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a b s t r a c t

A parametric investigation of radiative heat transfer is carried out, including the effects of conjugate heat
transfer between fluid and solid media. The thermal radiation is simulated using the P1-model. The
numerical model and the thermal coupling strategy, suitable for a transient solver, is described. Such
numerical coupling requires that the radiative equation is solved several times at each iteration; hence,
the computational cost of the radiative model is a crucial issue. The P1-model is adopted because of its
particularly fast computation. First, a collection of benchmark cases is presented and used to carefully
validate the radiation model against literature results and to analyse the model prediction limits.
Despite the simplicity of the model, it satisfactorily reproduces the thermal radiation effects. Some lack
of accuracy is identified in particular cases. Second, a number of benchmark cases are described and
adopted to investigate fluid–solid thermal interaction in the presence of radiation. Three cases are
designed, to couple radiation with: pure conduction, conduction and forced convection, conduction
and natural convection. In all the cases, the surface radiative heat transfer strongly influences the system
thermodynamics, leading to a significant increase of the fluid–solid interface temperature. The main non-
dimensional numbers, related to the mutual influence of the different heat transfer modes, are intro-
duced and employed in the analyses. A new conduction-radiation parameter is derived in order to study
the conductive boundary layer in absence of convective heat transfer.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In thermal and combustion engineering, the radiative heat
transfer (RHT) strongly influences the overall heat transfer; there-
fore the radiative effects cannot be neglected in accurate analyses
of many practical and industrial applications. This is especially true
for high-temperature systems, like combustion devices (engines,
rocket nozzles, furnaces), solar collectors and nuclear reaction in
power plants. Yet, radiation can influence low-temperature sys-
tems, leading to non-negligible effects when combined with con-
vection and conduction (electric ovens, lamp bulb enclosures,
room heating systems).

Experimental investigations of the above-mentioned problems
can be expensive and laborious. It is therefore of interest to
develop and validate accurate and fast-response numerical simula-
tion methods for studying such thermo-fluid dynamics systems.
Accurate simulations of thermal radiation effects pose big
challenges:

(i) from a physical point of view, radiation is a remarkably com-
plex phenomenon. A mathematical model for RHT can be
only derived under simplified hypotheses;

(ii) particular attention must be paid to the interaction with
fluid medium. An effective coupling strategy has to be
adopted, especially in the presence of buoyancy driven flow
or participating medium (i.e. a medium that absorbs, emits
or scatters radiation);

(iii) heat exchange at a fluid–solid interface often plays a crucial
role. The surface heat transfer by conduction and radiation
are strongly coupled between each other and a suitable con-
jugate heat transfer (CHT) strategy needs to be adopted.
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A thermo-fluid dynamic numerical solver, that takes in consid-
eration all these aspects, is here described and tested in several
benchmark cases. To the best of the authors knowledge, this is
the first time that an extensive study of the interaction between
thermal radiation and conjugate heat transfer is presented.

The general theory of thermal radiation has been extensively
studied in the last century. A comprehensive theoretical back-
ground on this subject is presented by Modest [23] and Howell
et al. [17]. They describe the physics of thermal radiation and
derive the RHT equation. They also address the engineering treat-
ment of thermal radiation, with a description of a number of
approximation methods that are generally used. Other milestones
in the field are the book of Viskanta [35], that deals with radiation
in combustion systems, and the work of Hottel and Sarofim [15],
that (albeit quite outdated) collects a large number of details about
physical measurements of radiative quantities. A number of
approximation methods for RHT, each one valid only under specific
assumptions, have been proposed. We refer to Viskanta [36], Vis-
kanta and Mengüç [37] for a detailed review of such general meth-
ods, and to Carvalho and Farias [3] for an overview on numerical
models for combustion systems.

Nowadays, the most popular numerical solution approaches for
RHT in participating media, are subdivided into the following fam-
ilies: discrete ordinates methods (DOM), spherical approximation
(PN) methods and Monte Carlo methods (MCM). The RHT equation
is an integro-differential equation that depends on the direction of
the radiation propagation. In the DOM approach, the equation is
discretised along a finite number of directions, and the integral
term is approximated by numerical quadrature. It can lead to very
accurate results, but its accuracy strongly depends on the quadra-
ture scheme used. Moreover, a correct resolution requires a fine
angular and spatial discretisation; thus, it is highly computational
demanding (see Hassanzadeh and Raithby [14], Modest [23]). The
general strategy of the PN approach is to expand the radiative func-
tions in series of spherical harmonics, and to use their orthogonal-
ity properties over a sphere to convert the RHT equation to a
relatively simple partial differential equation. Compared to the
DOM, this method is computationally cheaper but it has some
intrinsic drawbacks: generally speaking, it tends to overestimate
the RHT and it can lose accuracy, for example, in the case of colli-
mated irradiation or for a strongly anisotropic radiative source
[23]. The MCM provides a statistical approach to the problem.
For an overview on this method we refer to Howell [16] and How-
ell et al. [17]. The MCM is found to be accurate and requires a small
computational effort. However, the non-deterministic nature of the
model leads to some compatibility problems with the determinis-
tic numerical solvers, while the stochastic noise can introduce sta-
bility issues when radiation is coupled with other processes (such
as convection and conduction). Recently, also the lattice Boltzmann
method has been applied to RHT problems by Asinari et al. [1] and
Mishra et al. [21].

Different implementations of the aforementioned approaches
give rise to a number of radiative models, that have been used in
a wide range of engineering case simulations. The validation of
such radiative models in fluid dynamic systems poses some prob-
lems. There are few experimental studies available for comparison
purposes, and often validation has to be performed against other
numerical simulation results. In this respect, two cases have been
studied to a large extent: natural convection in a plain vertical
channel with radiative walls [31,11,4,38,2]; buoyancy driven flow
in a two-dimensional cavity with differently heated walls
[12,19,24,39,40].

Concerning the fluid–solid heat transfer, we refer to Dorfman
and Renner [8] for a review of the CHT techniques, while Duchaine
et al. [9,10] give a detailed description and an analysis of stability
and efficiency of some coupling strategies. The fluid–solid heat
transfer by conduction has been studied in some archetypal cases.
Among the others, Tiselj et al. [32] and Garai et al. [13] studied the
effects of CHT in two-dimensional channel flow, while Cintolesi
et al. [6] investigated the influence of conductive solid boundaries
on the fluid dynamics of a differently heated square cavity.

To summarise, different radiation models have been developed
in the past and used in numerical solvers where the solid wall is
treated as a boundary condition to the fluid domain and the inter-
action with the solid medium is not considered. On the other hand,
recently, the CHT problem has been studied by several authors, in
presence of conduction and convection but neglecting radiation.
Here we develop a methodology aimed at the simulation of heat
transfer in solid–fluid interacting media, considering the three
mechanisms, namely conduction, convection and radiation.
Specifically, the first-order spherical harmonics approximation
(P1-model) for the RHT equation is adopted. It is coupled with
the Neumann–Neumann CHT technique for a complete resolution
of thermo-fluid dynamics problems, that involve participating fluid
media and conductive solid boundaries. The numerical solver has
been developed within the OpenFOAM framework. First, the
numerical model and the coupling between the surface radiation
and the Neumann–Neumann CHT are described. Second, the pre-
diction capabilities and the limits of the radiative model adopted
are investigated in several reference situations. Such test cases
involve statistical steady-state simulations combining conduction,
convection and radiation in participating media. Third, a number of
new benchmark cases including conduction, convection, thermal
radiation and CHT with solid walls are introduced. To the best
knowledge of the authors there are no such cases available in the
open literature, and they thus form a new set of benchmark cases.
The cases are used in the present work for unique parametric
investigations of RHT with fluid–solid surface heat transfer.

Three non-dimensional numbers describing the relative impor-
tance of the heat transfer modes in fluid medium, i.e. convection-
conduction, radiation-convection and radiation-conduction, are
derived. They are used to perform a parametric study of thermal
radiation effects and to investigate the mutual interaction among
the heat transfer mechanisms, together with the surface heat
transfer. Notably, the heat fluxes ratio number Hf is introduced
to investigate the conductive boundary layer.

The paper is organised as follows: Section 2 presents the mathe-
matical model adopted and the numerical implementation within
the OpenFOAM framework; Section 3 describes the non-
dimensional numbers that govern the heat transfer modes in pres-
ence of thermal radiation; Section 4 validates the radiative model
for a set of availablebenchmark caseswithout surfaceheatexchange;
Section 5 introduces new benchmark cases for coupling of RHT and
surface radiative heat exchange (SRHT), and provides a parametric
study of RHT-SRHT; Section 6 gives the concluding remarks.
2. Simulation methodology

This section describes the complete thermodynamic model,
including thermal radiation, conduction, convection and fluid–
solid heat transfer. We limit the description to the thermodynamic
solver, since it is independent of how the velocity field is solved.

The subscripts specify the particular use of a generic variable. If
/ is the generic variable, then: /f is related to fluid region; /s is
related to solid region; /w is the variable evaluated at the fluid–
solid interface.
2.1. Radiative model

A detailed mathematical derivation of the P1-model for RHT is
given by Modest [23] and it is not repeated here. However, the
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physical hypotheses behind the radiative model are briefly
recalled: the medium is considered grey (no wavelength depen-
dency of the emission, absorption and scattering coefficients) and
diffusive (the coefficients do not depend on the direction of prop-
agation); the enclosure surfaces are considered opaque (the rays
penetrating into the body are internally absorbed) and grey diffu-
sive (surface reflection is not taken into account).

The radiative model has to reproduce several phenomena: (i)
RHT field in a participating medium; (ii) thermal radiation contri-
bution on fluid medium temperature; (iii) SRHT at the solid con-
ductive boundaries. A description of the mathematical model for
the three above-mentioned items follows.

2.1.1. Radiative heat transfer
The governing equation and the boundary condition of the

P1-model for RHT with absorption, emission and linear anisotropic
scattering from the medium read, respectively

r2GðrÞ ¼ jð3jþ 3rs � rsAÞ GðrÞ � 4rT4ðrÞ
h i

ð1Þ
@

@n
GðrwÞ ¼ �

3jþ 3rs � rsA
2ð2� �Þ GðrwÞ � 4rT4ðrwÞ

h i
ð2Þ

Here G is the total incident radiation function; T is the absolute tem-
perature; r and rw represent a point in the medium and onto the
solid boundary, respectively; n is the solid boundary normal versor.
Eq. (2) accounts for the radiation emitted/absorbed by the bound-
aries and it is known as the Marshak’s boundary condition for the
P1-approximation. The constant coefficients are physical radiative
parameters, namely: j the total, linear absorption/emission coeffi-
cient; rs the total isotropic scattering coefficient; A the linear aniso-
tropic scattering factor; � the solid surface emissivity;
r ¼ 5:670� 10�8 W=ðm2 K4Þ the Stefan–Boltzmann constant.

For comparison purposes with literature results, the radiative
heat flux onto the enclosure surface is computed as

Qrad ¼ � 1
3jþ 3rs � Ars

@

@n
GðrwÞ: ð3Þ
2.1.2. Radiative heat source into the fluid medium
The thermal energy evolution is governed by the convective,

conductive and radiative terms. The temperature equation is

@Tf

@t
þ @ujTf

@xj
¼ af

@2Tf

@xj@xj
þ Srad; ð4Þ

where uj is the j-component of the fluid velocity field, af is the ther-
mal diffusion coefficient of the medium, and Srad the heat source/
sink due to the presence of thermal radiation in a participating
medium. The source/sink term reads

SradðrÞ ¼ j
ðqCpÞf

GðrÞ � 4rT4ðrÞ
h i

; ð5Þ

where q is the density of the medium, and Cp is the medium heat
capacity at constant pressure.

2.1.3. Radiative heat flux onto solid boundaries
Thermal radiation leads to an energy flux through the solid con-

ductive boundaries. That flux can be converted into an explicit
source/sink term Sw, to be added to the temperature equation for
the solid medium, as

@Ts

@t
¼ as

@2Ts

@xj@xj
þ Sw; ð6Þ

where Sw is non-zero only in the boundary cells, i.e. the solid med-
ium cells that have at least one face at the fluid–solid interface. The
source/sink term is computed as:
Sw ¼ � 1
ðqCpÞs

r � qw; ð7Þ

i.e. the divergence of the thermal radiation heat flux qw divided
by the thermal inertia of the solid material. The equation for
surface flux can be derived from the governing equation of the
P1-approximation [23], and it reads

qwðrwÞ ¼ �1
2

�
2� �

� �
GðrwÞ � 4rT4ðrwÞ
h i

n ð8Þ

on the fluid–solid interface, while it is set to be zero elsewhere.

2.2. Conjugate heat transfer

The temperature Eqs. (4) and (6) are provided with boundary
conditions accounting for the fluid–solid heat transfer mechanism.
The Neumann-Neumann CHT at the fluid–solid interface C is
implemented imposing the continuity of temperature and the bal-
ance of the heat fluxes:

TsjC ¼ Tf jC; ð9Þ

ks
@Ts

@n

� �
¼ kf

@Tf

@n

� �
; ð10Þ

where k is the thermal conductivity. The balance of both (9) and
(10) is enforced below a prescribed tolerance. For more details on
the coupling methodology herein employed, we refer to Sosnowski
[29] and Sosnowski et al. [30].

We can notice that the surface radiative heat flux (8) can be
directly included in the boundary condition (10), instead of being
transformed in an explicit source/sink term (7) in the solid med-
ium temperature equation. The latter approach is preferred to
the former because it is found to be more numerically stable.

2.3. Numerical implementation

The numerical solver is implemented in the framework of
OpenFOAM - version 2.1, an open-source toolbox written in C++.
The solver performs a three-dimensional unsteady simulation of
the system thermodynamics. As already mentioned, the present
discussion is independent of the way in which the fluid dynamics
is solved. Hence, the fluid resolution technique is not discussed
here.

The new thermodynamic solver is named coupledRadia-

tionFoam, and this name is used to label the results reported in
the plots of the following sections. The solver is an extension of
the code used by Cintolesi et al. [6], where the CHT technique
was validated against experimental data for the case of natural
convective flow in differently heated square cavity. The above-
described P1 radiative model has been integrated in that solver
and used in the present investigation.

The code works with unstructured meshes and uses the finite
volume method. Equations are discretised with a second-order
central difference scheme in space, and a second-order backward
difference scheme in time; thus ensuring a global accuracy of sec-
ond order.

2.3.1. CHT implementation
The numerical implementation of the CHT technique, described

in Section 2.2, is briefly presented; details were given by Sosnowski
[29]. The heat exchange between different media is obtained
through the imposition of suitable boundary conditions for tem-
perature equations. The derivation of such conditions follows.

Consider two computational cells at the fluid–solid interface C.
Fig. 1 sketches the boundary cells centre points (centroids) and the
interface. If the temperature is stored in the centroid of the bound-
ary cells, the discretisation of Eqs. (9) and (10) gives
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TWf ¼ TWs

kf
Tf�TWf

Df
¼ ks

TWs�Ts
Ds

(
ð11Þ

We denote TW ¼ TWf ¼ TWs as the value of the boundary tem-
perature at instantaneous local thermal equilibrium. Solving the
system, we obtain

TW ¼ kfDsTf þ ksDf Ts

kfDs þ ksDf
: ð12Þ

The Neumann condition in the fluid domain is given by

kf
@T
@n

� �
Wf

¼ ks
Ts � TW

Ds
; ð13Þ

and an analogous condition is valid for the solid domain. When CHT
is simulated, first the interface temperature (12) is calculated, then
the Neumann condition (13) is explicitly set in each of the solid and
fluid domains.

2.3.2. Algorithm steps
The thermodynamic solution algorithm is now briefly

summarised:

1. fluid region: incident radiation Eqs. (1) and (2) and temperature
Eq. (4) are solved for the fluid medium;

2. thermal-radiation coupling: the coupling between T and G is per-
formed with a temperature-radiation sub-loop. The tempera-
ture and radiative fields are solved iteratively n times, until
the coupling condition
max
cells

jTn � Tn�1j < e0 ð14Þ

is globally satisfied (empirically, a tolerance e0 ¼ 10�6 is
recommended);

3. solid region: the temperature field is solved for the solid
medium;

4. fluid–solid coupling: the CHT loop is performed iterating steps
1–2-3 until the fluid–solid coupling conditions (9) and (10)
are verified under a fixed tolerance given by
max
C�cells

jTf � Tsj < e1; ð15Þ

max
C�cells

kf
Tf � TWf

Df
� ks

TWs � Ts

Ds

����
���� < e2; ð16Þ

where the maximum is computed on the boundary cells at the
interface. The values e1; e2 ¼ 10�6 are used.

It is found that 2–5 iterations of sub-loop 2 are sufficient to
achieve thermal-radiation coupling, while 2 iterations are usually
Fig. 1. Scheme for fluid–solid conjugate heat transfer computation at the interface
C: Ts=f is the solid/fluid temperature stored in the centroid of the boundary cell;
TWs=f is the solid/fluid temperature at the boundary; Ds=f is the distance between the
solid/fluid centroid and the boundary.
needed to reach the fluid–solid interface thermal equilibrium. A
detailed description of the radiative model implementation was
given by Cintolesi [5], while more details on the CHT coupling loop
were given by Sosnowski [29] and Sosnowki et al. [30].

It can be notice that for each time iteration, a number of
thermal-radiation coupling loops have to be performed. Therefore,
the computational power required to solve the radiative equation
is multiplied by the number of loops, eventually leading to unfea-
sible simulations if the RHT model is highly computing demanding.
The P1-model is here adopted since it is computationally fast with
respect to the other RHT models.

3. Parameters and non-dimensional numbers

3.1. Radiation

Two scaling parameters characterise RHT problems. The linear
scattering albedo, defined as

x ¼ rs

jþ rs
; ð17Þ

is the ratio between the scattering coefficient and the extinction
coefficient. In participating media, it represents the relative impor-
tance of scattering with respect to absorption/emission. Two scat-
tering regimes can be identified: x � 0 represents either the case
of high absorbing/emitting material, or of no scattering medium;
x � 1 represents a highly scattering medium.

The optical thickness (or opacity) can be interpreted as the ability
of a medium to attenuate radiation. It is defined as:

sL ¼ ðjþ rsÞL; ð18Þ
where L is the characteristic length of the medium layer. Four phys-
ical regimes of interest can be identified: non participating medium
sL � 0; optically thin medium sL � 1, where RHT is ruled by the
boundaries emission and radiation from the medium is limited;
self-absorbing medium sL � 1, where boundaries and internal radi-
ation contributions balance; optical thick medium sL � 1, where
radiation is essentially a local phenomenon and the radiative trans-
port behaves as a diffusion process (like molecular transport).

3.2. Heat transfer modes

A few non-dimensional numbers reflect the mutual importance
of the heat transfer modes. The Stark number, also named
conduction-radiation parameter, characterises the relative impor-
tance of energy transported by conduction and radiation. It reads

N ¼ ðjþ rsÞk
4rDT3 ; ð19Þ

where DT3 ¼ T3
b � T3

a is the power three of the characteristic differ-
ence of temperatures of the system. The Stark number can be
derived in the dimensional analysis of energy transfer equations,
e.g. in the case of a layer of conducting-radiating medium between
parallel black walls as reported by Howell et al. [17], Section
13.2.2.1 – pp. 667. Viskanta [34] gives a brief discussion on this
non-dimensional number. When N decreases, radiative effects
increase. Three characteristic regimes for N ¼ 1; 0:1; 0:01 are usu-
ally investigated.

The non-dimensional numbers related to the other heat transfer
modes can be derived as the ratio between the heat fluxes due to
convection, radiation and forced conduction, that reads

Qconv ¼ UqCpDT; ð20Þ
Qradi ¼ ðjþ rsÞrDT4; ð21Þ
Qcond ¼ kDT=L; ð22Þ



Fig. 2. Geometry of the benchmark cases for RHT validation. The presence of
isothermal walls (depicted as grey regions) is reproduced by suitable boundary
conditions for the fluid medium.

960 C. Cintolesi et al. / International Journal of Heat and Mass Transfer 107 (2017) 956–971
respectively.
The Boltzmann number determines the relative importance of

energy transported by radiation and forced convection, and is
given by

Bo ¼ Qconv

Qradi
¼ UqCpDT

ðjþ rsÞrDT4 ; ð23Þ

where U is the characteristic velocity of the flow. Venkateshan [33]
gives more details on this non-dimensional number. Three regimes
are investigated for Bo ¼ 0:1;1;10, corresponding to an increasing
influence of convective with respect to radiative heat transfer.

The convection-conduction number is the ratio between heat flux
generated by forced convection and radiation, given by

Cn ¼ Qconv

Qcond
¼ UqCp

k
L; ð24Þ

where L is the characteristic length of the system along the direc-
tion of heat conduction. The values herein used are
Cn ¼ 1;10;100, corresponding to increasing relevance of convective
heat transfer.

We can point out that analogous parameters can be derived for
natural convection, substituting the expression of characteristic
velocity of buoyancy driven flow U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbTDTL
p

into Eq. (24), where
g is gravity acceleration and bT is the thermal expansion
coefficient.

Eventually, an alternative conduction-radiation is here pro-
posed. It is derived as the ration between radiative and conductive
heat fluxes within the medium, given by

Hf ¼ Qradi

Qcond
¼ ðjþ rsÞrDT4

kDT
L: ð25Þ

Conversely to N, which includes only the physical characteristic
of the participating medium, Hf takes also into account the geo-
metrical scale of the system. The heat fluxes number Hf is found
to be useful to study the convective boundary layer in Section 5.3.

3.3. Conjugate heat transfer

In transient simulations, the characteristic diffusion time T of
solid materials is defined as:

T ¼ L2

as
¼ ðqCpÞs

ks
L2; ð26Þ

where a ¼ k=qCp andT can be interpreted as a measure of the time
required to reach thermal equilibrium in solid media.

When heat transfer through the fluid–solid interface takes
place, the thermal activity ratio (TAR) given by

TAR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkqCpÞf
ðkqCpÞs

s
; ð27Þ

i.e. the ratio between the thermal effusivity of fluid and solid
media, can be used to quantify the interface heat flux. High values
of TAR correspond to a weak heat flux, while small TAR values
imply a large flux. Cintolesi et al. [6] give further details on these
two parameters. We can notice that the value of the heat capacity
qCp does not affect the final statistical steady-state configuration.
Hence, in the present work, the fluid–solid thermal interaction
can be characterised simply by the ratio between thermal conduc-
tivities, i.e.

Rk ¼ kf
ks

: ð28Þ

Lower values of Rk lead to a stronger thermal influence of the
solid medium with respect to the fluid one.
4. Benchmark cases for radiative heat transfer

In this section, the SRHT and CHT are not considered, and only
the fluid-medium thermodynamics is simulated. A validation of
the numerical implementation is carried out, along with an inves-
tigation of the prediction capability of the P1-model.

Two geometries sketched in Fig. 2 are used for studying a grey
diffusive medium (a) between two parallel infinitely long plates,
and (b) within a square enclosure. These are, respectively, one-
dimensional (in a Reynolds average sense) and two-dimensional
cases extensively studied in literature. Several results, both analyt-
ical and numerical are available for comparison purposes.

Different settings are used in order to investigate the following
points:

� Numerical implementation is checked by comparing the
numerical and the analytical solutions of the P1-model for
geometry (a), in Section 4.1;

� The pure radiative heat transfer mechanism (i.e. absence of con-
duction and convection) is investigated in both (a) and (b)
geometries, for a wide number of combinations of radiative
parameters, in Section 4.2;

� Combined conduction and radiation heat transfer is analysed
using geometry (b), in Section 4.3.

� Combined convection, conduction and radiation heat transfer is
tested in geometry (a), in Section 4.4.

The purpose is to carefully validate the radiative solver and, at
the same time, to investigate the theoretical limits of the
P1-model with respect to other models proposed in literature.
Table 1 reports the physical dimensions and the grid resolution
used for each simulation done.

4.1. Numerical model validation

The validation of the numerical implementation is carried out
for the case of an isothermal and grey medium slab, bounded by
two isothermal black plates. The case geometry is sketched in
Fig. 2a. The medium temperature is Tm, while the two plates are
both at temperature T1 ¼ T2 ¼ Tw. The plates are considered black
(i.e. the emissivity is set to � ¼ 1). The participating medium can
absorb/emit and scatter radiation whether isotropically or linear
anisotropically.

The analytical solution of the P1-Eqs. (1) and (2) is provided by
Modest [23] (cf. chapter 16 - example 16.2 together with an exact



Table 1
Physical dimensions and computational grids for the test cases simulated in Section 4.

Section Geometry Dimension [m] Grid [pts]

Section 4.1 Parallel plate L ¼ 1 31
Section 4.2.1 Parallel plate L ¼ 1 31
Section 4.2.2 Square cavity Lx=y ¼ 1 96� 96
Section 4.3 Square cavity Lx=y ¼ 1 41� 41
Section 4.4 Plane channel L ¼ 2;H ¼ 60 32� 960
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solution of the complete RHT equations. The analytical solution is
given by

WanaðsxÞ ¼ 2 sinh ~csx
sinh 1

2
~csL þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�Ax
1�x cosh 1

2
~csL

q ; ð29Þ

where sx ¼ ðjþ rsÞx is the non-dimensional horizontal coordinate,
also called optical distance, and ~c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�xÞð3� AxÞp

is a scattering
constant. The non-dimensional heat flux onto the plates is consid-
ered for comparison purposes, given by

W ¼ Qrad

rðT4
m � T4

wÞ
; ð30Þ

where Qrad is the surface normal heat flux (3). Because of the sym-
metry of the problem, the origin of the axis is placed in the mid-
plane between the plates; thus the plates are located at sx ¼ 	sL=2.

Fig. 3a shows the heat flux both for non-scattering and isotropic
scattering medium, while Fig. 3b displays the case of a linear ani-
sotropic scattering medium. In both cases, the numerical solution
fits the analytical one. Since these results are obtained using a wide
combination of the radiative parameters, we can conclude that the
P1-model is correctly implemented in the code.

A comparison between the exact solution and the P1 solution
highlights one of the major drawbacks of the spherical approxima-
tion method: the tendency to overestimate the thermal radiation
flux. Another consideration is related to the optical thickness. In
the last decade, it was alleged that the P1-model is inaccurate in
the optical thin limit, i.e. s! 0. Recent investigations show that
this is not a general issue [23]. In the present simulation, we can
notice that P1 goes to the correct thin limit while it loses accuracy
in the thick limit.

4.2. Pure radiative heat transfer

In this section the model is validated in cases where the tem-
perature of the medium is ruled just by thermal radiation, while
convection and conduction are neglected.

4.2.1. Parallel plates
The parallel-plate geometry (Fig. 2a) is again used with other

settings: the two plates are taken at different temperature
T1 < T2, the scattering is neglected and the plate emissivity is set
to � ¼ 1. Comparisons are done against the analytical solution pro-
posed by Howell, Siegel and Mengüç [18] for non-dimensional sur-
face heat flux and non-dimensional temperature, respectively

W ¼ Qrad

rðT4
2 � T4

1Þ
and U ¼ T4 � T4

2

T4
1 � T4

2

: ð31Þ

The former is computed at the plate surfaces, the latter is plotted
along a horizontal line y ¼ const.

Fig. 4a reports the non-dimensional temperature distribution
for several values of optical thickness of the participating medium.
The results are in good agreement with the reference solutions,
even if we can notice a slight discrepancy for low values of sL.
Fig. 4b depicts the non-dimensional heat flux for a large range
of optical thickness values. The results fit the reference solutions
fairly well.

Overall, the P1-model predictions are quite accurate. The pre-
diction of the heat flux W is more precise than in the analogous
case presented in Section 4.1. The lack of accuracy in the previous
case can be attributed to the presence of a temperature step at the
plate-medium interface. This unphysical discontinuity may affect
the prediction capability of the model, and leads to less accurate
results.

4.2.2. Grey medium in square enclosure
The case of a grey medium in a square enclosure is sketched in

Fig. 2b. Two different radiative media are studied: (A) an absorb-
ing/emitting, non-scattering medium and (B) a purely scattering
medium. Analytical solutions are not available, but different
numerical studies for these cases can be found in literature.(A)
Absorbing/emitting, non-scattering medium: the medium has a tem-
perature Tm > 0, while the enclosure walls are cold T1;2;3;4 ¼ 0.
They have constant emissivity � ¼ 1. The non-dimensional heat
flux on the wall,

W ¼ Qrad

rT4
m

; ð32Þ

is plotted and compared with the numerical profile of Rousse et al.
[27,28]. They adopted a DOM approach, where a numerical solver
based on a control volume finite element method was used to
resolve the complete RHT equations. Also Crosbie and Schrenker
[7] studied the same case, solving the two-dimensional governing
equations. They used the modified Bessel function to obtain an inte-
gral expression of the radiative source term. The integral presented
a point of singularity that was removed. Subsequently, the equa-
tions were numerically integrated with a Gaussian quadrature for-
mula. The data obtained in the latter work are in perfect agreement
with those of the former, hence they are not explicitly reported.

Fig. 5 shows the heat flux at the bottom wall of the cavity, for
three increasing values of optical thickness. The results become
more and more inaccurate as the optical thickness of the medium
increases. Specifically, the P1-model fails to reproduce W in the
proximity of the vertical walls, where the increase of heat flux is
underestimated.

The lack of accuracy for large values of sL is expected, since it is
known that the P1-model is not suitable for optical thick media
[23]. An explanation for the behaviour in the proximity of the ver-
tical wall is provided hereafter: the P1-equation provided with the
Marshak’s boundary condition is not accurate when the wall emis-
sion strongly affects the thermal radiation, i.e. the effects of the
participating medium are limited. In the cavity corner region
(x=Lx < 0:1) the radiative effects of the vertical and horizontal cold
walls combine, leading to a decrease of temperature and to a less
accurate prediction than in the central region (0:1 < x=Lx < 0:9).
Moreover, the corner region can be affected by collimate radiation
(thermal rays impinge the solid surfaces in a almost tangential
direction), that is difficult to reproduce by the spherical approxi-
mation models [23].

(B) Purely scattering medium: the enclosure walls are cold
T1;2;3 ¼ 0, except for the bottom one at T4 > 0. Several cases are
simulated, changing the wall emissivity � and the optical thickness
sL. The non-dimensional surface heat flux,

W ¼ Qrad

rT4
4

; ð33Þ

is compared with the results reported by Rousse et al. [28] and
Modest [22], who uses a differential approximation to solve the
radiative equation.



Fig. 3. Isothermal grey solid medium between two parallel walls. Labels: dash line, analytical solution of P1-equation [23]; red circle, numerical solution of P1-equation;
green line, exact solution of the RHT equation [23]. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 6a depicts the effects of the optical thickness on the heat
flux, at the bottom hot wall. Several simulations are performed,
setting the wall emissivity to � ¼ 1 and increasing the optical
thickness sL. Surprisingly, the results become more accurate for
optical thick media. Similar to the previous simulation (A), the
P1-model fails in the corner region.

In order to better understand the impact of the boundaries on
the overall thermal radiation, the same simulations are re-run
using several decreasing values of the enclosure wall emissivity.
Empirically, the value � ¼ 0:6 allows a perfect reproduction for
sL ¼ 1 and improves the prediction for the other cases. The profiles
are reported with a dash blue line in Fig. 6a. This test corroborates
the fact that the Marshak’s condition for the P1-model does not
reproduce correctly the walls radiation contribution: it tends to
amplify the wall influence in the global radiation. Hence, this is
the main source of error in those cases when wall radiation mainly
rules the total radiation. Unfortunatly, the Marshak’s boundary
condition is the only one available for the P1-model at the moment
(Ref. Modest [23]). In the last years, efforts have been devoted to
improve the formulation of Marshak’s condition for the P1-
model. Among the others, we refer to the work of Liu et al. [20],
that has introduced a corrective parameter to obtain better
predictions.

Fig. 6b shows the effect of varying the wall emissivity, when the
optical thickness is set to sL ¼ 1. Overall, the results are largely
overestimated. When the wall emissivity decreases and the effects



Fig. 4. Isothermal grey solid medium between two parallel walls. Comparison
between the P1-model and the exact solution [18].

Fig. 5. Non-dimensional heat flux on the bottom wall of the square enclosure.
Labels: red circles, data from Rousse et al. [28]; black line, P1-model solution. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)

Fig. 6. Non-dimensional heat flux on the bottom wall of the square enclosure.
Labels: red cross, data from Rousse et al. [28]; green diamonds; data from Modest
[22]; solid and dash line, P1-model solution. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this article.)
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of the boundaries are less intense, the predictions are more accu-
rate. The relative error is also computed using the formula
erel ¼ ðW�Wref Þ=Wref , where Wref are the reference data [28]. For
all the cases the relative error is almost constant along the x=Lx
direction and spans in the range 0:3 < erel < 0:4.

In conclusion, we can note that the case of pure scattering (B)
exhibits results worse than the case of pure absorbing/emitting
medium (A). A priori, this is not expected because the contribution
of the scattering on the governing equations (1) and (2) is analo-
gous to the absorbing/emitting contribution. The only difference
in the use of the rs and j, is that the absorption coefficient multi-
plies the entire right hand side of the incident radiation equation. If
j ¼ 0 the radiation equation would reduce to a Laplace equation,
and G would be completely determined by the boundary condi-
tions. This is not happening when rs ¼ 0. Therefore, it is not the
presence of scattering that introduces an error, but the absence
of the absorption/emission that amplify the influence of the
boundaries emission (ruled by Marshak’s condition) and eventu-
ally entails a lack of accuracy.
4.3. Combined conduction and radiation

RHT is here activated together with heat conduction. The case
geometry studied is the square cavity depicted in Fig. 2b. The bot-
tom wall has a constant temperature T4 ¼ Tw while the other walls
have T1;2;3 ¼ Tw=2. The medium is non-scattering, the optical
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thickness is set to sL ¼ 1, and the walls are black (� ¼ 1). The
effects of conduction to radiation are ruled by the Stark number
N, cf. Eq. (19).

Fig. 7 shows the non-dimensional temperature T=Tw for differ-
ent values of N. The comparison is made with the numerical data
of Rousse et al. [28] and Razzaque et al. [25,26], who use the finite
element method to solve the RHT equation. Those two data sets
practically collapse one over the other, thus only the first one is
included in the comparison. A simulation of conduction without
radiation is also plotted: k is determined imposing N ¼ 1 and
switching radiation off. This case is labelled as N ¼ 1, with an
abuse of notation.

There is a quite good agreement with the reference data,
although the temperature is slightly over-predicted in the proxim-
ity of the bottom wall.

4.4. Combined conduction, convection and radiation

The case studied by Viskanta [34] is here reproduced: a fully-
developed laminar flow within a plain channel (Fig. 2a). The Poi-
seuille flow enters the channel from the bottom (y=H ¼ 0) and
flows out from the top (y=H ¼ 1). The flow field is given by

uyðxÞ ¼ 6�u ðx=LÞ � ðx=LÞ2
h i

; ð34Þ

where the mean velocity is set to �u ¼ 1. Velocity variations along
the other directions are neglected. The two vertical plates are
isothermal with temperature T1 ¼ T2 ¼ Tw, the bottom boundary
is at temperature Tin ¼ 0, while the zero gradient condition is
enforced at the top boundary. The plates are black, thus � ¼ 1,
and the zero gradient condition is set for incident radiation G at
the bottom and top boundaries. The participating medium is not
scattering and the optical thickness is set to sL ¼ 1.

Three simulations are performed for different values of the
Stark number. The non-dimensional temperature profile T=Tw is
compared with the data of Viskanta [34] in Fig. 8. This author eval-
uated the integral–differential RHT equation with the Barbier’s
method, which uses a three terms Taylor expansion. The case
was also studied by Rousse et al. [28], but those results are very
similar to those of Viskanta [34], so they are not included in the
comparisons.

Temperature is plotted over a horizontal line y ¼ y0, for which

Tðx; y0Þjx=L¼0:5 ¼ Tw=2: ð35Þ
Fig. 7. Non-dimensional temperature over a vertical centreline, for conduction and
radiation in a square enclosure. Simulations for different Stark number N. Labels:
red symbols, data from Rousse 2000 [28]; solid lines, P1-model; dash line,
convection without radiation. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this article.)
The location y ¼ y0 is thus different for each simulation. Partic-
ularly, when N decreases and the effects of radiation overcome
conduction, y0 is located farther from the inlet. After preliminary
tests, a channel entry-length of H=L ¼ 7 is found to be enough to
develop the thermal profile in all cases.

The results are in good agreement with the reference values.
When N ¼ 1, radiation essentially does not affect the temperature.
For lower values of the Stark number, temperature is not altered in
the proximity of the walls but it increases in the central region.
Near the wall, the temperature is still dominated by conduction
because of the higher temperature gradient arising on the fluid–
solid interface.

5. Surface radiative heat transfer

This section introduces and studies a benchmark case for sur-
face heat transfer between fluid and solid media in the presence
of conduction, convection and thermal radiation. To the best of
our knowledge, a similar benchmark case has not been reported
in the literature yet.

5.1. Geometry and general settings

Fig. 9 sketches the case geometry: it consists of two rectangular
domains, with isothermal walls at the sides. The left-side region
contains a fluid medium that is radiative participating. The right-
side region is made of a solid material that is thermally conductive
and radiative opaque. Heat transfer by conduction, forced convec-
tion and thermal radiation occurs in the fluid medium, while only
heat conduction occurs in the solid medium. Surface heat transfer
by contact (CHT) and radiation (SRHT) take place at the interface.
This interaction leads to a strong thermal coupling between the
two media.

The left isothermal wall is hot, while the right one is cold:
DT ¼ ðTh � TcÞ > 0 K. The difference of temperature is not the same
for all the cases studied. It will be specified for each of the follow-
ing simulations, excepted when it can be derived from the non-
dimensional numbers. The solid material is a good conductor, hav-
ing a higher thermal conductivity with respect to the fluid med-
ium. The thermal conductivities ratio (28) is set to
Fig. 8. Non-dimensional temperature over the horizontal line y ¼ y0 for which
Tðx=L ¼ 0:5; y0Þ ¼ Tw=2, in case of convection, conduction and radiation in plain
channel. Simulations for different Stark number N. Labels: red symbols, data from
Viskanta [34]; lines, coupledHeatVapourRadiationFoam, P1-model; black stars,
coupledHeatVapourRadiationFoam without radiation. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version
of this article.)



Fig. 9. Geometry of the benchmark case for SRHT.

Fig. 10. Thermal radiation and conduction in the SRHT benchmark case. Non-
dimensional temperature profile for different values of Stark number N and optical
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Rk ¼ 1
4
; ð36Þ

while the heat capacity is ðqCpÞs=f ¼ 103 for both media. The solid

boundaries of the fluid region are black (� ¼ 1) and the medium is
non-scattering (x ¼ 0;A ¼ 0), while the absorption/emission coeffi-
cient j varies in the different cases.

5.2. Overview of simulations

The above-described system allows an investigation of the
mutual influence of the three heat transfer mechanisms in the
presence of a fluid–solid surface heat transfer. The thermodynam-
ics of such a system is completely determined by the non-
dimensional numbers described in Section 3.

The interaction between the following phenomena is studied:

� conduction and thermal radiation, changing the Stark number N
and optical thickness sL, in Section 5.3;

� conduction and forced convection, varying the convection-
conduction number Cn, in Section 5.4;

� conduction, forced convection and thermal radiation, for differ-
ent combinations of N and the Boltzmann number Bo, in
Section 5.5;

� conduction, natural convection and thermal radiation, for dif-
ferent values of N, in Section 5.6.

In all the cases, the participating medium is not scattering; thus
rs ¼ 0 and A ¼ 0.

5.3. Conduction and thermal radiation

In this case the temperature is transported only by conduction
and thermal radiation. Convection is not considered, hence the
fluid medium is at rest, leading to a one-dimensional simulation.
The width of each of the fluid and solid regions is L ¼ 1 m, discre-
tised by 80 computational points (each one). Thermal radiation
propagates into the fluid medium and impinges the fluid–solid
interface (x=L ¼ 1), where the SRHT takes place. The radiative heat,
supplied to (or subtracted from) the interface, changes the temper-
ature distribution within the solid medium. Simultaneously, in
fluid medium, the radiation field is altered by the interface
temperature.

The governing parameters are the Stark number N and the opti-
cal thickness sL. Fig. 10 shows the non-dimensional temperature
distributions:

U ¼ T4 � T4
c

DT4 ; ð37Þ
over a line through the fluid and solid media. Simulations have been
performed for all combinations of the values N ¼ 1;0:1;0:01 and
sL ¼ 0:1;1;10. The case without thermal radiation is also simulated;
it is again labelled N ¼ 1.

Fig. 10b is first analysed and used for comparison with the
others. When radiation is neglected (N ¼ 1), conduction rules
thickness sL .



Table 2
Conductive boundary layer thickness d near the isothermal hot wall for the nine cases
show in Fig. 10.

d s ¼ 10 s ¼ 1 s ¼ 0:1

N ¼ 0:01 0.0004 0.04 4
N ¼ 0:1 0.004 0.4 40
N ¼ 1 0.04 4 400

Fig. 11. Thermal radiation and conduction in the SRHT benchmark case. Non-
dimensional temperature profile along a line y ¼ cost for the case of self-absorbing
medium. Simulation of two values of walls emissivity �, for increasing level of
thermal radiation.
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the system and the surface temperature is one fifth of the differ-
ence of temperature between isothermal walls. This is in accor-
dance with the thermal conductivities of the media (cf. Eq. (36)).
The introduction of thermal radiation increases the overall temper-
ature of the system. When N ¼ 1, the interface is slightly heated up
by the radiative effects, but the temperature distribution in the
fluid medium remains linear. When N ¼ 0:1, radiation significantly
heats up the interface and makes the fluid temperature non-linear.
Close to the solid boundaries, conduction still dominates and a
quasi-linear thermal profile arises. In the fluid central zone, radia-
tion from the boundaries and within the medium overcomes con-
duction and increases the temperature. The non-linear
temperature distribution is expected, since thermal radiation is a
phenomenon that goes like T4. When radiation dominates
(N ¼ 0:01) the fluid medium is at almost the same temperature
than the hot wall, and it slightly decreases when the interface is
approached.

Fig. 10a depicts the thermal profiles for an optical thick med-
ium. In the case of low and moderate radiation (N ¼ 1;0:1), the
increase of the optical thickness leads to augmentation of the over-
all system temperature, and particularly the interface temperature.
Surprisingly, for high radiation level (N ¼ 0:01) the interface tem-
perature decreases. This effect can be due to the fact that an optical
thick medium acts as a barrier for radiation. The RHT process then
becomes localised and behaves as a conduction process. As a mat-
ter of fact, the profile in the fluid medium is almost linear. Since the
thermal conduction is weak and the energy radiated is absorbed by
the fluid medium, the interface temperature decreases with
respect to the case s ¼ 1.

Fig. 10c shows the temperature profiles in the case of an optical
thin medium. The fluid medium is less participative, thus the ther-
mal radiation reaches directly the solid interface without being
altered by the medium. The general effect is the reduction of the
system temperature for all the cases studied. The case N ¼ 1 col-
lapses to the case N ¼ 1.

The boundary layer on which conduction overcome thermal
radiation can be estimated by means of the fluxes ratio number
Hf defined by Eq. (25). In analogy with the definition of optical dis-
tance form the optical thickness (see Section 4.1), we define the
fluxes ratio distance as

Hf ðxÞ ¼ ðjþ rsÞrDT4

kDT
x: ð38Þ

The energy transport is dominated by conduction when
Hf ðxÞK1 and by radiation when Hf ðxÞJ1. The thickness of the
conductive boundary layer xbl=L ¼ d near the walls can be esti-
mated imposing Hf ðdÞ ¼ 1. Table 2 reports the values of d near
the isothermal hot wall, for the nine simulations show in Fig. 10.
In the optical thick case (Fig. 10a) the medium is highly participa-
tive, thus radiative heat flux is strong and the conductive layer is
almost zero for all values of N. In the radiative layer the thermal
profiles are non-linear. Conversely, in the optical thin case
(Fig. 10c) the medium has a very weak interaction with thermal
radiation; hence, the heat transfer occurs mainly by conduction
and d is larger than the total fluid region width. Consequently,
the fluid temperature profiles are practically linear. In the interme-
diate case (Fig. 10b), the conductive layer encompasses the entire
fluid region just in the case of low radiation (N ¼ 1), while is quite
narrow in the case of high radiation (N ¼ 0:01). The case N ¼ 0:1
exhibits a conductive layer comparable with the radiative one:
the temperature has an almost linear behaviour within the region
dK0:4, and become non-linear in the region dJ0:4 (before
approaching the interface) where it shows a typical concave curve
profile. A transition region is located in a neighbourhood of the
point d ¼ 0:4, where the thermal profile change the concavity.
Fig. 11 reports the non-dimensional temperature profiles for
one extra case: the wall emissivity is here changed to � ¼ 0:5,
while s ¼ 1 is fixed. The decrease of the wall emissivity does not
change the general behaviour of the RHT with respect to the case
� ¼ 1: the profiles are similar to the ones with � ¼ 1, but the overall
system temperature is lower and the interface temperature
decreases as a consequence of the lower level of energy emitted
by the hot wall.
5.4. Conduction and forced convection

This case does not involve thermal radiation. It is briefly anal-
ysed for comparison purposes with the case in Section 5.5, which
includes also radiation.

The width of each regions is L ¼ 1 m, while the height is chosen
to be H ¼ 30 m. After some preliminary simulations, this height is
found to be sufficient for developing the thermal profile in all the
cases simulated. The two regions are discretised using 20� 600
cells, both equidistant in the y-direction and stretched in the x-
direction. The fluid region grid is stretched to have a higher resolu-
tion in the thermal boundary layer. The solid region grid is
stretched the same way, in order to assure the same size of the
interface boundary cells in the fluid and solid regions. A double-
side stretching function, based on hyperbolic tangent, is used:

xðnÞ ¼ 1
2

1þ tanhðdsðn� 1=2ÞÞ
tanhðds=2Þ

� �
; ð39Þ

where n are the coordinates of an equispaced partition, and the
stretching factor is ds ¼ 3:5.

The forced Poiseuille channel flow enters from the bottom side
(y=H ¼ 0) and exits through the top side (y=H ¼ 1). The equations
of motion are not solved, but the velocity profile (34) is imposed.
The value of the flow field characteristic velocity U ¼ �u changes
for each simulation.
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The temperature boundary conditions at the bottom and top
sides are: for solid medium, adiabatic condition on both bound-
aries; for fluid medium, fixed temperature Tin ¼ 0 at bottom, adia-
batic condition at the top boundary. The adiabatic condition is
imposed at the solid bottom side because our purpose is to study
the effects of streamwise convection against wall-normal conduc-
tion. If a fixed temperature Tin ¼ 0 condition, coherent with the
fluid medium one, was imposed, then the conduction along the
y-direction in the solid medium would affect the temperature dis-
tribution. Heat convection and conduction are here orthogonal to
each other: convection cools down the fluid along the y-direction
(streamwise), while conduction transports heat between the two
external isothermal walls along the x-direction (wall-normal).

The fluid thermal conductivity is set to kf ¼ 10 W=ðmKÞ in order
to have a sufficiently high characteristic diffusion time, see Eq.
(26), and to quickly reach the statistical steady-state solution. This
system is governed by the convection-conduction number Cn.
Three simulations have been done for Cn ¼ 1;10;100 respectively.
The temperature profile is plotted along a horizontal line y=H ¼ Y0,
where Y0 satisfies:

Tf ðx;Y0Þjx=L¼0:5 ¼ ðTh � TcÞ
2

;

i.e. the height at which the temperature in the centre of the fluid
region is the average between the temperature of the isothermal
hot and cold walls.

The three simulations give practically the same temperature
profile. In Figs. 12a,b,c we show the profile for case Cn ¼ 100 as a
black dash line, labelled N ¼ 1. The interface temperature is
slightly lower than in the non-convective case (cf. Fig. 10, black
dash line), because of the cooling effect of the fluid flow. However,
convection does not strongly influence the fluid thermal profile
which is almost linear. The thermal profiles remain unaltered in
the three cases since the value of Y0 increases almost linearly with
Cn. Just for the case Cn ¼ 1, a slight decrease of fluid medium tem-
perature is detected. This is due to the influence of the fluid bottom
temperature: when Cn is small, then Y0 is close to the bottom and
the thermal profile is affected by the heat conduction in the
streamwise direction.

The influence of the bottom thermal boundary layer can be esti-
mated by means of the conduction–convection number. The ratio
between the convective and conductive heat transfer in the y-
direction, at location Y0, can be expressed as:

CnðY0Þ ¼ UqCp

k
Y0 ¼ CnðLÞY0

L
; ð40Þ

following Eq. (24). In the simulation where CnðLÞ ¼ 1, we have
Y0 6 L; hence the conduction along the spanwise direction affects
the temperature profile located at Y0. In other simulations
(Cn ¼ 10;100) we have Y0 � L, thus conduction in the streamwise
direction does not affect the thermal profile.
Fig. 12. Thermal radiation, conduction and forced convection with SRHT. Non-
dimensional temperature along a horizontal line y ¼ Y0 for Cn ¼ 100, changing the
Boltzmann number Bo and Stark number N.
5.5. Conduction, forced convection and thermal radiation

The same domain dimensions, computational grid and bound-
ary conditions as reported in Section 5.4 are adopted. Now also
radiation is also simulated in the fluid medium, and a temperature
difference of DT ¼ 100K is imposed between the isothermal walls.
The system is governed by the three non-dimensional numbers
N;Bo;Cn from which the values of j; k; �u can be derived.

Following the analysis of the conductive-convective case (cf.
Section 5.4), the convection-conduction number is set to
Cn ¼ 100 for all simulations. This value guarantees that the influ-
ence of the bottom thermal layer does not affect the temperature
profile in most of the cases.
Fig. 12 reports the non-dimensional temperature, see Eq. (37),
profiles at the height Y0, chosen as stated in Section 5.4. Combina-
tions of the values N ¼ 1;0:1;0:01 and Bo ¼ 10;1;0:1 have been
used.

Fig. 12a shows the case of high convective heat transfer com-
pared to the radiative one (Bo ¼ 10). The interface temperature,
as well as the global system temperature, is higher than for lower



Fig. 13. Temperature contour plots in fluid and solid medium for three level of
radiation, Bo ¼ 1;Cn ¼ 100. Contour line values: 50 values over an equispaced
partition of temperature range.
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Bo cases. Since the high-speed flow cools down the fluid medium
more effectively in the centre of the channel, Y0 increases and
the energy radiated is more effective in heating the fluid medium
near the solid boundaries. The profile for N ¼ 0:1 practically col-
lapses with the one for N ¼ 1 in fluid medium far from the inter-
face, but it increases near the interface and remains higher in the
solid medium. The temperature for N ¼ 0:01 has a typical parabolic
profile: the minimum is reached in the channel centre zone, and it
is due to the convection of cold fluid medium.

Fig. 12b depicts the case of balance between convective and
radiative heat transfer (Bo ¼ 1). Surprisingly, the interface temper-
ature for N ¼ 0:1 is lower than for N ¼ 1, even if in the former case
the level of radiation is higher than in the latter. This is due to the
fact that fluid conduction tends to decrease the interface tempera-
ture and thermal radiation generates a temperature sink in the
near-interface zone. On the contrary, in the near-wall zone radia-
tion contributes to increase the fluid temperature. The result is a
non-monotonic thermal profile in the fluid medium. The channel
is divided into two parts:

the near-wall zone (0 6 x=L 6 0:5) is influenced by emis-
sion from the isothermal hot wall. The
thermal profile is concave and higher
than in the N ¼ 1 case;

the near-interface zone (0:5 6 x=L 6 1) is subject to absorption
of radiation by the solid interface. The
thermal profile is convex and the tem-
perature is lower than in the case of no
radiation.

Graphically, the two zones are separated by an inflection point
of the temperature function Tðx=LÞ. The asymmetry of the profile is
ascribed to the non-linearity of the radiative process (cf. Fig. 10b).
The profile for N ¼ 0:01 exhibits the parabolic shape already
described in the previous case. However, near the isothermal wall
it presents first a reduction, then an increase of temperature.

Fig. 12c reports the simulations with low level of convective
heat transfer compared to the radiative one (Bo ¼ 0:1). Since the
convection is weak, Y0 is very close to the bottom boundary. The
effects of the isothermal fluid bottom condition on the solid tem-
perature can be detected in the N ¼ 0:01 plot: the temperature
profile in the solid media is not linear but slightly convex. Also
N ¼ 0:1 presents a very low temperature near the interface, prob-
ably due to the thermal conduction from the bottom.

For all the Bo values, the low-radiation thermal profiles (N ¼ 1)
are similar to the one of no radiation (N ¼ 1), as expected. How-
ever, the weak effect of radiation can be detected: the temperature
profiles have a slight non-monotonic behaviour, similar to the one
described for the case Bo ¼ 1;N ¼ 0:1. Comparing the profiles char-
acterised by N ¼ 0:01, we can notice that the temperature mini-
mum moves towards the isothermal wall as Bo increases. This
effect is related to the increase of the interface temperature.

5.6. Conduction, natural convection and thermal radiation

The interaction of natural convection with radiation and con-
duction is studied for a cavity in contact with a conductive wall.
The geometry is depicted in Fig. 9: the domain is composed by a
fluid and a solid square region, with one side in common. The
dimensions of the two regions are L� H ¼ 1 m� 1 m. Both regions
are discretised by equidistant grid of 80� 80 points. After some
tests, this grid it is found to be fine enough to capture the thermal
boundary layer. The domain is bounded by two isothermal walls
(hot at the left, cold at the right), and two horizontal insulator
walls (top and bottom). The temperature difference between the
isothermal walls is set to DT ¼ 1000 K. In the fluid region a natural
convection arises and the buoyancy force drives the fluid medium.
The no-slip condition is applied at the walls.

Three cases are simulated for different degrees of radiation
N ¼ 1;0:1;0:01 and Cn ¼ 100;Bo ¼ 1. The characteristic buoyant
velocity

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgbTDTLÞ

p
; ð41Þ

is used for computing the non-dimensional numbers. The gravity
acceleration is g ¼ 9:81 m=s2 and the value of thermal expansion
coefficient bT is changed in the three simulations. The fluid dynamic
viscosity m is chosen in a way that

Re ¼ UL
m

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTDTL

3

m2

s
¼ 100; ð42Þ

where Re is the Reynolds number, i.e. the ratio between the inertial
forces and the viscous forces. Such a constrain guarantees a laminar
flow in all simulations. The resulting flow is a clockwise circular
motion, not perfectly symmetric because of the non-homogeneous
temperature profile arising at the interface, see Fig. 14.

Fig. 13 visualises the temperature distributions for the three
values of the Stark number. Fig. 13a shows the case of high degree
of thermal radiation. The system is dominated by radiation, that
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heats up the fluid medium until it reaches almost the same tem-
perature as the isothermal wall. The contour lines are practically
vertical since the flow field, generated by the low fluid thermal gra-
dient, is so weak that it cannot significantly alter the thermal dis-
tribution. Fig. 13b depicts the case of balance between radiation
Fig. 14. Thermal radiation, conduction and natural convection with SRHT. Non-
dimensional temperature and velocity profiles in fluid medium. Different values of
Stark number N and Bo ¼ 1;Cn ¼ 100.
and conduction. A more uniform temperature distribution arises
in both the fluid and solid regions. The natural convection changes
the thermal distribution in the fluid medium but also in the solid
medium, near the interface. Fig. 13c presents the cases of low radi-
ation and high conduction. In this case, radiation cannot stabilise
the interface temperature and the convective flow leads to hot
top and cold bottom zones, respectively, in the fluid medium. Also
the solid medium temperature is significantly influenced by the
fluid convection.

The non-dimensional temperature and velocity profiles for the
aforementioned cases are reported in Fig. 14, along vertical and
horizontal lines passing through the fluid region centre. Fig. 14a
shows the non-dimensional temperature profiles, see Eq. (37),
across the fluid and solid media. It can be pointed out that this is
not directly comparable with Fig. 10b of the previous section, since
the optical thickness sL of the two sets of simulations is not the
same. However, the thermal profiles share the same qualitative
behaviour, except for the case of low radiation N ¼ 1. In accordance
with Fig. 13b, the natural convective flow increases the tempera-
ture near the interface and decreases it near the isothermal wall.
The profile for the same case, where natural convection is not acti-
vated, is also reported (labelled N ¼ 1; U ¼ 0) for comparison. The
interface temperature is significantly increased by the fluid flow. In
the other cases, the profiles obtained with and without convection
are practically the same, thus they are not reported. Fig. 14b pre-
sents the non-dimensional vertical fluid velocity along a horizontal
line (y=H ¼ 0:5); and Fig. 14c reports the non-dimensional hori-
zontal velocity along a vertical line (x=L ¼ 0:5). When thermal radi-
ation increases the temperature, the gradient in fluid medium
decreases, leading to a weaker buoyancy force and, eventually, a
lower velocity field. The system is not perfectly symmetric because
of the non-uniform temperature at the interface. The velocity
asymmetry is more evident for the case N ¼ 0:1, and less for the
case N ¼ 1, while it is almost negligible for N ¼ 0:001 (as expected
after the analyses of the interface temperature in contour plots).
6. Conclusions

A numerical solver for heat transfer problems is developed, con-
sidering CHT between solid and fluid media as well as the contem-
porary presence of conduction, convection and radiation. Thermal
radiation is modelled through the first-order, spherical approxima-
tion method (P1-model). A Neumann-Neumann conjugate heat
transfer technique is used to simulate the heat transfer between
the two media, and a numerical coupling strategy for the heat
transfer modes is described. The model is used in idealised cases,
for a parametric study of thermal radiation associated with con-
duction, convection and the fluid–solid surface heat transfer. In
successive studies, the thermodynamic model herein presented
can be integrated in a generic three-dimensional transient
thermo-fluid dynamics solver.

In the first part, the P1 radiative model without surface radiative
heat transfer is validated. Several benchmark cases reported in the
literature are successfully reproduced and the prediction capability
of the model is investigated.

The numerical implementation is, then, verified using a simpli-
fied case. A comparison between the P1 solution with the exact
solution, points out the general tendency of the model to overesti-
mate the radiative effects, as expected. However, in this case the
overestimation is probably exaggerated by the unrealistic differ-
ence of temperature at the boundaries.

Radiation effects are then studied when combined with other
heat transfer modes: pure radiation, radiation-conduction, radia
tion-conduction–convection. Two archetypal geometries are inves-
tigated: two infinitely long parallel plates and a square cavity. An
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excellent agreement with the reference solutions is achieved for a
two parallel plates case. In square cavity case, the results are less
accurate for optical thick medium and near the square corners,
where collimated irradiation occurs. These are two well known
limits of the P1-model (Ref. [23]). Moreover, the model fails in
reproducing a pure scattering medium because in this particular
case the governing equation reduces to a Laplace equation. Thus,
radiation is completely determined by the Marshak’s boundary
condition, that is recognised to be not accurate [20] and tends to
overestimate the emitted radiation. Conversely, when a participat-
ing medium is present, the effects of boundary emission are
reduced and, overall, better results are achieved. Overall, the
P1-model gives satisfactory results, despite the simplicity of the
mathematical model. It appears to be more trustworthy when
associated with other heat transfer mechanisms and less idealised
case settings.

Summing up, the main prediction limits of the P1-model are:

1. tendency to overestimate the RHT effects;
2. loss of accuracy in case of collimated radiation;
3. incorrect results for low participating media, because of

Marshak’s boundary condition influence;
4. imprecise for optical thick medium (s� 1).

Although the aforementioned limitations, the P1-approximation
requires a lower computational cost if compared to more accurate
methods, like DOM. This is essential in transient simulations,
where temperature-radiation and fluid–solid thermal coupling
loops have to be performed in order to ensure the instantaneous
thermal equilibrium.

In the second part, the influence of surface radiative heat trans-
fer is studied in new benchmark case: a fluid medium in contact
with a solid one, both bounded by isothermal walls. Different sim-
ulations are performed in order to investigate the interaction of
surface radiative heat transfer with: (i) radiation-conduction, (ii)
radiation-conduction-force convection, (iii) radiation-conduction-
natural convection. The non-dimensional numbers characterising
the mutual influence of the heat transfer modes are derived and
adopted for a parametric investigation. Overall, the results are in
accordance with the physics of thermal radiation. The simulation
of conjugate heat transfer points out that thermal interaction
between fluid and solid media strongly affects the thermodynam-
ics of the systems. Thermal radiation intensifies such interaction,
increasing the interface temperature and developing non-linear
temperature profile in the fluid medium. In case (i), the heat fluxes
ratio number Hf is introduced and used to identify the conductive
boundary layer near the solid walls, and the effects of different
wall emissivity is also studied. In case (ii), the heat transfer is
investigated in a laminar channel flow with cold inflow. Radiation
is particularly effective in transporting energy through the channel
and increasing the interface temperature, even if the fluid has a
lower temperature. The convective-conductive number is used to
analysed the influence of the cold inflow along the streamwise
direction. In case (iii), the presence of radiation decreases the
buoyancy force by reducing the thermal gradient, while the conju-
gate heat transfer makes the system asymmetric. From a numerical
side, the coupling strategy appears to be stable in all the cases
simulated.
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