

results for ε12(Q) at an intermediate value, Γ = 1.45, to the data for Γ = 1.34 (cf. Fig.

1) and for Γ = 1.6 (cf. Fig.4) and Γ = 1.65. The pronounced loop observed in the latter

case is strongly reduced at Γ = 1.45, and may be expected to disappear in favor of a single

discontinuity at a value 1.34 < Γ . 1.45.

The ε12 “phase coexistence” curve is shown in Fig. 9. Beyond the critical coupling

Γc ≃ 1.325, this curve separates low Q states (below the coexistence line) from high Q

states (above the line), which may be associated with metastable “supercooled liquid” and
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FIG. 9. Coexistence curve of the L (low Q) and G2 (high Q) phases in the (ε12, Γ) plane (HNC

and c/σ = 0.3).

FIG. 10. Same as Fig. 1, but for c/σ = 0.5. From top to bottom: Γ = 1.37, 1.4, 1.41, 1.42 and

1.45.

glassy phases.

Except in the limit ε12 → 0, the prediction for the two-replicas system are expected to

depend on details of the inter-replicas potential (2), and in particular on the range parameter

c in eq. (3). We have briefly investigated the case c = 0.5 in Fig. 10. The critical coupling

Γc above which the order parameter Q undergoes a discontinuity is estimated to be between

Γc = 1.4 and Γc = 1.42. The corresponding coupling ε12 ≃ 0.25 is significantly lower than

its value for c = 0.3, as may be expected because of the larger range of the attraction

between atoms of opposite replicas. However, for values of Γ closer to the expected RFOT,

the behavior observed with c = 0.5 is close to than shown in Fig. 4 and 5, as illustrated in
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FIG. 11. Same as Fig. 4, but for c/σ = 0.5

FIG. 12. ε12 versus Q ”isotherms” obtained with the RY closure, and c/σ = 0.3. From top to

bottom: Γ = 1.15, 1.18, 1.19, 1.205, 1.3, 1.4 and 1.6.

Fig. 11.

B. RY results

In order to improve on the HNC results, we now turn to the more accurate RY equation

for the calculation of the pair structure of the two-replicas system (cf. Appendix A). In14,15

it was shown that the RY equation leads to a similar scenario for RFOT than predicted by

HNC, but with significant quantitative differences. In particular, ΓRY
o = 1.91 compared to

ΓHNC
o = 1.65.

Recently, we detected an error in our code, which affects only previous estimates of the

15



FIG. 13. RY results for the effective potential W(Q) versus Q at Γ = 1.45 (upper curve) and 1.5

(lower curve) (c/σ = 0.3); these data should be compared to the corresponding HNC results in

Fig. 5.

RY free energy via thermodynamic integration. The corrected value of ΓRY
o , as obtained

from the difference in free energy between the G2 and L branches (using c = 0.3) is 1.66,

remarkably close to the HNC prediction. Interestingly, although the enforcement of the

virial-compressibility consistency greatly improves the overall quality of structural and ther-

modynamic RY results, it introduces a path dependence in the thermodynamic integration,

which in turn induces an inconsistency between ΓRY
o obtained from the free energy differ-

ence, and from W (QG2) − W (QL). The RY results for ε12(Q) are shown in Fig. 12. The

qualitative behavior is reminiscent of the HNC results shown in Fig. 1, including the pres-

ence of small intervals where no solution can be found, but the critical coupling is estimated

to be ΓRY
o ≃ 1.20, well below the value ΓHNC

c ≃ 1.325; the corresponding values of ε12 also

differ substantially ( ε12 ≃ 1.0 compared to ε12 ≃ 0.68). The appearance of two additional Q

values at which the slope of ε12(Q) vanishes, occurs at a lower coupling. We observe that the

appearance of the precursor (G1) branch (the part of the curves where ε12(Q) decreases as Q

increases) is also confirmed at the RY level. However, solving the RY integral equation along

this branch is not an easy task: to the left of the minimum where the G2 branch starts, an

interval of Q values appears where the reason for absence of solution is the impossibility of

achieving thermodynamic consistency between virial and compressibility equations of state.

It would be instructive to check the quality of alternative advanced closure relations along

the G1 branch.
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The corresponding W (Q) curves are shown in Fig. 13. The resulting estimate of ΓRY
o

is close to 1.47, which is significantly lower than the estimate ΓRY
o = 1.66 quoted above,

as obtained from the free energy difference between L and G2 branches. This difference

quantifies the residual inconsistency of the RY closure.

V. DISCUSSION AND CONCLUSIONS

Our results for the overlap order parameter and effective potential of a system of two

weakly coupled replicas of a soft sphere model, based on careful numerical solutions of the

HNC and RY integral equation over a wide range of the inter-replicas coupling ε12, confirm

the existence of a “precursor transition” between high and low overlap phases above the

ideal glass transition temperature associated with the limit ε12 → 0. Such a transition was

predicted in a number of recent publications8–10,12,13, on the basis either of related integral

equation approaches or of MC simulations. The results presented in this paper are restricted

to an “annealed” two replicas system, as opposed to the “quenched” case, where the free

energy of a system is first calculated in the external field of a frozen disordered configuration

of a similar system, and a statistical average over the disorder is taken at the end.

Some significant differences between our predictions and earlier work emerge however.

The main difference lies in the appearance of an additional glass branch G1, intermediate

between the L and G2 (ideal glass) branches, which results in a characteristic S-shaped loop

in the ε12(Q) curves below a cross-over temperature Tc > T ≥ To (or Γc < Γ ≤ Γo ).

The presence of the G1 branch in integral equation calculations should be seen as an

important confirmation of the “precursor transition” scenario. The putative G1 branch

appears in our numerical solutions of both HNC and RY integral equations, and is also

observed for a two replicas Lennard-Jones system16, but was not detected in related work by

other groups. Its existence allows a near-continuous path between the physically relevant L

and G2 branches, but does not affect the characteristic two-minima structure of the effective

potential W (Q) associated with low Q and high Q states below Tc. The G1 branch is

eliminated by a Maxwell construction, required for restoring the proper convexity of the

equilibrium free energy.

Thus, the structural robustness of the existence of a precursor transition predicted the-

oretically in the literature8,9,12,13 is confirmed by the present work, and in particular by the
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similarity of the scenarii predicted by the HNC and RY calculations even if the latter imply

significantly different values of Tc. Although the existence of the transition driven by pairing

of atoms of opposite replicas to form a “molecular phase”, is not in itself surprising from

a theoretical point of view, one may wonder about its physical relevance and observational

implications. Several suggestions have been put forward concerning possible links of the pre-

cursor transition with atomic dynamics in deeply supercooled liquids, including dynamical

heterogeneities (see e.g.23,24) but further investigations are required to link the transition to

purely static properties.

VI. APPENDIX A

The pair structure of a symmetric binary mixture is characterized by two pair correlation

functions, h11(x) = g11(x) − 1 = h22(x), and h12(x) = g12(x) − 1, or, alternatively, by two

direct correlation functions c11(x) = c22 and c12(x); the two sets are linked by two coupled

Ornstein-Zernike (OZ) relations17:

hµν(x) = cµν(x) + ρ∗
∑

λ=1,2

cµλ(x)⊗ hλν(x) ; 1 ≤ µ, ν ≤ 2 (19)

where ⊗ denotes a convolution product. The OZ relations must be supplemented by ap-

proximate closure relations; defining γµν(x) = hµν(x) − cµν(x), we have adopted the HNC

and RY closures:

gµν(x) = exp {−βvµν(x) + γµν(x)} (HNC), (20a)

gµν(x) = exp {−βvµν(x)}

[

1 +
exp {fµν(x)γµν(x)− 1}

fµν(x)

]

(RY ) (20b)

In the RY closure18, the fµν(x) = 1−exp {−αµν(x)} are switching functions which depend on

the inverse range parameters α11 = α22 and α12; for the latter we take the limit α12 → ∞,

(i.e. f12(x) = 1), while α11 is varied to achieve thermodynamic self-consistency between

virial and long-wavelength compressibility. Note that in the limit α11 → ∞, the RY closure

reduces completely to the HNC closure (20a). The coupled integral-equations resulting from

the combination of the OZ relations (19) and the closure relations(20a) and (20b) were solved

numerically using Gillan’s method25,26 over a wide range of state variables Γ and ε12, with

a real space grid of ∆x = 0.02, and 212 or 213 intervals, ensuring that the pair correlation

functions have decayed to values of the order od 10−12 or less. The order parameter Q(Γ; ε12)

18



is calculated from eqn. (5); the gµν(x) also allow the calculation of the excess internal energy

and the equation of state via the standard energy, virial and compressibility equations17.

Within HNC, the excess free energy is also directly accessible by the pair structure via the

HNC expression for the excess chemical potential14,15:

βµex(Γ; ε12) =
ρ∗

2

∑

ν=1,2

∫

[h1ν(x)γ1ν(x)− 2c1ν(x)] dx (21)

This relation does not hold within the RY approximation, and hence the excess free energy

must be calculated by thermodynamic integration of the excess internal energy if one does

not wish to introduce additional approximations. The calculations are straightforward for

the supercooled liquid(L) branch which extends down to Γ = 0. Since the glass branches G1

and G2 terminate below a threshold coupling Γ0, more complicated thermodynamic paths

(or “protocols”) must be used, which are detailed elsewhere14,15. The effective potential

W (Γ;Q) finally follows from eqs. 5 and 10.
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