
Querying NoSQL-based Crowdsourcing

Systems Efficiently

Alfredo Cuzzocrea1, Marcello Di Stefano2, Paolo Fosci3, and Giuseppe Psaila3

1 University of Trieste and ICAR-CNR, Italy
alfredo.cuzzocrea@dia.units.it

2 University of Palermo, Italy
marcello.distefano@unipa.it
3 University of Bergamo, Italy

paolo.fosci@unibg.it, psaila@unibg.it

Abstract. In this paper, we provide a novel approach for effectively and efficiently
support query processing tasks in novel NoSQL crowdsourcing systems. The idea of
our method is to exploit the social knowledge available from reviews about products of
any kind, freely provided by customers through specialized web sites. We thus define
a NoSQL database system for large collections of product reviews, where queries can
be expressed in terms of natural language sentences whose answers are modeled as
lists of products ranked based on the relevance of reviews w.r.t. the natural language
sentences. The best ranked products in the result list can be seen as the best hints for
the user based on crowd opinions (the reviews). By exploiting the well-known IMDb
dataset, which comprises more than 2 million reviews for more than 100,000 movies,
we experimentally shows that our prototype obtains good performance in terms of
execution time, demonstrating that our approach is feasible.

1 Introduction

Novel NoSQL database systems are playing a leading role in latest research, due to their well-
understood characteristics that well-marry with actual trends laying under the terms Cloud
Computing and Big Data. On the other hand, Crowdsourcing is becoming a very attractive
research area, particularly in the context of Web search scenarios. In this paper, we try to
cross-layering these two leading contexts, by providing a novel approach for effectively and
efficiently support query processing tasks in novel NoSQL crowdsourcing systems. The idea
of our method is to exploit the social knowledge available from reviews about products of any
kind, freely provided by customers through specialized web sites. We thus define a NoSQL
database system for large collections of product reviews, where queries can be expressed in
terms of natural language sentences whose answers are modeled as lists of products ranked
based on the relevance of reviews w.r.t. the natural language sentences. The best ranked
products in the result list can be seen as the best hints for the user based on crowd opinions
(the reviews).

Reviews about products that customers can freely write on specialized web sites consti-
tute an incredible source of information, by means of which users would like to get useful
hints. But how could a user obtain them? Typically, the user has some wishes and would
like to find products that match those wishes, based on opinions of other users. But to do
that, a specialized system is necessary.

Looking at the problem from a database technology point of view, product reviews
constitute a text database that has a given structure; user’s wishes can be seen as natural
language queries over the set of reviews and the user wants to obtain the products whose

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/84676905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

set of reviews matches the query at the highest degree; the ideal solution, is to get a ranked
list, where the best ranked products can be seen as the best hints for the user based on
crowd opinions (the reviews). We focus only on reviews, since every single review is a mine
of unstructured information that are hard to be queried by classical techniques. In other
words, such a system is a NoSQL database system, where queries are natural language
sentences.

Thus, our prototype is a NoSQL database system for large collections of product reviews;
the database is queried by expressing a natural language sentence; the result is a list of
products ranked based on the relevance of reviews w.r.t. the natural language sentence.
Semantic tagging and term expansion (by means of WordNet) are performed, both indexing
reviews and querying them. We aim at demonstrating that it is possible to obtain an answer
to a query in acceptable time on a large set of reviews. Therefore, we tested the prototype
on reviews about movies downloaded from the IMDb.com web site, that includes more than
2 million reviews for more than 100,000 movies. The study about execution times at query
time is presented.

2 Related Work

Research in the database area is more and more addressing the concept of NoSQL database.
Several attempts to define the concept can be found. Referring to [7], three categories of data
stores are considered: Key-Value stores, Document stores and Column Family stores. The
first category deals with datasets similar to maps or dictionaries where data are addressed
by a unique key. The second category deals with sets of text documents, and our work falls
into this category. The third category encompasses column oriented stores, extensible record
stores and wide columnar stores. Graph databases can be considered as well belonging to
the world of NoSQL databases [6].

One important aspect of NoSQL data stores is performance. Often, NoSQL databases are
necessary due to the implicit limitation of relational databases in given application contexts,
where the relational structure of data is an obstacle to obtain fast execution times. The work
in [1] tries to address this perspective and presents six features of NoSQL data stores. The
are: (1) the ability to horizontally scale simple operation throughput over many servers; (2)
the ability to replicate and to distribute (partition) data over many servers; (3) a simple call
level interface or protocol (in contrast to a SQL binding); (4) a weaker concurrency model
than the ACID transactions of most relational (SQL) database systems; (5) efficient use
of distributed indexes and RAM for data storage; (6) the ability to dynamically add new
attributes to data records.

The ranking metrics we defined as the basis of the proposed system is inspired to the
concept of itemset, developed in the area of data mining for mining frequent itemsets and
association rules. Several works [4, 5] adopt association rule mining for analyzing customer
reviews and extract opinions from them. In [4], association rule mining is used to extract,
from within customer reviews, relevant features the characterize opinions of users about
products. In [5], a system to compare opinions about products is presented, where product
reviews reports PROs and CONs; in particular, association rule mining is exploited to assign
a positive or negative polarity to words (namely, adjectives) in product reviews, and use this
polarity to rank the opinion about products. The work in [3] extracts, by means of an
association rule mining technique, relevant features that summarize product reviews.

Analyzer Loader Expander

Query

Engine

Product

Reviews

Tagged

Reviews

File System

Data Structure

Relational

Database

Web

Application

Fig. 1. Architecture of the Proposed System.

3 The Proposed NoSQL System

As stated in Section 1, our proposed prototype is a NoSQL database system that deals with
collections of product reviews, that can be queried by expressing a natural language sentence
(i.e. query in the rest of the paper).

In this Section we shortly mention system architecture and data structure underlying
the Query Engine, that we describe in Section 4. The proposed system is composed by
several components, each one devoted to perform a specific task as shown in Figure 1. In
particular, we distinguish between the back-end and the front-end : the former is responsible
for collecting, analyzing and indexing data from product reviews; the latter is the actual
user interface accessed by users, that is built on top of the Query Engine. Let us describe
the architecture in details.
Back-End. In this side of the system, we find the components (rectangles) that prepares
the data structure on which queries are executed. These components operate on source data
and intermediate results (ovals) and upload data structures in the Storage box.

– Analyzer. This component is responsible for analyzing product reviews, identifying words
and their grammar category (noun, verb, adjective or adverb). This pos-tagging oper-
ation is performed by the Stanford Parser4. As a result, reviews are transformed into
tagged sentences, composed of tagged terms, i.e., a term associated to a tag that denotes
the grammar category.

– Loader. The goal of this component is to load Tagged Reviews into the data structures
on which queries are performed.

– Expander. After the loading phase has ended, tagged terms are expanded on the base
of an ontology (in our case, WordNet), so that the Query Engine can exploit semantic
relationships in order to capture a wider set of results related with the query.

Front-End. From the architectural point of view, the key component of the front-end is
the Query Engine: it exploits the preliminary work performed by back-end components, and
works on data structures describing occurrences of terms in product reviews. TheWeb Appli-
cation component has been developed to give end users the capability to exploit the system.
Figure 2 graphically depicts the logical schema of the underlying NoSQL data-structure.
Table Products describes each single product, and its schema is context-dependent, in the
sense that the attributes are defined based on the application domain. For example, since
we use IMDb movie data set to test the prototype, we defined attributes concerning movies,
such as title, director, year, and so on. Table Terms is the key table, that describes each sin-
gle tagged word managed by the system. Attributes products, reviews and occurrences

counts the number of products and the number of reviews in which a tagged term occurs,
and the total number of occurrences, respectively. Notice that, while attribute taggedword

4 from the Stanford NLP Group: http://nlp.stanford.edu/index.shtml

Terms(id, word, tag, taggedword,
products, reviews, occurrences)
Term2Expansion(termId, expandedWordId, relation)
Occurrences(id, productId, termId, review,
position)
Product(id, domain specific attributes)

Fig. 2. Schema of the NoSQL Database.

denotes a unique element in the table, since a simple word can be associated to more than
one grammar category (i.e. word book can be either a noun or a verb), it can appear several
times in the table. Table Term2Expansion represent the relations of a tagged term (by means
of attribute termId) with another tagged term (by means attribute expandedTermId). At-
tribute relation denotes the typology of expansion5, i.e., synonym, hypernym, heponym
to name a few. Notice that tagging a term with its grammar category (for instance noun),
allows us to delimit word expansion only to the relations implied by the grammar category
(i.e. the concept of meronym can be applied to a verb, but not to a noun). Finally, table
Occurrences describes all occurrences of tagged terms in product reviews; in particular,
notice attribute position, that indicates the position of the occurrence in the review.

Data Storing. The previous data structure could be totally implemented on a traditional
relational database, with indexes on the main searching attributes of tables. But after we
implemented this solution, since our data-set is quite big (see 5), when we submitted the first
query-test the prototype still had to answer after one hour! So due to performance issues,
part of the data resides as tables on a relational (Postgres) database (tables Product, Terms
and Term2Expansion), and part on the file system (tables Occurrences). Specifically, as
table Occurrences is likely to be huge6, it has been split in single occurrences file for each
term. Each file, containing occurrences of a single term, is identified by the term id. due
to the very large number of terms, files are distributed in a subdirectory tree to avoid to
saturate file system limits of files per directory. Internally, each occurrences file is organized
as a binary file, where a fixed length data structure represents a term occurrence; this data
structure is a 12-bytes triple (ProductId, ReviewId, Position). Furthermore, for the sake
of performance study, we also have a 2nd version of the file system data structure, where
occurrences are partitioned in 5 orthogonal subtrees, and each subtree describes occurrences
for 1/5 of the products. This second version allows us to implement a multi-thread query
engine, with 5 threads running in a parallel way (see 5).

4 Query Processing Support

We now describe the key component, i.e., the query engine. Based on a natural language
sentence (the query) it extracts those products whose reviews are mostly relevant for the
query. Relevance is evaluated by means of a ranking metric; retrieved products are returned
as a list sorted in reverse order of relevance. Hereafter, we describe how the ranking metric
is defined.

5 WordNet provides a set of 15 different possible expanding relations depending on word grammar
category

6 In our test case, the size is more than 12Gb

l #Il weight termsets (I)

4 1 0.5000 {funny, great, hilarious, jokes}
3 4 0.1000 {funny, great, hilarious}

{funny, great, jokes}
{funny, hilarious, jokes}
{great, hilarious, jokes}

2 6 0.0167 {funny, great} {funny, hilarious}
{great, hilarious} {great, jokes}
{funny, jokes} {hilarious, jokes}

Fig. 3. Termsets levels for query great funny hilarious jokes and corresponding weights.

4.1 Termsets

In this paper we consider a query q as a set of terms (or briefly, a termset). Thus, we describe
a query containing a number n of terms as q = {t1, . . . , tn}

7, and we investigate only those
queries where n > 1 or, in other words, |q| > 1. With I, we denote a generic termset that
is a subset of q for which applies |I| > 1. With Dq, we denote the set of termsets I derived
from q. Notice that the cardinality of Dq is |Dq| = 2n − (n + 1), i.e. Dq is the power set
of q without the empty set and the n single terms that compose q. With Il we denote an
l-termset of q, that is a termset composed by l terms, i.e. |Il| = l. With Dq,l we denote the
set of l-termsets Il. Notice that the cardinality of Dg,l is |Dq,l| = (nl).

4.2 Termset Weight

We now define the concept of weight for a termset.
Definition 1: The weight of a l−termset is a function of its length and the length of the
query q (|q| = n) and it is denoted as wq(l).
For n = 2 there is only one 2-termset and its weight is wq(2) = 1 by definition.
For n > 2 the weight of the single n−termset q is, by definition, wq(n) = 0.5, while for
2 < l < n it is wq(l) = wq(l + 1)/((nl) + 1) and for l = 2 it is wq(2) = wq(3)/(

n
2). ✷

The rationale behind Definition 1 is the following. The topmost termset, corresponding
to the whole query, is the most important one, and its weight is equal to the overall weight
of all the shorter termsets. The same principle is valid for any generic termset Il (with
2 < l < n), whose weight is equal to the overall weight of all lower levels termsets (even
those that are not subset of Il). In this way, reducing the size of termsets, the contribution
of each level quickly decreases. Notice, that the overall weight of all termsets is exactly 1
(
∑

I∈Dq
wq(|I|) = 1). Figure 3 shows the termsets levels with an example query.

4.3 Query Expansion and Semantic Coefficient

As stated above, reviews are processed performing several operations. Similar operations are
performed on a user query in natural language as well.
Pos-Tagging. By means of Stanford Parser, each word of a user query is tagged with an
attribute that denotes its grammar role (verb, noun, adjective to name a few) in the query.
Stopwords Filtering. Stopwords are those words that are too common in reviews (such
as articles, conjunctions); furthermore, common verbal forms like is or have (just to name
a few) are treated as stopwords. Stopwords include also some very context-dependent words
such as the word actor in a movie context. These words hold a small semantic meaning,

7 At moment, in this stage of the project we do not consider word order or repetitions

Table 1. a) Trend of Semantic coefficient w.r.t. the cardinality of ET (t). b) Semantic coefficient
for a generic 2-termset where each term has two expansions.

so after pos-tagging operation stopwords are discarded from the query. Thus, denoting with
SW the set of possible stopwords, in the rest of the paper the notation:

q = {t1, . . . , tn}
includes only those terms ti /∈ SW , and, as stated in Section 4.1, we consider only those

queries q such that |q| > 1 (actual length without stopwords).
Term Expansion. By means ofWordNet ontology, each tagged term ti ∈ q is expanded with
all those terms directly associated to ti depending by its grammar tag. Thus, for example
a noun is expanded with all its synonyms, hypernyms or hyponyms and so on, while a verb
is expanded with all its synonyms or meronyms, to name a few. There are actually a total
of 15 possible different relations between a tagged term and its expanded words. We denote
with t∗i the generic expanded term of ti, and with ET (ti) the set of all expanded terms of ti.
By definition, ti ∈ ET (ti) with an identity relation, thus, |ET (ti)| ≥ 1. Notice that, given a
generic expanded term t∗, it can happen that t∗ ∈ ET (ti) and t∗ ∈ ET (tj) with i 6= j. In
other words, we cannot state a-priori that ET (ti)∩ET (tj) = ⊘ with i 6= j. As an example,
the term colour can be an hypernym expansion for both terms red and black.
Query Expansion. An expanded query q∗ is each combination of {t∗1, . . . , t

∗

n}. We consider
valid a combination q∗ = {t∗1, . . . , t

∗

n} only if t∗i 6= t∗j ∀i 6= j Notice that the original query q
is a particular q∗ itself, and it is valid by definition.
Expanded Termsets. Previous considerations about query q and its expansions, are ap-
plicable to each termset Il. With I∗l we denote an expanded termset I∗l = {t∗1, . . . , t

∗

l }, and
similarly I∗l is valid only if t∗i 6= t∗j ∀i 6= j. With EI(I) we denote the set of all possible
expanded termset I∗ that can be derived from I. The cardinality of EI(I) =

∏
t∈I |ET (t)|,

that is the number of all possible combinations of the expanded terms of those terms that
compose I. Finally, with D∗

q , we denote the set of all valid expanded termsets that are
included in q and all its valid expansions q∗.
Semantic Coefficient. Each t∗ ∈ ET (t) has a semantic coefficient sct(t

∗), with 0 <
sct(t

∗) ≤ 1, that depends on the cardinality of ET (ti).
Definition 2: For each t∗ ∈ ET (t) except t, sct(t

∗) = 0.5/|ET (t)|, and sct(t) = 0.5 +
0.5/|ET (t)|. ✷

The rationale of semantic coefficient, is the following. A term describes a semantic concept
that is mostly expressed by the term itself, but receives a small contribution from expanded
terms: the greater the number of expansion, the smaller the semantic contribution of a
single expanded term. Notice that

∑
t∗∈ET (t) sct(t

∗) = 1. Table 1.a shows how sct varies

with ET (t) cardinality.
With scI(I

∗) we denote the semantic coefficient for an expanded termset I∗ derived from
I.
Definition 3: Given an expanded termset I∗ = {t∗1 . . . t

∗

l } derived for a termset I =
{t1 . . . tl}, it is scI(I

∗) =
∏

t∗
i
∈I∗

l
scti(t

∗

i). ✷

This way, a termset that contains only original terms gives the highest semantic con-
tribution, while augmenting the number of expanded terms in the termset, the semantic

contribution decreases. Table 1.b shows the trend of the semantic coefficient for a 2-termset
where each original term has two expansions. Notice that, according to the above definition,∑

I∗∈EI(I) scI(I
∗) = 1.

4.4 Product Reviews and Termsets

Consider a product p (a movie, a camera, etc.), its set of reviews is denoted by
R(p) = {r1, . . . , rk}. Each review is a text, i.e., a sequence of term occurrences ri =<
t1, . . . , ts >. With T (R(p)) we denote the set of terms appearing in reviews for product p,
and with T (ri) the set of terms appearing in review ri ∈ R(p).
Definition 4: A termset I is said relevant for product p if ∃ri|I ⊆ T (ri). ✷

The set of relevant termsets for product p is denoted as RDp,q. In an analogous way,
RD∗

p,q is the set of all relevant expanded termsets for product p. Notice that RDp,q ⊆ Dq,
and also RD∗

p,q ⊆ D∗

q .

4.5 Termset Average Density

In a preliminary work [2], we assumed that every termset occurrence in product reviews
contribute to the support of the termset with the same weight, i.e. 1, since the support, by
definition, is the number of reviews containing the termset on the total amount of reviews.
Given a termset I, in a single review, terms in I can be very dense or, on the opposite case,
very sparse. We consider a review in which the occurrences of terms in I are dense being
more relevant for the query than a review where occurrences are sparse. Thus, we introduce
the concept of Termset Density of an termset I for a single review.
Definition 5: Consider a product p, a review r ∈ R(p), and a termset Il. The Termset
Review Density dr(Il) is defined as

dr(Il) = l/minWinr(Il)
where minWinr(Il) is the size of the minimal window in review r that includes all the

terms of termset Il. ✷

Notice that for Termset Review Density, it holds that 0 < d(Il, r) ≤ 1. The next step is
to define a Termset Average Density for a generic termset I (we omit the subscript l not to
burden notation) w.r.t. a product p.
Definition 6: Consider a product p and its set of reviews R(p). With RI(p) we call the
subset of R(p) of those reviews containing termset I. The Termset Average Density for
product p, denoted as adp(I), is defined as:

adp(I) = (
∑

r∈RI(p)
dr(I))/|R(p)|

✷

The Termset Average Density is analogous to termset support, with the difference that
the contribution of the occurrence of a termset I in a review r is not 1 but its density dr(I).
Notice, thus, that adp(I) ≤ sp(I) ≤ 1, where with sp(I) we denote the support of a termset
I for a product p.

4.6 Product Ranking Metric

Finally, we can now define the Product Ranking Metric PRM.
Definition 7: Consider a query q, the set of termsets D∗

q derived from q, the system of
the weights wq(|I

∗|) and semantic coefficients scq(I
∗) for each expanded termset I∗ ∈ D∗

q .
Consider a product p, the set of reviews R(p) and the set of relevant expanded termsets
RD∗

p,q that can be actually extracted from R(p). Given for each I∗ ∈ RD∗

p,q the average
termset density adp(I

∗), the Product Relevance Value for product p is defined as

Schema A B Diff %

Pos-Tagger active inactive
Distinct tagged terms 1,151,827 776,852 -32.55%
Occurrences 216,345,522 216,345,522 0.00%

Analysis Time (A = Ps+Pt) 2226.80h 3.82h -99.83%
Parsing Time (Ps) 2.11h 2.42h +14.74%
Pos-tagging Time (Pt) 2224.69h 1.40h -99.94%

Db Loading Time (D) 56.05h 49.76h -11.23%
Term Expansion Time (E) 3.73h 2.67h -28.49%
Total Time (T = A+D+E) 2286.58h 56.25h -97.54%

Table 2. Indexed schemes

PRM q(p) =
∑

I∗∈RD∗

p,q
(wq(|I

∗|)× adp(I
∗)× scq(I

∗))
✷

The rationale of the above definition is the following. For each termset I∗ included in
the query q and actually relevant in the reviews, its contribution to the overall relevance
value is given by its weight wq(|I

∗|) (that depends on its size) multiplied by its average
density adp,q(I

∗) and its semantic coefficient scq(I
∗). The system of weights and semantic

coefficients has been designed to obtain a PRM q(p) = 1 for an ideal set of reviews for
product p, where each review contains every expanded termset I∗ that can be derived from
q with a density dr(I

∗) = 1, and every expanded termset I∗ is valid.

5 Experimental Assessment and Analysis

Our dataset is composed by a total of 2,207,678 user reviews for 109,221 movies down-
loaded from the IMDb.com web site8. The size of the text we downloaded is approxima-
tively 3,091Mb. Each movie has a number of reviews included between 1 and 4,876, and the
average number of reviews per movie is 20.

Experiments has been run on a PC with two Intel Xeon Quad-core 2.0GHz/L3-4MB
processors, 12GB RAM, four 1-Tbyte disks and Linux operating system.

While indexing our data set, as described in the back-end side of proposed architecture in
3, we figured out how pos-tagging affects the proposed system. Disabling pos-tagging means
tagging each term with a unique trivial tag, and considering for each term every possible
expansion regardless of its role inside the query; in other words, disabling pos-tagging means
a significant reduction of the number of managed terms because words are distinguished on
the basis of their grammar category (for instance word colour could be both a noun and a
verb); however, the counter effect is that the possible number of expansions for a termset
combinatorially increases.

Table 2 reports data collected during dataset indexing. Column A shows data regarding
indexing with pos-tagging activated (Schema A), while Column B shows data regarding
indexing with pos-tagging deactivated (Schema B). Column Diff % shows the percentage
variation from data of Schema A to data of Schema B (where applicable).

For our query performance tests we prepared a set of 25 standard user queries like I want
to know more about the history of Greece and the Persian wars, or All those moments will
be lost in time, like tears in rain9.

8 we focus on movies as Imdb data-set as been the first freely accesible big-data set we’ve found.
Anyway the same approach is suitable for any set of product reviews.

9 from Blade Runner movie

Single-thread 5-threads Diff %

Average Time (T=QE+TG+TE+TM+S) 2,501.12 ms 1,994.66 ms -20.25%

Query Expansion (QE 286.44 ms 286.40 ms -0.01%
Thread generation (TG) 0.40 ms 1.88 ms 370.00%
Thread execution (TE ≤ O+R) 2,199.64 ms 1,691.60 ms -23.10%

Occurrences Loading (O) 1,962.52 ms 1,639.84 ms -16.44%
Ranking (R) 237.12 ms 75.12 ms -68.32%

Thread merging (TM) 1.64 ms 1.80 ms 9.76%
Sorting (S) 13.00 ms 12.98 ms -0.17%

Table 3. Single-thread search engine Vs 5-threads search engine

Our test compares the variation of performance of the query engine working on Schema A
(ad described in Section 5) in a single-searching-thread version versus a 5-searching-threads
version. Table 3 shows the average results of the test performed on the set of 25 standard
queries mentioned before. Column Single-thread shows performance of the single-thread
search engine, while Column 5-threads shows performance of the 5-threads search engine,
and column Diff % shows the percentage variation from single-thread w.r.t. 5-threads search
engine. For each search engine version, the average execution time per query is provided in
row Average Time.

6 Conclusions and Future Work

The scope of this paper was to present the architecture and the query engine of a NoSQL
database system. Although performance of the system can be further be improved, the
considerations in 5 show that the approach is feasible in terms of query response time. We
are aware we did not discuss about system effectiveness, but it was beyond the scope of
the paper. However the web-interface we developed is designed to collect users opinions
about the system, and by means of that, in the future work we intend to deeper investigate
effectiveness of the system. Moreover, as far as effectiveness is concerned, in the future work
we intend to integrate term expansion with linked-data as a source for semantic ontology
about terms, and also considering word order and word repetition in queries in our ranking
model. In the end, we are also aware we have to deal with advanced semantic issues such as
negative sentences.

References

1. R. Cattell. Scalable sql and nosql data stores. SIGMOD Record, 39 (4):12–27, 2011.
2. Paolo Fosci and Giuseppe Psaila. Toward a product search engine based on user reviews. In

DATA-2012 Int. Conf. on Data Technologies and Applications, Rome (Italy), July 2012.
3. Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Won Kim, Ron

Kohavi, Johannes Gehrke, and William DuMouchel, editors, KDD, pages 168–177. ACM, 2004.
4. Minqing Hu and Bing Liu. Mining opinion features in customer reviews. In Deborah L. McGuin-

ness and George Ferguson, editors, AAAI, pages 755–760. AAAI Press / The MIT Press, 2004.
5. Bing Liu, Minqing Hu, and Junsheng Cheng. Opinion observer: analyzing and comparing opinions

on the web. In Allan Ellis and Tatsuya Hagino, editors, WWW, pages 342–351. ACM, 2005.
6. Hecht Robin and Stefan Jablonski. Nosql evaluation: A use case oriented survey. In CSC-2011

International Conference on Cloud and Service Computing, Hong Kong, China, pages 336–341,
December 2011.

7. C. Strauch. Nosql databases. http://www.christof-strauch.de/nosqldbs.pdf, 2011.

