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Abstract

We propose a fully quantum treatment for pump and probe experiments applied to the study of
phonon excitations in solids. To describe the interaction between photons and phonons, a single
effective hamiltonian is used that is able to model both the excitation induced by pump laser pulses
and the subsequent measuring process through probe pulses. As the photoexcited phonons interact
with their surroundings, mainly electrons and impurities in the target material, they cannot be
considered isolated: their dynamics needs to be described by a master equation that takes into account
the dissipative and noisy effects due to the presence of the environment. In this formalism, the
quantum dynamics of pump excited phonons can be analyzed through suitable probe photon
observables; in particular, a clear signature of squeezed phonons can be obtained by looking
simultaneously at the behavior of the scattered probe mean photon number and its variance.

1. Introduction

An effective optical experimental technique suitable for the study of the dynamics of phonon excitations in
solids is pump and probe spectroscopy [8, 9, 21, 26]. It consists in exciting a crystal with a high intensity laser
pulse, usually referred to as the pumps; the resulting phonon excitations are studied by means of a second, less
intense laser pulse, called the probe, that hits the material after a certain time delay. By analyzing either the
reflected or transmitted probe photons (depending on whether the material is opaque or transparent,
respectively), one may access the properties of the excited phonons; indeed, typically the time scale of the latter is
of the order of picoseconds, much longer than the duration of the pump and probe pulses (on the order of
femtoseconds). The whole process is repeatedly performed for different time intervals between pump and probe,
thus obtaining information on the phonon dynamics, as a function of the pump and probe time delay, through
the analysis of the behavior of suitable probe photon observables.

Typically only the intensity of the reflected or transmitted probe light had been considered in order to
investigate the properties of photoexcited phonons. Probe intensity analysis is indeed sufficient for studying the
most simple phonon excitations, the ones that, in analogy with quantum optics, are called ‘coherent phonons’
[8,21,26]. Most of the theoretical work that has been directed at the analysis of coherent phonons is based on
semiclassical approaches [24], using either the so-called ‘impulsive stimulated Raman scattering’, mainly
applied in the production of coherent phonons in transparent materials [33, 38], or ‘displacive excitation’
mechanism proposed as an explanation for observations made in certain opaque materials [13, 40].

However, also of interest, both theoretically and experimentally, is the possibility of the ultrafast optical
excitation of lattice vibrational modes with certain specific quantum features [5, 30], for instance the creation of
‘squeezed phonons’, so named again in analogy with quantum optics (e.g. see [3, 14, 18, 29] and references

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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therein). Squeezing is a typical non-classical property, as squeezed states can achieve lower quantum noise than
the zero-point fluctuations of vacuum or coherent states [36, 39].

Theoretical studies on squeezed phonons typically use analogies with quantum light [36] in order to explain
their generation and dynamics: phonons are treated either as elements of complex compound objects, like
polaritons [2, 19], or independently, with squeezing resulting from the interaction with either photons, through
Raman scattering, or among themselves [3, 16, 17]. At the same time the detection process is still treated in a
semiclassical way, while the quantum features of lattice vibrations ought to be accessed via the analysis of the full
quantum statistics of the scattered probe light. More recent studies have been focused on alternative generation
mechanisms for squeezing, in particular, optical excitations of phonons mediated by quantum dots [7];
however, reduction of the fluctuations below the vacuum level were obtained only in the case of excitations
induced by multiple pump pulses [32, 37].

Nonetheless, the production and detection of squeezed phonons using optical techniques have attracted alot
of attention also from the experimental point of view. Most of these efforts have focused on identifying
signatures for the presence of squeezing through the analysis of the intensity of the collected scattered probe light
as a function of the time delay between pump and probe pulses, tacitly assuming that the measured photon
properties exactly reproduce those of the excited phonons.

In this respect, squeezed phonons were first reported to be observed in a transparent material at low
temperature, by relating semiclassically the measured probe transmittance to the periodic oscillations of the
lattice displacement in the target material [ 14]. This result has drawn a lot of controversy because of the small
magnitude of the detected modulation, which is compatible with thermal fluctuations [18].

Further information on the dynamics of the excited material can be obtained by looking at additional data
characterizing the scattered probe light beyond its mean intensity. This idea was first explored and discussed in
experiments studying phonon dynamics in opaque materials [27, 28]. In such experiments, probe data were
repeatedly collected for each time delay between pump and probe pulses, so that not only the mean intensity of
the scattered probe light, but also fluctuations around the mean could be obtained. Assuming a perfect
correspondence between the features of the detected scattered photon state and those of the excited phonons in
the material, the presence of oscillations in the fluctuations with twice the frequency of the excited phonon mode
was seen as a sign of phonon squeezing. Still, a shadow of doubt was cast also on these results, since the observed
oscillations in the fluctuation data could be attributed to an intrinsically imprecise phase determination in the
used apparatus, giving rise to the so-called jittering effects [20]. More recent experiments have been performed
using ultrafast x-ray diffraction, granting a reduced pulse duration, hence reduced jittering errors [23]; despite
this experimental advantage, the results concerning the presence of squeezed phonons seem to need further
analysis.

In essence, a clear signal for the presence of squeezed phonons in pump excited materials remains elusive.
Recently, new experiments have been performed, focusing on time-resolved optical experiments. In particular,
the displacement of photoexcited atoms in the lattice has been addressed by means of non-equilibrium optical
experiments in the shot-noise limited regime [10]. It appears that the unveiling of photon squeezing in a-quartz
can be achieved through the acquisition of the full statistics of quantum fluctuations of the scattered probe
photon number. Many factors need to be taken into account and understood in interpreting experimental data,
in particular those related to the mechanism of generation of squeezing, the interaction of the excited phonons
with their surrounding environment, the process of detection, and how to combine them all. The aim of the
present investigation is to address some of these issues with a fully quantum, phenomenological description
based on, first, a photon—phonon interaction hamiltonian containing the first relevant gauge-invariant
contributions in terms of phononic and photonic annihilation and creation operators and, second, a master
equation of Lindblad type taking care of the weak-coupling of the phonons with their environment.

More specifically, the interaction between the photons in the laser pulses and the phonons in the target
material will be described by an effective photon—phonon quantum hamiltonian, capable of describing both
pump and probe processes: linear and bilinear in the photon and phonon operators, this hamiltonian can
account for the generation of both coherent and squeezed phonons in the pump process, at the same time
describing the probe reading.

Furthermore, phonons in the material cannot be considered an isolated system: they interact weakly with
their environment, made of the constituents of the material other than the phonons themselves. As a
consequence, their dynamics is no longer unitary and needs to be studied within the open quantum system
paradigm, through the use of an appropriate master equation, accounting for dissipative and noisy effects.

In order to correctly relate collected photon data with phonon properties, a consistent quantum description
of the probing process is necessary ’; two physically relevant scenarios will be described. In this way, higher order
photon correlations become accessible, supporting a precise analysis of the phonon quantum state, that is not

In the frequency domain, the relations between the quantum statistics of phonons and scattered light has been discussed in [34].
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possible within the semiclassical approaches used so far. More specifically, we shall focus on the study of two
related probe photon observables, the mean number and its corresponding variance. Through the analysis of
their joint behavior as a function of the pump and probe time delay, unique signals associated with the presence
of squeezing in the pump excited phonons will be identified.

In detail, section 2 is devoted to the systematic description of a typical pump and probe experiment. The
quantum hamiltonian describing the photon—phonon interaction will be introduced and discussed: it will be
used for studying both pump and probe processes. Two different types of dissipative environments will be
studied, thermal and dephasing baths; they give rise to two different master equations describing the dynamics of
excited phonons, whose solutions will be explicitly obtained and analyzed in section 3. In section 4, the quantum
formalism so far developed will be applied to the description of phonon excitations, as reported in experiments.
This is done by studying in detail the evolution of the mean probe photon number and the corresponding
variance: their joint analysis reveals unique signs of the presence of squeezed phonons. The final section 5
comprises an outline of our results and a discussion of recent experimental studies, that are compatible with the
theoretical predictions of the approach outlined above. Finally, the Appendices contain technical material
inappropriate for the main text.

2. Effective quantum description

Most of the various proposed mechanisms for the generation of phonons in pump and probe experiments (like
Raman scattering, multiphonon scattering, and polaritons) rely on semiclassical treatments, using either ad hoc
classical equations of motion for the atom displacement in the crystal or mean-field approximations, whereas
the optical fields are mostly described classically. Although these models may account for some average features
of the phonon dynamics, they are unsuited to capture their quantum properties.

2.1. Quantum approach to pump and probe experiments
The characterization of a typical pump and probe experiment involves several steps:

(1) Initial state. Before being hit by the pump laser pulse, the material under study is in thermal equilibrium:
the initial phonon state, described by the density matrix P> is then a thermal one, characterized by the inverse
temperature (3, which in experiments frequently corresponds to room temperature. On the other hand, the laser
pump pulse can be described by a coherent photon state | /) [11, 35], of high intensity || >> 1. The initial total
(photon and phonon) state is then given by the density matrix

) (v| ® ps. (1)

(2) Pumping process. In view of the difference between the laser pulse’s duration (/280-100 femtoseconds)
and the typical phonon evolution time scale (a few picoseconds), the pumping process can be considered
instantaneous at time t = 0. Consequently, it is described by a unitary operator I/ (discussed in detail in
section 2.5, see also section 2.7), that transforms the initial state of the composite system into a new state

U(w) (vl @ pU'. @)

This new state contains information about both photons and phonons. Since the scattered pump pulse is
discarded and we are interested only in the phonon behavior, the photon degrees of freedom can be traced out:

p = Trphoton[u(ly> <V| & Py) UT] (3)

The density matrix p thus describes the state of the phonons immediately after the excitation by the pump.

(3) Phonon dynamics. The excited phonons cannot be considered isolated from their environment, since
they inevitably interact with it, albeit weakly. In this case, standard techniques describe their time-evolution by
means of a master equation [1,4, 12]

O p(t) = Lp®)], 4

where the generator L takes into account the dissipative and noisy effects induced by the environment.

(4) Probing process. After a delay time ¢, the probing pulse acts again impulsively; in analogy with the pump
process, probing can be described by a unitary operator U (treated in detail in section 2.7, see also section 2.5). It
acts on a total photon—phonon state of the form |a) (| ® p(t), where | ) is the corresponding coherent state
of the probe laser light, with intensity | | considerably smaller than the pump intensity |v|. Since we extract
information about the phonons by analyzing the scattered probe light, we are only interested in the state of the
photons, obtained by tracing away the phonon degrees of freedom:

o (t) = Trphonon [U() (] @ p()UT. )
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The photon state o () is completely characterized by its correlation functions
<(ﬁ]‘)man> ) = Trphoton[(&T)maAn o], (6)

where @7, @ are the photon creation and annihilation operators and 1, n positive integers. While previous
investigations have considered essentially the case m = n = 1, in the present approach higher order photon
correlation functions can be obtained. As we shall show, they allow a precise characterization of the quantum
features of the phonon states.

In the following we will discuss in detail each one of these steps.

2.2. Initial phonon state

Let us consider pump and probe experiments at room temperature. Before the pump pulse hits the target, the
phonons can then be assumed to be in thermal equilibrium at a given inverse temperature (; their state is thus
described by the thermal density matrix

e~ BH

T Tr[e M’

Pg ™)
In general, the pump laser beam can excite different vibrational modes; however, in many situations, only
one mode is seen to be physically relevant due to the specific experimental setups [3, 14, 18, 29]. In such cases, the
phonon hamiltonian can be taken tobe H = 2 b'b , where only one mode of energy {2 contributes, and b and b
are the corresponding phonon bosonic creation and annihilation operators satisfying the canonical
commutation relation [b, I;T] = 1. In this equilibrium state, the mean phonon number is given by

Neg = Trlp; 601 = (7 — 1)L, (8)

We remark that the assumption of a single active phonon mode is frequently realistic. For example, crystal
symmetries and laser polarization may be exploited to selectively excite a single mode [10], or the temperature
dependence of some mode can be used to suppress it, even at room temperature [22]. Furthermore, the
formalism we are describing is rather general and can easily be extended to account for the presence of more than
one phonon excitation mode.

2.3. Pump photon state
In pump and probe experiments, a mode-locked pulsed laser is used. Although laser pulses contains many
frequencies, mode-locking allows one to consistently adopt a single-mode description, which collectively
accounts for the coherent properties of the laser beam as discussed in detail in [11]. Such single-mode treatment
of laser pulses interacting with matter is of course tenable only when the dynamics does not distinguish the
various pulse components.

The pump laser photon state will then be described by a single mode coherent state | /), satisfying
a |vy = v |v), with 4, @" the (collective) annihilation and creation operators, satisfying the canonical
commutation relation [4, @T] = 1. The parameter v is related to the laser intensity via the mean photon number
(v| a'a |v) = |v|* Since the pump laser pulse is of high intensity, we have || > 1.

2.4. Photon—phonon effective interaction

The effects of the laser pulses on the crystal vibrations can generically be described in terms of first and second
order processes. Since the pulse duration is much shorter than any phonon characteristic time, the laser action
on the target material can be considered instantaneous, and consequently may effectively be described by a time
dependent interaction hamiltonian of the form

H() = (vatb+~*ab +n@h? b + n* 2266, )

where § (t) embodies the impulsive character of the interaction, while yand 7 are suitable complex coupling
constants. To apply the scheme to a specific experiment, they have to be determined, either from first principles
or phenomenologically; a study of typically possible behavior can be found in section 4.

In (9), a generic photon—phonon interaction hamiltonian has been expanded up to the second order in
photon and phonon operators: higher orders can be safely neglected since their coupling constants are smaller
and smaller, taking into account that the scattering processes they describe are less likely to occur. Notice that the
hamiltonian (9) has been chosen to preserve the number of bosons, i.e. the annihilation of a certain number of
photons results in the creation of the same number of phonons and vice versa. This assumption corresponds to
the request that the interaction be gauge-invariant in all bosonic operators. The linear terms in the hamiltonian
involve only phonons in a single mode at null momentum k, while the quartic ones are not limited to k = 0 and
one should thus integrate over the entire optical phonon dispersion region including processes where the

4



10P Publishing

NewJ. Phys. 19 (2017) 023032 F Benatti etal

momentum conservation is guaranteed by the creation of optical phonons with opposite momenta. However,
the effective hamiltonian comprises only a single phonon mode atk = 0 since, in essentially the great majority
of experiments so far performed, the probing process is limited to the linear regime whereby phonons at k = 0
do not practically affect the observed photon number fluctuations.

Moreover, since the hamiltonian is linear and bilinear in the phonon operators, the described interaction
can generate not only coherent or squeezed phonons, but also both effects at the same time—a situation that is
far more likely.

The above hamiltonian is time dependent and thus the evolution operator U(¢, t,) involves a time-ordered
exponential. In this case, however, the integral can be calculated so that the 2(%, t;) is the same for all ¢, < 0 and
t > 0. Consequently, we can describe the photon—phonon interaction by a single application of the operator

U=exp[—i(yatb+*ab +n@H o +n*a2@HM; (10)

itrepresents the action of the laser pulses on any photon—phonon state.

2.5. Pump process

As mentioned before, the pump process transforms the initial total state |v) (| @ pyinto U(|v) (V| ® p)U T
Since |v) represents a high intensity coherent photon state, the use of a mean-field approximation for the photon
degrees of freedom is appropriate (see appendix A for a more detailed discussion); then, one may replace 4 with v
and 4" with *, so that I/ in (10) reduces to

UMF = exp[—i(y v* b+ ¥ v b + 0 @™ + 2 (0], (11)

containing only phonon operators. Therefore, immediately after the action of the pump, the state of the
composed photon—phonon system is given by

v) (vl @ (U py (U)D). (12)
It turns out that UMF can be rewritten as a combination of displacement (D) and squeezing (S) operators’
U = $(6,)D (@), (13)
with
D(z,) = exp(z, Z;T — zj I;), (14)
1 w2 1 NIV
SE¢,) =exp| = b" — =€, (b)) (15)
2 2
where the displacement z, and squeezing &, = 1, e'% parameters are explicitly given by
2= L1~ cosh(@ [yl )00 — sinh(2 ]|y P)el 0 +7/2), (16)
2 nllvl
w=2hllvP, g =20 — 6+ 7, (17)

withy = |y| e, n = || e andv = |v| .
The phonon state after the pump process

p = UM p, (U, (18)

obtained from (12) by tracing out the photon degrees of freedom, is then a squeezed coherent thermal state; it
represents the initial state of the phonon dynamics, whose description requires taking into account the weak
interaction with the environment (see figure 1 for a phase—space representation of all the above introduced
states).

2.6. Phonon dynamics

Phonons in the target material can hardly be considered as an isolated system, since they inevitably interact with
the environment formed by the remaining crystal degrees of freedom, e.g. electrons or impurities. However, the
interaction is in general weak and furthermore, initially, phonons and the environment can be considered
uncorrelated. In such situations, the standard approach to open quantum systems allows to derive through the
so-called ‘weak coupling limit’ techniques a Lindblad type master equation for the dynamics of the phonon state
p (1), that takes the general form [ 1, 4]

® This can be easily proved by recalling the action of displacement and squeezing operators (14) and (15) on phonon creation and
annihilation operators [15].
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Figure 1. Phase space representation of (a) vacuum state, (b) Thermal state (at temperature 1/3 = 300 K) (c) squeezed thermal state
(at temperature 1/8 = 300 K, squeezing parameter £ = 0.1) (d) displaced squeezed thermal state (at temperature 1/5 = 300 K,
squeezing parameter & = 0.1e!™/4, and displacement parameter z = 2¢/™/%).
Oip(t) = —i[H, p(t)]
1 T T
+ 2 2 M@V OV = ViVip(1) = p(O VY. (19)
k

The firstline alone would give rise to the usual unitary evolution generated by the phonon free hamiltonian
H=Q ETl;, while the additional contribution in the second line arises due to the presence of the environment;
the quantities V. represent suitable phonon operators, while the real and positive constants \; parametrize noisy
and dissipative effects. Two different, physically relevant situations [ 12] will be studied explicitly:

Thermal environment. Experimental evidence indicates that, after being excited by the pump pulse, phonons
relax in a few picoseconds to a thermal equilibrium state, at a final temperature possibly higher than the initial
one. We have thus considered the typical master equation that describes this situation:

Bip(t) = — i1 b'bp(0)]
+%ﬂm+ma%mﬁ—ﬁ%m—pmf®
+ e @b p )b — 66" p(t) — p()BB, (20)

where n; = (e’ — 1)~!is the thermal mean phonon number at the final inverse temperature 3¢, while

Ar > 0is the phenomenological constant parametrizing the strength of noise and dissipation. The dynamics

generated by this equation has a unique long-time asymptotic state, the Gibbs state at inverse temperature J¢.
Dephasing environment. A typical effect due to the presence of an external environment is loss of coherence, a

phenomenon usually referred to as ‘dephasing’. This occurs when the number of phonons is constant in time,

6
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since due to the Heisenberg uncertainty principle, the conjugate variable, the ‘phase’, must then be completely
undetermined. A typical master equation describing dephasing effects is given by [12]

&mo:—mw%mun—%ﬁﬁ&w%pmn, 1)

where A\p > 0 is the phenomenological parameter describing the damping of the system. This master equation
describes the situation in which there is no energy exchange between the phonons and their surroundings;
indeed, the phonon number operator b'D isleft invariant by the time evolution generated by (21), which, asa
consequence, does not possess a unique asymptotic state.

Besides their physical interpretation and applicability in the description of the phonon dynamics, these two
different master equations can also be solved analytically.

2.7.Probing process

While the pump pulse is intense in order to excite the system out of equilibrium, the probe pulse is less intense
and its use is to record the properties of the phonon state through the analysis of the properties of the scattered
probe photons. By varying the time delay between pump and probe pulses, the relaxing phonon dynamics can
thus be systematically examined.

Asin the case of the pump, the probe laser pulses can be described using a coherent state | ), so that the
density matrix representing the state of the compound photon—phonon system just before probing can still be
written in factorized form, |a) (o] ® p(¢) (compare with (1)). However, one has || < |v|, since in general the
probe pulses are less intense than the pump ones. In such a case, the unitary operator U = exp(—iG)in (10),
withG =y at b + v* a b+ n (a")? b’ + n* a2 ®"?, representing in general the action of the laser pulses on
the target material, cannot be written asin (11), since the probe pulse can no longer be considered semiclassical,
and therefore no mean-field approximation can be used. Nevertheless, when actingon |a) (| ® p (), U can
always be decomposed as

U=10U, + A, (22)

in terms of the new unitary operator
Uy = exp(—iGa), Ga =y at b+ ~%ab +n @b + ¥ a2(b)? (23)
and the difference A,
Ay=U—-TU, = fol ds 8.[U,~* U] = ifol ds UL (G — G)U-

Note that U, is akin to a mean-field approximation in only the quadratic terms, thus introducing the parameter
. The full expression for I in (22) is, however, still exact. Now we introduce an approximation that goes
beyond the mean-field, while still guaranteeing the tractability of the calculation. The details of its application
will be discussed in section 2.8. A first order approximation of A, suffices, so that in the probing process U/ can
be approximated by the following expression:

%z%ﬁ_JHN@WM”ﬂWW+WW—MWT%%' (24)
0

The state of the compound photon—phonon system after the probe pulse hits the material is then given by

U (o) (a] @ pU I . In general, the bilinear terms in the exponential dominate over the quadratic ones, so
that one can safely assume 7 ~ 0; however, there are situations in which, due to crystal symmetries or to specific
experimental adjustments, the terms with the linear pieces in photon and phonon operators do not contribute
[14], this situation is commonly considered for the sake of simplicity when the generation of a squeezed phonon
state is the goal. In such cases v = 0 and only the quadratic terms survive. Both situation will be discussed in
detail in the following.

2.8.Photon correlations

Our aim is the study of the behavior of the photoexcited phonons as monitored by the probe pulses. This can be
achieved by analyzing suitable scattered probe photon observables. Specifically, we shall focus on the behavior of
the mean photon number (@) and on its variance Az,. While (44) is connected to the reflectivity/
transmittance of the probe light and thus to the semiclassical properties of the excited phonons, higher order
photon correlations, as in A1, are needed in order to inspect its quantum aspects. The joint analysis of mean
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number and its variance, two experimentally accessible photon observables, provides enough information for
identifying some phonon quantum features, in particular the presence of squeezing.
The mean probe photon number at time ¢ and its corresponding variance can be suitably written as’:

(@%a) (1) = Tr[U} d%a Us) la) (] @ p(@)], =
Aaat) = {@a@) () — (') (1)?, (20

with
(@8)2) (1) = Tr[U, @8 Us) 1) (ol @ p(o)], @7

where the trace operation is now performed on both phonon and photon degrees of freedom. These quantities
can be conveniently expressed in terms of suitable phonon correlations, ((l; T)ml; ") (t) = Tthhonon (b T) "b "o (0],
with m, n = 0, 1, 2; their explicit forms depend on which of the two probing processes mentioned above is
relevant in the examined context (details and further discussion can be found in appendix B).

First-order probing process. When the quadratic terms in the hamiltonian are negligible, i.e.  ~ 0, asituation
most likely occurring in opaque materials, the impulsive unitary operator describing the probe process (24)
reduces to

U, = exp(—ilyal b +~*ab. (28)

Note that this operator does not depend on v anymore, and that the subscript merely denotes the approximation
used. In this case, the mean value of the photon number can be expressed as

(@) (t) = lal? cos? (|7 1) + (6'b) (1)sin?(|y)

200D DD e 51y 1) — o a (5o, 29)
ol
while the explicit expression of the variance Az () is rather more involved; it is collected in appendix B.
Second-order probing process. On the other hand, when there is no contribution from the linear terms in

phonon creation and annihilation operators (7 ~ 0), no generation of coherent states out of the pump process
can be achieved. This situation describes the process in which the excited phonon state resulting from the pump
process is a squeezed thermal one, a typical situation encountered in transparent materials [ 14, 18]; in this case,
U, is still given by (24), but with the simplified U,:

Uy = exp (il ()2 B” + n* a2 (6)?]), (30)
The mean value of the photon number takes now the form
(@a) (1) = |a? — sinh?(r,)(1 + 2(6'B) (1)) + sinh(2r)R[ (D7) (1)ei4], (1)
where 1, and ¢, areasin (17), but with vreplaced by a = |afei®®
variance one gets:

, while R signifies real part; similarly, for the

Aga(=]al — 21 + 2(6'6) (1))sinh(r,)
— (1 + 2(b'B) (t))? sinh*(r,) + 2sinh2r)R[ (B (£)e ]
+ sinh?(r,)sinh (2r,) (1 + 2(6'B) (1)) R[(67) (£ e ]
— sinh?(2r,) (R[(67) (£)e—%])2. (32)
In order to obtain the explicit time dependence of these two observables, (4%4) () and Az (¢), one now has to

analyze the phonon dynamics generated by the master equations (20) and (21) and compute the needed phonon
correlation functions.

3. Dissipative phonon dynamics

As explained in section 2, after the action of the pump, the excited phonons will dynamically evolve as an open
quantum system, since they interact weakly with the surrounding environment. Their evolution in time is
described by a Lindblad master equation of the form (19); its explicit solution depends on the type of the
environment, and the two cases presented in section 2.6 need to be treated separately.

Thermal environment. In the case of a thermal reservoir, the master equation takes the form (20). In this
case, itis useful to express the phonon density matrix p in phase space using the displacement operator D,

7 Notice that if d, a' were substituted by a, o in the expression of the operator implementing the probing process (see (10)), there would be
no reading of the phonon properties by the probe photons, since in this case U}, a*a U,, = a*a.
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by writing [15]
1
o= —f Pw y (w)D(—w), (33)
T JC

with wa complex variable; the characteristic function x (w) can be obtained through the equation

x(w) = Tr[p D(wW)]. (34)

For the squeezed coherent thermal state (18) resulting from the pump process, one finds [25]

Y(w) = e—(A+%)|w|27%(B* w24+ B (W*)2)+C*chw*) (35)
with
A = feq + (2neq + 1)sinh?(n,), (36)
B = (2n1¢q + 1) €% sinh(r,)cosh(r,), (37)
C = z,cosh(n) — z," e sinh(r,), (38)

making apparent its gaussian character. Since the master equation (20) contains at most quadratic terms in
phonon creation and annihilation operators, this gaussian character will not be spoiled by the finite time
evolution generated by it. As a result, the time dependent density operator, solution of (20), can also be written
in a form similar to (33); specifically, one finds

p(0) = = [ dw x, (me D (—w), (39)
T JC
where

o, (w) = i(nf + %)(1 — e M |w)?, (40)

while x, (w)isasin (35) with the replacement of wwith ei** e~ 1/2

correlation function ((I; T)ml; n) @) =Tr [(l; T) "p" p (t)] can easily be obtained through the formula:

w. From this expression, any phonon

(@Y 8" (1) = (~1y" 6$87V*[xt (w)e"ﬂﬁr(meﬂu:o,w*zo. (41)
For instance, one gets:
(b)(1) = C e g=Mr1/2, (42)
<52> (t) — (Cz _ B)e—ziQt e—)\T t’ (43)
(b'b)(t) = (A + |CPYe ™' + ne(1 — ey, (44)

Dephasing environment. In the case of the reservoir that preserves the phonon number, the corresponding
master equation (21) can be explicitly solved in the Fock representation. Indeed, in the standard Fock basis

formed by eigenstates of the number operator, {|n), n = 1, 2, ...}, with A |n) = n|n), the master equation
reduces to

Prn (D) = [—iﬂ(m —n) - %m - n)z]pm,n, (45)
where p,, () = (m|p(t)|n) are the elements of the phonon density matrix, so that
pm,n(t) _ e—iQ(m—n)t e—/\D(m—n)zt/Z - (46)
The phonon correlation functions at time ¢
<(B+)m l;”> (1) = el(m—mQt e*(m*ﬂ)z)\pt/z <(l;})m I;"> , (47)
can then be expressed in terms of known, time independent correlations
AN AN
((b)"b") =Tr[()" b pl, (43)

i.e. the correlations in the initial state p, the squeezed coherent thermal state (18) obtained from the pumping
process.
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Figure 2. Behavior of mean photon number and corresponding variance as a function of the delay between pump and probe, in the
case of a thermal bath. The variance curve has been shifted and rescaled to allow for an easy analysis of the phase relation between the
two curves. The following choice of physical parameters has been made: phonon frequency, @ = 17.5 x 10'? rad s, corresponding
to the Aj, Raman active mode of bismuth, initial sample equilibrium temperature 300 K, reservoir temperature 500 K (it coincides
with the sample temperature after pumping) and damping constant Ay = 0.85 x 10'2 s1. Both curves oscillate in phase with
frequency (2. Details on the analytic expressions relative to the above plots, as well to the ones in the subsequent figures, can be found
in[35].

4. Phonon quantum properties: squeezing

Having obtained explicit expressions for the time evolution of mean number and corresponding variance of the
scattered probe light, we can now show how the joint analysis of these observables allows a much more complete
description of the quantum properties of excited phonons in pump and probe experiments than so far achieved.

As mentioned in the introduction, the creation and detection of squeezed phonons in optically excited
materials have been subject of debate: based on the experiments so far performed and the related theoretical
studies, a definite sign, indicator for the presence of squeezed phonons in pump excited materials has not yet
been identified. In order to study this question within our fully quantum approach, we have explored a broad set
of values for pump intensity, coupling constants, probe intensity and damping parameters. We will present our
results separately for thermal and dephasing bath, further distinguishing between opaque and transparent
materials (see [35] for a more comprehensive treatment).

4.1. Thermal environment

The thermal reservoir has a unique equilibrium state, a Gibbs state determined by the temperature of the bath.
This temperature is larger than the initial equilibrium temperature of the target material (here considered to be
the usual room temperature of about 300 K), since the highly intense pump pulse is partially absorbed by the
crystal. Typical temperatures reached by an absorbing opaque crystal after the pump are around 500 K, while for
transparent materials, where the absorption effects can be neglected, the increase in temperature can be
estimated to be at most few degrees higher than the initial one. As discussed earlier, the pump pulse excites the
phonons, producing displacement and squeezing in the initially thermal state: their subsequent dissipative
relaxation back to equilibrium as driven by the presence of the thermal environment, can be studied through the
analysis of the typical oscillating behavior of probe photon mean number and variance (see figure 2).

At this stage, the difference between opaque and transparent materials needs to be taken into account; as
mentioned, the final temperature is considerably higher in the case of opaque crystals, like bismuth, due to the
absorption of energy from the pump pulse. Meanwhile, in transparent materials, like a-quartz, the final
temperature can be expected to be only marginally higher than the initial one. In the model described here, this
parameter needs to be either estimated from the crystal properties or fitted from the experimental results. The
possibility of melting the target due to the absorption of energy from high intensity pump pulses establishes a
natural threshold for opaque and transparent materials. For opaque materials, a limit in the intensity used in the
pump pulse is naturally given by the properties of the crystal, while for non-absorbing crystal, i.e. transparent
crystal targets, a broad range of intensities (typically referred to as fluence in experiments) can be used.

Concerning the probe process, there is no distinction between the two cases described above, since the probe
pulse is always weak in order to avoid an additional excitation of the crystal target.

Linear probing process. The physical situation in which the probe interaction is dominated by mechanisms
involving linear terms in photon and phonon operators is adequately described by the linear probing process.

10
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This regime is usually achieved by means of a probe pulse that is much weaker than the pump pulse. Some
particular situations are worth discussing in detail, listed below according to characteristics of the state p of the
excited phonons after pumping.

(i) Thermal state. If the pump pulse creates neither any displacement nor squeezing in the initial thermal
equilibrium state, no oscillating terms appear in the time evolution of the mean photon number or variance.
Only a thermalization process is observed, driving the phonon state to a new equilibrium state, the one
supported by the thermal bath; it is characterized by the damping constant Ar and the bath temperature.

(ii) Coherent thermal state. Another physically likely and relevant situation is when the pump process
displaces the thermal state, but does not squeezeit,i.e. p = D(z,) p; D7 (z,), so that the excited phonons are
described by a coherent thermal state. This particular case can be achieved by either a not so intense pump pulse
or by a negligible coupling constant 7. In this situation, the mean photon number and the corresponding
variance both behave in the same way as a function of the time delay between pump and probe: both observables
show typical damped oscillations with frequency given by the excited phonon mode (2, as depicted in figure 2.
This is also the typical behavior of the reflectivity/transmittance reported in experiments on optically excited
coherent phonons.

(iii) Squeezed thermal state. Another possibility is given by the excitation of phonons in a squeezed thermal
state, p = S(&,) p3 ST (&,). It should be noted that this case is less likely to occur since it corresponds to a physical
situation in which the bilinear contributions in the effective hamiltonian describing the pumping process can be
neglected. In this case the mean photon number does not present oscillations, whereas the variance oscillates
with twice the phonon mode frequency §2; furthermore, both observables contain damping factors
characterized by the dissipative constant Ar. The presence of the frequency 22 in the variance oscillations is a
signal of squeezing in the excited phonon state; indeed, if the squeezing parameter ¢, is zero, then this
contribution disappears.

(iv) Squeezed coherent thermal state. The most general situation occurs when the pumping process excites a
phonon state which is both squeezed and coherent, as in (18), alikely situation in this kind of non-equilibrium
optical experiments. In this case, the mean photon number oscillates with frequency 2, with an amplitude that,
besides depending on displacement, squeezing and probe intensity parameters, is damped in time by the factor
e~1%/2, On the other hand, the associated variance shows oscillating terms with frequency €2, which are damped
by factors e 7%/ or e 3*7*/2 and terms with frequency 22, damped by e~*r*. This is due to the different
damping behavior in (42)—(44). Furthermore, one finds that the oscillating piece with frequency 22 is present
only if the squeezing parameter &, is non-vanishing, i.e. only in presence of squeezed phonons. However, it is in
general difficult to isolate such a contribution or to have evidence of a 22 contribution in the corresponding
Fourier spectrum; indeed, at least for high intensity pump and probe pulses, commonly used in pump and probe
experiments where the crystal target is non-absorbing, the mean photon number and variance show a behavior
in time similar to the one shown in figure 2.

For low intensity probe pulses | |* < 1and pump intensity |v |> two orders of magnitude larger, describing
experiments with absorbing materials, one can notice the occurrence of a phase shift between the oscillations of
mean number and variance, which is present only if the phonon state out of the pump process has non-
vanishing squeezing (see figure 3). This shift is time dependent and in general vanishes after a few oscillations
(see appendix C for details). The detection of such a shift can be taken as clear signal of the presence of squeezed
phonons in pump and probe experiments involving opaque materials. The visibility of the shift in actual
experiments depends on the specific features of the setups: each given experimental situation fixes the
magnitude of the phenomenological parameters associated with both the pump and probe processes and the
dissipative dynamics and, as a consequence, also the magnitude of the shift.

Quadratic probing process. As already mentioned before, due either to crystal symmetries or to specific
experimental situations, optical excitation of phonons in some crystal targets do not involve coherent
contributions: only the quartic pieces in the hamiltonian (9) are relevant [14]; in other words, v = 0. We focus
below on relevant physical situations, listed according to the characteristics of the excited phonon state p out of
the pumping process; note that, in the present situation, the displacement parameter z,, is always vanishing.

(i) Thermal state. When the pump is not able to excite the target material, i.e. the phonon state after pumping
is still a thermal state, the behavior of the mean photon number and its variance is given by exponential damping
terms, signaling thermalization of the phonon state to the bath temperature.

(ii) Squeezed thermal state. In this case, while the photon mean number oscillates with frequency 22, the
corresponding variance contains oscillatory contributions with frequency 22 and 4(2. In addition, one finds
that, in both cases, these oscillations are present only when the squeezing parameter £, is non-zero: their
detection would then constitute a clear signal of the presence of squeezing in the pump excited phonons.

Notice that for small values of the squeezing parameter £, the oscillating contribution with frequency 42 in
the variance can be neglected; in this case, both the mean and variance oscillate with the same frequency and in
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Figure 3. Behavior of mean photon number and corresponding variance as a function of the delay between pump and probe, ina
thermal bath with the same choices of parameters as in figure 2, but with low intensities pulses. Notice the initial dephasing between
the two curves.

addition these oscillations are perfectly in phase (the behavior is similar to the one reported in figure 2, although
the oscillations now occur at frequency 212).

4.2. Dephasing environment

As discussed in section 3, the characteristic property of the dephasing bath is the conservation of the number of
phonons in the material. Thus, if the pump pulse is too weak to produce excitations, leaving the phonons in
thermal equilibrium, the phonon dynamics do not show any time dependence since the thermal state is a
stationary state of the master equation (21). A non trivial time evolution occurs only when the pump pulse is able
to generate phonon displacement and squeezing. As in the case of the thermal reservoir, also for a dephasing
environment the behavior of the photon observables depends on the reading mechanism considered in the
probe process.

Linear probing process. We shall first consider the situation in which the probing mechanism can be described
using only the bilinear terms in the hamiltonian (9) describing photon—phonon interactions. Again we describe
different cases, classified according to the phonon state p.

(i) Coherent thermal state. When the pump process excites coherent phonons only, the mean photon
number oscillates with frequency €2, damped by a factor e~ *»*/2, On the other hand, the variance shows
oscillations both with frequency 2 and 22; however, the latter are more damped, the decaying factors being
proportional to e~ ** and e, respectively. In practice, mean number and variance are seen to oscillate in
time with the same frequency and in addition with the same phase. In the literature, the presence in the variance
of oscillating terms with frequency 2¢2 has been repeatedly considered to be a signal of the presence of phonon
squeezing. Instead, here we see that, due to the effects of the dephasing bath, a 2 oscillating contribution can
arise even in absence of squeezing, and therefore that the appearance of such oscillations in the variance cannot
be taken as an unquestionable signal of squeezing.

(ii) Squeezed coherent thermal state. The most likely situation is, however, the excitation of squeezed coherent
thermal phonons. In this more general case, for low intensity pulses, the dominant terms in the mean photon
number and variance take the form [35]:

(@) ()~ — |al|z,] e »/2sin |y]) [Asin(Q + ¢,) — Bsin(Qt + )],

ANgra()~ —|al|z,| e 2sin(2 |y]) [Csin(Qt + ¢,) — Dsin(Q + ¢p)], (49)
where
A = cosh(r,), G1=0,—06,—10, (50)
B = sinh(r,), pg=0,—0,+0,— ¢, (51)
C =[cos® (|7]) + (1 + 2neq)(2cosh(2r,) — 1) sin?(|y|)]cosh(r), (52)
D =1+ 2(neq + (1 + 2n¢q) cosh(21,)) sin®*(|y|)]sinh(r). (53)

Both observables oscillate with the frequency €2; however, there is a phase-shift §{2 between the two curves given
by
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Figure 4. Behavior of mean photon number and corresponding variance as a function of the delay between pump and probe, in the
case of a dephasing environment; the parameters have been chosen as in figure 2, but with damping constant Ap = 0.85 x 102571
The presence of a constant phase shift between the two curves is clearly visible.

(54)

6§) = arctan
[AC + BD — (BC + AD)cos(yp,

(AD + BC)sin(yp, — 26,)

This is clearly visible in the plots of figure 4. Notice that this shift is constant in time; further, it vanishes as the
squeezing parameter 7, tends to zero. Therefore, in the specified physical situation, the detection of a phase shift
between mean number and variance surely represents a clear signal of the presence of pump induced squeezed
phonons.

Quadratic probing process. One can similarly analyze the case in which the most relevant mechanism
accounting for the photon—phonon interaction is due to the quartic terms in the proposed hamiltonian; in this
case, as discussed before for the thermal bath, no displacement can be generated in the phonon states in both
pumping and probing processes. The most likely situation to occur due to the action of the pump is then the
excitation of a

(i) Squeezed thermal state. In this situation, the mean photon number is found to oscillate with frequency
2Q2, while the corresponding variance has oscillating contributions with both frequencies 2€2 and 4.
Nevertheless, when the probe pulses are of low intensity, |«|> < 1, both observables contain essentially only 2¢2
oscillations, and in addition with exactly the same phase: the obtained behavior is qualitatively the same as the
one shown in figure 2.

5. Outlook

Interactions of light with lattice vibrations have recently been the focus of many investigations. In particular,
pump and probe techniques have been used to study coherent phonon dynamics, both in transparent and
opaque materials. Most of these studies focused on detecting the presence of squeezed phonons using various
experimental methods; however, all results so far obtained are based on the study of the mean reflectivity/
transmittance of probe photons using semiclassical techniques. Squeezed states are characterized by quadrature
fluctuations smaller than in vacuum, and this makes their experimental identification rather challenging. These
facts, together with the debate that the various experiments stimulated, have kept the unquestionable
identification of squeezed phonons an open problem.

As a contribution to the solution of this issue, in the present work a fully quantum description of both
pumping and probing process has been developed. As a first step, a unique hamiltonian describing the effective
coupling between phonons and photons has been introduced: it characterizes the impulsive interaction between
thelaser light and the lattice vibrations in the target material and can account for the excitations of both coherent
and squeezed phonons.

Once excited by the pump, the phonons have been treated as an open quantum system, i.e. as a system in
weak interaction with its external environment, here made by the electrons and impurities in the crystal. Two
different physical situations have been investigated: first a thermal environment, where the phonon system
reaches an asymptotic equilibrium thermal state at the bath temperature; second, a dephasing environment,
preserving the number of phonons in the crystal target. In both settings, the corresponding master equation,
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describing the dissipative phonon dynamics, admits an exact analytic solution allowing direct access to phonon
correlations.

In the subsequent probing process, described by means of the same photon—phonon hamiltonian used for
the pumping process, two different experimentally relevant frameworks have been analyzed: first, the case in
which only bilinear contributions in photon and phonon operators are relevant, higher order terms being
negligible due to the low intensity of the probe pulse; second, the case in which the only relevant contribution to
the photon—phonon interaction comes from quartic contributions in photon and phonon operators. As
previously discussed, these situations and the range of pump intensities can be related to the description of the
photoexcited phonons in opaque and transparent materials.

In order to study the quantum properties of the pump excited phonons, it is not sufficient to focus on the
behavior of average observables, like probe photon reflectivity/transmittance, as was done so far: higher order
photon correlations need to be taken into account. We have thus considered two observables, the mean photon
number and its variance, and analyzed in detail their evolution as functions of the delay time between pump and
probe pulses. In this way, by studying jointly the dynamics of these two observables, clear signals for the presence
of excited squeezed phonons have been identified.

More specifically, in the case of opaque materials, a distinctive signal of squeezing is given by the presence of
arelative phase shift in the oscillating behavior of reflected probe photons mean and variance: it is non-
vanishing only when the squeezing parameter r, is nonzero. In presence of a thermal environment, the phase
shift between the two curves is time dependent and vanishes after few oscillations; instead, for the dephasing
environment, the phase shift is constant in time.

In the case of transparent materials, where higher intensities for pump and probe pulses are allowed, no
phase shift between mean and variance can be observed. However, for the case in which the difference between
pump and probe intensities is such that the probe process is dominated by linear mechanisms, i.e. linear probing
process, the presence of oscillations in the transmittance with twice the frequency of the photoexcited
vibrational mode is a signature of squeezing, reachable only in sophisticated experiments where thermal
fluctuations can be reduced and only quantum fluctuations are observed [11]. More generally, when the most
relevant contribution to the photon—phonon interaction is due to the quadratic terms in photon and phonon
operators, it has not been possible to distinguish any feature clearly associated with the presence of squeezed
phonon states by just looking at mean photon number and its variance; the study of higher order photon
correlations is presumably needed.

As a further remark, note that for both opaque and transparent materials, in presence of a dephasing
environment, oscillations with frequency 2€2, i.e. twice the phonon mode frequency, can be observed in the
behavior of the two observables even with vanishing squeezing parameter. Since any realistic environment is
likely to contain a dephasing contribution, the presence of oscillations with such double frequency can not be in
general considered a definite signal of squeezing. So, particular interest in the associated environment for the
excited phonons is needed.

Finally, let us observe that the results and predictions of our investigation seem to be confirmed by recent,
preliminary experimental findings. Indeed, under conditions similar to those analyzed here, experiments have
been performed using both opaque [31] and transparent [10] target materials. In the case of bismuth, an opaque
crystal, a damped oscillatory behavior has been reported for the mean reflectivity and its corresponding variance;
in addition, a phase shift between these two observables is visible in the raw experimental curves. On the other
hand, in order to excite coherent phonons in transparent materials, like the quartz crystals used in [10], more
intense laser pulses are needed, making the excitation of squeezed phonons more likely. However, in this
situation, no phase shift between mean photon number and variance is expected, but due to the particular setup
and data treatment used in the experiments, purely quantum fluctuations in the modulation of the
transmittance and its variance can be observed. The experimental results are matched and predicted by a
phenomenological quantum description of the impulsive stimulated Raman scattering that fits within the purely
quantum approach to pump and probe experiments developed in this manuscript.

The agreement between these experimental results and the predictions of our theoretical model is
encouraging and we hope that it will stimulate additional experimental studies.
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Appendix A. Pump process: effective description

Here, we shall give a precise justification for the substitution of photon creation and annihilation operators by
scalar quantities in the operator governing the pumping process as described in section 2.5.

We shall be quite general and take the effective hamiltonian describing the photon—phonon interaction of
the form

H@ ah=~va"B+~*aB +n@h2¢+n*a2 ¢, (55)

where d and 4" are the photon annihilation and creation operators, while B, BT, Cand C Tare generic phonon
operators. The dependence of the hamiltonian on d, 4" has been made explicit because we want to justify here
the substitution of H (@, a") with H (v, v*) where vlabels the coherent state | /) describing the photon state in
the pumping laser beam. Denoting with | ¢) a generic pure phonon state, the initial state of the compound
photon—phonon system is then in factorized form, |v, ¢) = |v) ® |@).

Proposition. Let O be a self-adjoint operator depending on both phonon and photon variables and let
O(t) _ eitH(ﬁ,ﬁT) Oe—itH(ﬁ,ﬁT)
denote its time-evolution under the hamiltonian (55). Then
(v, 91 O, ¢) = (v, 9] IO HED |y, ¢)
t
+ f ds A(v, s), (56)
0

where A (v, s) is a correction such that, for each fixed finite time t > 0, its integral from 0 to t can be made arbitrarily
small by choosing |v| large enough.

Proof. Let us consider the expectation value of the time-evolution equation for O(¢) in the state |, ¢):
O (v, ol Oy, ¢) = i(v, $I[H @, a%), OD]lv; ¢). (57)
Using d |v) = v |v)and the completeness relation for coherent states,
~ [ @818 BI=1 EB=dgidm F=5i+ib
one finds
0, (v, 01 O, §) = i{v, Gl(W*B + n(@**C)O(1)
— 0B + v ChHlw, ¢)
+ 20 [ 8 (161 018) (81066 + (@Ol 0) |

By passing to the new integration variable ;4 =  — v, one reconstructs a hamiltonian operator with the photon
operators being replaced by the complex scalars vand v*:

0 (v, | OM)|v, ¢) = (v, d|[H W, vOWM)]|v, ¢)

+ E%(f &u (v, SO+ v) (u + viy ¥ B+ 1 (1?2 C + 20 pv* Cl, ¢>)-
T

(58)
In order to complete the proof, one needs to analyze the large || behavior of the quantity
AW, 1) = Em[ f 2y e 1P /2 i3
0
< (010 OO+ )y 4 B+ 1 (0 +20)16) | 69

where the scalar product of coherent states (p + v| v) = exp[—|ul|*/2 — iJ (™) has been used (J signifies
imaginary part). We then consider separately the three terms that contribute to A (v, ); using Schwarz’s
inequality, one gets (1 = p; + ip,):
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* Firstterm:
[ e e 0 4, G100 Bl + v, 6)]
< [ dpy duy e VER BT O, 6)] (60)
<V2 @2 BT oy, 9.

+ Second term:
| f &g e 0F 2= (192 (1, HlO® Clpn + v, @) |
< [ duy dy e 2 R CT 0w, )] (61)
<4r |ICT Oy, ¢).

» Third term:
[v* fd2M e P 12e=130) 1% () O Clp + vy &) ]
<l [ duy dpy e A ET OO, 6) 2
<VZ 72 |ICT 0wy, ).

Next, by using coherent states completeness, the following quantity
d? At oA d?
SR P18 0k = [ (5,61 73K 7 16,0)

= <¢| Trphoton(y XXT Y)l(b)’

is finite for sufficiently well-behaved operators X, ¥ and phonon state | @). Then, by passing to polar
coordinates, d?8 = | 3| d |3| d6, theintegrand of the i 1ntegrat10n over |(],i.e. || ||X Y |5, @) |P*, must vanish
faster than 1/| 3| when | 3| — oo. Asaresult, by choosing X = BorC,and Y = O(t), one sees that all three
contributions listed above, and therefore A (v, t) itself, become arbitrarily small for large |/ |. Finally, by
integrating (58) over time, the statement of the Proposition follows. O

Although a pure initial state has been used in the above proof, the results remains true also when the phonon
state is described by a density matrix p instead of a pure state | ¢), since any density matrix can always be
expressed as a convex combination of rank-one projectors. As the pumping laser beam is of high intensity,
|/]> > 1, the substitution of @ with vand 4" with v/* in the operator U representing the pumping process in
section 2.5 appears now completely justified.

Appendix B. Probe photon correlations

As discussed in section 2.8, the explicit expressions of the correlation functions for the scattered/transmitted
probe photons depend on the two mechanisms responsible for the probing process; the two situations need to be
considered separately.

B.1. Linear probing process

When the photon—phonon interaction is dominated by processes in which the interaction between the light and
the lattice vibrations is such that one photon is transformed into one phonon, only linear terms in phonon
creation and annihilation operators are relevant in the expression (24) of the operator U, describing the probe
process. In this case, since the quartic coupling 7 vanishes, its expression reduces to the one given in (28)

U, = exp(—ilyal b+ ~*ab. (63)
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In order to obtain probe photon correlations
(@hmar) (1) = Tr[U], @)"a" Uy o) (] © p(0)], (64)

one has to compute the action of this operator on monomials in photon creation and annihilation operators.
This can be done conveniently by introducing the bilinear operators

L=
2 |v]
'y*cil;T—vﬁTl;
L=1i
2 v
AtA Z;Tl;
kZT) (65)

that obey the su(2) algebraic commutation relations
Ui, Ji1 = i€ (66)

For instance, since 4’4 = N/2 + J,with N = 4%a + l;TE the total boson number, commuting with all J;, one
easily finds:

N .
ulatal, = 5 T 0s@ 17Dk + sin@ YDk (67)

Recalling (64) above, from this result one immediately gets the expression of the mean photon number (44) (¢)
reported in (29). Using similar techniques, one can compute the corresponding variance [35]

Azia(t) =laP cos? (17]) + (BB (1) — (6'5Y (1))sin* (|7])
+ (0 ()2 1al + Deos (I ))sin(|y1)

2 L) At A~
- s WDIBID e (672 1) — (5 )

Iy
2B (1) — (B2 (0) + 2 [y Plal (67 (B) (1))
i BDINWD (5 0y — 0 ()

[v]
iy . -
+ 2D 0 (572 0 — (8'6) (5 o)
— v a (667 @) — (B'B) (By (1, 68)

where((l;T)ml;nﬂt) = Trphonon[(l;T)ml;np (v], with m, n € {0, 1, 2}, represent phonon correlations.

B.2. Quadratic probing process

When processes in which one photon is absorbed and one phonon is produced, and vice versa, are not
contributing to the photon—phonon interaction, i.e. the coupling constant +yis zero, the operator U
implementing the probing process in (24) can be approximated by:

Us = U, [H i [ AU @ — @R @ - a2)<3"')2)(%,>5], (69)
0
with now

Uy = exp[—i(n (a*? B + 1% a2 (6)?)]. (70)

Since U, involves no photon operators but only phonon operators, the photon correlations in (64) can be
expressed in terms of phonon correlations only. For instance, in the case of the mean number, one finds:

(@' (1) = laf — m{zin<a*>2 | s Tr(U))y B U p(t)]}. 71)
0

Further, notice that U, acts on phonon states as a squeezing operator (see (15)), with squeezing parameter
£, = 1, % explicitly given by:

T
=2 Inllal?, @, =26,+ 5 0,
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where @ = |a| e and ) = |n| e%. Then, one sees that
(Ul b’ U = b’ cosh?(sry) + (Z;T)zeﬁ% sinh?(sr,)
—(1+2 B-}-I;)ei% cosh (sr,)sinh(szy). (72)

Inserting this resultin (71), one finally obtains for the mean photon number the expression reported in (31).
The expression (32) for the corresponding variance A4 (#) can be similarly computed [35].

Appendix C. Phase shift

Asmentioned in section 4.1, in presence of a thermal bath and for low intensity probe beam, |a|> < 1, with |v]?
two orders of magnitude larger, both photon mean number and variance are seen to oscillate with the same
frequency €2, but with a relative phase shift. Indeed, explicit evaluation shows that the dominant contributions to
these two photon observables are as follows [35]:

(a'a) (1) ~ —|allz,le 2 sin(2|y]) [Asin(Q + ¢,) — Bsin(Qt + ¢p)] (73)
and
Aga() = — ez llal(1 + 2n¢ sin*(|y]))sin(2]y])
x [Asin(Qt + ¢,) — Bsin(Qt + ¢p)] (74)
— 2 e 312z, ||alsin(|9])sin (2|]) [Asin (2t + ¢4 — Bsin(Qf + ¢p)l.
where

A = cosh(r,), G1="0,—06,—0,
B = Sil’lh(f”y), (;5,8 =0, — 97 + 0, — P
A= cosh(r)[(1 + 2neqg)cosh(2r,) — 1 — neq — ny

B = sinh(,)[(1 + 2n.q)cosh(2r) + neq — n¢l.

In absence of squeezing, r,, = 0, the coefficients 5 and B vanish, and the two observables (a%a) (t)and Agiz(t)
oscillate in phase. A non vanishing relative phase shift 62 is therefore a signal of the presence of squeezed
phonons; its magnitude can be evaluated focusing on the position of the maxima (or minima) of the two
functionsin (73) and (74). Explicitly, one finds:

60 = [arctan (ﬂ) — arctan ( l\:f(t) )], (75)
D D(t)

N =2Q[Asin(¢,) — Bsin(gg)] + Ar[Acos(¢,) — Beos(dp)l,

D =2Q[Acos(¢,) — Beos(¢pg)l — Ar[Asin(¢,) — Bsin(¢p)l,
N(t) = (1 + 2ngsin®(7)N + 2e M sin? (7)) [2Q(Asin(¢,) — Bsin(¢p))
+ 3z (Acos(,) — Beos(¢p))],
(1 + 2n¢ sin?(|4) D + 21" sin? (|y]) [22 (Acos(gy) — Beos(¢y))
— 3Ar (Asin(¢,) — Bsin(py))].

Note that 5$2 depends on time through the coefficients N(¢) and D(t); as t become large, the ratio N(¢)/D(t)
approaches N/D and the phase shift becomes vanishingly small. As shown in figure 3, for typical experimental
conditions, 62 becomes unobservable after a few oscillations.

where

D()

References

[1] AlickiR and Lendi K 1987 Quantum Dynamical Semigroups and Applications (Lecture Notes in Physics) (Berlin: Springer)
[2] Artoni M and Birman JL 1991 Phys. Rev. B 44 3736-56
[3] Bartels A, Dekorsy T and Kurz H 2000 Phys. Rev. Lett. 84 2981—4
[4] Benatti F and Floreanini R 2005 Int. J. Mod. Phys. B19 3063—139
[5] Campisi M, Hinggi P and Talkner P 2011 Rev. Mod. Phys. 83 771-91
[6] CampisiM, Hinggi P and Talkner P 2011 Rev. Mod. Phys. 83 1653—1653 (erratum)
[7] Daniels ] M et al2011 Phys. Rev. B 84165310
[8] Dekorsy T, Cho G and Kurz H 2000 Coherent phonons in condensed media Light Scattering in Solids VIII (Topics in Applied Physics vol
76) ed M Cardona and G Giintherodt (Berlin: Springer) pp 169-209
[9] Dhar L, Rogers ] A and Nelson K A 1994 Chem. Rev. 94 157-93
[10] Esposito M et al 2015 Nat. Commun. 6 10249

18


http://dx.doi.org/10.1103/PhysRevB.44.3736
http://dx.doi.org/10.1103/PhysRevB.44.3736
http://dx.doi.org/10.1103/PhysRevB.44.3736
http://dx.doi.org/10.1103/PhysRevLett.84.2981
http://dx.doi.org/10.1103/PhysRevLett.84.2981
http://dx.doi.org/10.1103/PhysRevLett.84.2981
http://dx.doi.org/10.1142/S0217979205032097
http://dx.doi.org/10.1142/S0217979205032097
http://dx.doi.org/10.1142/S0217979205032097
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.1653
http://dx.doi.org/10.1103/RevModPhys.83.1653
http://dx.doi.org/10.1103/RevModPhys.83.1653
http://dx.doi.org/10.1103/PhysRevB.84.165310
http://dx.doi.org/10.1021/cr00025a006
http://dx.doi.org/10.1021/cr00025a006
http://dx.doi.org/10.1021/cr00025a006
http://dx.doi.org/10.1038/ncomms10249

10P Publishing

NewJ. Phys. 19 (2017) 023032 F Benatti et al

[11] Esposito M etal 2014 New J. Phys. 16 043004

[12] Gardiner Cand Zoller P 2000 Quantum Noise 2 edn (Springer Series in Synergetics) (Berlin: Springer)

[13] Garrett G A etal 1996 Phys. Rev. Lett. 77 36614

[14] Garrett G A et al 1997 Science 275 1638-40

[15] Gerry Cand Knight P 2004 Introductory Quantum Optics (Cambridge: Cambridge University Press)

[16] HuX 1996 Quantum fluctuations in condensed matter systems: squeezed states in phonons and josephson junctions PhD Thesis
University of Michigan

[17] HuXand NoriF 1997 Phys. Rev. Lett. 79 4605-8

[18] HuXand Nori F 1999 Physica B 263-264 16-29

[19] HuXand Nori F 1996 Phys. Rev. B53 2419-24

[20] Hussain A and Andrews S R 2010 Phys. Rev. B 81 224304

[21] Ishioka Kand Misochko V 2010 Coherent lattice oscillations in solids and their optical control Progress in Ultrafast Intense Laser Science
(Chemical Physics vol 5) ed K Yamanouchi et al (Berlin: Springer) p 23

[22] Ishioka K, Kitajima M and Misochko O V 2006 J. Appl. Phys. 100 093501

[23] Johnson SLetal2009 Phys. Rev. Lett. 102 175503

[24] Kuznetsov AV and Stanton CJ 1994 Phys. Rev. Lett. 73 3243—6

[25] Marian P and Marian T A 1993 Phys. Rev. A 47 4474-86

[26] Merlin R 1997 Highlights in condensed matter physics and materials science Solid State Commun. 102 207-20

[27] Misochko OV 2000 Phys. Lett. A 269 97—-102

[28] Misochko OV, Sakai K and Nakashima S 2000 Phys. Rev. B61 11225-8

[29] Misochko OV 2013 Phys.—Usp. 56 868

[30] Newns DM and Tsuei C C 2007 Nat. Phys. 3 184-91

[31] RandiF 2013 Pulsed homodyne detection for quantum state reconstruction applied to ultrafast non-equilibrium spectroscopy MA
Thesis University of Trieste https://elettra.trieste.it/images/Documents/T-ReX/Publications/Theses/Master/Master%20Randi.pdf

[32] Sauer Setal2010 Phys. Rev. Lett. 105 157401

[33] ShenY Rand Bloembergen N 1965 Phys. Rev. 137 A1787-805

[34] Shumovsky A Sand Tanatar B 1993 Phys. Lett. A182411-6

[35] Titimbo K 2015 Creation and detection of squeezed phonons in pump and probe experiments: a fully quantum treatment PhD Thesis
University of Trieste http://hdl.handle.net/10077/10941

[36] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)

[37] Wigger D et al 2013 Phys. Rev. B87 085301

[38] YanY-X, Gamble E B and Nelson K A 1985 J. Chem. Phys. 83 5391-9

[39] YuenH P 1976 Phys. Rev. A 13 222643

[40] Zeiger HJ etal 1992 Phys. Rev. B45 768-78

19


http://dx.doi.org/10.1088/1367-2630/16/4/043004
http://dx.doi.org/10.1103/PhysRevLett.77.3661
http://dx.doi.org/10.1103/PhysRevLett.77.3661
http://dx.doi.org/10.1103/PhysRevLett.77.3661
http://dx.doi.org/10.1126/science.275.5306.1638
http://dx.doi.org/10.1126/science.275.5306.1638
http://dx.doi.org/10.1126/science.275.5306.1638
http://dx.doi.org/10.1103/PhysRevLett.79.4605
http://dx.doi.org/10.1103/PhysRevLett.79.4605
http://dx.doi.org/10.1103/PhysRevLett.79.4605
http://dx.doi.org/10.1016/S0921-4526(98)01483-5
http://dx.doi.org/10.1016/S0921-4526(98)01483-5
http://dx.doi.org/10.1016/S0921-4526(98)01483-5
http://dx.doi.org/10.1103/PhysRevB.53.2419
http://dx.doi.org/10.1103/PhysRevB.53.2419
http://dx.doi.org/10.1103/PhysRevB.53.2419
http://dx.doi.org/10.1103/PhysRevB.81.224304
http://dx.doi.org/10.1063/1.2363746
http://dx.doi.org/10.1103/PhysRevLett.102.175503
http://dx.doi.org/10.1103/PhysRevLett.73.3243
http://dx.doi.org/10.1103/PhysRevLett.73.3243
http://dx.doi.org/10.1103/PhysRevLett.73.3243
http://dx.doi.org/10.1103/PhysRevA.47.4474
http://dx.doi.org/10.1103/PhysRevA.47.4474
http://dx.doi.org/10.1103/PhysRevA.47.4474
http://dx.doi.org/10.1016/S0038-1098(96)00721-1
http://dx.doi.org/10.1016/S0038-1098(96)00721-1
http://dx.doi.org/10.1016/S0038-1098(96)00721-1
http://dx.doi.org/10.1016/S0375-9601(00)00250-4
http://dx.doi.org/10.1016/S0375-9601(00)00250-4
http://dx.doi.org/10.1016/S0375-9601(00)00250-4
http://dx.doi.org/10.1103/PhysRevB.61.11225
http://dx.doi.org/10.1103/PhysRevB.61.11225
http://dx.doi.org/10.1103/PhysRevB.61.11225
http://dx.doi.org/10.3367/UFNe.0183.201309b.0917
http://dx.doi.org/10.1038/nphys542
http://dx.doi.org/10.1038/nphys542
http://dx.doi.org/10.1038/nphys542
https://www.elettra.trieste.it/images/Documents/T-ReX/Publications/Theses/Master/Master%20Randi.pdf
http://dx.doi.org/10.1103/PhysRevLett.105.157401
http://dx.doi.org/10.1103/PhysRev.137.A1787
http://dx.doi.org/10.1103/PhysRev.137.A1787
http://dx.doi.org/10.1103/PhysRev.137.A1787
http://dx.doi.org/10.1016/0375-9601(93)90417-X
http://dx.doi.org/10.1016/0375-9601(93)90417-X
http://dx.doi.org/10.1016/0375-9601(93)90417-X
http://hdl.handle.net/10077/10941
http://dx.doi.org/10.1103/PhysRevB.87.085301
http://dx.doi.org/10.1063/1.449708
http://dx.doi.org/10.1063/1.449708
http://dx.doi.org/10.1063/1.449708
http://dx.doi.org/10.1103/PhysRevA.13.2226
http://dx.doi.org/10.1103/PhysRevA.13.2226
http://dx.doi.org/10.1103/PhysRevA.13.2226
http://dx.doi.org/10.1103/PhysRevB.45.768
http://dx.doi.org/10.1103/PhysRevB.45.768
http://dx.doi.org/10.1103/PhysRevB.45.768

	1. Introduction
	2. Effective quantum description
	2.1. Quantum approach to pump and probe experiments
	2.2. Initial phonon state
	2.3. Pump photon state
	2.4. Photon–phonon effective interaction
	2.5. Pump process
	2.6. Phonon dynamics
	2.7. Probing process
	2.8. Photon correlations

	3. Dissipative phonon dynamics
	4. Phonon quantum properties: squeezing
	4.1. Thermal environment
	4.2. Dephasing environment

	5. Outlook
	Acknowledgments
	Appendix A.
	Appendix B.
	B.1. Linear probing process
	B.2. Quadratic probing process

	Appendix C.
	References



