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Abstract

T and B lymphocyte subsets have been not univocally associated to Graft-versus-host dis-

ease (GVHD) and relapse of hematological malignancies after stem cell transplantation

(SCT). Their sequential assessment together with B and T cell neogenesis indexes has

been not thoroughly analysed in relation to these changing and interrelated immunologic/

clinic events yet.

Lymphocyte subsets in peripheral blood (PB) and B and T cell neogenesis indexes were

analysed together at different time points in a prospective study of 50 patients. Principal

component analysis (PCA) was used as first step of multivariate analysis to address issues

related to a high number of variables versus a relatively low number of patients. Multivariate

analysis was completed by Fine-Gray proportional hazard regression model. PCA identified

3 clusters of variables (PC1-3), which correlated with acute GVHD: PC1 (pre-SCT:

KRECs�6608/ml, unswitched memory B <2.4%, CD4+TCM cells <45%; HR 0.5, p = 0.001);

PC2 (at aGVHD onset: CD4+>44%, CD8+TCM cells>4%; HR 1.9, p = 0.01), and PC3 (at

aGVHD onset: CD4+TEMRA<1, total Treg<4, TregEM <2 cells/μl; HR 0.5, p = 0.002). Chronic

GVHD was associated with one PC (TregEM <2 cells/μl at day+28, CD8+TEMRA<43% at

day+90, immature B cells<6 cells/μl and KRECs<11710/ml at day+180; HR 0.4, P = 0.001).

Two PC correlated with relapse: PC1 (pre-SCT: CD4+ <269, CD4+TCM <120, total Treg

<18, TregCM <8 cells/μl; HR 4.0, p = 0.02); PC2 (pre-SCT mature CD19+ >69%, switched

memory CD19+ = 0 cells and KRECs<6614/ml at +90; HR 0.1, p = 0.008). All these immu-

nologic parameters were independent indicators of chronic GVHD and relapse, also consid-

ering the possible effect of previous steroid-therapy for acute GVHD. Specific time-varying

immunologic profiles were associated to GVHD and relapse. Pre-SCT host immune-
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microenvironment and changes of B cell homeostasis could influence GVH- and Graft-ver-

sus-Tumor reactions. The paradoxical increase of EM Treg in PB of patients with GVHD

could be explained by their compartmentalization outside lymphoid tissues, which are of crit-

ical relevance for regulation of GVH reactions.

Introduction

Long term efficacy of allogeneic stem cell transplantation (SCT) in haematological malignan-

cies relies primarily on graft-versus-tumor (GVT), which partly overlaps with graft-versus-

host disease (GVHD)[1,2], the most common cause of morbidity and mortality in SCT [3].

However, GVT and GVHD are probably characterized by different intensity of immune reac-

tions, which can be modulated by different subsets of donor T and B lymphocytes [1–4]. Sev-

eral studies correlated T lymphocyte subtypes in peripheral blood (PB) with GVHD (acute and

chronic) and relapse, although without univocal results [5–18]. The role of B lymphocytes in

chronic GVHD (cGVHD) was evidenced by several authors, whereas their relationship with

acute GVHD (aGVHD) and relapse has been poorly investigated [5,19–26]. Adequate thymic

function measured by quantification of T-cell receptor excision circles (TRECs) has been cor-

related with balanced immune reconstitution and reduced risk of infections [27–29]. Levels of

k-deleting recombination excision circles (KRECs) have been associated with poor B lympho-

cyte reconstitution and cGVHD, whereas a straightforward relationship between KRECs val-

ues and aGVHD has not been evidenced yet [30–32]. The uncertain and controversial findings

reported in literature could be partly explained by the difficulty of analysing all these immuno-

logic variables in a high number of patients with an extensive monitoring in the time. Further-

more, most studies focused on one outcome only, GVHD or relapse, without considering their

complex interplay. The rationale of our study relies on the following points:

1. T lymphocytes are the principal effectors and coordinators of immune responses, and B

lymphocytes have an emerging role not only as effectors but also as long-lasting regulators

of immune reactions [1,2,19–21]. Hence, the importance of B and T cell neogenesis indexes

as well.

2. A sequential monitoring of lymphocyte subsets and thymic and bone marrow output

indexes could better fit with the changing behavior of GVHD and relapse, allowing the

identification of specific immunologic indicators, which could differ depending on the time

before and after SCT. In particular, the start of monitoring already before SCT could allow

to identify a correlation between pre-SCT host immune profiles and GVHD or relapse. In

fact, the state of host immune microenvironment at SCT, which influences alloreactions by

donor lymphocytes [3,19,21], may partially depend on its state pre-SCT.

3. To our knowledge, no previous study analysed all the above-mentioned variables together

before and after SCT in relation to aGVHD, cGVHD and relapse.

We prospectively evaluated T and B lymphocyte subsets together with thymic and bone

marrow output indexes in 50 patients at different time points before and after SCT in relation

to aGVHD, cGVHD, and relapse, as clinical indicator of ineffective GVT. We used a 2-step

multivariate analysis, which included principal component analysis (PCA), to counterbalance

the limits of the relatively low number of enrolled patients in comparison to the high number

of variables considered in this study.

Lymphocyte subsets and T/B cell neogenesis indexes in graft-versus-host disease and relapse
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Patients and methods

Patients and transplant procedures

Prospective evaluations of lymphocyte subsets in PB and thymic and bone marrow output

indexes were performed in 50 not consecutive patients who underwent allogeneic SCT

(Table 1). Acute leukaemia was the prevailing diagnosis (56%); 17 patients had lymphomas;

one patient only was treated with rituximab 2 years before transplantation.

Cytomegalovirus (CMV) and HHV-6 viral replication were monitored weekly by quantita-

tive real-time polymerase chain reaction (PCR) in plasma. Fungal infections were evaluated

according to the revised criteria of EORTC/MSG Consensus Group [33]. Blood stream infec-

tion was defined according to Poutsiaka D et al. [34]. Chimerism was assessed by tandem

repeats (VNTR)-PCR test on PB mononuclear cells (PBMCs), polymorphonuclear leukocytes

and lymphocytes at day+30, +90, +180, and in case of disease relapse. The first evaluation of

disease was performed at day +30 for acute leukaemia and myelodisplastic syndrome, and at

day +60 for lymphomas. Diagnosis and grading of aGVHD and cGVHD were primarily based

on clinical findings [35–37]. Whenever possible, clinical data were supported by histopatho-

logic findings of target organs. cGVHD was defined as mild, moderate or severe according to

NIH criteria for cGVHD grading [37]. GVHD prophylaxis included cyclosporine A (CyA) i.v.,

and a short course of methotrexate (MTX). ATG-Fresenius was used in 26 of patients with

unrelated donor and 3 patients with related donor. CyA was given orally in two doses as soon

as patients were able to have an oral intake. CyA was the only GVHD prophylaxis in all

patients until its tapering, or until the beginning of the therapy against aGVHD or moderate/

severe cGVHD. First-line therapy for acute GVHD of at least grade II included CyA and 2 mg/

kg/day methylprednisone. Methylprednisone 1 mg/kg/day was the first-line therapy for

cGVHD. The study was performed on a subgroup of transplanted patients (from 31/03/2011

to 01/06/2015), who were enrolled in the study “COORTE HSCT” (n.854 26/05/2010). This

study was reviewed and approved by the Ethics Committee of the Hospital “Spedali Civili” of

Brescia. Patients provided written consent in accordance with the Declaration of Helsinki.

One minor only was included and written consent was obtained from the parents on its behalf.

From the analysis of this substudy, patients with the following characteristics were excluded

or removed:

• bone marrow and PB involvement by lymphoproliferative disease at SCT;

• follow-up < 3 months;

• absence of full chimerism at day +30 or loss of chimerism independently from relapse;

• persistent disease at the first evaluation after SCT;

• steroid-refractory aGVHD development.

Assessment of lymphocyte subsets and index of T and B cell neogenesis

To investigate a possible correlation of lymphocyte subsets and index of T and B cell neogen-

esis with aGVHD, cGVHD, and relapse, we performed:

1. a flow cytometry analysis of T and B cell subsets;

2. a quantification of TRECs and KRECs by Real-Time PCR.

The assessment was planned pre-SCT, at day +28, +90, +180 and at the time of aGVHD,

which developed at a median time of 27 days (22–100). Hence, aGVHD analysis included only
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Table 1. Characteristics of the 50 patients and transplant.

Characteristics %

Age at SCT (years)

median (range) 49 (17–66)

Sex

Male 31 62

Female 19 38

Diagnosis

AL 28 50

MDS 5 10

Lymphomas^ 17 34

Status at SCT

CR/upfront 30 60

PR* 12 24

NR* 8 16

Donor

MUD 31 62

MRD 19 38

MUD-HLA match (8/8 alleles) 30 60

Donor sex

Male 32 64

Female 18 36

Sex mismatch 24 48

Conditioning^^

MAC 20 40

RIC 30 60

ATG

Yes 29 58

No 21 42

Source of stem cells

PB 42 84

BM 8 16

CD34+ cell dose (x10^6/kg)

median (range) 5 (1.1–6.4)

CD3+ cell dose (x10^7/kg)

median (range) 16.4 (1.2–41)

GVHD prophylaxis

CyA+MTX 50 100

Follow-up (months)

median (range) 25 (3–48)

SCT = stem cell transplantation; AL = acute leukaemia; MDS = myelodisplastic syndrome; CR = complete remission; upfront = never treated (all MDS);

PR = partial remission; NR = no response; MUD = matched unrelated donor; MRD = matched related donor; MAC = myeloablative conditioning;

RIC = reduced intensity conditioning; ATG = anti-thymocyte globulin; PB = peripheral blood; BM = bone marrow; CyA = cyclosporine A; MTX = methotrexate

^One patient was treated with rituximab 2 years before transplantation

*Patients in PR or NR at SCT were in complete remission at the first evaluation after SCT (day+30 for AL and MDS; day +60 for lymphomas)

^^MAC subtypes: Total body irradiation (12 Gy/6F)+cyclophosphamide (CY) (3 patients); busulphan+CY (17 patients); ^^RIC subtypes: thiotepa+CY (13

patients); thiotepa+fludarabine+CY (13 patients); busulphan+fludarabine (4 patients)

https://doi.org/10.1371/journal.pone.0175337.t001
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the assessment pre-SCT, at onset of aGVHD, and at day+28 for patients without it. Since

cGVHD developed between the 6th and the 10th month (median time: 7 months), the immuno-

logic parameters at each time point were analysed in relation to cGVHD. Relapse occurred

between the 3rd and the 12th month (median time: 6 months), therefore the assessment of day

+180 was excluded from relapse analysis.

The assessment was also performed in 15 age-matched healthy controls.

Analysis of lymphocyte subsets by flow cytometry

B cell subsets. One million PBMCs were phenotyped after staining with peridin-cloro-

phyll protein-Cy5.5 anti-CD19, phycoerythrin Cy7 anti-CD10, fluorescein isothiocyanate

anti-IgD, and phycoerythrin anti-CD27 (BD Pharmingen, San Diego, CA, USA) monoclonal

antibodies (mAbs). Cells were initially gated for CD19 expression, and then for CD10 marker

to identify immature CD19+CD10+ B cells and mature CD19+CD10- B cells. Mature B cells

were examined for IgD and CD27 molecule expression to recognize naïve IgD+CD27- B cells,

unswitched memory IgD+CD27+ B cells, switched memory B cells (IgD-CD27+), and double

negative B cells (DN; IgD-CD27-).

T cell subsets. PBMCs were stained with Horizon V500 anti-CD3, allophycocyanin-H7

anti-CD4, Horizon V450 anti-CD8, fluorescein isothiocyanate anti-CD45RA (BD Pharmin-

gen, San Diego, CA, USA), phycoerythrin anti-CD25, peridinin-chlorophyll protein-Cy5.5

anti-CCR7 (BioLegend, San Diego, CA, USA), phycoerythrin-Cy7 anti-CD127 (eBioscience,

San Diego, CA, USA), and allophycocyanin anti-CD31 (Miltenyi Biotec, Bergisch Gladbach,

Germany) mAbs. PBMCs were first gated for CD3 expression, then for CD4 and CD8 markers,

and finally for the expression of CD45RA and CCR7 to identify naïve CD4+/CD8+(CD45RA

+CCR7+), central memory CD4+/CD8+ (TCM; CD45RA-CCR7+), effector memory CD4

+/CD8+ (TEM; CD45RA-CCR7-), and terminally differentiated effector memory (TEMRA;

CD45RA+CCR7-) cells. T regulatory cells (Treg) were identified as CD4+CD25int/high-

CD127low/- lymphocytes. Treg were further phenotyped as CD4+CD25int/highCD127low/-

CD45RA+CCR7+ naïve Treg, CD4+CD25int/highCD127low/-CD45RA-CCR7+ TregCM and

CD4+CD25int/highCD127low/-CD45RA-CCR7-TregEM subsets. Recent thymic emigrants

(RTE) were recognized as naïve CD4+ lymphocytes expressing the CD31 molecule.

Absolute count and percentage were calculated for each T and B cell subset. Data were

acquired using an eight-colour FACSCanto II cytometer and analysed with FACS Diva soft-

ware (BD Biosciences, San Jose, CA, USA).

Analysis of T and B cell neogenesis by means of TRECs and KRECs quantification.

Thymic and bone marrow outputs were measured from DNA from PBMCs at different time

points. KRECs and TRECs were quantified simultaneously by duplex quantitative Real-Time

PCR (7500 Fast Real-Time PCR of Applied Biosystems, Foster City, CA), as described else-

where [38,39]. Their quantities were obtained from a standard curve obtained by serial dilu-

tions of a linearized plasmid DNA, containing three inserts corresponding to fragments of

KRECs, TRECs and the reference gene, which is a fragment of T-cell receptor constant alpha

gene. Data are expressed as number of copies per ml of blood, equal to (KRECs or TRECs/

PBMC) × (lymphocyte+monocyte count in 1 ml of blood).

Assessment of steroid treatment effect. In aGVHD analysis, the possible effect of steroid

treatment on values of lymphocytes, TRECs, and KRECs was excluded, as they were assessed

at GVHD onset before the beginning of the therapy. All patients with cGVHD were off steroid

therapy at its onset. However, the influence of a previous steroid treatment for aGVHD before

the occurrence of cGVHD or relapse was considered. Parameters of steroid effect were: 1.

administration of steroid therapy at each time point; 2. cumulative dose of steroids (mg/kg) at
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day +28, from day +28 to +90, and from day +90 to +180; 3. number of days out steroids at

each time point. A correlation between the parameters of steroid effect and values of lympho-

cyte, TRECs, and KRECs was analysed at each time point.

Statistical analysis

Univariate analysis of variables in relation to aGVHD, cGVHD and relapse was performed by

Mann-Whitney U test to compare continuous values, and chi-squared test to compare differ-

ences in percentage. Count and percentage of lymphocyte subsets, TRECs and KRECs values

at the different time points were analyzed together with clinical variables (see Table 1). The

analysis included infectious events before the onset of aGVHD or cGVHD and before the

median time of their onset for patients without these complications. aGVHD and cGVHD

were also considered for relapse analysis. The comparison of lymphocyte, TRECs, and KRECs

values between patients on and off steroid therapy at each time point was also performed by

Mann-Whitney test. The Spearman rank correlation analysis was used to estimate the relation-

ship between cumulative dose of steroids or days off steroid therapy and values of the immu-

nologic variables.

The immunologic parameters found to be significant in univariate analysis at each time

point were included in the first step of multivariate analysis, which consisted in PCA, in order

to solve the problem of a high number of variables in comparison with a relatively limited and

heterogeneous pool of patients. PCA reduces the dimensionality of a large number of interre-

lated variables, while retaining as much information as possible [40]. Since PCA transforms

possibly correlated variables into a smaller number of uncorrelated variables (principal com-

ponents, PCs), each PC is a cluster of correlated variables. The first PC (PC1) accounts for the

largest part of the total variance in the dataset; the second (PC2) accounts for the second great-

est amount of the variance, and so on. The last few PCs do not account for much of the vari-

ance, and therefore can be ignored. The eigenvalue-one criterion (Kaiser criterion) was used

for extracting relevant PCs (eigenvalue>1). Variables with component loading > 0.5 (absolute

value) only were included in each PC. Loadings vary in value from -1 to 1 and represent the

degree to which each of the variables correlates with each PC.

Multivariate analysis was completed by Fine-Gray proportional hazard regression model

for competing events [41,42], which included:

1. PCs scores (values of the PCs extracted by PCA for each patient);

2. clinical variables and parameters of steroid effect, which were significant in univariate

analysis.

For the immunologic variables clustered in each PC, which resulted to be significant in this

second step of multivariate analysis, the median value was calculated and taken as the cut

point.

Death without GVHD and death without relapse were the competing events for GVHD

and relapse analysis, respectively. All p values were 2-sided and p<0.05 was considered statisti-

cally significant.

Results

Values of lymphocyte subsets, TRECs, and KRECs in relation to patient

and transplant characteristics

All immunological variables did not differ depending on age, sex or disease status. Patients

with diagnosis of lymphoma showed lower pre-SCT values (median, range) of naïve CD4+
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(14, 1–90 vs 56, 9–205; p = 0.003), RTE (9, 0–72 vs 30, 5–94; p = 0.02), naïve Treg (1, 0–7 vs 3,

0–12; p = 0.03), CD4+TEMRA cells (40, 0–110 vs 78, 1–469; p = 0.02), and immature B cells (5,

0–32 vs 15, 0–95; p = 0.03) in comparison to other diagnosis. Among transplant variables, the

use of ATG only was associated with lower values of naïve CD4+ and RTE from day+28 to day

+180; naïve Treg and CD4+TEMRA cells remained lower at day +28 and +90 (S1 Table).

Clinical and immunological characteristics of patients with aGVHD

28 patients (56%) developed aGVHD (median time: 27 days; range, 22–100); it was of at least

grade II in 20 patients (grade III in 2 out of 20 patients). Before its onset, 6 patients (21%) had

bacterial infections. CMV reactivations, without end-organ disease, and fungal infections were

observed in 7 (25%) and 4 patients (14%), respectively. Patients with and without aGVHD did

not differ in clinical and transplant characteristics (S2 Table). No significant differences were

observed as far as immunosuppressive prophylaxis (use of ATG, MTX doses, CyA blood levels)

and type of reduced intensity or myeloablative conditioning were concerned (data not shown).

Univariate analysis of immunological variables is summarized in Table 2.

Significant differences in percentages of lymphocyte subsets are reported in the text below.

Patients with aGVHD had: a) before SCT, higher percentages of CD4+TCM (49 vs 41; p = 0.02)

and unswitched memory B cells (4 vs 2; p = 0.04) and lower values of KRECs (p = 0.04); b) at

GVHD onset, higher values of RTE, naïve CD4+, CD4+TCM, CD4+TEMRA cells, and all Treg

subtypes (p<0.05), and an increased percentage of CD4+ (49 vs 28; p = 0.006) and CD8+TCM

cells (7 vs 4; p = 0.04).

Multivariate analysis of variables associated with aGVHD

In the 2-step multivariate analysis, three PC were evidenced as independent factors associated

with aGVHD, also considering the possible effect of lymphoma diagnosis and use of ATG

(Table 3). PC1 was inversely correlated with aGVHD (HR 0.5; p = 0.001), and included pre-

SCT values of KRECs, percentages of unswitched memory B (<2.4%) and CD4+TCM cells

(<45%). PC2 was associated with aGVHD onset (HR 1.9; p = 0.01), and included percentages

of CD4+ and CD8+TCM cells. PC3 was inversely correlated with aGVHD (HR 0.5; p = 0.002),

and included lower values of CD4+TEMRA cells, total Treg and TregEM.

Values of lymphocyte subsets, TRECs, and KRECs in patients on

steroid therapy

Patients on steroid therapy at day +28 had higher TregCM median values (cells/μl: 5, range

0–11 vs 1, range 0–17; p = 0,02) in comparison with patients out steroids, with a weak correla-

tion with their cumulative dose (r = 0,44; p = 0,009). At day +90, decreased values of CD4

+TCM, CD4+TEM, CD4+TEMRA, TregEM, all CD8+T subtypes, all CD19+ cells, except for

memory and DN B cells, and KRECs were observed in patients on steroid therapy at day+28

(Table 4). The cumulative dose of steroids at day +90 was associated to decreased values of

CD4+TCM, CD4+TEM, TregEM, all CD8+T and CD19+ subtypes, except for CD8+TEMRA and

memory unswitched B cells, although with a weak correlation (Table 4). TRECs/ml at day

+180 were higher in patients without steroid treatment in the first 6 months after SCT (48,

range 0–2048 vs 3, range 0–41; p = 0,01).

Clinical and immunological characteristics of patients with cGVHD

The cumulative incidence of cGVHD was 26,5% (95% C.I. 15–45). It was mild in 1, moderate

in 8 and severe in 4 patients according to NIH criteria for cGVHD grading.aGVHD preceded
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cGVHD in 11 patients (grade�II in 4 patients). Before cGVHD onset, patients had 40% bacte-

rial infections and 20% CMV reactivation without end-organ disease. In univariate analysis,

matched related donor (62% vs 28%; p = 0,03) and previous aGVHD (85% vs 44%; p = 0,01)

were the only clinical variables associated to cGVHD (S3 Table). Values of immunological var-

iables in patients with and without cGVHD are shown in Table 5. As for aGVHD analysis, dif-

ferences in percentages are reported in the text.

Patients developing cGVHD had:

1. before SCT, lower percentage of CD4+TEM (15 vs 35; p = 0.04) and CD4+TEMRA cells (0 vs

2; p = 0.003);

2. at day +28, higher values of RTE, naïve CD4+ cells, total Treg, TregEM, and TRECs

(p<0.05);

Table 2. Comparison of immunological variables between patients with and without acute GVHD.

Immunological variables ^ Pre-SCT aGVHD onset*

a GVHD a GVHD

Yes No p Yes No p

CD4+(total) 268 (57–1215) 228 (4–1118) 0,59 100 (1–1174) 24 (0–405) 0,07

RTE 10 (3–123) 25 (0–94) 0,64 4 (0–115) 0 (0–24) 0,01

CD4+naïve 37 (4–316) 56 (1–205) 0,84 8 (0–165) 0 (0–34) 0,005

CD4+TCM 113 (37–1092) 98 (2–233) 0,30 25 (0–254) 8 (0–86) 0,03

CD4+TEM 63 (2–210) 59 (2–769) 0,90 45 (0–986) 16 (0–318) 0,26

CD4+TEMRA 2 (0–14) 2 (0–209) 0,66 2 (0–36) 0 (0–20) 0,02

Treg (total) 16 (3–429 17 (1–45) 0,97 7 (0–30) 2 (0–11) 0,005

Treg naïve 1 (0–19) 3 (0–12) 0,41 2 (0–6) 0 (0–5) 0,02

TregCM 8 (2–18) 5 (0–21) 0,29 3 (0–17) 0 (0–4) 0,006

TregEM 6 (0–25) 6 (1–22) 0,90 3 (0–17) 1 (0–7) 0,01

CD8+(total) 151 (10–870) 147 (1–998) 0,84 44 (1–1109) 30 (0–1138) 0,27

CD8+ naïve 17 (1–126) 16 (0–105) 0,80 4 (0–85) 2 (0–21) 0,25

CD8+TCM 11 (1–60) 9 (0–83) 0,95 3 (0–34) 1 (0–17) 0,08

CD8+TEM 63 (1–520) 29 (0–566) 0,30 26 (0–360) 21 (0–669) 0,50

CD8+TEMRA 44 (1–446) 65 (0–469) 0,82 8 (0–603) 5 (0–434) 0,37

CD19+(total) 22 (0–102) 32 (0–145) 0,50 1 (0–11) 0 (0–19) 0,27

Immature CD19+ 4 (0–38) 9 (0–95) 0,19 0 (0–7) 0 (0–6) 0,81

Mature CD19+ 10 (0–93) 16 (0–100) 0,88 1 (0–11) 0 (0–15) 0,40

CD19+ naïve 5 (0–50) 4 (0–93) 0,98 0 (0–9) 0 (0–11) 0,70

UM CD19+ 0 (0–12) 0 (0–4) 0,41 0 (0–1) 0 0,40

SM CD19+ 1 (0–24) 1 (0–7) 0,67 0 (0–2) 0 (0–1) 0,80

M/DN CD19+ 0 (0–7) 1 (0–5) 0,50 0 (0–1) 0 (0–1) 0,85

TRECs/ml 63 (0–1360) 57 (0–1960) 0,78 82 (0–1769) 23 (0–885) 0,34

KRECs/ml 5099 (0–23957) 9319 (0–79533) 0,04 191 (0–3914) 78 (0–9764) 0,59

SCT = stem cell transplantation; aGVHD = acute GVHD; RTE = recent thymic emigrants; CM = central memory; EM = effector memory;

TEMRA = terminally differentiated effector memory; UM = unswitched memory; SM = switched memory; M/DN = memory double negative; TRECs = T-cell

receptor excision circles; KRECs = k-deleting recombination excision circles

^ Lymphocyte counts are expressed as cells/μl (median; range). Significant differences in percentage of lymphocyte subsets are reported in the section

“Results”.

*Values at day+28 were analysed for patients without aGVHD.

https://doi.org/10.1371/journal.pone.0175337.t002
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3. at day +90, different percentages of CD4+TCM (24 vs 38; p = 0.02), CD8+TEM (23 vs 47;

p = 0.01), and CD8+TEMRA cells (52 vs 35; p = 0.03);

4. at day +180, higher values of immature B cells (p = 0.02) and KRECs (p = 0.04).

Multivariate analysis of variables associated to cGVHD

aGVHD was confirmed as clinical variable associated to cGVHD (HR 2.4 95% C.I. 1.3–41;

p = 0.002), while diagnosis of lymphoma, use of ATG, and parameters of steroid effect did not

show a significant influence. Only one PC correlated with the onset of cGVHD (HR 0.4 95%

C.I. 0.2–0.7; p = 0.002) and it clustered the following variables: TregEM values at day +28, per-

centage of CD8+TEMRA at day+90, values of immature B cells and KRECs at day+180

(Table 3).

Univariate and multivariate analysis of variables associated to relapse. Cumulative

incidence of relapse was 23% (C.I. 13–42) and its rate prevailed in cases of acute myeloid

Table 3. Clusters of immunologic variables correlated to aGVHD, cGVHD, and relapse by multivariate analysis.

Pre-SCT Day +28

or at aGVHD onset^

Day+90 Day+180

aGVHD PC1 CD4+TCM <45% PC2 CD4+>44%

CD19+UM<2.4% CD8+TCM>4%

KRECs/ml�6608)

HR 0.5 (0.3–0.7) HR 1.9 (1.1–3.3)

p = 0.001 p = 0.01

PC3 Treg<4

TregEM<2

CD4+TEMRA<1

HR 0.5 (0.3–0.8)

p = 0.002

cGVHD PC1 TregEM<2 CD8+TEMRA<43% ImmatureCD19+<6

HR 0.4 (0.2–0.7) KRECs/ml<11710)

p = 0.001

Relapse PC1 CD4+<269

CD4+TCM <120

Treg <18

TregCM <8

HR 4.0 (1–15.2)

p = 0.02

PC2 Mature CD19+ >69% PC2 CD19+SM = 0

KRECs/ml <6614

HR 0.1 (0.03–0.6) HR 0.1 (0.03–0.6)

p = 0.008 p = 0.008

SCT = stem cell transplantation; aGVHD = acute GVHD; PC = principal component; KRECs = k-deleting recombination excision circles; cGVHD = chronic

GVHD; UM = unswitched memory; CM = central memory; HR = hazard ratio; EM = effector memory; TEMRA = terminally differentiated effector memory

^in aGVHD analysis, day +28 was considered as time point for patients without aGVHD; in cGVHD and relapse analysis, day+28 was the time point for all

patients.

Three clusters of variables (PC1, PC2, PC3) were associated to aGVHD; one PC correlated to cGVHD; 2 PC (PC1, PC2) correlated to relapse. Lymphocyte

subsets and index of B cell neogenesis included in each PC are enclosed within brackets. For the immunologic variables clustered in each PC, the median

value was calculated and taken as the cut point.

https://doi.org/10.1371/journal.pone.0175337.t003
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leukaemia (73% vs 31%; p = 0,01). Other clinical characteristics did not correlate with relapse

in univariate analysis (S4 Table), while the following immunologic variables characterized

relapsed patients (Table 6):

1. before SCT, lower values of CD4+, CD4+TCM, TregCM cells, and lower percentages of

mature (31 vs 71; p = 0.03) and memory (switched and unswitched) B cells (4 vs 23; 1 vs 4;

p<0.05);

2. at day +28, lower percentage of CD4+ cells (31 vs 47; p = 0.03);

3. at day +90, higher values of switched memory B cells and KRECs, and lower values of

TRECs (p<0.05).

In multivariate analysis, 2 PC correlated with relapse (Table 3):

• PC1 including pre-SCT CD4+, CD4+TCM, all Treg and TregCM cells (HR 4.0; p = 0.02);

Table 4. Steroid effect on lymphocyte subsets and index of B/T cell neogenesis at day +90.

Immunologic variables^ On steroid at day +28 Steroid (C.D.) On steroid at day +90 Steroid (C.D.)

day +28 day +90

Yes No p (r*) p Yes No p (r*) P

RTE 1 (0–6) 1 (0–90) 0.84 2 (0–9) 1 (0–90) 0.50

CD4+naïve 3 (0–8) 1 (0–129) 0.66 3 (0–20) 1 (0–128) 0.97

CD4+TCM 10 (1–39) 35 (0–182) 0.03 -0.39 0.02 13 (1–39) 37 (0–182) 0.02 -0.44 0.01

CD4+TEM 6 (3–30) 46 (0–415) 0.005 -0.50 0.003 23 (3–52) 50 (0–415) 0.01 -0.45 0.009

CD4+TEMRA 1 (0–2) 2 (0–49) 0.01 -0.44 0.01 1 (0–26) 2 (0–49) 0.17

Treg naïve 0 (0) 0 (0–7) 0.13 0 (0–19 0 (0–7) 0.55

TregCM 1 (0–45) 2 (0–13) 0.39 1 (0–45) 2 (0–13) 0.53

TregEM 1 (0–4) 4 (0–11) 0.02 -0.43 0.01 2 (0–4) 4 (0–119 0.006 -0.47 0.007

CD8+ naïve 2 (0–6) 8 (0–73) 0.01 -0.40 0.02 2 (0–11) 10 (0–73) 0.02 -0.40 0.02

CD8+TCM 0 (0–7) 7 (0–85) 0.01 -0.44 0.01 2 (0–7) 8 (0–85) 0.007 -0.52 0.002

CD8+TEM 13 (1–51) 54 (0–1264) 0.04 -0.37 0.04 18 (1–57) 62 (0–1264) 0.04 -0.39 0.03

CD8+TEMRA 8 (0–44) 45 (0–947) 0.02 -0.39 0.03 21 (0–71) 52 (0–947) 0.05

Immature CD19+ 0 (0) 6 (0–122) 0.03 -0.39 0.02 0 (0–8) 7 (0–122) 0.006 -0.51 0.003

Mature CD19+ 0 (0–3) 11 (0–231) 0.008 -0.47 0.006 1 (0–23) 14 (0–231) 0.01 -0.47 0.007

CD19+ naïve 0 (0–2) 8 (0–210) 0.03 -0.38 0.03 0 (0–19) 8 (0–210) 0.01 -0.48 0.005

UM CD19+ 0 (0) 0 (0–1) 0.57 0 (0) 0 (0–2) 0.48

SM CD19+ 0 (0) 1 (0–13) 0.06 0 (0–2) 1 (0–13) 0.02 -0.44 0.01

M/DN CD19+ 0 (0) 1 (0–15) 0.08 0 (0–1) 1 (0–15) 0.02 -0.43 0.01

TRECs/ml 19 (4–76) 10 (0–899) 0.22 28 (0–39) 10 (0–899) 0.73

KRECs/ml 36 (14–63) 8390 (8–96178) 0.01 -0.44 0.01 51 (11–13869) 6614 (8–96178) 0.53

^ Lymphocyte counts are expressed as cells/μl (median; range).

*r = Spearman rank correlation coefficient (significant values only are reported)

C.D. = cumulative dose; RTE = recent thymic emigrants; CM = central memory; EM = effector memory; TEMRA = terminally differentiated effector memory;

UM = unswitched memory; SM = switched memory; M/DN = memory double negative; TRECs = T-cell receptor excision circles; KRECs = k-deleting

recombination excision circles

Parameters of steroid effects at each time point (day+28, +90, +180) were: 1.administration of steroid therapy; 2. cumulative dose of steroids (mg/kg); 3.

number of days out steroids. These parameters were correlated to values of immunologic variables at each time point. Steroid effect parameters, which

correlated to values of immunologic variables at day +28 and +180, are reported in the section “Results”.

https://doi.org/10.1371/journal.pone.0175337.t004
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• PC2 including pre-SCT mature CD19+, switched memory CD19+ cells (+90) and KRECs

(+90) (HR 0.1; p = 0.008).

Discussion

T and B lymphocyte subsets in PB have been investigated as potential markers of aGVHD and

cGVHD or relapse without univocal results [5–18,22–26]. TRECs and KRECs values have

Table 5. Comparison of immunological variables between patients with and without chronic GVHD.

Immunological

variables ^

Pre-SCT Day+28 Day+90 Day+180

cGVHD cGVHD cGVHD cGVHD

Yes No p Yes No p Yes No p Yes No p

CD4+(total) 314 (146–

639)

228 (4–

1215)

0,51 73 (28–

1174)

25 (0–

503)

0,07 50 (15–

663)

82 (0–382) 0,78 253 (56–

552)

142 (4–

506)

0,06

RTE 39 (8–123) 24 (0–94) 0,51 5 (0–26) 0 (0–

115)

0,04 3 (0–46) 0 (0–90) 0,25 9 (0–65) 8 (0–48) 0,62

CD4+ naive 87 (11–316) 42 (1–205) 0,30 9 (1–38) 1 (0–

164)

0,02 7 (0–72) 1 (0–129) 0,24 12 (1–69) 12 (0–65) 0,52

CD4+TCM 130 (94–

254)

99 (2–

1092)

0,11 30 (13–

114)

8 (0–

254)

0,05 17 (4–148) 34 (0–182) 0,63 121 (22–

178)

60 (2–159) 0,07

CD4+TEM 59 (2–94) 59 (2–769) 0,47 26 (11–

986)

16 (0–

132)

0,25 37 (4–415) 43 (0–203) 0,86 162 (16–

304)

60 (2–247) 0,06

CD4+TEMRA 2 (0–9) 5 (80–209) 0,22 2 (0–35) 0 (0–20) 0,14 3 (0–28) 2 (0–49) 0,58 15 (1–48) 3 (0–99) 0,18

Treg (total) 22 (6–42) 16 (1–45) 0,18 8 (2–17) 2 (0–27) 0,02 4 (0–26) 6 (0–49) 0,70 15 (2–50) 11 (0–34) 0,19

Treg naive 4 (0–19) 3 (0–12) 0,56 0 (0–2) 0 (0–6) 0,95 0 (0–3) 0 (0–7) 1,0 0 (0–3) 1 (0–6) 0,77

TregCM 9 (2–13) 5 (0–21) 0,11 3 (0–9) 1 (0–17) 0,06 1 (0–13) 1 (0–45) 0,77 5 (0–17) 3 (0–11) 0,05

TregEM 7 (0–24) 5 (0–22) 0,44 4 (1–14) 1 (0–8) 0,009 3 (0–11) 4 (0–11) 0,82 4 (0–36) 6 (0–24) 0,94

CD8+(total) 190 (109–

998)

139 (1–

870)

0,23 25 (5–

1138)

36 (0–

398)

0,43 82 (3–

1918)

99 (0–

2083)

0,69 369 (48–

2564)

244 (0–

1153)

0,34

CD8+ naive 27 (18–126) 15 (0–105) 0,06 5 (1–37) 2 (0–21) 0,15 4 (1–73) 6 (0–67) 0,95 35 (3–170) 14 (0–117) 0,37

CD8+TCM 14 (3–60) 9 (0–83) 0,38 2 (1–21) 1 (0–11) 0,12 2 (0–62) 7 (0–85) 0,27 20 (3–104) 18 (0–73) 0,54

CD8+TEM 63 (10–566) 50 (0–520) 0,51 17 (1–

669)

21 (0–

260)

0,63 18 (1–884) 51 (0–

1264)

0,50 121 (26–

985)

73 (0–438) 0,44

CD8+TEMRA 78 (25–370) 40 (0–469) 0,33 5 (2–

803)

6 (0–

122)

0,56 46 (0–947) 26 (0–712) 0,57 112 (15–

1694)

82 (0–561) 0,29

CD19+(total) 36 (3–66) 31 (0–145) 0,89 1 (0–19) 1 (0–8) 0,33 1 (0–350) 16 (0–149) 0,78 60 (0–273) 25 (0–336) 0,12

Immature CD19+ 15 (0–32) 8 (0–95) 0,94 0 (0–6) 0 (0–7) 0,67 0 (0–122) 6 (0–60) 0,40 26 (0–71) 3 (0–92) 0,02

Mature CD19+ 12 (2–58) 16 (0–100) 0,89 1 (0–13) 0 (0–5) 0,27 1 (0–231) 10 (0–90) 0,65 51 (0–205) 21 (0–251) 0,23

CD19+ naïve 4 (1–30) 5 (0–92) 0,91 0 (0–11) 0 (0–1) 0,54 0 (0–210) 7 (0–74) 0,35 44 (0–191) 16 (0–225) 0,17

UM CD19+ 1 (0–9) 0 (0–12) 0,24 0 0 (0–1) 0,54 0 (0–2) 0 (0–2) 0,85 1 (0–4) 1 (0–9) 0,96

SM CD19+ 1 (0–23) 1 (0–24) 0,61 0 (0–1) 0 (0–2) 0,76 0 (0–8) 1 (0–13) 0,29 3 (0–19) 2 (0–22) 0,72

M/DN CD19+ 0 (0–7) 1 (0–6) 0,19 0 (0–1) 0 (0–1) 0,80 0 (0–15) 1 (0–5) 0,65 2 (0–9) 1 (0–7) 0,96

TRECs/ml 101 (0–614) 31 (0–

1960)

0,89 127 (10–

411)

22 (0–

1769)

0,01 20 (0–259) 7 (0–899) 0,21 3 (0–917) 38 (0–

2048)

0,17

KRECs/ml 9161(233–

28919)

6608(0–

79533)

0,77 230 (0–

9764)

89 (0–

2319)

0,49 297 (11–

96178)

7666 (8–

58980)

0,75 28274(9–

295083)

9647(14–

99309)

0,04

^ Lymphocyte counts are expressed as cells/μl (median; range). Significant differences in percentage of lymphocyte subsets are reported in the section

“Results”. RTE = recent thymic emigrants; CM = central memory; EM = effector memory; TEMRA = terminally differentiated effector memory;

UM = unswitched memory; SM = switched memory; M/DN = memory double negative; TRECs = T-cell receptor excision circles; KRECs = k-deleting

recombination excision circles

https://doi.org/10.1371/journal.pone.0175337.t005
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been mainly investigated in relation to poor immune reconstitution and risk of infections as

consequence of GVHD. Their role as predictors of GVHD and relapse is not well established

yet [27–32]. These controversial findings could be related to analytic approaches, which did

not consider the variability over time of the complex interplay among all these immunologic

variables, GVHD, and GVT together. Furthermore, a sufficiently large and homogeneous pool

of patients may be difficult to obtain in the transplant setting in a relatively short time, in order

to perform such a comprehensive analysis. We addressed these issues performing a prospective

analysis of T and B lymphocyte subsets, TRECs and KRECs values at different time points

before and after SCT, in relation to aGVHD, cGVHD, and relapse. A 2-step multivariate analy-

sis including PCA was used to solve the problem of a relatively limited and heterogeneous pool

of patients in comparison to the numerous variables. PCA has important noise-reducing prop-

erties in small populations of patients, and can achieve the same noise reduction as using large

populations [40]. In this 2-step multivariate analysis, specific time-varying immunologic pro-

files were correlated at each outcome of the study: aGVHD, cGVHD, and relapse.

Table 6. Univariate analysis of immunological variables associated with relapse.

Immunological variables ^ Pre-SCT Day+28 Day+90

relapse relapse relapse

Yes No p Yes No P Yes No p

CD4+(total) 128 (4–290) 312 (33–1215) 0,04 87 (0–339) 45 (0–1174) 0,70 83 (0–343) 62 (4–663) 0,26

RTE 19 (0–57) 39 (3–123) 0,25 0 (0–24) 0 (0–115) 0,64 1 (0–49) 0 (0–90) 0,91

CD4+naïve 38 (1–98) 56 (3–316) 0,27 1 (0–34) 1 (0–165) 0,88 2 (0–64) 1 (0–129) 0,94

CD4+TCM 54 (2–123) 130 (20–1092) 0,006 14 (0–111) 17 (0–254) 0,57 37 (0–107) 21 (1–182) 0,28

CD4+TEM 35 (2–127) 69 (2–770) 0,19 26 (0–204) 17 (0–986) 0,93 52 (0–203) 36 (2–415) 0,26

CD4+TEMRA 1 (0–7) 3 (0–209) 0,12 1 (0–20) 1 (0–36) 0,72 2 (0–49) 2 (0–41) 0,65

Treg (total) 14 (1–19) 19 (3–45) 0,06 2 (0–30) 4 (0–27) 0,53 6 (0–18) 4 (0–49) 0,61

Treg naïve 3 (0–7) 2 (0–19) 1,0 0 (0–5) 0 (0–6) 0,53 0 (0–7) 0 (0–6) 0,72

TregCM 3 (0–8) 8 (2–21) 0,02 1 (0–11) 1 (0–17) 0,88 2 (0–5) 1 (0–45) 0,66

TregEM 5 (1–9) 7 (0–25) 0,13 2 (0–17) 2 (0–14) 0,51 5 (0–11) 3 (0–12) 0,25

CD8+(total) 147 (1–749) 151 (10–998) 0,57 48 (0–426) 28 (0–1138) 0,95 149 (0–1058) 92 (1–2083) 0,51

CD8+ naïve 2 (0–54) 17 (1–126) 0,15 7 (0–85) 3 (0–37) 0,97 8 (0–17) 6 (0–73) 0,78

CD8+TCM 6 (0–29) 12 (1–83) 0,12 3 (0–34) 2 (0–21) 0,92 7 (0–329 4 (0–85) 0,61

CD8+TEM 29 (0–286) 53 (1–566) 0,31 26 (0–260) 20 (0–669) 0,90 80 (0–470) 45 (1264) 0,42

CD8+TEMRA 35 (0–446) 49 (1–469) 0,61 12 (0–122) 6 (0–803) 0,90 39 (0–540) 27 (0–947) 0,91

CD19+(total) 31 (0–145) 26 (0–132) 0,70 0 (0–8) 1 (0–19) 0,87 31 (0–149) 3 (0–350) 0,08

Immature CD19+ 20 (0–71) 4 (0–95) 0,23 0 (0–7) 0 (0–6) 0,78 8 (0–60) 0 (0–122) 0,09

Mature CD19+ 6 (0–72) 14 (0–100) 0,98 0 (0–3) 1 (0–13) 0,44 23 (0–90) 3 (0–231) 0,09

CD19+ naïve 5 (0–71) 4 (0–93) 0,63 0 0 (0–11) 0,56 19 (0–74) 2 (0–210) 0,07

UM CD19+ 0 (0–1) 0 (0–12) 0,77 0 0 (0–1) 0,58 0 (0–2) 0 (0–2) 0,90

SM CD19+ 0 (0–7) 1 (0–24) 0,08 0 (0–1) 0 (0–2) 0,12 3 (0–13) 0 (0–9) 0,01

M/DN CD19+ 0 (0–3) 1 (0–7) 0,42 0 (0–1) 0 (0–1) 0,84 2 (0–5) 0 (0–15) 0,14

TRECs/ml 31 (0–1478) 63 (0–1960) 0,54 30 (0–885) 41 (0–1769) 0,55 0 (0–899) 17 (0–558) 0,03

KRECs/ml 7859 (0–43299) 6508 (0–79533) 0,66 86 (0–2319) 107 (0–9764) 0,92 9215(42–36588) 1130(8–96178) 0,04

^ Lymphocyte counts are expressed as cells/μl (median; range). Significant differences in percentage of lymphocyte subsets are reported in the section

“Results”. RTE = recent thymic emigrants; CM = central memory; EM = effector memory; TEMRA = terminally differentiated effector memory;

UM = unswitched memory; SM = switched memory; M/DN = memory double negative; TRECs = T-cell receptor excision circles; KRECs = k-deleting

recombination excision circles

https://doi.org/10.1371/journal.pone.0175337.t006
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aGVHD was associated with an immunologic profile including pre-transplant lower KRECs

values and some lymphocyte subtypes pre-SCT and at its onset. Lower KRECs values may indi-

cate a damaged bone marrow microenvironment, predisposing to an impairment of central tol-

erance, and eventually to an imbalance of B cells. This may promote the prevalence of recipient

B lymphocytes with pathogenic functions such as secretion of pro-inflammatory cytokines and,

as antigen presenting cells (APC), activation of effector T cells or inhibition of Treg [43–45].

These host B-APC could survive after SCT, and stimulate donor effector T cells in GVHD reac-

tions. Before SCT, the prevalence in PB of unswitched memory over the other mature B cells

could originate from an impairment of germinal center function, as other checkpoint for B tol-

erance, contributing to recipient B cell imbalance [43]. Both pathogenic and protective effects

of recipient B lymphocytes on aGVHD have been reported, mostly from studies performed on

mice models, or from studies without distinction among B cell subtypes [19,21].

At the onset of aGVHD, patients had a higher percentage of CD8+TCM and increased val-

ues of CD4+TEMRA cells, “senescent” cells with raised levels of activation, resistant to apopto-

sis [46]. Their increase, never reported by other authors in aGVHD, may be the expression of

dysregulated and skewed response toward host antigens, and could partly explain the resis-

tance to aGVHD therapy. Patients with aGVHD showed also higher PB values of TregEM. This

apparently contradictory finding was rarely reported before [5,7]. Several studies have been

performed in murine models of GVHD, or in transplanted patients without distinction among

Treg subsets, which display different regulatory efficiency [47]. TregEM seem less effective than

naïve Treg, since naïve Treg may directly inhibit effector T cells and APC in lymphoid tissues,

which are of critical relevance for induction and suppression of GVH reactions [48,49]. Unlike

naïve Treg, TregEM lack of homing receptors such as L-selectin and chemokine receptor 7

(CCR7), which are needed for migration to secondary lymphoid organs and in situ regulation

of immune responses [48–50]. On the other hand, increased TregEM in PB could be expression

of an ineffective compensatory reaction.

The immunologic profile associated with cGVHD included TregEM (+28), CD8+TEMRA

cells (+90), and immature B cells and KRECs values (+180). Higher PB values of TregEM at day

+28 were associated with cGVHD development, highlighting their potential role as early indi-

cator of dysregulated immune responses. The prevalence of TEMRA cells among CD8+ lym-

phocytes before cGVHD onset (day+90) may be another indicator of dysregulated and skewed

immune system. Such dysregulation may involve the B-compartment as well. Indeed, we

observed increased values of KRECs and immature B cells at day+180 in patients with

cGVHD, as possible expression of hyper-stimulated B cell output, defective censoring of host-

reactive B cells in bone marrow, and defective maturation to naïve B cells in secondary lym-

phoid organs. Increased values of KRECs in cGVHD were never reported before, while there

are few studies on the impact of GVHD on B cell generation [30–32]. The prevalence of imma-

ture B cells in PB was evidenced in autoimmune diseases and immunodeficiences, while their

association with cGVHD is controversial [22,23,25,44,45]. Immature B cells elicit rapid anti-

body-dependent or -independent responses in absence of T cell induction, and are not

completely depleted by CD20-targeted immunotherapy [51], partly explaining the incomplete

responses observed in cGVHD.

Relapse, as index of ineffective GVT, showed also its typical immunologic hallmarks,

depending on the time related to SCT. Relapsed patients had an ineffective T- immune system

with decreased values of CD4+, CD4+TCM, Treg, and TregCM cells already before transplanta-

tion. We showed a possible role of different B cell subsets in relapse control both before and

after SCT, while few evidences, mostly regarding antibodies production and GVT, were

reported before [5,19]. The decreased percentage of recipient mature B cells in relapsed

patients suggests a defect of B-immune system even before SCT.
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At day+90, ineffective GVT correlated with increased values of KRECs and switched mem-

ory B cells, as possible expression of an early but ineffective B cell-hyperactivation.

Different clusters of immunological parameters at different time points were evidenced as

indicators of aGVHD, cGVHD and relapse, allowing a clear-cut distinction between these

immunological/clinical events. As a novel finding, we highlighted a possible role of pre-trans-

plant host immune-microenvironment in promoting or dampening GVHD and GVT. The

atypical association of TregEM with GVHD could be explained by the different efficiency of

Treg subsets. Imbalances of B-cell homeostasis appeared to be involved both in GVHD and

relapse with different indicators and features, also depending on the time before or after SCT.

These specific time-varying immunologic profiles could drive a targeted, time-varying modu-

lation of both immunosuppressive prophylaxis and pre-emptive therapy. Although the 2-step

multivariate analysis addresses issues related to an unfavourable ratio between number of

patients and number of variables, further studies may be helpful to validate our findings.
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24. Greinix HT, Kuzmina Z, Weigl R, Körmöczi U, Rottal A, Wolff D, et al. CD19+CD21low B cells and CD4

+CD45RA+CD31+ T cells correlate with first diagnosis of chronic graft-versus-host disease. Biol Blood

Marrow Transplant. 2015; 21: 250–258. https://doi.org/10.1016/j.bbmt.2014.11.010 PMID: 25460358

25. Hilgendorf I, Mueller-Hilke B, Kundt G, Holler E, Hoffmann P, Edinger M, et al. The lack of memory B

cells including T cell independent IgM+ IgD+ memory B cells in chronic graft-versus host disease is

associated with susceptibility to infection. Transpl Int. 2012; 25: 87–96. https://doi.org/10.1111/j.1432-

2277.2011.01388.x PMID: 22098606

26. Khoder A, Sarvaria A, Alsuliman A, Chew C, Sekine T, Cooper N, et al. Regulatory B cells are enriched

within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD.

Blood. 2014; 124: 2034–2045. https://doi.org/10.1182/blood-2014-04-571125 PMID: 25051962

Lymphocyte subsets and T/B cell neogenesis indexes in graft-versus-host disease and relapse

PLOS ONE | https://doi.org/10.1371/journal.pone.0175337 April 11, 2017 16 / 18

https://doi.org/10.1111/j.1365-2249.2011.04418.x
https://doi.org/10.1111/j.1365-2249.2011.04418.x
http://www.ncbi.nlm.nih.gov/pubmed/21635226
https://doi.org/10.1038/bmt.2014.105
http://www.ncbi.nlm.nih.gov/pubmed/24842524
https://doi.org/10.1038/bmt.2012.232
https://doi.org/10.1038/bmt.2012.232
http://www.ncbi.nlm.nih.gov/pubmed/23165499
https://doi.org/10.1038/bmt.2013.97
http://www.ncbi.nlm.nih.gov/pubmed/23872737
https://doi.org/10.1038/bmt.2009.80
http://www.ncbi.nlm.nih.gov/pubmed/19398965
https://doi.org/10.1182/blood-2003-06-2073
http://www.ncbi.nlm.nih.gov/pubmed/14604970
https://doi.org/10.1016/j.bbmt.2008.11.038
https://doi.org/10.1016/j.bbmt.2008.11.038
http://www.ncbi.nlm.nih.gov/pubmed/19285638
https://doi.org/10.1172/JCI41072
http://www.ncbi.nlm.nih.gov/pubmed/20389017
https://doi.org/10.1182/blood-2015-10-672345
http://www.ncbi.nlm.nih.gov/pubmed/26670634
https://doi.org/10.1182/blood-2008-10-161638
https://doi.org/10.1182/blood-2008-10-161638
http://www.ncbi.nlm.nih.gov/pubmed/19749094
https://doi.org/10.1016/j.bbmt.2014.10.029
http://www.ncbi.nlm.nih.gov/pubmed/25452031
https://doi.org/10.1016/j.autrev.2010.10.005
https://doi.org/10.1016/j.autrev.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/20955823
https://doi.org/10.1016/j.bbmt.2007.10.009
http://www.ncbi.nlm.nih.gov/pubmed/18215781
https://doi.org/10.1182/blood-2010-07-295766
http://www.ncbi.nlm.nih.gov/pubmed/21063025
https://doi.org/10.1016/j.bbmt.2014.11.010
http://www.ncbi.nlm.nih.gov/pubmed/25460358
https://doi.org/10.1111/j.1432-2277.2011.01388.x
https://doi.org/10.1111/j.1432-2277.2011.01388.x
http://www.ncbi.nlm.nih.gov/pubmed/22098606
https://doi.org/10.1182/blood-2014-04-571125
http://www.ncbi.nlm.nih.gov/pubmed/25051962
https://doi.org/10.1371/journal.pone.0175337


27. Clave E, Rocha V, Talvensaari K, Busson M, Douay C, Appert ML et al. Prognostic value of pretrans-

plantation host thymic function in HLA-identical sibling hematopoietic stem cell transplantation. Blood.

2005; 105: 2608–2613. https://doi.org/10.1182/blood-2004-04-1667 PMID: 15546951

28. Saglio F, Cena S, Berger M, Quarello P, Boccasavia V, Ferrando F, et al. Association between thymic

function and allogeneic hematopoietic stem cell transplantation outcome: results of a pediatric study.

Biol Blood Marrow Transplant. 2015; 21: 1099–1105. https://doi.org/10.1016/j.bbmt.2015.02.010

PMID: 25708218
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