ar' T

Active Learning of Regular Expressions for
Entity Extraction

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Abstract—We consider the automatic synthesis of an entity
extractor, in the form of a regular expression, from examples of
the desired extractions in an unstructured text stream. This is
a long-standing problem for which many different approaches
have been proposed, which all require the preliminary construc-
tion of a large dataset fully annotated by the user. In this paper,
we propose an active learning approach aimed at minimizing
the user annotation effort: the user annotates only one desired
extraction and then merely answers extraction queries gener-
ated by the system. During the learning process, the system digs
into the input text for selecting the most appropriate extrac-
tion query to be submitted to the user in order to improve the
current extractor. We construct candidate solutions with genetic
programming (GP) and select queries with a form of querying-
by-committee, i.e., based on a measure of disagreement within
the best candidate solutions. All the components of our system
are carefully tailored to the peculiarities of active learning with
GP and of entity extraction from unstructured text. We evalu-
ate our proposal in depth, on a number of challenging datasets
and based on a realistic estimate of the user effort involved in
answering each single query. The results demonstrate high accu-
racy with significant savings in terms of computational effort,
annotated characters, and execution time over a state-of-the-art
baseline.

Index Terms—Automatic programming, evolutionary compu-
tation, genetic programming (GP), inference mechanisms, man
machine systems, semisupervised learning, text processing.

I. INTRODUCTION

HE PROBLEM of synthesizing string processing

procedures automatically, based solely on examples of
the desired behavior, is the focus of several recent propos-
als [1]-[6]. Low-level operations of string transformation, sub-
string extraction, format validation, and alike occur routinely
at organizations of all sizes and usually have to be addressed
by business developers, i.e., by people whose primary job
function is not application development [7]. Therefore, tools
capable of implementing the desired transformations auto-
matically would be a great help in a myriad of different
contexts.

In this paper, we focus on the problem of extracting
from an unstructured text stream entities that adhere to a
syntactic pattern. In particular, we consider the automatic
synthesis of an extractor, internally consisting of a regular

Manuscript accepted March 3, 2017.

The authors are with the Department of Engineering and Architecture,
University of Trieste, 34125 Trieste, Italy (e-mail: bartoli.alberto@units.it).

expression, based on examples of the desired extractions—a
long-standing problem for which many approaches have been
proposed [8]-[14].

We propose an approach based on active learning [15], [16].
The user initially marks only one desired extraction in the
input text and then interactively answers extraction queries
generated by the system, by merely annotating on a graphi-
cal interface which portions of a query are, or are not, to be
extracted. The system generates tentative extractors automati-
cally, attempting to improve the quality of each extractor upon
each answer based on a careful tradeoff between overfitting the
provided examples and capturing their general pattern.

The resulting framework is highly attractive because it
may minimize the user annotation effort required for con-
structing meaningful examples: it is the system, not the
user, that digs into the potentially very large input text
for identifying those text snippets whose annotation may
indeed be useful; most importantly, the system is poten-
tially in a better position than the user for identifying
which extraction queries are most useful to the learning
procedure.

On the other hand, actually exploiting the potential of active
learning is highly challenging. First, the system must be able
to generate high quality solutions with less than few tens of
queries, in order to be competitive with the state-of-the-art
in passive learning, i.e., methods in which all annotations
must be constructed in advance by the user [17]. This is
an extremely challenging baseline. Second, the number of
candidate queries grows quadratically with the size of the
dataset and becomes huge very quickly, e.g., even if we
assume that the learner cannot generate queries ex novo, in
a dataset with just 10° characters there are ~ 10! substrings,
each of which may be a candidate query. Third, a wealth of
active learning proposals choose queries for improving the cur-
rent solution based on uncertainty of that solution [18]-[20].
Approaches of this kind are not suitable in our case: a reg-
ular expression does not provide any kind of uncertainty
about the handling of a given substring (i.e., extracted versus
not extracted).

The core of our proposal is a solver module, which learns
a regular expression from the currently available annota-
tions. This solver is internally based on genetic programming
(GP) [21]. We chose a GP-based approach due to recent results
which have advanced significantly over all earlier approaches,
demonstrating the ability of GP to address extraction tasks
of practical complexity effectively [17], [22], [23]. The cited
proposals, however, assume a scenario radically different from

Universita degli Studi di Trieste
Archivio della ricerca — postprint

mailto:bartoli.alberto@units.it
http://www.ieee.org/publications_standards/publications/rights/index.html

active learning as they require tens of extractions in a fully
annotated dataset available from the very beginning of the
learning process. We consider instead a scenario in which
the dataset is fully unannotated except for only one desired
extraction. The user will specify further desired extractions by
answering extraction queries constructed by the system. Our
proposed solver is based on the approach in [17], that we
carefully and substantially redesigned in order to address the
peculiar needs of active learning. These include the following.

1) The need of constructing tentative solutions even with
very few examples of the desired extractions available,
e.g., even with just 1 or 2: in a scenario of this sort, the
inherent tension between overfitting and generalization
cannot be addressed in the same way as in a learner
which may exploit tens of examples.

2) The need of coping with an unstructured text stream, that
is, only partially annotated, i.e., in which the boundaries
of desired/undesired extractions may be unknown.

3) The need of using an evolutionary search strategy capa-
ble of exploiting a dynamically growing set of fitness
cases, i.e., one in which candidate solutions which excel
in the few more recently acquired fitness cases are
indeed able to compete with solutions which have been
improving for many generations.

4) The need of having short time intervals between queries.

Another key component of our proposal is the query builder,
which constructs candidate queries and select the most use-
ful query to be submitted to the user. We remark that most
active learning approaches need not tackle the query construc-
tion task as they assume a one-to-one correspondence between
input instances and candidate queries. Frameworks of this sort
are not a good fit for information extraction problems like ours:
when an input instance is a large document, asking the user to
annotate which portions of a document have and have not to
be extracted may nullify the crucial objective of minimizing
user annotation effort. Input units are thus to be segmented in
smaller queryable units with a suitable tradeoff between infor-
mativeness and annotation efficiency [24]. Our proposed query
builder need not assume any native segmentation or separation
token within input text streams, thereby making the method
truly suitable for unstructured text.

A further important and peculiar aspect of this paper is that
we devoted special care in modeling the user annotation effort
in order to obtain a realistic assessment of the solution accu-
racy/user effort regions of the design space. In most active
learning frameworks queries are assumed to require all the
same effort, but it has been shown that such an assumption
is often inaccurate and, consequently, may lead to mislead-
ing conclusions about the real effectiveness of active learning
strategies [25]. Such a consideration is particularly relevant in
our scenario: an active learning policy that tends to generate
short queries that mostly require a single mouse click to be
answered cannot have the same cost as a policy that tends
to generate longer queries that mostly need some editing by
the user. For these reasons, we executed several sessions with
human operators actually annotating substrings for extraction
and measured several indexes of their activity. Then, we built a
user effort model based on those measurements. The resulting

model allows quantifying accurately the annotation cost of
each single query, based on the length of the query and the
number of mouse operations required for constructing the
corresponding answer.

In summary, our contribution is as follows.

1) We propose an active learning system that addresses
the long-standing problem of automatic construction of
regular expressions effectively.

2) We analyze the tradeoff between user annotation effort
and solution quality based on an accurate model of the
former, constructed from real measurements.

3) We present one of the few successful applications of
GP in an active learning scenario—GP is mostly applied
in scenarios in which all the learning data is available
before starting the evolutionary search.

II. RELATED WORK
A. Active Learning

Active learning is a principled, broad framework for auto-
matically choosing, from a collection of unlabeled data, data
to be labeled by a human operator. The main focus consists
in minimizing user annotation cost and, to this end, the learn-
ing process is integrated with the query choice procedure in
the attempt of selecting those queries that are most useful
at any given learning step. In particular, an active learning
system: 1) constructs a model based on the labeled data cur-
rently available and 2) selects from a collection of unlabeled
data the queries to be submitted to the user. The system iter-
ates the previous steps, thereby refining the learned model on
a larger set of labeled data, until a specified termination crite-
rion is satisfied, often expressed in terms of maximum number
of queries that can be submitted to the user. An essential com-
ponent of any active learning framework consists of the query
strategy, i.e., step 2. In this respect, the most commonly used
approach is based on uncertainty, that is, the query submitted
to the user corresponds to the unlabeled data for which the cur-
rent model is the least certain how to label. Another common
approach is query-by-committee, which requires a committee
of competing models all based on the same labeled data. In
this case, the query corresponds to the data about which the
current models most disagree. There have been many propos-
als for actually implementing these approaches, depending for
example on the criteria used for quantifying uncertainty and
disagreement, as well as many proposals for different query
strategy approaches. A comprehensive survey can be found
in [16].

The active learning framework is advocated across a broad
range of different application domains and recent examples
include, e.g., entity filtering in Twitter-like text streams [26],
multiclass classification in text streams [27], query and doc-
ument ranking [28], and keyword search-based data integra-
tion [29]. In the next sections, we focus on the works closer
to ours.

B. Automatic Generation of Regular Expressions

A form of active learning for automatic generation of reg-
ular expressions for entity extraction is explored in [30].

The cited work proposes heuristics for synthesizing regular
expressions from examples and focuses on improving recall
of those expressions while retaining high precision. At each
active learning step, generalization heuristics derive several
candidate expressions and estimate the precision of each can-
didate. A batch of ten queries is then chosen as a sample of
the substrings that would be extracted by the most promising
candidate. The criterion for selecting the sample is not spec-
ified. The user labels each query as either correct or wrong
and the procedure continues until exhausting the query bud-
get. Our approach is radically different from several points of
view. We generate candidate solutions with a GP-based solver;
we do not select queries as a mere sample of the extractions
of the best (estimated) candidate, rather, we use a principled
approach (a form of querying-by-committee) which attempts
to identify the query that is most useful and that is so for a set
of competing candidates; we assess user effort based on the
annotation cost involved in each single query rather than by
merely counting the number of queries. Furthermore, the cited
work submits ten queries at a time whereas many active learn-
ing approaches, including ours, choose to submit instead one
single query at each round. Selecting a set of queries that are
both highly informative and not redundant requires algorithms
explicitly designed for batch mode active learning [31], [32].
Merely increasing the number of queries to be submitted at
each round may result in higher user effort without significant
improvement in solution quality. Finally, our extraction tasks
are arguably more challenging than those considered in [30].

In our preliminary work on active learning of regular expres-
sions [33] we outlined a system similar to the one described
and assessed in this paper. The cited work, though, used a
solver simpler than the one described in this paper and that
was not described in detail: in particular, the present work
solver includes, with respect to [33], a more sophisticated fit-
ness, a mechanism for enforcing behavioral diversity in the
population, a population size which can grow during the evo-
lution, and a different way of initializing individuals from the
examples (see Section IV-B). Furthermore, the experimental
evaluation was much more limited and based on an annotation
effort measured simply with the amount of annotated charac-
ters (ACs). In this paper, we provide an assessment, that is,
much deeper and is based on detailed models for the anno-
tation effort constructed from real observations, which allow
us to carefully estimate the time required for answering each
single query as well as for fully annotating a dataset.

C. Genetic Programming

Active learning with GP is proposed in [34]. The cited work
considers the problem of record deduplication, i.e., identifica-
tion of different records in a database which actually refer
the same entity. The proposed approach evolves a popula-
tion of binary classifiers which take a pair of records, along
with several attributes, and decide whether the pair actually
refers the same entity. The constructed solution consists of an
ensemble of predefined size, including the classifiers with best
performance on user-labeled data. A query consists of a pair
of records that the user may classify as being either the same

record or two different records. The set of candidate queries
Q is constructed before starting the learning procedure as a
subset of all record pairs, selected based on an unspecified
method. Initially, Q is ranked for estimated similarity between
pairs, based on a similarity function not detailed; record pairs
that are estimated to be the most similar and the least similar
are then queried to the user before starting the evolution. At
each generation all candidate queries are tentatively labeled by
the committee and those which cause a tie are submitted to
the user. A predefined upper limit on the maximum number of
queries that can be submitted at each generation is enforced;
the criterion for choosing which queries to not submit, in case
the budget is exceeded, is not detailed. Mechanisms for updat-
ing weights of classifiers in the ensemble and the ranking of
candidate queries are an integral part of the design (see the
cited paper for details).

Our approach is also a form a querying-by-committee, with
several important differences. Each individual in our pop-
ulation is a candidate solution; we randomly choose one
single example before starting the evolution; we do not allow
query generation at (potentially) each generation; we do not
construct a statically defined subset of candidate queries in
advance—indeed, as previously observed, the number of can-
didate queries in our application domains is typically very
large; thus, whenever our query trigger suspends our solver,
our query builder constructs only a subset of candidate queries
chosen dynamically based on the committee composition and
behavior. Furthermore, as observed for [30], we do not allow
for submitting multiple queries at once and we do not estimate
user effort with the mere number of queries. It may be useful
to also observe that our baseline is not just a GP-based solu-
tion for the same problem: it is the state-of-the-art solution,
which happens to be GP-based.

Active learning with GP has been applied also for linkage
rules, i.e., the problem of matching entities from two different
data sources which refer the same object [35]—a classification
problem that shares several similarities with record dedupli-
cation considered in [34]. Query ranking is based on several
forms of querying-by-committee: each individual represents a
different classifier and the input unit for which disagreement in
a set of good-performing individuals (the committee) is max-
imal is submitted to the user. Several different methods for
quantifying disagreement and for selecting the composition of
the committee are proposed and assessed. Queries are sub-
mitted one at a time every 50 generations of the evolutionary
search. Solution quality is highly competitive with respect to
earlier not GP-based approaches while saving annotation effort
(in terms of number of labeled instances). Similar remarks can
be made for [36].

Another paradigm called active learning has been proposed
for GP [37], but with a meaning quite different from the one
usually assumed in the literature (as observed by [34]). The
cited proposal aimed at sampling a large amount of already
labeled data in order to increase efficiency of the learning pro-
cess while not affecting quality of the outcome, whereas the
essential focus in the literature consists in efficiently selecting
samples of unlabeled data for labeling. In this respect, it may
be useful to mention active learning of regular expressions

as proposed in [9]. In this case, active learning consists of a
procedure in which the user selects one example, the system
constructs a “contextual extraction rule” which generalizes the
example for selecting a subset of the unannotated data and the
user is then required to annotate those data. The key point is
that the procedure is to be executed before actually starting the
learning process, that is, the learner operates on a statically
defined training set without any further interaction with the
user. As an aside, the cited proposal may learn only a reduced
form of regular expressions, including only the most basic con-
structs, e.g., quantifiers for specifying that a preceding token
may occur zero or more times are not supported. Furthermore,
it learns regular expressions defined over a predefined small
dictionary of words and part-of-speech tags. Our proposal is
based on [17], which supports most of the constructs available
in modern regular expression engines, including quantifiers,
noncapturing groups, and lookarounds, and learns expressions
defined over UNICODE characters.

III. PROPOSED SYSTEM
A. Interaction Model

We consider a scenario in which the user wants a regular
expression tailored to the extraction of entities of interest. To
this end, the user operates a system which constructs the regu-
lar expression based only on examples of the desired extraction
behavior. Such examples are annotations on a potentially large
text ¢, i.e., substrings of 7 that are to be extracted or substrings
of ¢ that are not to be extracted. The user does not provide
the annotations all at once before using the system: it is the
system which solicits the user to annotate specific substrings
of ¢, as follows.

At the beginning, the user annotates just one desired extrac-
tion in ¢ and starts the system. Then, the system occasionally
asks the user to annotate a specific substring g of 7 (¢ is a
query). The answer to a query ¢ consists of a pair (Ap, Ay),
where Ap is the set of all desired extractions which overlap
q while Ay is the set of all maximal substrings of g which
are not desired extractions (either of two sets may be empty,
but not both). Fig. 1 shows key examples of a query and
the corresponding answer: the first row shows the input text
t, where darker background indicate the desired extractions.
Query g corresponds to a desired extraction, thus it will be
Ap.1 = {q1} and Ay,1 = ¥; g2 corresponds to an undesired
extraction, hence Ap 1 = ¥, Ay.2 = {q2}. Finally, g3 overlaps
a desired extraction only in part, in this case neither Ap 3 nor
Ay 3 will be empty: note in the figure that the only element in
the former extends outside of the box while the only element
in the latter does not. Of course, the case exemplified by ¢3
may generalize to cases in which Ap and Ay contain more
than one element each.

In other words, in order to accommodate the case when
a desired extraction overlaps but does not coincide with the
query, we propose an interaction model which allows the user
to modify the received query slightly (i.e., by extending its
boundaries on one or both sides) and then answer the modified
query. In contrast, in most active learning approaches the user

t I.was.born.in.1979.and.he.was.born.in.1974.

q1 I.was.born.infl979.and he.was.born.in.1974.

(Ap1,Ayuyp =0) I.wasborn.infI979 and.-he.was_born.in.1974.
q2 Iuwasinul97 9_.and.heowas.born.in,1974.
(Ap2=0,Ay2) Iuwasinul97 9.and.he.was.born.in.1974.
g3 I.was.born]in.1979.and_he.was.born.in.1974.

(Aps,Aygs) I.was.bornin1979.and.-he_was.born.in.1974.

Fig. 1. Example of user-system interaction (see the text).

is required to provide only the class of queried data and is not
allowed to modify those data.

We developed a Web-based prototype with a GUI that sup-
ports the proposed interaction model efficiently and that in our
experience has proven intuitive even to unskilled users. Each
query is shown as a highlighted portion of text # and the user is
presented with three buttons, one for each of the three cases
in Fig. 1. When the query coincides exactly with a desired
extraction (i.e., g1) or does not contain any desired extrac-
tion (q2), then one single click suffices to answer the query
(button “extract” or “do not extract,” respectively). Otherwise,
when the user has to describe a more complex answer (g3),
by clicking an “edit” button the user may extend the selec-
tion boundaries of the query and delimit desired extractions
precisely.

B. System Architecture

We propose a system composed of three modules which
interact according to the following workflow (Fig. 2). The
system takes a potentially large text ¢ as input, along with
the annotation of one desired extraction in .

(1) A solver module based on GP evolves a popula-
tion of candidate solutions, i.e., of regular expressions
(Section IV-B); the evolution is driven by the currently
available annotations on the input text ¢ and can be
paused by a query trigger module.

(2) A query builder module selects a substring from ¢, that
is, not annotated and asks the user to annotate this
substring, as illustrated in the previous section.

(3) The user answers the annotation query.

The system iterates these steps until a specified termination
criterion is satisfied (Section V-C). We experimented with dif-
ferent variants for both the query trigger and the query builder
(Sections IV-C and IV-D, respectively). Both these modules
require some knowledge of the internal state of the solver
module.

We remark that most applications of active learning need
not a query trigger module because they are based on solvers
whose synthesis is relatively fast (e.g., a random forest or
a support vector machine). On the other hand, a full solver
execution on all the available data and after each query is
clearly impractical in our scenario, because a GP-based exe-
cution may take a long time. The policy embedded in the query
trigger may influence effectiveness of active learning signif-
icantly, because it impacts the tradeoffs between user effort
and solution quality.

The solver module is based on the proposal in [17]. The
cited proposal requires a fully annotated dataset before starting

Annotate ¢

Ay=0

- B e

Answer ¢

Fig. 2. Workflow of our system. Block background indicates the actor of
the corresponding step: light gray for the user and dark gray for the system.

the learning procedure, i.e., it assumes a passive learning sce-
nario. We outline the passive learning solver in Section IV-A
for providing the necessary context (space constraints pre-
clude a full description, which can be found on the cited
work). Then, we describe our proposed active learning solver
in Section IV-B, emphasizing the key differences between
constructing regular expressions with passive learning and
constructing them with active learning.

IV. SYSTEM MODULES
A. Passive Learning Solver

The passive learning solver, that we call PL-solver, consti-
tutes the state-of-the-art for passive learning and is publicly
available as webapp (http://regex.inginf.units.it) and in source
code form (https://github.com/MaLeLabTs/RegexGenerator).

PL-solver is implemented with tree-based GP [21]. Each
candidate solution (individual) represents a regular expression
as an abstract syntax tree. Each node in a tree has a label,
which is a string representing basic components of a regular
expressions. The regular expression represented by a tree is the
string constructed with a depth-first post-order visit. Available
labels include most regular expression constructs: charac-
ter classes (\d, \w), predefined ranges (a-z, A-7), digits
(0,...,9), and predefined characters (\ ., :, ,, ;, _,=,", ',
AL N NN NG NG N) LN ND, <, >, @, #,) consti-
tute the terminal set, i.e., labels that can be used for leaf nodes;
concatenator (ee), set of possible/not possible matches ([e]),
possessive quantifiers (ex+, e++, 2+, e{e, ®}+), noncap-
turing group [(?:e)], and lookarounds [(?<=e), (?<!'e),
(?=e), (?!e)] constitute the function set, i.e., labels that
can be used for nonleaf nodes—the character e represents
the string representation of a child. The terminal set includes
also labels that are constructed automatically based on the
examples of the specific text extraction problem. For instance,
in the task of generating a regular expression for extracting
FTP addresses, the string £tp could be a useful such block.

Recent applications of GP have demonstrated the power of
this paradigm for evolving candidate solutions represented as
a tree conformant to a context-free grammar [38]. Indeed, the
representation used by PL-solver is based on a similar idea,
tailored to the specific requirements of regular expressions.

PL-solver evolves a population of 500 individuals by apply-
ing classical genetic operators, such as mutation and crossover
for 1000 iterations (generations): whenever an individual
is generated which does not correspond to a valid regu-
lar expression, it is discarded and a new one is generated.
A multiobjective optimization algorithm drives the evolution
of individuals according to their extraction performance com-
puted on the fully annotated dataset (to be maximized) and
to their length (to be minimized). The initial population is
generated partly at random and partly based on the annotated
desired extractions, i.e., for each extraction x the initial pop-
ulation includes four different regular expressions constructed
with a deterministic heuristics ensuring that all the expressions
extract x.

The population is of constant size n, and its composition
follows an elitism principle, as follows. At each iteration, n,
new individuals are constructed: 80% with crossover of the
current population, 10% with mutation of the current popula-
tion, and 10% constructed at random (selection of individuals
for application of genetic operators is done with a tournament
of size 7); the resulting 27, individuals are then ranked and
the best n, individuals will constitute the population of the
next generation. We remark that PL-solver does not implement
any form of local search for attempting to improve candidate
solutions that are particularly promising. Strategies of this sort
have proven to be very useful in other application domains [39]
and certainly deserve further investigation also in this context.

B. Active Learning Solver

We carefully tailored PL-solver to suit the specific needs of
active learning. We describe all these modifications below (we
outlined a preliminary design in our earlier work [33]).

PL-solver assumes a fully annotated dataset, thus candidate
solutions which extract strings that should not be extracted,
or which extract superstrings of desired extractions, may be
penalized in fitness evaluations. Implementing this principle in
active learning is much more difficult because the dataset is
only partially annotated and annotations usually account for
a small fraction of the full dataset. For this reason, we asso-
ciate different fitness indexes than in [17] with each candidate
solution.

1) F-measure (Fm) at the level of full desired extrac-
tions (rather than precision at the level of individual
characters).

2) Sum of false positive rate and false negative rate at the
level of individual characters. This index is the same as
in [17] with an important difference: a start (end) char-
acter of an annotated extraction is counted as extracted
correctly only if the actual extraction starts (ends) at that
character.

3) Length of the candidate solution.

http://regex.inginf.units.it
https://github.com/MaLeLabTs/RegexGenerator

We rank candidate solutions based on the Pareto frontier they
belong to and then establish a total order among solutions in
the same Pareto frontier based on a lexicographic ordering
among fitness indexes (as in [17]).

PL-solver has available the same amount of annotations dur-
ing the full learning procedure, while in active learning the
amount of annotations increases during execution. It follows
that, in active learning, candidate solutions which perform rel-
atively well on the annotations accumulated during the early
phases of the search, may not experience an evolutionary
pressure sufficient enough to accommodate the annotations
acquired more recently. For this reason, we introduced a
behavioral diversity enforcement during the population con-
struction at each generation. We group all candidate solutions
that perform the same set of extractions on the full dataset;
we rank all candidate solutions and insert in the new popula-
tion the best solution from each group; we iterate the choice
across all groups, ensuring that at most 20% of the new pop-
ulation belongs to the same group. We remark that we do
not insist on enforcing genotypic diversity and that we apply
the same criterion at each generation. A different approach
which adaptively increases genetic diversity when necessary
is proposed in [40] with reference to a differential evolution
scenario. Indeed, diversity of population is a crucial element in
evolutionary algorithms and a broad range of widely differing
approaches are possible (see also the cited work).

PL-solver executes several independent evolutionary
searches, each producing a candidate solution. The final
solution is the one with best Fm on the full annotated dataset.
Furthermore, the annotated dataset is split in two parts and
evolutionary searches use only one of such parts for fitness
evaluations. In this paper, we consider a setting that, ideally,
should be interactive or near-interactive: execution of several
independent evolutionary searches after each query is likely
to result to unacceptably long waiting times. Furthermore,
searches should be able to construct meaningful candidate
solutions even with very few annotations. For these reasons,
we chose to execute a single evolutionary search and use all
available annotations for fitness evaluations.

PL-solver uses a population of constant size initialized
with randomly generated individuals and with individuals
constructed based on the annotated dataset—four different
individuals for each desired extraction, as described above.
While such a strategy proved very effective in a passive learn-
ing scenario, our earlier experiments with active learning made
it clear that this strategy promotes an exploitation/exploration
tradeoff excessively unbalanced toward the latter. Based on
this consideration, the solver in this paper promotes more
exploitation of the available annotated data: whenever a new
desired extraction d is available (i.e., after a query has been
answered), the solver constructs 14 different individuals from
d, by means of a deterministic heuristics ensuring that all these
individuals extract d!; all these individuals are then inserted
in the population. Population size thus grows with each new

IThe corresponding details, that we omit for space reasons, can be found
online: http://machinelearning.inginf.units.it/data-and-tools/active-learning-of-
regular-expressions-for-entity-extraction.

annotated extraction and no randomly generated individual is
ever inserted. Population size is still bounded to a maximum
of n, = 500 individuals.

PL-solver incorporates a form of separate and conquer
(S&C) procedure [41]-[43] which allows coping with extrac-
tion tasks in which learning a single pattern capable of
describing all the entities to be extracted may be exceedingly
difficult, e.g., dates may be expressed in a myriad of differ-
ent formats [44]. This procedure consists of an heuristics for
discovering automatically whether the extraction task may be
solved by a single regular expression or rather a set R of
multiple regular expressions, to be eventually joined by an
“or” operator, is required. In this paper, we have to execute a
solver even with very few annotated desired extractions avail-
able, e.g., only 1 or 2: in these cases determining whether
a single pattern or multiple patterns are required is clearly
unfeasible, unless one assumes explicit indications of this sort
from the user. We thus chose to remove S&C and force the
generation of a single pattern for capturing all annotations.

C. Query Trigger

The query trigger determines when the solver has to be
paused for submitting a query to the user. We considered two
variants.

The Const variant pauses the solver when a predefined
number of generations of the solver has been executed:
we experimented with 30 and 200 generations. This simple
approach has been used in other active learning proposals for
GP [34]-[36].

The Solved variant pauses the solver whenever at least one
of the two following conditions is met.

1) The best regular expression in the population correctly

processes all the currently available annotations, i.e., its
first fitness index is exactly 1.

2) The best regular expression in the population has
remained unchanged for a predefined amount of gen-
erations 7ngolved-

In other words, a new annotation is requested to the user either
when no further progress seems to be achievable with the avail-
able annotations, or when the problem, as posed by available
annotations, may be considered as solved. We experimented
with ngolved = 200 generations, i.e., one of the values selected
for the Const variant, in order to assess the accuracy/speed
tradeoff of the two variants.

D. Query Builder

The query builder is the module which actually constructs
the query and we considered two variants for this module.

The SmartRand variant chooses an unannotated substring
of ¢ at random, but we place an upper bound to the maxi-
mum length of the query that may be generated. We set the
actual bound value to the maximum size of a desired extraction
across all our datasets (few hundreds characters). Placing an
upper bound causes this query builder to filter out candidate
queries which are very long, which significantly advantages
this query builder with respect to one which selects a truly

http://machinelearning.inginf.units.it/data-and-tools/active-learning-of-regular-expressions-for-entity-extraction
http://machinelearning.inginf.units.it/data-and-tools/active-learning-of-regular-expressions-for-entity-extraction

random substring of r—it is for this reason that we qualify
this query builder as SmartRand.

The query by restricted committee (rQbC) variant works as
follows. Given a set C of regular expressions (the committee),
we define as disagreement of C on a character ¢ of the input
text ¢ the quantity dc(c) = 1 —2abs((1/2) —(|C.|/|C|)), where
C. C C is the subset of regular expressions which extract c.
It follows that dc(c) = 1 if half of the committee extracts
¢ (maximum disagreement), while dc(c) = O if the entire
committee agrees on the processing of ¢ (minimum disagree-
ment). Note that we quantify disagreement based on the class
chosen by each candidate solution in C (extracted versus not
extracted) [45] without any reference to forms of confidence
value, margin or probability [18], [46]. As we pointed out
already in the introduction, such notions are not made avail-
able by the solver that we have chosen to use. rQbC constructs
the query g according to the following procedure.

1) Select the best 25% of the current population as com-

mittee C.
2) Determine the character ¢* € r with maximal disagree-
ment dc(c*) in the full input set 7.
3) Determine set S as the set composed of all substrings of
¢t which meet the following conditions.
a) They are extracted by at least a regular expression
in C.
b) They overlap c*.
¢) They do not overlap any available annotation.

4) Compute, for each substring in S, the average disagree-

ment among the characters of the substring.

5) Choose as query ¢ the substring with minimum average

disagreement.

rQbC is based on a principle widely used in active learn-
ing [16], [20], i.e., on the assumption that the query for which
an ensemble of competing hypotheses exhibits maximal dis-
agreement is the most informative for the learning task [47].
Such a principle has been used also in active learning for
GP [34]-[36].

As pointed out in the introduction, though, implementing
this principle in our application domain requires solving
the preliminary problem of actually constructing candidate
queries. In this respect, note that a query builder could merely
construct single-character queries and select the one with
maximal disagreement in the committee (i.e., terminate the
procedure at step 2). We designed instead a query builder
which attempts to carefully balance between maximizing
potential informativeness of the query for the evolutionary
search and minimizing the corresponding user annotation
effort. Indeed, the rationale for steps 3a and 3b is that extrac-
tions are assumed to be more informative than unextractions;
for step 3c is preventing the elicitation of the same informa-
tion multiple times. Finally, for step 5, the choice of minimum
instead of maximum average disagreement is motivated by the
need to avoid selecting extremely short substrings as query—
the corner case being the substring consisting only of c¢*.

To further motivate our query builder design, we observe
what follows.

1) The proposal in [35] takes into account a measure

of diversity between each candidate query and queries

already answered. Indeed, such a principle has proven
fruitful in several active learning contexts (e.g., [28])
as well as in imbalance classification problems (which
resembles our problem in the sense that candidate
queries are much more likely to be unextractions
than extractions) [48]. Our preliminary exploration of
this additional principle, that we do not illustrate for
space reasons, has not delivered satisfactory results. We
believe the reason consists in the difficulty of finding
a diversity measure for substrings which is correlated
with diversity between regular expressions, e.g., two
substrings could be very different while at the same time
they could be captured by the same regular expression
or by regular expressions that are very similar.

2) A wealth of active learning approaches choose queries
based on uncertainty of the current solution, especially,
when the learner is not based on an ensemble of compet-
ing hypotheses [18]-[20], [26], [49]. Such approaches
do not fit our solver: candidate solutions are regular
expressions and regular expressions do not provide any
confidence level about the handling of a given substring
(i.e., extracted versus not extracted). Similar remarks
can be made to self-learning approaches, which itera-
tively enlarge the set of labeled data in a different way
than active learning: by classifying unlabeled data with
sets of diverse models [50]. Such approaches choose
which unlabeled data to use for modifying the learned
models based on the confidence of those models, but
such information is not available in our regex-learning
scenario.

V. EXPERIMENTAL EVALUATION

The main objective of active learning is minimizing user
effort while trying not to penalize the effectiveness of the
learned artifact. In most active learning frameworks queries
are assumed to require all the same effort. It has been shown,
though, that in several real-world problem domains annotation
costs may vary considerably across queries, thus failing to take
this fact into account may lead to misleading conclusions about
the real effectiveness of active learning strategies [25]. For this
reason, we built a model for the annotation effort based on
real observations and devoted special care in analyzing how
annotation effort and solution effectiveness relate.

A. Model for User Annotation Effort

As described in Section III-B, a query may be answered
with a single click (binary answers) or may require some
mouse actions (edit answers). These two kinds of answers
clearly involve different amounts of user effort. Furthermore,
the effort required for annotating a query constructed by the
system is very different from the effort in fully annotating a
large text, as required in passive learning [17]. Based on these
considerations, we constructed three different models for the
annotation cost tuned on real observations, as follows.

We involved a set of ten users with varying skills and asked
them to annotate a broad variety of datasets on a webapp that

we developed for this purpose. We recorded user actions in
two different scenarios.

1) When answering queries generated by our system, in
order to emulate interaction with a system based on
active learning; in this case the webapp implements
the user interface of our active learning prototype
(Section III-B).

2) When fully annotating a training dataset, in order to
emulate the annotation required by a passive learning
tool; in this case the webapp exhibits the same user
interface as the webapp in [17].

We emulated active learning by generating a mix of queries
requiring differing annotation efforts, i.e., including a full
desired extraction, or without any desired extraction, or includ-
ing one or more partially overlapping desired extractions.
Based on the recorded actions, we fitted several models for
the annotation time and chose those that proved to be more
accurate.

The resulting models for the annotation effort E (expressed

in seconds) of a query ¢ and its answer (Ap,Ay) are as
follows:

Ebvinary (¢, Ap, Ay) = 0.02¢(Ap U Ay) + 2.0
Eedit(q. Ap, Ay) = 3.4|Ap| + 0.01£(Ap UAy) + 3.1

where ¢(Ap U Ay) is the overall length of the annotated sub-
strings in the answer. Both models exhibit a fixed cost, an
additional cost that is linear in the length of the answer and,
for edit answers only, a further additional cost linear in the
number of desired extractions. We remark that the numerical
parameters of the two models are significantly different, in
particular, concerning the fixed cost. Furthermore, the contri-
bution of the linear components is not negligible: for example,
a query answer of £(Ap U Ay) = 20 characters suffices to
account for an additional 20% of the fixed cost in the binary
answers; and, for edit answers, one single desired extraction
suffices to more than double the fixed cost. It follows that our
user effort model is arguably more accurate than one which
simply counts the number of queries or that does not take into
account the actual operations required for answering a given
query. Indeed, we quantify the (estimated) annotation effort of
each single query differently.

Concerning passive learning, let £(/) be the number of
characters in the full learning data [

Epassive(l, Ap) = 0.003£(1) + 3.4/Ap|.

In this case, the user effort is linear in the size of the learning
data and includes a linear component in the number |Ap| of
desired extractions.

B. Extraction Tasks

We considered 20 challenging extraction tasks, the same
which were used in [17]. For each extraction task, we ran-
domly selected a subset of the original dataset containing 100
desired extractions. The name of each extraction task can be
seen—along with the size of the input text expressed in num-
ber of characters—in Table I: the task name is composed of
the name of the dataset followed by the name of the entity

TABLE I
SALIENT INFORMATION ABOUT THE EXTRACTION TASKS

Extraction task | Chars P

Bibtex/Author* 8528 0.17
Bibtex/Title* 26388 0.24
Cetinkaya-HTML/href 14922 0.50
Cetinkaya-HTML/href-Content™ 14922 0.45
Cetinkaya-Text/All-URL 7573 0.50
CongressBill/Date 125479 0.01
Email-Headers/Email-To-For* 86657 0.03
Email-Headers/IP 36925 0.04
Log/IP 5766 0.23
Log/MAC 10387 0.16
NoProfit-HTML/Email 4651 0.49
ReLIE-Email/Phone-Num. 18123 0.07
ReLIE-HTML/AII-URL 16655 0.32
ReLIE-HTML/HTTP-URL 18450 0.30
References/First-Author* 14676 0.08
Twitter/All-URL 9537 0.21
Twitter/Hashtag+Citation 5308 0.23
Twitter/Username™ 5308 0.17
Web-HTML/Heading 37678 0.49
Web-HTML/Heading-Content™ 36921 0.48

type to be extracted (which should be self-explanatory). Names
ending with a * suffix indicate extraction tasks with con-
text. Intuitively, in these tasks a given sequence of characters
occurs at the same time as a desired extraction and as a sub-
string which should not be extracted, e.g., substring 11 is a
desired extraction when part of a date (as in 10-11-2013)
and should not be extracted when occurring “alone” (as in
there_are 11, dogs).

Table I also shows the desired extraction density p, which is
the ratio between the number of characters in desired extrac-
tions and the overall length of the dataset. The lower p, the
fewer desired extractions in a given amount of text. From
another point of view, the lower p, the less likely to “find”
a desired extraction by randomly choosing a substring of the
dataset.

C. Experimental Procedure

We assessed the extraction performance of the regular
expression generated for a given amount of user annotation
effort—more annotation effort results in more information
available for learning. We quantify extraction performance
with Fm, which is the harmonic mean of precision (ratio
between the number of extracted substrings which should
have been extracted and the number of all the extracted sub-
strings) and recall (ratio between the number of extracted
substrings which should have been extracted and the number
of all substrings which should have been extracted). We com-
pute precision and recall on the full dataset—of course, such
indexes cannot be computed in a real deployment. We quan-
tify user annotation effort as the time spent by the user while
annotating, according to the model presented in Section V-A.

In order to gain more insights into the results and the cor-
responding tradeoffs, we also computed the execution time
(the elapsed time minus the annotation effort), the number
of ACs and the computational effort (CE). The latter is an
hardware-independent index which quantifies the total num-
ber of character evaluations during an execution. By character

evaluation we mean the processing of a character by a can-
didate regular expression. The amount of CE spent at the
ith generation is given by the number of individuals exist-
ing at that generation multiplied by the number of characters
involved in each fitness evaluation at that generation. We exe-
cuted all our experiments on an Intel Xeon E5-2440 2.40 GHz
with 32GB of RAM.

We assessed the six design variants of our system (three
query triggers and two query builders) as follows. For each
task, we chose a random desired extraction as the only starting
annotated substring and, for each variant, we performed an
execution with a simulated user—that is, a program which
correctly answers system queries taking an annotation effort
given by the model in Section V-A. We repeated this procedure
30 times for each task and variant, with five different starting
extractions and six different random seeds. We averaged all
the results presented below across the 30 repetitions of each
experiment.

We terminated each execution upon the query for which
either: 1) a predefined amount of user annotation effort Ey has
been spent or 2) the Fm on the full dataset (i.e., not only on the
annotated portion) was 1. Although in a real deployment the
user cannot quantify Fm on a yet unannotated input text, we
chose to include the latter condition in the termination criterion
in order to provide a fair assessment of variants which are able
to generate perfect solutions before reaching the predefined
time budget. We set a tight user effort budget Ei = 60 s.

To place results in perspective, we also executed the
state-of-the-art passive learning tool [17] on the same tasks
(PL-solver, Section IV-A). In order to perform a meaningful
comparison, we executed PL-solver with the same user anno-
tation effort budget as the active learning tool. We estimated
the annotation effort for building a fully annotated training
set with the model based on real observations described in
Section V-A. We constructed the training set by annotating a
randomly chosen substring of the dataset such that the cor-
responding annotation effort was roughly equal to 60 s. We
repeated the procedure five times for each dataset by varying
the annotated substring.

VI. RESULTS
A. Extraction Performance

Table II (top) shows, for each active learning variant and
for PL-solver, all the performance indexes averaged across
all extraction tasks. Table III shows the differences among
each pair of active learning variants along with the statisti-
cal significance of the comparison according to the Wilcoxon
signed-rank test.2 Based on these results, several important
considerations can be made.

Concerning query builders, rQbC and SmartRand deliver
essentially the same Fm: roughly 0.69, obtained with Const200
and Solved query triggers. Query builder rQbC elicits a smaller
amount of ACs from the user, AC being 30%-50% lower
than for SmartRand. On the other hand, rQbC results in a
much higher CE and execution time. From a different point

2We omit the values of CE for simplicity; these values are strongly
correlated with execution time, though.

TABLE 11
AVERAGE FM AND EXECUTION TIME WITH EACH VARIANT,
AVERAGED ACROSS ALL TASKS (TOP) AND ACROSS
SPARSE TASKS ONLY (p < 0.1, BOTTOM)

Variant | Fm AC CE[x10°] Time [s]
SmartRand/Const30 0.63 1024 0.7 26.4

, SmartRand/Const200 | 0.69 1030 4.5 168.1
< SmartRand/Solved 0.69 992 4.2 170.6
£ rQbC/Const30 0.60 575 1.8 86.5
2 rQbC/Const200 0.69 651 10.4 677.3
rQbC/Solved 0.69 700 7.8 378.1
Passive 0.81 4710 26.6 1644.9

—~ SmartRand/Const30 | 0.46 2144 0.7 21.0
T SmartRand/Const200 | 0.45 2159 4.1 128.7
& SmartRand/Solved 0.47 2027 3.0 98.9
S rQbC/Const30 0.48 587 4.5 230.2
~ 1QbC/Const200 0.52 750 24.4 1505.0
% rQbC/Solved 0.56 795 19.4 903.0
& Passive 0.66 10395 40.1 4438.9

TABLE III

AVERAGE DIFFERENCES OF FM, AC, AND CE OF PAIRS OF THE PROPOSED
VARIANTS. FOR EACH PAIR, THE STATISTICAL SIGNIFICANCE IS SHOWN:
*:p<0.1,T: p <0.05, % p <0.01, p> 0.1 WITHOUT ANY SUBSCRIPT

22 25 €3 .3 .3 %

5z §¢Z 2 8z 8z RBE

Variant 38 58 &3 @8 28 23

SmartR./Const30 —0.06% —0.06% 0.03 —0.06% —0.06%

£ SmartR./Const200| 0.06% 0.00 0.09% 0.00 0.00

& SmartR/Solved | 0.06% 0.00 0.09f 0.00 0.00

£ rQbC/Const30 |—0.03 —0.09% —0.09% —0.09% —0.09%

M rQbC/Const200 0.06f 0.00 0.00 0.09% 0.00
rQbC/Solved 0.06¢ 0.00 0.00 0.09f 0.00

SmartR./Const30 —6 32* 449f 373t 324%

SmartR./Const200 6 38 455f 379f 330%

< SmartR /Solved —32% 38 417t 341F 292%

rQbC/Const30 —449% —455% —417t —767 —125%

rQbC/Const200 | —373F —379% —341% 74f —49%
rQbC/Solved —324% —330f —292% 125t 49%

= SmartR./Const30 —142% —144% —60t —651%7 —3521

o SmartR./Const200| 142f —3f g2t —509t —210%

£ SmartR./Solved 1441 3t 84t —507% —208*

g TQbC/Const30 60F —82f g4t —591%1 —292%

Z& rQbC/Const200 651% 509% 507 591f 299%
rQbC/Solved 352% 210 208t 292t —299f

of view, rQbC and SmartRandom deliver solutions of com-
parable quality based on a different tradeoff in terms of ACs
versus execution time.

Concerning query triggers, both Const200 and Solved out-
perform Const30 in terms of Fm, which in turn takes much
shorter execution time. In fact, the CE used by Const30
between queries turns out to be too small to achieve sat-
isfactory results. Unless stated otherwise, all the following
considerations will focus on Const200 and Solved query trig-
gers and will omit Const30. In general, Solved and Const200
are equivalent in terms of Fm; however, Solved is faster than
Const200 and requires smaller CE: this is due to the fact
that the former may save some execution time when a reg-
ular expression is found which solves the currently available

TABLE IV

AVERAGE FM AND EXECUTION TIME WITH EACH VARIANT ON EACH TASK. FOR THE FM, THE HIGHEST
VALUE AMONG ACTIVE LEARNING VARIANTS IS HIGHLIGHTED

F-measure Execution time [s]
E Bo E) E Bo E =
52 % é 8 é ko) % 8 ko) o 62 % 2 g é ko] % g k) o
E% EZ & Uz UZ O g E% EZ ES 0UZ UZ Y =
2f 25 Ec 25 3F 2= i |25 2E iz 3% 35 3z &
Task 50 »0 va L0 YO S A 50 »0 v 0 35 3 [
Bibtex/Author* 062 059 059 049 069 060 0.79 79 43.7 443 27.6 182.3 2169 908.6
Bibtex/Title* 0.21 050 053 031 043 044 0.76 | 394 202.2 264.3 64.5 326.2 261.0 2211.4
Cetinkaya-HTML/href 0.50 0.80 062 0.26 073 0.75 091 28.1 83.6 121.8 44.7 1434 1789 576.8
Cetinkaya-HTML/href-Content™ | 0.46 0.58 0.51 0.41 043 0.51 0.76 | 33.4 214.8 181.1 30.5 165.0 132.0 637.7
Cetinkaya-Text/All-URL 096 095 094 083 0.85 095 0.99 94 876 214 33.0 180.1 49.8 3814
CongressBill/Date 0.15 0.14 0.18 0.28 0.31 0.32 0.21 | 43.0 262.8 190.1 660.9 4974.792223.6 413.3
Email-Headers/Email-To-For* 0.15 0.10 0.11 0.22 027 0.26 0.58 | 23.4 156.8 176.4 253.5 1327.4 1559.515785.8
Email-Headers/IP 085 0.83 085 083 0.76 0.86 0.81 9.6 59.2 247 144.5 790.7 412.6 830.3
Log/IP 1.00 1.00 1.00 100 1.00 1.00 1.00 0.1 0.1 0.1 0.7 4.7 0.2 338.8
Log/MAC 1.00 1.00 1.00 100 1.00 1.00 1.00 0.3 0.5 0.2 0.4 1.4 0.2 484.5
NoProfitt HTML/Email 087 0.88 080 083 099 086 1.00 | 13.3 50.2 353 26.0 110.39 76.1 345.1
ReLIE-Email/Phone-Num. 0.75 0.72 076 0.55 0.70 0.72 0.91 | 21.8 119.7 73.9 53.1 216.7 121.2 726.3
ReLIE-HTML/AIl-URL 065 073 079 052 079 059 0.84 | 294 1783 934 31.7 170.3 156.8 639.6
ReLIE-HTML/HTTP-URL 0.78 0.79 0.79 0.55 0.69 0.64 0.86 | 31.1 193.1 107.1 46.9 224.6 86.7 4834
References/First-Author™ 0.39 047 045 053 0.57 0.65 0.77 74 45.0 294 39.1 215.2 198.2 488.6
Twitter/All-URL 1.00 1.00 100 100 1.00 1.00 0.98 0.1 0.1 0.1 0.1 0.1 0.1 363.7
Twitter/Hashtag+Citation 086 091 093 0.85 094 0.89 0.94 9.9 537 152 27.1 1549 28.0 335.0
Twitter/Username™ 085 1.00 092 098 095 094 1.00 8.1 34.2 3.7 16.0 62.3 8.0 300.2
Web-HTML/Heading 048 059 057 0.39 046 053 0.82 [114.0 704.9 9124 457 439.4 391.1 1345.2
Web-HTML/Heading-Content* 0.14 027 042 021 0.24 0.33 0.40 | 8.9 872.0 1116.5 184.7 3855.5 1460.3 5302.3
. \HH;! T T TTTT T T T TTT T T TTTT T TTTTTI T T TTTT T 117 |
annotations, a condition which is met in particular in the early © I * ot ot | L
. . . X .-
stages of the learning when few annotations are available. 5 0.8 Xg; o 2
. «
All the active learning variants delivers Fm, that is, quite S 0.6 x 3§ . o &
. . . a
high but smaller than that delivered by PL-solver. It is remark- E 0.4 st O 3
able, though, that active learning improves the other indexes by O v Z
. 02 TR TTT O A TT1 N A AR S AR N IVT R e w NUTT1 RN MRUTTT| ANEE o
almost one order of magnitude for SmartRand and by almost 3 0 1 2 3 7 %)
. 10 10 10 10 10 10 O
three times for rQbC. In detail, active learning elicits a much o 2
smaller amount of ACs from the user (AC with SmartRand Execution time [s] &
. . . . T T T T 11T T T T 1117 T T T T TTTT T X
and with rQbC is ~22% and ~12%, respectively, of AC with 1[o+ X e, =t ox tE o ‘ N =
PL-solver), requires a much smaller amount of CE (~12% and % 0.8 | . * o * g D&]% m 8 <
~25%) and a much smaller execution time (7% and ~ 23%). § 0.6 1 ﬂﬁ Xi O N g
. . . . X
In other words, while active learning does not reach the same § 04l S O i 8
solution accuracy as PL-solver, it does deliver good solution - s S)
: : : 027 (R Lol Lol \D\T O
accuracy on challenging tasks based on a radically different I 5 3 1 =
design tradeoff. 10 10 10 10 —
Table IV shows Fm and execution time at the granularity AC
of individual extraction tasks. It can be seen that for many Fig. 3. Fm versus execution time (top) or versus AC (bottom): one point

extraction tasks active learning manages to deliver Fm, that
is, either very high or very close to PL-solver. Indeed, on
4 on 20 tasks the best active learning variant improves over
PL-solver (CongressBill/Date, Email-Headers/IP, Twitter/All-
URL, and Web-HTML/Heading-Content*). On the other hand,
for some extraction tasks, active learning delivers an Fm, that
is, probably excessively low for many settings. For these tasks
active learning does not offer a useful tradeoff and PL-solver
is the only viable option.

Fig. 3 illustrates the tradeoff Fm versus execution time (top)
and Fm versus AC (bottom)—note the logarithmic scale on the
horizontal axis. It can be seen that a large number of points
representing active learning executions are close to the ideal
regions of the performance diagram. Moreover, active learning
elicits more than one order of magnitude less ACs from the
user, spends less than half CE and execution time.

10

for each task (corresponding to the average index across the repetitions),
logarithmic scale on horizontal axis.

Finally, Table V shows the regular expressions obtained with
rQbC/Solved in the first repetition for each task (with respect
to the 30 repetitions we performed in our experimentation). It
is fair to say that, in most cases, the shown regular expressions
appear to appropriately describe the patterns corresponding to
our 20 tasks.

B. Querying Behavior

In order to gain more insights into the user interactions
provoked by the active learning variants, we computed several
aggregate indexes from the queries generated during all exe-
cutions. Table VI reports, for each active learning variant, the

TABLE V

REGULAR EXPRESSIONS OBTAINED WITH RQBC/SOLVED: LONG
EXPRESSIONS ARE SPLIT OVER TWO LINES

Extraction task

‘ Regular expression

Bibtex/Author*

Bibtex/Title*
Cetinkaya-HTML/href
Cetinkaya-HTML/href-Cont.*
Cetinkaya-Text/All-URL
CongressBill/Date
Email-Headers/Email-To-For*
Email-Headers/IP

Log/IP

Log/MAC
NoProfit-HTML/Email

References/First-Author™

ReLIE-Email/Phone-Num.
ReLIE-HTML/AII-URL
ReLIE-HTML/HTTP-URL
Twitter/All-URL
Twitter/Hashtag+Citation

(2<=\w{l, 5}+\w{l, 3}+.) \w++, =
AwHt (2=[70] *+)
(2<=\{) ["}, 1++(2=\},)

href [T<><_] %+

(2<==") [""]x+

(2:ftp) +4+["2\) 3] ++

\w++_\w\w, J\d++

(?<=o) \wH+\ . \w++\ . \w++
\d\d++\ \d++\ . ["\1; -] ++

\wH+\ A\w++\ A\ w++\ . \w++

\w\w: \w\w: \w\w:\w\w:\w\w:\w\w
[TQI++[">o<]++
(2<=\w{1, 3}+\.) \w++, \w[":,]
*+ (2=\wx+)

\ (\w++\) S\ w++\w++

(?:http[>]++) ++

(?:http) ["><;, #.]x+

\wt+: /++\w\ . \wt+/\w++

(@] \w++

Twitter/Username™
Web-HTML/Heading

Web-HTML/Heading-Cont.*

(?<=@) \w++

<IO\T1++[7@]++

(2<=\w>) (2: [">@6]++>[">]++>)
++

proportion of queries with binary answers, the average number
|Q| of queries, the average number |Ap| of desired extractions
per query, the average number |U Ap| of desired extractions
available at the end of the execution and, finally, the average
ratio p, of characters in annotated desired extractions with
respect to the total number of ACs. For passive learning we
provide only indexes |U Apl, pgy, the other indexes being not
applicable to such a scenario.

It can be seen that all variants of active learning have avail-
able a much smaller amount |UAp| of extractions than passive
learning. Active learning executions have available only 5 and
6 extractions upon fermination while PL-solver has available
15 extractions for its full learning procedure. We believe that
this observation is crucial: it seems fair to claim that our active
learning setting, in which we start with only one annotated
extraction, is extremely challenging; and, that the ability of
generating solutions with 0.69 Fm (on the average) with just
5 and 6 extractions is indeed remarkable.

Table VI also highlights crucial differences between
SmartRand and rQbC: the former tends to consume the
annotation effort budget with less queries and tends to gen-
erate queries that require more edit operations from the user
(smaller values for |Q| and for Binary, respectively). Based
on these facts, we may also conclude that SmartRand gener-
ates queries that are sufficiently long to include at least part
of a desired extraction (indeed, SmartRand exhibits smaller
pq than rQbC and comparable |Apl). This observation sug-
gests that SmartRand generates solutions of good quality only
because several of our tasks have a large density of desired
extractions—sufficiently large to make it very likely that a ran-
domly generated query will partly overlap a desired extraction.
This hypothesis is confirmed by the analysis in the next sec-
tion, in which we focus on those extraction tasks with desired
extractions that are a very small portion of the text. Tasks of
this sort are indeed practically relevant and highly challenging.

11

TABLE VI
AGGREGATE INDEXES OVER QUERIES GENERATED DURING ACTIVE
LEARNING EXECUTIONS, AVERAGED ACROSS ALL TASKS (ToP)
AND ACROSS SPARSE TASKS (p < 0.1, BOTTOM)

Variant | Binary |Q| |Ap| [|UAbl pq
SmartRand/Const30 0.71 10.22 047 5.30 0.29
. SmartRand/Const200 0.71 9.95 0.46 5.00 0.29
% SmartRand/Solved 0.71 10.25 0.47 5.24 0.30
f rQbC/Const30 0.89 16.48 0.28 4.90 0.51
Z 1QbC/Const200 0.89 15.07 0.44 5.04 0.44
rQbC/Solved 0.85 13.48 0.46 6.30 0.46
Passive - - - 15.14 0.18
— SmartRand/Const30 0.93 9.69 0.42 4.45 0.03
‘\D/ SmartRand/Const200 0.93 10.19 0.36 4.05 0.03
& SmartRand/Solved 0.92 9.75 0.39 4.21 0.03
3 rQbC/Const30 0.89 19.23 0.31 6.23 0.16
~. 1rQbC/Const200 0.89 17.49 0.33 6.17 0.12
'j‘(@ rQbC/Solved 0.81 14.81 0.50 7.96 0.15
E Passive - - - 16.80 0.04

C. Effectiveness on Sparse Tasks

We analyzed more in depth the results on the five sparse
extraction tasks, i.e., those with a density p of desired
extractions smaller than 0.1 (see Table I): CongressBill-Date,
Email-Headers/Email-To-For*, Email-Headers/IP, ReLIE-
Email/Phone-Number, and References/First-Author*.

Table II-bottom shows the average Fm, AC, CE, and exe-
cution times, averaged only across those sparse tasks. This
data illustrates several key findings. First, there is a much
sharper difference between query builders than when consider-
ing all tasks. It can be seen that rQbC now clearly outperforms
SmartRandom in terms of Fm. The AC increase is only ~10%
for rQbC while it is ~100% for SmartRand. Increase of execu-
tion time and CE is instead more pronounced with SmartRand.
Second, the Fm advantage of PL-solver over the best active
learning variant (rQbC/Solved) is narrower on sparse tasks
than on the full set of tasks: 0.10 versus 0.12, respectively.
Third, the AC and execution time advantage of rQbC/Solved
over PL-solver is higher on sparse tasks: 29600 versus ~4000
chars and 3500 s versus ~1300 s.

In other words, the superiority of rQbC over SmartRand is
much more remarkable than it would appear from the aver-
age values across all tasks: the former is able to handle sparse
extraction tasks effectively, while the latter is not. Furthermore,
on sparse tasks, rQbC constitutes an even more viable alterna-
tive to passive learning in the tradeoff between effectiveness
and efficiency.

This finding is further confirmed by Table VI-bottom, which
shows the aggregate query indexes computed only over sparse
tasks. It can be seen that, for these tasks, the SmartRand query
builder simply tends to generate many long queries without
any desired extraction (much higher value for the Binary index
and slightly smaller values for both |Ap| and |UAp]|). Indeed,
the density of extractions in annotated data drops from 0.36
to 0.05. On the other hand, the rQbC query builder tends to
generate queries which are qualitatively similar to those over
the full set of tasks (equivalent value for the Binary index) and
that manage to elicit a slightly larger amount of desired extrac-
tions. Most importantly, the density of extractions in annotated

TABLE VII
MEAN AND STANDARD DEVIATION FOR THE TIME INTERVAL BETWEEN CONSECUTIVE QUERIES, IN SECONDS, FOR EACH VARIANT/TASK

SmartRand SmartRand SmartRand rQbC rQbC rQbC
Task Const30 Const200 Solved Const30 Const200 Solved
mean sd mean sd mean sd mean sd mean sd mean sd

Bibtex/Author* 0.8 0.8 4.6 4.6 4.5 8.9 1.3 3.0 11.1 14.1 20.8 13.7
Bibtex/Title* 3.0 3.0 153 173 20.2 31.8 3.8 69 216 189 277 154
Cetinkaya-HTML/href 2.3 2.7 105 14.1 10.4 14.6 2.0 4.2 7.9 9.1 14.9 104
Cetinkaya-HTML/href-Content™® 2.4 26 159 199 139 204 1.6 3.0 84 124 13.1 6.8
Cetinkaya-Text/All-URL 1.4 1.3 6.1 6.6 1.6 4.3 1.4 2.2 7.2 8.3 12.1 2.8
CongressBill/Date 6.6 7.1 382 31.8 264 36.1 42.8 53 343.9 433.4 397.0 159.6
Email-Headers/Email-To-For™* 4.3 4.7 23.7 297 355 56.6 143 17.0 729 83.5 150.5 104.6
Email-Headers/IP 2.0 2.1 10.7 8.6 5.1 12.6 8.2 127 438 446 656 31.8
Log/IP 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.2 1.0 0.8 0.0 0.1
Log/MAC 0.1 0.1 0.3 0.5 0.0 0.0 0.1 0.1 0.6 0.6 0.0 0.0
NoProfit-HTML/Email 1.1 1.0 4.7 4.3 2.6 4.9 1.3 1.1 7.0 4.8 7.6 4.1
ReLIE-Email/Phone-Num. 1.7 1.9 9.0 144 5.5 11.4 2.5 4.7 11.9 15.7 20.8 7.4
ReLIE-HTML/AIl-URL 2.7 24 163 16.5 83 13 1.8 3.2 11.2 145 15.2 9.8
ReLIE-HTML/HTTP-URL 2.8 3.0 169 16.2 9.3 155 2.9 50 173 16.3 122 6.0
References/First-Author™ 0.4 0.3 2.4 1.8 1.6 2.5 1.6 3.7 11.6 14.7 18.2 12.5
Twitter/All-URL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Twitter/Hashtag+Citation 0.7 0.7 3.6 3.3 1.0 2.3 1.2 1.2 6.5 6.8 7.1 1.8
Twitter/Username™ 0.5 0.6 2.6 2.8 0.2 0.7 0.8 0.7 3.8 4.7 3.0 0.5
Web-HTML/Heading 8.4 128 58.1 64.2 74.6 129.2 3.8 56 38.1 81.5 74.1 36.8
Web-HTML/Heading-Content™ 6.1 9.6 61.7 224.7 75.8 186.9 9.8 11.1 219.1 200.4 274.0 114.7

data p, exhibits a 75% decrease from 0.47 to 0.14, while the
SmartRand exibits a 90% decrease from 0.29 to 0.03.

It is also important pointing out that, for sparse tasks, p,
with SmartRand and with passive learning are almost iden-
tical (~0.04) while p, with rQbC is much larger (0.14).
These values imply that SmartRand tend to generate learning
data which simply reflects the intrinsic density of the desired
extractions whereas rQbC is indeed able to dig desired extrac-
tions out of the data even when those extractions are sparse.
We believe this is one of the most interesting properties of our
proposal.

D. Querying Intervals

An important dimension for an active learning tool is the
distribution of time intervals between consecutive queries,
whose mean and standard deviation are shown in Table VII.

Concerning reference methods rQbC/Const200 and
rQbC/Solved, it can be seen that tasks can be roughly
grouped in three categories: one with queries generated every
few seconds, another with queries generated every few tens
of seconds and a third one (composed of the two most
challenging tasks) in which queries are generated every few
minutes. While it is not surprising that a near-interactive
behavior cannot be supported with all tasks, it is perhaps more
surprising that interactive or near-interactive may indeed be
supported with several tasks. Determining what an acceptable
interquery interval is difficult, because such a limit depends
on the task difficulty, both real and perceived, as well as
on the subjective need of having the task solved and the
available alternatives. Overall, it seems fair to claim that an
active learning approach with near-interactive behavior for
evolutionary solvers is indeed feasible.

Concerning the difference among query triggers, Const200
and Solved are very similar when used with SmartRand (on the
average across all tasks, 15.0 s versus 14.8 s) while Const200

12

exhibits a smaller interquery time interval than Solved when
used with rQbC (42.2 s versus 56.7 s, respectively).

We expected interquery time intervals would be much more
uniform with Const200 than with Solved, thereby leading to
a better, more predictable behavior from the view of user.
Actual data do not result in a clear-cut between the two
options, though. Indeed, standard deviation is rather high for
all variants which does not lead to a very predictable behavior.

We investigated the feasibility of providing the user with
an estimate of the time interval required for generating the
next query. Such an indication may mitigate the inconvenience
caused by the variability of interquery time intervals: when the
user answers a query, he knows immediately for how long he
will have to wait for the next one.

We experimented with a very simple estimator, i.e., we esti-
mate the time interval for generating the next query with the
time spent for generating the previous query. As it turns out,
such an estimator suffices to provide a very reliable indica-
tion, with a mean absolute percentage error across all of our
tasks equal to 9.3% and 8.2%, respectively, for rQbC/Solved
and rQbC/Const200. Given such good figures, we chose to not
devote further effort in tuning the estimator. Interestingly, the
prediction for the Solved query trigger is nearly as good as the
prediction for Const200 despite the fact that, with the former,
one does not know in advance how many generations will be
required before the next query.

E. Impact of Solver Improvements

We executed a further experimental campaign in order
to gain insights into two of our key solver improvements
(Section IV-B): new fitness definition and enforcement of
behavioral diversity in populations. To this end, we repeated
the above suites of experiments in exactly the same con-
figuration, alternately removing each of the two proposed
improvements. Table VIII shows the values averaged across

TABLE VIII
AVERAGE FM, AC, AND EXECUTION TIME WITH OR WITHOUT
THE IMPROVEMENTS IN THE SOLVER

= z 5

R 2 B

55 <2 gg g¢&=

Variant o & ERS) EE s B
SmartRand/Const30 0.66 0.63 0.58 0.60

95’ SmartRand/Const200 0.72 0.69 0.62 0.65
% SmartRand/Solved 0.71 0.68 0.60 0.64
E rQbC/Const30 0.62 0.62 0.59 0.58
Z rQbC/Const200 0.71 0.69 0.61 0.65
rQbC/Solved 0.71 0.62 0.63 0.69
SmartRand/Const30 916 773 745 686
SmartRand/Const200 922 723 750 683

© SmartRand/Solved 894 737 740 690
< rQbC/Const30 550 520 687 695
rQbC/Const200 625 550 708 613
rQbC/Solved 683 643 707 617

— SmartRand/Const30 25.6 22.6 22.8 7.8
o SmartRand/Const200 | 163.1 1229 128.0 40.2
E SmartRand/Solved 169.5 83.1 75.6 27.2
; rQbC/Const30 56.3 81.3 51.0 23.2
2 rQbC/Const200 451.1 377.1 2883 1274
M QbC/Solved 2809 2912 205.6 95.6

all tasks for Fm, AC, and execution time> obtained with: our
proposed solver, the proposed solver without enforcement of
behavioral diversity, the proposed solver with the fitness used
in PL-solver [17] and, finally, with the solver proposed in our
earlier active learning work [33].

It can be seen that our new fitness definition and
enforcement of behavioral diversity indeed deliver significant
improvements in Fm and thus turn out to be very useful for
active learning. One may wonder whether these mechanisms
could improve Fm of PL-solver as well. Although we currently
have no elements for answering this question, we speculate
that these mechanisms are unlikely to improve the quality
of solutions in passive learning because they are meant to
address scenarios with very few annotated data and small CE,
while PL-solver has not been designed for addressing those
scenarios.

Concerning AC, we observe that our proposed improve-
ments leave that figure essentially unchanged. On the other
hand, Table VIII shows that, not surprisingly, the improved
Fm with unchanged AC is associated with an increased
execution time.

VII. CONCLUSION

We have designed, implemented and assessed experimen-
tally an active learning approach for the automatic generation
of regular expressions for entity extraction. The approach con-
structs candidate solutions with GP and selects queries with
a form of querying-by-committee, i.e., based on a measure
of disagreement within the best candidate solutions. All the
components are carefully tailored to the peculiarities of active
learning with GP and of entity extraction from unstructured
text. We evaluate our proposal in depth, on a number of

3In this suite of experiments we did not include the CongressBill/Date task
due to its very large execution times.

13

challenging datasets and based on a realistic estimate of the
annotation effort involved in answering each single query. Our
results indicate that the approach is practically feasible, deliv-
ering high accuracy in nearly all the extraction tasks analyzed
while at the same time ensuring significant savings in terms of
CE, ACs, and execution time over a state-of-the-art baseline.

Beyond the specific problem addressed, we also remark that
this paper is one of the very few successful applications of GP
based on active learning, that is, in which the labeled data is
acquired during the search based on queries constructed by the
system rather than being acquired all at once before starting
the learning process.

REFERENCES

[1] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” ACM
SIGPLAN Notices, vol. 50, no. 1, pp. 677-688, 2015.

V. Le and S. Gulwani, “FlashExtract: A framework for data extraction by
examples,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 542-553, 2014.
B. Wu, P. Szekely, and C. A. Knoblock, “Minimizing user effort in
transforming data by example,” in Proc. 19th Int. Conf. Intell. User
Interfaces, Haifa, Israel, 2014, pp. 317-322.

K. Davydov and A. Rostamizadeh. (2014). Smart Autofill—
Harnessing the Predictive Power of Machine Learning in Google
Sheets. [Online]. Available: http://googleresearch.blogspot.it/
2014/10/smart-autofill-harnessing-predictive.html

S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Commun. ACM, vol. 55, no. 8, pp. 97-105, 2012.

P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer, “Proactive wran-
gling: Mixed-initiative end-user programming of data transformation
scripts,” in Proc. 24th Annu. ACM Symp. User Interface Softw. Technol.,
Santa Barbara, CA, USA, 2011, pp. 65-74.

M. Gualtieri, “Empowering the ‘business developer,” Forrester Res.,
Cambridge, MA, USA, Tech. Rep., Jan. 2011. [Online]. Available:
https://www.forrester.com/report/Empowering+The+Business+
Developer/-/E-RES58309

F. Ciravegna, “Adaptive information extraction from text by rule induc-
tion and generalisation,” in Proc. Int. Joint Conf. Artif. Intell., vol. 2.
Seattle, WA, USA, 2001, pp. 1251-1256.

T. Wu and W. M. Pottenger, “A semi-supervised active learning algo-
rithm for information extraction from textual data,” J. Amer. Soc. Inf.
Sci. Technol., vol. 56, no. 3, pp. 258-271, 2005.

B. Rozenfeld and R. Feldman, “Self-supervised relation extraction from
the Web,” Knowl. Inf. Syst., vol. 17, no. 1, pp. 17-33, 2008.

A. Cetinkaya, “Regular expression generation through grammatical evo-
lution,” in Proc. Conf. Companion Genet. Evol. Comput. (GECCO),
London, U.K., 2007, pp. 2643-2646.

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. V. Jagadish, “Regular expression learning for information extrac-
tion,” in Proc. Conf. Empirical Methods Nat. Lang. Process., Honolulu,
HI, USA, 2008, pp. 21-30.

R. Babbar and N. Singh, “Clustering based approach to learning regular
expressions over large alphabet for noisy unstructured text,” in Proc. 4th
Workshop Anal. Noisy Unstruct. Text Data, Toronto, ON, Canada, 2010,
pp. 43-50.

F. Brauer, R. Rieger, A. Mocan, and W. M. Barczynski, “Enabling
information extraction by inference of regular expressions from sample
entities,” in Proc. 20th ACM Int. Conf. Inf. Knowl. Manag., Glasgow,
U.K., 2011, pp. 1285-1294.

D. Angluin, “Queries and concept learning,” Mach. Learn., vol. 2, no. 4,
pp. 319-342, 1988.

B. Settles, “Active learning literature survey,” Univ. Wisconsin Madison,
vol. 52, nos. 55-66, p. 11, 2010.

A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Inference of reg-
ular expressions for text extraction from examples,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 5, pp. 1217-1230, May 2016.

D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in Proc. 17th Annu. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, Dublin, Ireland, 1994, pp. 3—12.

T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden Markov models
for information extraction,” in Advances in Intelligent Data Analysis.
Heidelberg, Germany: Springer, 2001, pp. 309-318.

[2]
[3]

[4]

[5]
[6]

2

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

http://googleresearch.blogspot.it/2014/10/smart-autofill-harnessing-predictive.html
http://googleresearch.blogspot.it/2014/10/smart-autofill-harnessing-predictive.html
https://www.forrester.com/report/Empowering+The+Business+Developer/-/E-RES58309
https://www.forrester.com/report/Empowering+The+Business+Developer/-/E-RES58309

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

F. Olsson, “A literature survey of active machine learning in the con-
text of natural language processing,” Swedish Inst. Comput. Sci., Kista,
Sweden, Tech. Rep. T2009:06, 2009.

J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, vol. 1. Cambridge, MA, USA: MIT
Press, 1992.

A. Bartoli, G. Davanzo, A. De Lorenzo, E. Medvet, and E. Sorio,
“Automatic synthesis of regular expressions from examples,” Computer,
vol. 47, no. 12, pp. 72-80, Dec. 2014.

A. Bartoli et al., “Automatic generation of regular expressions from
examples with genetic programming,” in Proc. 14th Annu. Conf.
Companion Genet. Evol. Comput., Philadelphia, PA, USA, 2012,
pp. 1477-1478.

A. Esuli, D. Marcheggiani, and F. Sebastiani, “Sentence-based active
learning strategies for information extraction,” in Proc. IIR, Padua, Italy,
2010, pp. 41-45.

B. Settles, M. Craven, and L. Friedland, “Active learning with real anno-
tation costs,” in Proc. NIPS Workshop Cost Sensitive Learn., Vancouver,
BC, Canada, 2008, pp. 1-10.

D. Spina, M.-H. Peetz, and M. de Rijke, “Active learning for entity
filtering in microblog streams,” in Proc. 38th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, Santiago, Chile, 2015, pp. 975-978.

Y. Cheng et al., “Feedback-driven multiclass active learning for
data streams,” in Proc. 22nd ACM Int. Conf. Inf. Knowl. Manag.,
San Francisco, CA, USA, 2013, pp. 1311-1320.

W. Cai, M. Zhang, and Y. Zhang, “Active learning for ranking with
sample density,” Inf. Retrieval J., vol. 18, no. 2, pp. 123-144, 2015.
Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and C. Yu, “Active learning
in keyword search-based data integration,” Very Large Data Bases J.,
vol. 24, no. 5, pp. 611-631, 2015.

K. Murthy, P. Deepak, and P. M. Deshpande, “Improving recall of
regular expressions for information extraction,” in Web Information
Systems Engineering—WISE. Heidelberg, Germany: Springer, 2012,
pp. 455-467.

Y. Guo and D. Schuurmans, “Discriminative batch mode active learn-
ing,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada,
2008, pp. 593-600.

Z. Wang and J. Ye, “Querying discriminative and representative samples
for batch mode active learning,” ACM Trans. Knowl. Disc. Data, vol. 9,
no. 3, p. 17, 2015.

A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Active learning
approaches for learning regular expressions with genetic programming,”
in Proc. 31th ACM Symp. Appl. Comput., Pisa, Italy, 2016, pp. 97-102.
J. De Freitas et al., “Active learning genetic programming for record
deduplication,” in Proc. IEEE Congr. Evol. Comput. (CEC), Barcelona,
Spain, 2010, pp. 1-8.

R. Isele and C. Bizer, “Active learning of expressive linkage rules using
genetic programming,” Web Semantics Sci. Services Agents World Wide
Web, vol. 23, pp. 2-15, Dec. 2013.

A.-C. N. Ngomo and K. Lyko, “Eagle: Efficient active learning
of link specifications using genetic programming,” in The Semantic
Web: Research and Applications. Heidelberg, Germany: Springer, 2012,
pp. 149-163.

R. Curry, P. Lichodzijewski, and M. 1. Heywood, “Scaling genetic
programming to large datasets using hierarchical dynamic subset selec-
tion,” I[EEE Trans. Syst, Man, Cybern. B, Cybern., vol. 37, no. 4,
pp. 1065-1073, Aug. 2007.

J. M. Luna, J. R. Romero, C. Romero, and S. Ventura, “On the
use of genetic programming for mining comprehensible rules in sub-
group discovery,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2329-2341,
Dec. 2014.

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic pro-
gramming via iterated local search for dynamic job shop scheduling,”
IEEE Trans. Cybern., vol. 45, no. 1, pp. 1-14, Jan. 2015.

M. Yang, C. Li, Z. Cai, and J. Guan, “Differential evolution with auto-
enhanced population diversity,” IEEE Trans. Cybern., vol. 45, no. 2,
pp. 302-315, Feb. 2015.

J. Fiirnkranz, “Separate-and-conquer rule learning,” Artif. Intell. Rev.,
vol. 13, no. 1, pp. 3-54, 1999.

G. L. Pappa and A. A. Freitas, “Evolving rule induction algorithms with
multi-objective grammar-based genetic programming,” Knowl. Inf. Syst.,
vol. 19, no. 3, pp. 283-309, 2009.

R. C. Barros, M. P. Basgalupp, A. C. P. L. E de Carvalho, and
A. A. Freitas, “A hyper-heuristic evolutionary algorithm for automati-
cally designing decision-tree algorithms,” in Proc. 14th Int. Conf. Genet.
Evol. Comput., Philadelphia, PA, USA, 2012, pp. 1237-1244.

14

[44]

[45]

[46]

[47]

(48]

[49]

[50]

A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Learning text pat-
terns using separate-and-conquer genetic programming,” in Proc. 18th
Eur. Conf. Genet. Program., Copenhagen, Denmark, 2015, pp. 16-27.
N. Abe and H. Mamitsuka, “Query learning strategies using boosting
and bagging,” in Proc. 15th Int. Conf. Mach. Learn. (ICML), Madison,
WI, USA, 1998, p. 1-9.

P. Melville and R. J. Mooney, “Diverse ensembles for active learning,”
in Proc. 21st Int. Conf. Mach. Learn., Banff, AB, Canada, 2004, p. 74.
H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,”
in Proc. 5th Annu. Workshop Comput. Learn. Theory, Pittsburgh, PA,
USA, 1992, pp. 287-294.

W. W. Y. Ng, J. Hu, D. S. Yeung, S. Yin, and F. Roli, “Diversified
sensitivity-based undersampling for imbalance classification problems,”
IEEE Trans. Cybern., vol. 45, no. 11, pp. 2402-2412, Nov. 2015.

J. Zhang, X. Wu, and V. S. Shengs, “Active learning with imbal-
anced multiple noisy labeling,” IEEE Trans. Cybern., vol. 45, no. 5,
pp. 1095-1107, May 2015.

I. Triguero, S. Garcia, and F. Herrera, “SEG-SSC: A framework based
on synthetic examples generation for self-labeled semi-supervised clas-
sification,” IEEE Trans. Cybern., vol. 45, no. 4, pp. 622-634, Apr. 2015.

Alberto Bartoli received the (cum laude) degree
in electrical engineering and the Ph.D. degree in
computer engineering from the University of Pisa,
Pisa, Italy, in 1989 and 1993, respectively.

Since 1998, he has been an Associate
Professor with the Department of Engineering
and Architecture, University of Trieste, Trieste,
Italy, where he is the Director of the Machine
Learning Laboratory. His current research interests
include machine learning applications, evolutionary
computing, and security.

Andrea De Lorenzo received the Diploma
(cum laude), M.S., and Ph.D. degrees from the
University of Trieste, Trieste, Italy, in 2006, 2010,
and 2014, respectively, all in computer engineering.

His current research interests include evolutionary
computing, computer vision, and machine learning
applications.

Eric Medvet received the (cum laude) degree in
electronic engineering and the Ph.D. degree in com-
puter engineering from the University of Trieste,
Trieste, Italy, in 2004 and 2008, respectively.

He is currently an Assistant Professor of
Computer Engineering with the Department of
Engineering and Architecture, University of Trieste.
His current research interests include genetic pro-
gramming, Web and mobile security, and machine
learning applications.

Fabiano Tarlao received the graduation degree
in electronic engineering from the University of
Trieste, Trieste, Italy, in 2010, where he is currently
pursuing the Ph.D. degree with the Department of
Engineering and Architecture.

His current research interests include Web secu-
rity, genetic programming, and machine learning
applications.

