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Unfolding the Grammar of Bayesian
Confirmation: Likelihood and
Antilikelihood Principles
Roberto Festa and Gustavo Cevolani*y

We explore the grammar of Bayesian confirmation by focusing on some likelihood prin-
ciples, including the Weak Law of Likelihood. We show that none of the likelihood prin-
ciples proposed so far is satisfied by all incremental measures of confirmation, and we
argue that some of these measures indeed obey new, prima facie strange, antilikelihood
principles. To prove this, we introduce a new measure that violates the Weak Law of
Likelihood while satisfying a strong antilikelihood condition. We conclude by hinting
at some relevant links between the likelihood principles considered here and other prop-
erties of Bayesian confirmation recently explored in the literature.
1. Introduction. A central problem of formal epistemology and philoso-
phy of science is explicating what does it mean, for a piece of evidence E,
to confirm a hypothesis H (see, e.g., Crupi 2015). Prominent accounts of
confirmation define the degree to which E confirms or supports H in terms
of the probabilistic relations between E and H. Accordingly, given a proba-
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GRAMMAR OF BAYESIAN CONFIRMATION 57
bility distribution p, several different measures of confirmation (or inductive
support) C(H,E) can be defined: two well-known examples are the differ-
ence measure D(H,E) 5 p(H∣E) 2 p(H) proposed by Carnap (1950/1962)
and the ratio measure R(H,E)5 p(H∣E)/p(H) introduced by Keynes (1921). It
is customary to say that C(H,E) is a Bayesian measure (of confirmation)
when the probabilities occurring in its definition are epistemic probabili-
ties, that is, express the degrees of belief of some (ideal) inquirer in the rel-
evant propositions. For instance, D and R are usually construed as Bayes-
ian measures, with the initial probability p(H) expressing the degree of
belief in the truth of H of an inquirer who lacks any relevant (empirical)
evidence, and the final probability p(H∣E) the inquirer’s degree of belief
in H once evidence E is taken into account.

In this article, we focus on a specific class of Bayesian measures of con-
firmation, that is, so-called incremental measures. Such measures—like D
andR above—are supposed to express howmuch learning E increases the prob-
ability of H. In other words, if C is an incremental measure, then C(H,E)
expresses the probability increment occurring in the shift from p(H) to
p(H∣E). Over the last 15 years, confirmation theorists have been exploring
a plethora of incremental measures, grounded in significantly different in-
tuitions concerning confirmation. The problem of assessing the relative
adequacy of such measures has recently attracted increasing attention among
philosophers of science (e.g., Festa 1999, 2012; Fitelson 1999, 2007; Kuipers
2000; Zalabardo 2009; Crupi, Festa, and Buttasi 2010; Iranzo andMartínez
de Lejarza 2012; Glass and McCartney 2014; Roche 2014, 2015a; Roche
and Shogenji 2014; Crupi 2015). An important motivating issue for this
line of inquiry is what Fitelson (1999) has called the problem of measure
sensitivity—roughly, the fact that the soundness of many philosophical
andmethodological arguments surrounding the notion of confirmation cru-
cially depends on the specific measure adopted to explicate this notion (see
also Festa 1999; Brössel 2013). The assumption underlying, more or less
explicitly, the ongoing discussion is that an adequate incremental measure
should exhibit, so to speak, an appropriate “grammar” (as Crupi et al. [2010]
put it), that is, a set of properties that formally express plausible intuitions
about confirmation.

The grammar of incremental confirmation is the main topic of our article,
too. In particular, we will consider some “likelihood principles” recently
proposed in the literature as essential properties of any adequate incremental
measure. A likelihood principle requires certain relationships to hold be-
tween C(H,E) and the likelihoods of H and :Hwith respect to E, that is, be-
tween C(H,E) and the probabilities p(E∣H) and p(E∣:H) or, at least, between
C(H,E) and one of those values. Such principles play a key role in current
discussions of Bayesian confirmation, with “likelihoodist” theorists arguing
that they are necessary—or even sufficient—to adequately define incremen-
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tal measures.1 In this article, we aim at contributing to the ongoing discus-
sion in this area by presenting some new results concerning the different
likelihood principles currently on the market. More precisely, our main re-
sults are as follows: First, we offer a systematic survey of different likelihood
principles (some of them new), characterize their content, and study the log-
ical relations between them, which have so far remained often obscure or un-
noticed in the literature. Second, we show that none of the likelihood prin-
ciples proposed so far is satisfied by all incremental measures; in particular,
the so-called Weak Law of Likelihood, which plays a prominent role in re-
cent analyses ofBayesian confirmation, is violated by some incrementalmea-
sures that are grounded in appealing core intuitions. Third, we argue that the
above-mentioned likelihood principles have to be supplemented with new
ones, including some prima facie very strange principles, that we call anti-
likelihood principles; in fact, quite surprisingly, some intuitively appealing
incremental measures satisfy at least one of such antilikelihood principles.
The upshot of our discussion is that some purportedly basic properties of
confirmation are not so fundamental as they are widely believed to be, since
some incremental measures violate them. This implies that the grammar of
Bayesian confirmation is richer, and the notion of incremental measure more
flexible, than previously thought.

Our discussion will proceed as follows. In section 2 we outline the gram-
mar of Bayesian confirmation, stating the basic properties defining incre-
mental measures. Section 3 introduces some (old and new) likelihood prin-
ciples and explores their logical and conceptual relations. In section 4, we
present a newmeasure of confirmation, which violates somewidely accepted
likelihoodist intuitions and satisfies a surprising antilikelihood principle.
Section 5 concludes the article by discussing some prospective implications
of our results for ongoing work on the grammar of Bayesian confirmation.
The proofs of all theorems appear in the appendix.

2. Incremental Measures of Bayesian Confirmation. Here we summa-
rize some more or less well-known properties of incremental measures of
Bayesian confirmation. First, we introduce the qualitative notion of confir-
mation (sec. 2.1); then, we formally define the concept of incremental mea-
sure (sec. 2.2). We also introduce a distinction between “universal” proper-
ties of confirmation (characterizing all incremental measures) and “structural”
properties (isolating specific classes of such measures), which will play a cen-
tral role in the rest of the article.

Two points are worth noting before we start. First, in the literature the
term “incremental confirmation” is usually employed in a rather loose way,
1. See Edwards (1972) and Royall (1997) for classical statements of likelihoodism and
Sober (1990, 2008), Fitelson (2007), and Joyce (2008, sec. 3) for relevant discussion.
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GRAMMAR OF BAYESIAN CONFIRMATION 59
so that different scholars end up attaching quite different meanings to it. Our
definition of incremental confirmation will amount to a rigorous explication
of a widely shared use of this term—roughly, an incremental measure is a
function of p(H∣E) and p(H) that increases when p(H∣E) increases. Absent
a fully general consensus on the meaning of “incremental confirmation,”
however, our definition will exclude some confirmation measures that are oc-
casionally labeled “incremental” in the literature.2

Second, in order to ensure mathematical definiteness, we will focus on
hypotheses H and pieces of evidence E with nonextreme probability values,
that is, such that 0 < p(H), p(E) < 1.3 The only exception will be the occa-
sional reference to tautological (logically true) evidence; as far as notation
is concerned, the tautology will be denoted, as usual, by ⊤.

2.1. Qualitative Confirmation. The starting point of the search for ap-
propriate measures of confirmation is the notion of qualitative confirmation.
The guiding intuition is that the specific confirmatory relation occurring be-
tween H and E depends on whether and how the initial probability of H is
changed by learning E.4 This qualitative notion of confirmation is usually
defined as follows:
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Qualitative Confirmation. For any H and E,

E confirms H if and only if p(H∣E) > p(H) (confirmation in narrow sense);
E is neutral for H if and only if p(H∣E) 5 p(H) (neutrality);
E disconfirms H if and only if p(H∣E) < p(H) (disconfirmation).
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The above threefold classification of the confirmatory relations between H
and E should be construed, to use the statistical jargon, as a qualitative or-
dinal variable.5 This means that the “intensity” of confirmation decreases in
the shift from confirmation (in the narrow sense) to neutrality and from neu-
trality to disconfirmation. In other words, Qualitative Confirmation expresses
an ordinal ranking (i.e., not a mere trichotomy) of different confirmation re-
lations, which can then provide a foundation for an appropriate quantitative
notion of confirmation. Many confirmation theorists would presumably
agree that any such notion should be compatible with Qualitative Confirma-
tion in the sense that it should extend the partial ordering just defined. We
propose to formalize this requirement in terms of the following principle:
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i) If E1 confirms H1 and E2 is neutral for H2, then C(H1,E1) >
C(H2,E2);

ii) If E1 is neutral for H1 and E2 disconfirms H2, then C(H1,E1) >
C(H2,E2);

iii) If E1 is neutral for H1 and E2 is neutral for H2, then C(H1,E1) 5
C(H2,E2).
As we will see in a moment, all incremental measures are indeed compatible
with Qualitative Confirmation in the sense just specified; however, not all
measures satisfying Compatibility need to be incremental.6 Accordingly,
Compatibility is too weak a requirement to isolate incremental measures;
other principles are needed, which will now be discussed.

2.2. The Grammar of Incremental Measures of Confirmation. An in-
cremental measure of confirmation C(H,E) may be informally described
as a function of p(H∣E) and p(H) that increases when p(H∣E) increases.
The grammar of incremental measures is currently being thoroughly inves-
tigated by various authors (see esp. Festa 1999, 2012; Fitelson 1999, 2007;
Crupi et al. 2010; Brössel 2013; Hájek and Joyce 2013; Roche 2014; Roche
and Shogenji 2014; Crupi 2015). Following Crupi (2015), we formally char-
ing to Hildebrand, Laing, and Rosenthal (1977, 8) a qualitative ordinal vari-
ind of qualitative variable with “a set of mutually exclusive states [that] are
r ranked in terms of the alternative amounts or degrees of intensity that the
resent.”

amples are given below, see n. 8.

n relevance confirmation and ignore confirmation as firmness (see, e.g., Crupi
. 3).
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GRAMMAR OF BAYESIAN CONFIRMATION 61
acterize incremental measures by means of the following basic principles, or
axioms:

P1. Formality. There exists a function f such that, for any H and E,
C(H,E) 5 f ½p(H∣E), p(H), p(E)�.

P2. Tautological evidence. For any H1 and H2, C(H1, ⊤) 5 C(H2, ⊤).
P3. Final probability. For any H, E1, E2, if p(H∣E1) ⪌ p(H∣E2), then

C(H,E1) ⪌C(H,E2).

Some remarks about the intuitive meaning of P1–P3 will be useful.7 P1 re-
quires that C(H,E) depends only on p(H∣E), p(H), and p(E). Since this triple
of probabilities entirely determines the probability distribution p over the
algebra generated by H and E, P1 amounts to requiring that C(H,E) depends
only on this distribution. P2 requires that all hypotheses receive the same
degree of confirmation by the tautological evidence ⊤. Finally, P3 requires
that the confirmation of a hypothesis is a strictly increasing function of its
final probability.8

By definition, all incremental measures satisfy the basic principles P1–P3
and all the other principles that can be logically derived from them (some
examples follow in a moment). Such (basic and derived) principles isolate
the properties characterizing all incremental measures and are thus labeled
“universal” principles. Yet, certain incremental measures may exhibit fur-
ther interesting properties, which are specified by corresponding “structural”
principles. Such principles are logically independent of the basic principles
(i.e., they are neither entailed by nor incompatible with P1–P3) and charac-
terize specific (classes of ) incremental measures. Two examples of universal
principles and one of a structural principle are given below.

Our first example of a universal principle is Compatibility. Indeed, one
can check that the basic principles P1–P3 jointly entail Compatibility, that
is, that any incremental measure is compatible with Qualitative Confirma-
7. With minor differences, Formality, Tautological evidence, and Final probability ap-
pear as postulates P0, P3, and P1, respectively, of Crupi (2015, sec. 3). A slightly dif-
ferent axiomatic characterization of incremental measures appears in Crupi et al.
(2010, sec. 7.3).

8. While quite undemanding, P1–P3 are already sufficient to exclude some well-known
measures of Bayesian confirmation (cf. Crupi et al. 2010, 81; Roche 2014, n. 2). To
mention but two examples, the measure p(E∣H) 2 p(E), defended by both Mortimer
(1988) and Kuipers (2000, 50), and the measure p(E∣H) – p(E∣:H) proposed by Nozick
(1981, 252) are not incremental measures in our sense, since (as it is easy to check) they
satisfy P1 and P2 but violate P3. But, both thesemeasures (aswell as other nonincremental
measures) do satisfy Compatibility and hence are, at least in this sense, adequate quanti-
tative counterparts of the qualitative notion of confirmation.
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tion. Our second example is the following consequence of the basic princi-
ples—actually of P3 alone (cf. Crupi et al. 2010, theorem 3):
9. Of
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(IFPD) Initial and Final Probability Dependence. There exists a function
g such that, for any H and E, C(H,E) 5 g½p(H∣E), p(H)�.
The above principle requires that any incremental measure is uniquely de-
termined by the initial and final probability of H, that is, that C(H,E) depends
only on p(H∣E) and p(H). Note that IFPD is stronger than the basic principle
P1 since the latter allows for the possibility that C(H,E) depends not only on
p(H∣E) and p(H) but also on p(E).

It is worth noting that IFPD does not say anything on how C(H,E) should
depend on the initial probability p(H). The reader familiar with traditional
incremental measures like D and R might suspect that the relations between
C(H,E) and p(H) should be ruled by the following condition:
(IP) Initial probability. For any H1, H2, and E if p(H1∣E) 5 p(H2∣E) and
p(H1) ⪋ p(H2), then C(H1,E) ⪌ C(H2,E).
Condition IP—which is, so to speak, the counterpart of principle P3 for fi-
nal probability—requires that the confirmation of a hypothesis is a strictly
decreasing function of its initial probability. As it is easy to check, most tra-
ditional incremental measures satisfy IP. For this reason, one might feel that
IP is a universal principle of incremental confirmation. That this is not the
case is shown by the fact that there are incremental measures that satisfy all
the basic principles P1–P3 but still violate IP. One example is the measure
p(H)[p(H∣E) 2 p(H)], introduced by Crupi et al. (2010, 89, theorem 1).
Thus, IP provides our first example of a structural principle of Bayesian
confirmation.9

3. Strong andWeakLikelihoodPrinciples forBayesianConfirmation. As
said in the introduction, likelihood principles require that certain relation-
ships hold between C(H,E) and (one or both of ) the likelihoods p(E∣H)
and p(E∣:H). In what follows, we consider one universal and five structural
principles of this kind (through this section, unless stated otherwise, “princi-
ple(s)” will always mean “likelihood principle(s)”). To begin with, it is
worth noting how the basic principle P1 can be reformulated, so to speak,
in likelihoodist terms. To recall, P1 states that C(H,E) only depends on
course, one might very well assume IP as one of the basic (and hence universal)
iples for incremental measures. This is the choice, e.g., of Crupi et al. (2010) and
(2012), where this principle appears, in a slightly different form, under the label
l Probability Incrementality (IPI).
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GRAMMAR OF BAYESIAN CONFIRMATION 63
the probability distribution over the algebra generated by H and E. Such a
distribution can be determined by different triples of probability values,
[p(H∣E), p(H), p(E)] being only one of them. Any such triple can be used
in P1 to make C(H,E) dependent on the relevant probabilities. For our pur-
poses, the following logically equivalent reformulation of P1 will be useful:
10. T
be fo
e.g.,

All 
(LF) Likelihood form. There exists a function k such that, for any H and E,
C(H,E) 5 k½p(E∣H), p(E∣:H), p(E)�.
LF says that C(H,E) can be expressed in “evidential terms,” that is, as a func-
tion of the initial probability p(E) of evidence E and of its conditional prob-
abilities p(E∣H) and p(E∣:H). The label for this principle is justified by noting
that p(E) can be construed as the likelihood p(E∣⊤) of a tautological hypoth-
esis. Accordingly, LF says that C(H, E) depends only on the three likelihoods
p(E∣H), p(E∣:H), and p(E).

Given the reformulation of P1 as LF, a new likelihood principle can be
immediately stated as follows:
(EL) Equal Likelihoods. For any E, H1, H2, if p(E∣H1) 5 p(E∣H2) and
p(E∣:H1) 5 p(E∣:H2), then C(H1,E) 5 C(H2,E).
Not surprisingly, given LF one can immediately check that:
Theorem 1. EL is a universal principle.
Admittedly, EL is an extremely weak principle, indeed a nearly trivial one.
Still, we submit that it is the only universal likelihood principle of incremen-
tal confirmation. Our conjecture is supported by the fact that, as we will see
in a moment, all likelihood principles considered so far in the literature are
indeed structural principles.

Confirmation theorists have been discussing several likelihood principles
apart from LF and EL (which, by the way, have both remained often unno-
ticed or implicit in the literature). Below we consider five such principles
and illustrate their intuitive meaning. Afterward, we point out the logical re-
lations occurring among them. Finally, we show that each of these principles
is, indeed, a structural principle (i.e., that it is satisfied by some incremental
measures and violated by others).

The best known likelihood principle is probably the so-called Law of
Likelihood (LL), which is stated as follows:10
he label “law of likelihood” comes from Hacking (1965); further references are to
und in Crupi, Chater, and Tentori (2013, 193). For discussions of this principle, see,
Fitelson (2007), Joyce (2008, sec. 3), and Crupi (2015, sec. 3.4).
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(LL) If p(E∣H1) ⪌ p(E∣H2), then C(H1,E) ⪌C(H2,E).
This “law” expresses the intuition that E confirms H1 more than H2 just
when H1 is better than H2 in predicting E (i.e., when E is more probable
given H1 than given H2). Given LF, LL amounts to saying that C(H,E) does
not depend on p(E∣:H) and is a strictly increasing function of p(E∣H).

The above principle naturally suggests the following one, which, to the
best of our knowledge, has never been considered in the literature:
(N) If p(E∣:H1) ⪋ p(E∣:H2), then C(H1,E) ⪌C(H2,E).
The above principle can be seen as the “negative” counterpart of LL (hence
the label). In fact, it is formally similar to LL in that it makes confirmation
dependent only on one likelihood value; however, this is the likelihood of
the negation of the relevant hypotheses, not of the hypotheses themselves
as in the case of LL. More precisely, N expresses the intuition that E con-
firms H1 more than H2 just when :H1 is worse than :H2 in predicting
E, that is, when E is less probable given :H1 than given :H2. Given LF,
N amounts to saying that C(H,E) does not depend on p(E∣H) and that it is
a strictly decreasing function of p(E∣:H).

As anticipated in section 1, an important principle of Bayesian confirma-
tion is the so-calledWeak Law of Likelihood (WLL). Among the several ver-
sions of WLL introduced in the literature, we focus on the following version:11
(WLL) If p(E∣H1) > p(E∣H2) and p(E∣:H1) < p(E∣:H2),
then C(H1,E) > C(H2,E).
The antecedent of WLL says that H1 predicts E “uniformly better” than H2
(this terminology is borrowed from Joyce [2008], sec. 3). This means that E
is both more probable assuming that H1 is true than assuming that H2 is true
and less probable assuming that H1 is false than assuming that H2 is false.
Thus, WLL says that if H1 predicts E uniformly better than H2, then E con-
firms H1 more than H2. Given LF, WLL means that C(H,E) increases when
the likelihood of H increases and the likelihood of :H decreases. Two struc-
tural likelihood principles closely related to WLL are as follows:
(WLL-L) If p(E∣H1) > p(E∣H2) and p(E∣:H1) 5 p(E∣:H2),
then C(H1,E) > C(H2,E);
ee, e.g., Roche and Shogenji (2014, 119). In the literature, WLL often appears in
tly different, and stronger, forms than the one above (see, e.g., Fitelson 2007; Joyce
, sec. 3). Roche and Shogenji (2014) compare different forms of this principle; their
ssion partially overlaps with ours below.
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(WLL-N) If p(E∣H1) 5 p(E∣H2) and p(E∣:H1) < p(E∣:H2),
then C(H1,E) > C(H2,E).
WLL-L expresses the intuition that if H1 is better than H2 in predicting E
and :H1 is as good as :H2 in predicting E, then E confirms H1 more than
H2. Analogously, WLL-N says that if H1 is as good as H2 in predicting E
and :H1 is worse than :H2 in predicting E, then E confirms H1 more than
H2. Given LF, WLL-L says that, for fixed values of p(E∣:H), C(H,E) is a
strictly increasing function of p(E∣H), while WLL-N states that, for fixed
values of p(E∣H), C(H,E) is a strictly decreasing function of p(E∣:H).

The five principles just introduced illustrate different ways in which
C(H,E) may depend on one or both of the likelihoods. It is easy to check
that such principles are genuinely different from each other, in the sense that
no one of them is logically equivalent to another. However, they are by no
means logically independent. The following theorem clarifies the relevant
logical relations among the five principles (see also fig. 1, where these re-
lations are graphically presented):
Theorem 2. The following logical relations hold:
use s
i) LL entails WLL.
ii) N entails WLL.
iii) WLL-L & WLL-N entails WLL.
iv) LL and N are incompatible.
v) LL entails WLL-L.
vi) N entails WLL-N.
Figure 1. Logical relations among the five likelihood principles discussed in this
article. Arrows represent logical entailment; dashed lines, logical incompatibility
(?); dotted lines, logical independence; and solid lines, conjunction (&).
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Theorem 2 maps the logical space of a fairly representative family of like-
lihood principles. As anticipated, no one of them is universal: each is struc-
tural, meaning that it is satisfied by some incremental measures and violated
by others. To prove this, one only needs to consider two further measures
apart from the difference and the ratio measures, D and R, introduced in
section 1. The former is the “odds counterpart” of D, where the initial
and final odds of H are defined as usual as o(H) 5 p(H)=½1 2 p(H)� and
o(H∣E) 5 p(H∣E)=½1 2 p(H∣E)�:12
12. W
litera
and H
defin
(see,
with
also p
emat
the c

13. C
WLL

se sub
Odds difference. OD(H,E) 5 o(H ∣ E) 2 o(H).
The second, well-known measure was originally introduced by Gaifman
(1979, 120):
Gaifman. G(H,E) 5 ½1 2 p(H)�=½1 2 p(H∣E)�.
Then one can check that all likelihood principles LL, N, WLL, WLL-L, and
WLL-N are structural:
Theorem 3. Each of the likelihood principles LL, N, WLL, WLL-L, and
WLL-N is satisfied by at least one of the incremental measures R, OD, and
G and is violated by at least one of them.
Theorem 3 is not entirely surprising, since, for instance, LL is well known to
be violated by many incremental measures, like D. Still, some other results
above are probablymuch less expected. Let us consider, for instance, the fact
that WLL is a structural principle (similar considerations apply to WLL-L
and WLL-N). As many scholars have remarked, all traditional measures
of confirmation in the literature do satisfy WLL (e.g., Fitelson 2007; Joyce
2008; Crupi et al. 2010; Roche and Shogenji 2014). Indeed,WLL appears to
be such an undemanding principle that it has been often regarded as a very
minimal adequacy condition for Bayesian confirmation.13 In view of this,
hile not so well known as an incremental measure, OD has appeared before in the
ture, e.g., in Festa (1999, 59), Joyce (2008, sec. 2, table 1), Crupi et al. (2010, 76),
ájek and Joyce (2013, 122). Note that both OD and Gaifman’s measure G are un-
ed when p(H∣E) 5 1; in this case, one can stipulate that their value is equal to 1∞
e.g., Brössel 2013, 382; Glass and McCartney 2014, 62 n. 4). Similar issues arise,
some of the measures introduced in the next sections, when not only p(H∣E) but
(E∣H) and p(E∣:H) assume extreme values (0 or 1). In order to guarantee math-
ical definiteness, one can adopt an appropriate stipulation along the same lines as in
ase mentioned above.

onsidering slightly stronger variants of WLL, Fitelson (2007, 479), e.g., says that
is “a crucial common feature of all Bayesian conceptions of relational [i.e., rele-

This content downloaded from 130.133.008.114 on December 16, 2016 01:13:47 AM
ject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



GRAMMAR OF BAYESIAN CONFIRMATION 67
the fact that WLL is not a universal principle has significant implications for
the grammar of Bayesian confirmation; in the next section, we explore some
of them.

4. Antilikelihood Principles for Bayesian Confirmation. In the previous
sectionwe argued that no likelihood principle—with the exception of the very
weak principle EL—holds universally, that is, for all incremental measures as
defined in section 2.2. Up to this point, however, the reader may still think that
this finding is not dramatically interesting for the grammar of Bayesian con-
firmation. After all, the fact that WLL is not a universal principle may depend
on the specific properties of “strange” measures like OD. Below, we show
that, in contrast with this idea, there are intuitivelywell-motivated incremental
measures that not only violate WLL (and other traditional likelihood princi-
ples) but indeed satisfy some “antilikelihood principles” that express intui-
tions diametrically opposed to the ones underlying WLL.

4.1. Confirmation as Reduction of Improbability. At the beginning of
this article, we presented the central intuition concerning Bayesian confir-
mation by saying that evidence E confirms hypothesis H when E increases
the initial probability of H. Such intuition, however, may be also expressed
as follows: E confirms H when E decreases the initial improbability of H. In
this way, confirmation is construed not as increment of probability but as re-
duction of improbability. Accordingly, there are two ways of thinking about
an incremental measure C(H,E). The first is the familiar one for which C(H,
E) is a function of p(H) and p(H∣E) that increases when p(H∣E) increases.
The second is as follows: given suitable definitions of the initial and final
improbability of H—denoted by imp(H) and imp(H∣E), respectively—an
incremental measure C(H,E) is a function of imp(H) and imp(H∣E) that in-
creases when imp(H∣E) decreases.

The notion of confirmation as reduction of improbability may appear as
just a logically equivalent, but more cumbersome, rendition of the traditional
one. Still, we submit, there at least two reasons to consider the reduction-of-
vance] confirmation,” and Joyce (2008, sec. 3) further argues that WLL must be “an in-
tegral part of any account of evidential relevance that deserves the title ‘Bayesian.’” In
this connection, it is worth noting that incremental measures violating WLL have pre-
viously appeared in the literature, if only occasionally. For instance, one can check that
the following continuum of incremental measures, Dx(H,E) 5 p(H∣E)x 2 p(H)x, with
x greater than 1, leads to violations of WLL. Crupi et al. (2010, 91–92) and Roche and
Shogenji (2014, 121) discuss, respectively, the special cases of D10 and D2. As pointed
out by an anonymous reviewer for this journal, WLL-N has been recently discussed (un-
der the label of “criterion C5”) by Glass and McCartney (2014, sec. 3), who also note
that WLL-N is violated by at least one incremental measure, thus being a structural prin-
ciple in our sense.
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improbability intuition as a useful complement of the increment-of-probability
intuition. First, the reduction-of-improbability intuition provides a new in-
terpretation of some old incremental measures, where the new interpre-
tation appears, in some cases, more appealing than that provided by the
increment-of-probability intuition. Second, the reduction-of-improbability in-
tuition is heuristically fruitful, in the sense that it immediately suggests new
incremental measures that would be hardly thought of on the basis of the
increment-of-probability intuition.

In what follows, we use the term “improbability” as a neutral one, to de-
note any measure that decreases when p(H) increases. To mention but three
examples, the initial improbability of H may be defined as follows:

imp1 Hð Þ 5 1 2 p Hð Þ 5 p :Hð Þ;

imp2 Hð Þ 5 1

p Hð Þ ;

imp3 Hð Þ 5 1

o Hð Þ 5 o :Hð Þ:

The final improbability of H, imp(H∣E), is defined in the same way, simply
by substituting p(H∣E) and o(H∣E) for p(H) and o(H), respectively, in the
definitions above.14

On the basis of such definitions, nearly all traditional incremental mea-
sures of confirmation can be taken as benchmarks to define newmeasures in
terms of reduction of improbability. For instance, D and R each suggests the
following triples of improbability difference measures ID(H,E) and of im-
probability ratio measures IR(H,E):

ID1 H,Eð Þ 5 imp1 Hð Þ 2 imp1 H∣Eð Þ;

ID2 H,Eð Þ 5 imp2 Hð Þ 2 imp2 H∣Eð Þ;

ID3 H,Eð Þ 5 imp3 Hð Þ 2 imp3 H∣Eð Þ;
14. See, e.g., Bar-Hillel and Carnap (1953, 149) and Popper (1959, apps. 7–9) for clas-
sical appearances of imp1. Measure imp2 is a natural alternative, and imp3 is simply the
counterpart of imp2 in terms of odds. These measures of improbability, and other similar
measures, have been considered in many fields of philosophy of science and statistics
under various labels, such as “information,” “content,” “informative content,” “uncer-
tainty,” and “logical strength”: for a useful survey, see Crupi and Tentori (2014).
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IR1 H,Eð Þ 5 imp1 Hð Þ
imp1 H∣Eð Þ ;

IR2 H,Eð Þ 5 imp2 Hð Þ
imp2 H∣Eð Þ ;

IR3 H,Eð Þ 5 imp3 Hð Þ
imp3 H∣Eð Þ :

It is not difficult to check that three of the above measures (i.e., ID1, IR1, and
IR2) are indeed identical to measures that we already know from the forego-
ing sections. Moreover, a fourth measure, IR3, turns out to be the same as the
very well-known odds ratio measure of confirmation OR (famously advo-
cated by Good 1950). Summing up:
All 
Theorem 4. For any H and E:

ID1 H,Eð Þ 5 D H,Eð Þ;

IR1 H,Eð Þ 5 G H,Eð Þ;

IR2 H,Eð Þ 5 R H,Eð Þ;

IR3 H,Eð Þ 5 o H∣Eð Þ
o Hð Þ 5 OR H,Eð Þ:
Thus, the reduction-of-improbability intuition leads, on the one hand, to a
new interpretation of the four traditional incremental measures D, G, R, and
OR. On the other hand, it also suggests two new measures, ID2 and ID3,
which, given the definitions of imp2(H) and imp3(H), can be expressed as
follows:

ID2 H,Eð Þ 5 1

p Hð Þ –
1

p H∣Eð Þ ;

ID3 H,Eð Þ 5 1

o Hð Þ –
1

o H∣Eð Þ 5 o(:H) – o(:H∣E):

Note that both ID2 and ID3 express confirmation as the difference between
the initial and final improbability of H, where improbability is defined as the
inverse of either the relevant probabilities (for ID2) or the corresponding
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odds (for ID3). As we will see in a moment, measures ID2 and ID3 are gen-
uinely new incremental measures of confirmation and display some interest-
ing properties, especially as far as likelihood principles are concerned.15

4.2. The Normalized Difference Measure. To begin with, it is easy to
check that the two measures ID2 and ID3 introduced in the previous section
are indeed incremental measures (i.e., satisfy P1–P3 from sec. 2). Also, it is
not difficult to see that they can be reformulated as follows:

ID2 H,Eð Þ 5 p H∣Eð Þ – p Hð Þ
p H∣Eð Þp Hð Þ ;

ID3 H,Eð Þ 5 o H∣Eð Þ – o Hð Þ
o H∣Eð Þo Hð Þ :

The above reformulation shows how both ID2 and ID3 can be construed,
more traditionally, as increment-of-probability measures. In fact, ID2 is the
probability difference D normalized by the factor 1/[p(H∣E)p(H)], while
ID3 is the normalization of the odds difference OD by the factor 1/[o(H∣E)
o(H)].

What is perhaps less obvious to note is that:
15. N
other
occas
(2014

se sub
Theorem 5. For any H and E, ID2(H,E) 5 ID3(H,E).
Thus, not only do ID2 and ID3 have the same form: they are indeed the same
measure, which is invariant if expressed either as the normalized difference
of the relevant probabilities or as the normalized difference of the corre-
sponding odds. For this reason, we refer to this new measure as to the “nor-
malized (probability or odds) difference” measure, in symbols ND(H,E).

The ND measure has a number of interesting properties. For instance,
consider the following, prima facie highly counterintuitive, principle:
(RWLL-N) If p(E∣H1) 5 p(E∣H2) and p(E∣:H1) > p(E∣:H2),
then C(H1,E) > C(H2,E).
Note that this principle is, so to speak, the reversal of principle WLL-N
from section 3, in the sense that it is obtained from WLL-N by reversing
ote that measures ID2 and ID3 are new in the sense that they are not reducible to
more traditional confirmation measures. Still, essentially identical measures have
ionally appeared in the most recent literature, e.g., in Festa (2012, 93) and Roche
, 95; 2015b, sec. 2).
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the inequality sign in the second part of the antecedent (hence the label,
which stands for “reversed WLL-N”).

Accordingly, RWLL-N says that if H1 is as good as H2 in predicting E
and :H1 is better than :H2 in predicting E, then E confirms H1 more than
H2. Given LF, RWLL-N amounts to saying that, for fixed values of p(E∣H),
C(H,E) is a increasing function of p(E∣:H). For this reason, RWLL-N can be
called an antilikelihood principle of Bayesian confirmation.

Of course, RWLL-N is a structural principle, since it is violated by many
measures of confirmation, including all the traditional ones. That this is the
case can be seen by observing that:
All 
Theorem 6. RWLL-N is incompatible with WLL-N.
Thus, all measures satisfying WLL-N will violate RWLL-N. Still, one can
prove that:
Theorem 7. ND satisfies RWLL-N.
It immediately follows, due to the above illustrated incompatibility between
RWLL-N and WLL-N, that:
Theorem 8. ND violates WLL-N.
Moreover, one can prove that ND also violates the Weak Law of Likeli-
hood:
Theorem 9. ND violates WLL.
To sum up, we have shown that there is an intuitively motivated measure of
confirmation as reduction of improbability, namely, ND, that violates WLL
(and hence LL and N) and satisfies a strongly antilikelihood principle, namely,
RWLL-N.

5. Concluding Remarks. We have presented and discussed some more or
less well-known likelihood principles for Bayesian confirmation. Given a
very plausible characterization of incremental measures of Bayesian confir-
mation, all those principles (with the exception of EL) turned out to be in-
dependent of the basic conditions defining such measures. This implies that,
as we have proven, each of those principles is satisfied by some incremental
measures and violated by others. In turn, this means that none of the like-
lihood principles considered here can be taken as isolating a fundamental
property of Bayesian confirmation. This is particularly true for the Weak Law
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of Likelihood, which is often regarded as a crucial ingredient of a Bayesian
treatment of confirmation. To further show that this is not the case, we fo-
cused on the normalized difference measure ND, which “strongly” violates
WLL and other likelihood conditions by satisfying what we called an anti-
likelihood principle of confirmation. Moreover, we showed that measure
ND is both intuitively motivated (by construing confirmation as reduction
of improbability) and formally equivalent to a normalization of such a tra-
ditional measure as D. For these reasons, it seems to us, little doubt exists
that ND is a perfectly acceptable measure of confirmation.

One way to resist this conclusion would be as follows.16 Investigating the
grammar of confirmation should aim at identifying intuitively plausible con-
ditions on incremental measures. Now, one may argue, WLL clearly is one
such condition, while RWLL-N is not. Accordingly, all measures that, like
OD, fail to meet WLL should be rejected as inadequate explications of con-
firmation, and this is the case, a fortiori, for measures that, like ND, strongly
violate WLL by meeting RWLL-N.

Here, we can just sketch two answers to this kind of objection. First, as a
decades-long discussion on competing confirmation measures has shown,
in this context intuitions are at least sometimes unreliable and typically in-
sufficient as a guide to the choice of specific measures or conditions. For this
reason, in the current article we aimed at a general characterization of (anti)
likelihood principles, without committing ourselves from the beginning to
one or more of them. That intuitively assessing the plausibility of different
principles (and hence measures) may be problematic is shown by the follow-
ing example. Which one is the most plausible likelihood principle among
WLL,WLL-L, andWLL-N? Different answers to this question will exclude
as inadequate different measures; for instance, G has to be excluded if one
prefers WLL-L over WLL-N, while R has to go if the preference is reversed
(see the appendix for relevant proofs). Still, given that all three conditions
above are structural (nonuniversal) principles, it is far from obvious on
which grounds the choice should be made. In short, it seems to us that, in
light of theorem 3, the plausibility of WLL (or of any other structural prin-
ciple) can be hardly taken for granted without providing some independent
justification in its favor. (In this connection, it may be instructive to compare
the task of justifying a universal principle like EL with that of motivating a
structural one like WLL.)

Second, reasons to doubt the indisputableness of the intuitions underly-
ing WLL and related principles are also suggested by current discussion of
other adequacy requirements for confirmation measures apart from likeli-
hood principles. As an example, let us consider the so-called Matthew prin-
16. We thank an anonymous referee for raising the objection and prompting us to dis-
cuss this point.
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ciples for Bayesian confirmation studied by Festa (2012), Roche (2014),
and Festa and Cevolani (2015). Two such principles read as follows:17
17. L
matio
firma
“may
which
than
“For
that h
that K
equal
that F

18. In
own c
Roch

All 
(MP) If p(E∣H1) 5 p(E∣H2) > p(E) and p(H1) > p(H2),
then C(H1,E) > C(H2,E);

(RMP) If p(E∣H1) 5 p(E∣H2) > p(E) and p(H1) > p(H2),
then C(H1,E) < C(H2,E).
Both of the above principles concern two hypotheses H1 and H2 having dif-
ferent initial probability and such that H1 and H2 are “equally successful”
in predicting E, in the sense that the likelihood of H1 and H2 on E is the
same, and both hypotheses make the initial probability of E increase. Under
these conditions, principle MP prescribes that an initially more probable hy-
pothesis is more confirmed by its successes than a less probable one, while,
according to RMP, an initially more probable hypothesis has to be less con-
firmed by its successes than a less probable one. Note that this latter condi-
tion has a distinctive Popperian flavor, leading one to prefer, in terms of
confirmation, improbable (and, in this sense, highly informative) hypothe-
ses over more probable ones.18

Not surprisingly, one can prove that different incremental measures sat-
isfy MP while violating RMP and vice versa (see Festa [2012, sec. 3] and
Festa and Cevolani [2015] for a systematic analysis). For instance, as far as
measure ND is concerned, we prove in the appendix that it can be expressed
in the following equivalent form:

ND H,Eð Þ 5 p E∣Hð Þ – p Eð Þ
p Hð Þp E∣Hð Þ :
abels MP and RMP, which stand respectively for “Matthew effect for positive confir-
n [i.e., confirmation in narrow sense]” and “ReversedMatthew effect for positive con-
tion” are adapted from Festa (2012, 95). As Kuipers (2000, 25) notes, principle MP
be seen as a methodological version of the so-called Matthew effect, according to
the rich profit more than the poor” since “a more probable hypothesis profits more

a less probable one” from its successes, along the lines of the evangelical statement
unto every one that hath shall be given, and he shall have abundance: but from him
ath not shall be taken away even thatwhich he hath” (Gospel of Matthew13:12). Note
uipers himself would not accept MP, since he favors the idea that, if H1 and H2 are
ly successful with respect to E, they should be equally confirmed by E (a condition
esta calls “Matthew independence for positive confirmation”).

this connection, it may be interesting to note that, somehow paradoxically, Popper’s
orroboration measure meets MP while violating RMP (cf. Festa 2012, 97, theorem 1.ii;
e 2014, 99, theorem 1*.b; for discussion, see Festa and Cevolani 2015).
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From this formulation, it is immediately clear that, for fixed E, ND decreases
as p(H) increases. It follows that, if p(E∣H1) 5 p(E∣H2), an initially more
probable hypothesis is less confirmed by E than an initially less probable
one. In other words, ND meets RMP and violates MP (cf. Festa 2012, the-
orem 2.i; Roche 2014, theorem 2*.a).

In sum, on the one hand measure ND meets both RWLL-N and RMP,
and on the other hand it violates WLL, WLL-N, and MP. This fact alone
suggests that intimate relations may obtain between (anti)likelihood princi-
ples and Matthew principles. Elsewhere (Festa and Cevolani 2015), we
have shown that this is in fact the case and that some of the above principles
are provably equivalent. Such equivalence results imply, in particular, that it
is impossible to satisfy the intuitions underlying the weak laws of likelihood
and, at the same time, a Popperian preference for improbable hypotheses as
embodied in principle RMP.

In turn, this means that any argument in favor of RMP will immediately
translate into an argument against WLL and other likelihood principles.
Such an argument would thus provide an indirect justification of antilike-
lihood principles like RWLL-N. Indeed, a defense of RMP as a plausible
principle of confirmation has been recently put forward by Festa (2012,
sec. 3.3.2). If convincing, this argument would prove the intuitive plausibil-
ity of selected antilikelihood principles. In the end, it may well be that, as
Roche (2015b, sec. 3.2 n. 17; italics added) puts it, “there is a sense of sup-
port [i.e., confirmation] on which any adequate support measure [i.e., con-
firmation measure] should fail to meet WLL.” Further research is needed to
assess these preliminary results, which promise to open the way to a fruitful
investigation of the deeper structure of Bayesian confirmation.
Appendix

Proofs

We prove all the results presented in the article, except for those already
proven elsewhere, for which we provided the relevant references in the text.

Theorem 1. EL is a universal principle. According to LF, C(H,E) can be
expressed as a function of p(E∣H), p(E∣:H), and p(E). It immediately fol-
lows that, for any E, if p(E∣H1) 5 p(E∣H2) and p(E∣:H1) 5 p(E∣:H2),
then C(H1∣E) 5 C(H2∣E). In other words, LF entails EL, which is then a
universal principle given that LF is equivalent to P1, which is a basic prin-
ciple.
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Theorem 2. For what concerns the logical relationships among the likeli-
hood principles LL, N, WLL, WLL-L, and WLL-N introduced in section 3,
we need to check the following cases.

LL implies WLL. Assume that WLL is false. This means that there are
H1, H2, and E such that p(E∣H1) > p(E∣H2) while C(H1∣E) ≤ C(H2∣E),
so that LL is violated. By contraposition, if LL holds, then also WLL holds.

N implies WLL. Assume that WLL is false. This means that there
are H1, H2, and E such that p(E∣:H1) < p(E∣:H2) while C(H1∣E) ≤
C(H2,E), so that N is violated. By contraposition, if N holds, then also
WLL holds.

The conjunction of WLL-L and WLL-N implies WLL. We prove that if
WLL-L, WLL-N, and the antecedent of WLL (i.e., p(E∣H1) > p(E∣H2)
and p(E∣:H1) < p(E∣:H2)) hold, then the consequent of WLL is also true.
Let us consider a H3 such that p(E∣H3) 5 p(E∣H2) and p(E∣H:3) 5
p(E∣:H1). Then we have both p(E∣H1) > p(E∣H2) and p(E∣:H1) 5
p(E∣:H3), which, by WLL-L, imply C(H1,E) > C(H3,E). Moreover, we
have both p(E∣H2) 5 p(E∣H3) and p(E∣H:3) < p(E∣:H2), which, by
WLL-N, imply C(H3,E) > C(H2,E). Finally, from C(H1,E) > C(H3,E)
and C(H3,E) > C(H2,E) we conclude, by transitivity, that C(H1∣E) >
C(H2,E), which is the consequent of WLL. Thus, WLL-L and WLL-N to-
gether imply WLL.

LL and N are incompatible. We prove that the conjunction of LL and
N leads to a contradiction. It is sufficient to consider two hypotheses H1
and H2 such that p(E∣H1) > p(E∣H2) and p(E∣:H1) > p(E∣:H2). Then
it follows both that C(H1∣E) > C(H2, E) from LL and that C(H1∣E) <
C(H2,E) from N, which is impossible.

LL implies WLL-L. Assume that WLL-L is false. This means that there
are H1, H2, and E such that p(E∣H1) > p(E∣H2) while C(H1∣E) ≤
C(H2,E), so that LL is violated. By contraposition, if LL holds, then also
WLL-L holds.

N implies WLL-N. Assume that WLL-N is false. This means that there
are H1, H2, and E such that p(E∣:H1) < p(E∣:H2) while C(H1∣E) ≤
C(H2,E), so that N is violated. By contraposition, if N holds, then also
WLL holds.
Theorem 3. We need to prove that all likelihood principles LL, N, WLL,
WLL-L, and WLL-N are structural, that is, that each of them is satisfied
by (at least) an incremental measure and violated by some other one. To this
purpose, it is useful to consider the relevant measures expressed in “likeli-
hood form,” that is, as functions of p(E∣H), p(E∣:H), and p(E) only. In this
way, it becomes immediately evident, for each of the five principles, which
measures satisfy or violate it. The following lemma is easily proven:
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LEMMA 1. For any H and E:

R H,Eð Þ 5 p E∣Hð Þ
p Eð Þ ;

G H,Eð Þ 5 p Eð Þ
p E∣:Hð Þ :

Proof. As far as R is concerned: R(H,E) is defined as p(H∣E)/p(H), which,
by Bayes’s theorem, is equal to ½p(H)p(E∣H)=p(H)�=p(E) 5 p(E∣H)=p(E).
For G, note that G(H, E) 5 ½1 2 p(H)�=½1 2 p(H∣E)� amounts to p(:H)=
p(:H∣E), which, again by Bayes’s theorem, is equal to p(:H)=½p(:H)
p(E∣:H)=p(E)� 5 1=½p(E∣:H)=p(E)� 5 p(E)=p(E∣:H). QED

The two measures above are already sufficient to prove that four of our five
principles (i.e., LL, N, WLL-L, and WLL-N) are structural. In fact, by in-
spection of the likelihood form of R and G above, one can easily check that:

LL is a structural principle. LL is satisfied by R and violated by G,
since it is easy to see that, for any E, p(E∣H1) ⪌ p(E∣H2) implies
R(H1,E) ⪌ R(H2,E) but not necessarily G(H1,E) ⪌G(H2,E).

N is a structural principle. N is satisfied by G and violated by R, since it
is easy to see that, for any E, p(E∣:H1) ⪋ p(E∣:H2) implies G(H1,E) ⪌
G(H2, E) but not necessarily R(H1,E) ⪌R(H2,E).

WLL-L is a structural principle. WLL-L is satisfied by R and violated
by G, since it is easy to see that, for any E, p(E∣H1) > p(E∣H2) and
p(E∣:H1)5 p(E∣:H2) implies R(H1,E) > R(H2,E) but G(H1,E) 5
G(H2,E).

WLL-N is a structural principle. WLL-N is satisfied by G and violated
by R, since it is easy to see that, for any E, p(E∣H1) 5 p(E∣H2) and
p(E∣:H1) < p(E∣:H2) implies G(H1,E) > G(H2,E) but R(H1,E) 5
R(H2,E).

WLL is a structural principle. As far as WLL is concerned, it is satisfied
by all the three measures above (and by many others, including D), as it is
easily seen again by inspection of their likelihood forms (see also Roche
and Shogenji [2014, 119–20], for relevant discussion and proofs). The fol-
lowing counterexample shows, however, that measure OD violates WLL.
Consider the following probability distribution over statements E, H1, H2:
p(H1 & H2 & E) 5 0.15, p(H1 & H2 & :E) 5 0.05, p(H1 & :H2 & E) 5
0.10, p(H1 & :H2 & :E) 5 0.02, p(:H1 & H2 & E) 5 0.15, p(:H1
& H2 & :E) 5 0.18, p(:H1 & :H2 & E) 5 0.05; p(:H1 & :H2 &
:E) 5 0.30. It can then be computed that p(E∣H1) 5 0.78 > 0.57 5
p(E∣H2) and p(E∣:H1)5 0.29 < 0.325 p(E∣:H2) but OD(H1, E)5 0.78 <
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0.87 5 OD(H2, E), contrary to WLL, which would require OD(H1, E) >
OD(H2, E).

This completes the proofs concerning the five likelihood principles of
figure 1 from section 3. The following results concern the measures of con-
firmation as reduction of improbability from section 4.

Theorem 4. Given the definitions of the improbability measures imp1(H),
imp2(H), and imp3(H), the following equalities are easily derived:

ID1 H,Eð Þ 5 imp1 Hð Þ 2 imp1 H∣Eð Þ 5 1 2 p Hð Þ – 1 2 p H∣Eð Þ½ �
5 p H∣Eð Þ 2 p Hð Þ 5 D H, Eð Þ;
ID2 H,Eð Þ 5 imp2 Hð Þ – imp2 H∣Eð Þ 5 1

p Hð Þ 2
1

p H∣Eð Þ ;
ID3 H, Eð Þ 5 imp3 Hð Þ – imp3 H∣Eð Þ 5 1

o Hð Þ –
1

o H∣Eð Þ 5
p(:H)
p Hð Þ –

p(:H∣EÞ
p(H∣E)

5 o(:H) – o(:H∣E);
IR1 H,Eð Þ 5 imp1 Hð Þ
imp1 H∣Eð Þ 5

1 2 p Hð Þ
1 2 p H∣Eð Þ 5 G H, Eð Þ;
IR2 H,Eð Þ 5 imp2 Hð Þ
imp2 H∣Eð Þ 5

1=p Hð Þ
1=p H∣Eð Þ 5 R H, Eð Þ;

IR3 H,Eð Þ 5 imp3 Hð Þ
imp3 H∣Eð Þ 5

1=o Hð Þ
1=o H∣Eð Þ 5

o H, Eð Þ
o Hð Þ 5 OR H, Eð Þ:

Theorem 5. As for measures ID2 and ID3 above, it is immediate to check
that

ID2 H,Eð Þ 5 1

p Hð Þ –
1

p H∣Eð Þ 5
p H∣Eð Þ – p Hð Þ
p H∣Eð Þp Hð Þ ;

ID3 H,Eð Þ 5 1

o Hð Þ –
1

o H∣Eð Þ 5
o H∣Eð Þ – o Hð Þ
o H∣Eð Þo Hð Þ :

Moreover, recalling that o(H) 5 p(H)=1 – p(H) and o(H∣E) 5 p(H∣E)=
1 – p(H∣E), one can easily prove that ID2 and ID3 are the same mea-
sure. In fact, o(H∣E) – o(H) 5 fp(H∣E)½1 – p(H)� – p(H)½1 – p(H)�g=
f½1 – p(H)�½1 – p(H∣E)�g 5 ½p(H∣E) – p(H)�=f½1 – p(H)�½1 – p(H∣E)�g. But,
o(H∣E)o(H) 5 ½p(H)p(H∣E)�=f½1 – p(H)�½1 – p(H∣E)�g. Hence, ID3 5
½o(H∣E) – o(H)�=½o(H∣E)o(H)�5½p(H∣E) – p(H)�=½p(H)p(H∣E)� 5 ID2.
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To see that ID2 (or ID3) is an incremental measure, it is sufficient to check
that ID2(H,E) 5 1=p(H) – 1=p(H∣E) satisfies P1 (by definition), P2 (since
ID2(H1, ⊤)5 0 for any H), and P3 (since, for any given H, ID2(H,E) increases
as p(H∣E) increases). So ID2 is an incremental measure, as well as ID3.
Theorem 6. To prove thatWLL-N and RWLL-N are incompatible, we show
that their conjunction leads to a contradiction. It is sufficient to consider two
hypotheses H1 and H2 such that p(E∣H1) 5 p(E∣H2) and p(E∣:H1) <
p(E∣:H2). Then it follows both that C(H1∣E) > C(H2,E) from WLL-N
and that C(H2,E) > C(H1∣E) from RWLL-N, which is impossible.

It remains to prove that measure NDmeets RWLL-N and violates WLL-N
and WLL; the following lemmas will be useful in proof.

LEMMA 2. For any H and E such that E is not neutral for H:
se subje
i) p(H) 5 ½p(E) 2 p(E∣:H)�=½p(E∣H) 2 p(E∣:H)�;
ii) p(H∣E) 5 f½p(E) 2 p(E∣:H)�=½p(E∣H) 2 p(E∣:H)�g �

½p(E∣H)=p(E)�.
Proof. (i) The proof starts from the “law of total probability” according to
which p(E) 5 p(H)p(E∣H) 1 p(:H)p(E∣:H). It then follows that p(E) 5
p(H)p(E∣H)1½12p(H)�p(E∣:H)5 p(H)p(E∣H)1p(E∣:H)2p(H)p(E∣:H)5
p(H)½p(E∣H)2p(E∣:H)�1p(E∣:H). This latter equality implies p(H)5 ½p(E)2
p(E∣:H)�=½p(E∣H) 2 p(E∣:H)�. (ii) As far as p(H∣E) is concerned, from
Bayes’s theorem we have p(H∣E) 5 p(H)½p(E∣H)=p(E)� and from the equal-
ity just obtained above we immediately derive that p(H∣E) 5 f½p(E)2
p(E∣:H)�=½p(E∣H)2p(E∣:H)�g � ½p(E∣H)=p(E)�. QED

Lemma 2 allows us to study how, for fixed values of p(E) and p(E∣H),
p(H) 5 ½p(E) 2 p(E∣:H)�=½p(E∣H) 2 p(E∣:H)� varies with respect to
p(E∣:H):

LEMMA 3. For any H and E such that E is not neutral for H, for fixed values of
p(E) and p(E∣H):
i) if E confirms H, p(H) decreases as p(E∣:H) increases;
ii) if E disconfirms H, p(H) increases as p(E∣:H) increases.
Proof. From lemma 2, we know that p(H) 5 ½p(E) 2 p(E∣:H)�=½p(E∣H) 2
p(E∣:H)� when E is not neutral for H. We rewrite p(H) as a function of var-
iables x 5 p(E), y 5 p(E∣H), and z 5 p(E∣:H) as follows:
This content downloaded from 130.133.008.114 on December 16, 2016 01:13:47 AM
ct to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



GRAMMAR OF BAYESIAN CONFIRMATION 79
p Hð Þ 5 f x, y, zð Þ 5 x 2 z

y 2 z
:

We then study how f varies as z increases. To this purpose, we calculate the
partial derivative of f with respect to z by applying the basic (quotient and
difference) rules of the calculus

fz
x 2 z

y 2 z

� �
5

fz x 2 zð Þ � y 2 zð Þ 2 x 2 zð Þ � fz y 2 zð Þ
y 2 zð Þ2

5
fz xð Þ 2 fz zð Þð Þ � y 2 zð Þ 2 x 2 zð Þ � ( fz y) 2 fz zð Þð Þ

y 2 zð Þ2

5  
21ð Þ � y 2 zð Þ 2 x 2 zð Þ � 21ð Þ

y 2 zð Þ2

5
x 2 yð Þ
y 2 zð Þ2 :

Since the denominator of the above equation is always positive, the partial
derivative of p(H) has the same sign as the numerator (x2 y). Recalling that
x 5 p(E) and y 5 p(E∣H), we thus obtain (i) if E confirms H, then p(E∣H) 5
y > x 5 p(E) and hence the partial derivative of p(H) is negative; (ii) if E
disconfirms H, then p(E∣H) 5 y < x 5 p(E) and hence the partial derivative
of p(H) is positive. In sum: for fixed values of p(E) and p(E∣H), p(H)
decreases as p(E∣:H) increases, if E confirms H, and p(H) increases as
p(E∣:H) increases, if E disconfirms H. QED

Coming now back to ND, we note that, for any H and E, ND(H, E) can be
expressed as a function of p(E), p(E∣H), and p(H):

ND H, Eð Þ 5 1

p Hð Þ –
1

p H∣Eð Þ 5
1

p Hð Þ –
p Eð Þ

p Hð Þp H∣Eð Þ 5
p E∣Hð Þ – p Eð Þ
p Hð Þp E∣Hð Þ :

Moreover:

LEMMA 4. For fixed values of p(E) and p(E∣H), ND is an increasing function
of p(E∣:H).

Proof. Given lemma 3, we can distinguish two cases. If E confirms H,
p(E∣H)2 p(E) and henceND(H,E) is positive;moreover, as p(E∣:H) increases,
p(H) decreases and hence ND(H,E) increases. If E disconfirms H, p(E∣H) 2
p(E) and hence ND(H,E) is negative; moreover, as p(E∣:H) increases, p(H) in-
creases, the absolute value of ND(H,E) decreases, and hence ND(H,E) increases.
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In sum, for fixed values of p(E) and p(E∣H), ND(H,E) is an increasing func-
tion of p(E∣:H). QED

Given the above results, we can then prove the following results about ND.
Theorem 7. ND meets RWLL-N. From lemma 4, we know that, for fixed
values of p(E) and p(E∣H), ND increases as p(E∣:H) increases. It follows
that p(E∣H1) 5 p(E∣H2) and p(E∣:H1) > p(E∣:H2) imply ND(H1,E) >
ND(H2,E), so that RWLL-N is satisfied.
Theorem 8. ND violates WLL-N. This follows immediately from theorems 6
and 7, since ND meets RWLL-N, which is incompatible with WLL-N.
Theorem 9. ND violates WLL. A counterexample will be sufficient to prove
this. Consider the following probability distribution over statements E, H1, H2:
p(H1&H2&E)5 0.03, p(H1&H2&:E)5 0.03, p(H1&:H2&E)5 0.10,
p(H1&:H2&:E)5 0.15, p(:H1&H2&E)5 0.01, p(:H1&H2&:E)5
0.03, p(:H1 & :H2 & E)5 0.25; p(:H1 & :H2 & :E)5 0.40. It can then
be computed that p(E∣H1) ≃ 0.42 > 0.4 5 p(E∣H2) and p(E∣:H1) ≃ 0.38 <
0.39 ≃ p(E∣:H2), but ND(H1,E) ≃ 0.23 < 0.25 5 ND(H2,E), contrary to
WLL, which would require ND(H1,E) > ND(H2,E).
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