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ABSTRACT 
A combined experimental–computational methodology for accelerated design of AlNiCo-type permanent 
magnetic alloys is presented with the objective of simultaneously extremizing several magnetic 
properties. Chemical concentrations of eight alloying elements were initially generated using a quasi- 
random number generator so as to achieve a uniform distribution in the design variable space. It was 
followed by manufacture and experimental evaluation of these alloys using an identical thermo-magnetic 
protocol. These experimental data were used to develop meta-models capable of directly relating 
the chemical composition with desired macroscopic properties of the alloys. These properties were 
simultaneously optimized to predict chemical compositions that result in improvement of properties. 
These data were further utilized to discover various correlations within the experimental dataset by using 
several concepts of artificial intelligence. In this work, an unsupervised neural network known as self- 
organizing maps was used to discover various patterns reported in the literature. These maps were also 
used to screen the composition of the next set of alloys to be manufactured and tested in the next 
iterative cycle. Several of these Pareto-optimized predictions out-performed the initial batch of alloys. 
This approach helps significantly reducing the time and the number of alloys needed in the alloy 
development process. 
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Introduction 

AlNiCo [1] are permanent magnetic alloys that have been 
widely used due to affordability, high-temperature stability, 
and excellent anticorrosion properties. A high magnetic 
energy density ((BH)max) is desired as it helps to synthesize 
smaller magnets, while maintaining the superior magnetic 
properties. These magnets have high remanence (Br) values 
that correspond to the amount of magnetic flux density left 
in the magnet after removal of the external magnetic field. 
AlNiCo magnets have lower coercivity (Hc) values and can 
be demagnetized in the presence of an external magnetic field. 
These alloys are first cast into complex shapes and thereafter 
magnetized in the production heat treatment stages. 

A novel approach is presented here [2] for creating a 
work plan for efficiently using a set of computational tools 
for the design of alloy chemistry and multi-objective 
optimization [3–6] of desired macroscopic properties of 
various alloys [7–15]. This approach combines information 
from limited experimental databases with focus on stability 
of critical phases/structures [16, 17] while utilizing a number 
of numerical design optimization algorithms. These 
algorithms are based on several concepts from artificial 
intelligence including supervised and unsupervised machine 
learning algorithms [16, 17]. 

Materials and Methods 

We selected eight alloying elements and set their concentration 
bounds after literature review (Table 1). Composition of the 
initial batch of 80 alloys was predicted by Sobol’s quasi-random 
sequences generation algorithm [18]. These alloys were 
screened on the basis of phase equilibrium using Thermocalc 
[19] and Factsage [20]. A recent work from the developers of 
this software demonstrates the importance of phase transition 
diagrams [21] and we have also reported it in our recent works 
[2, 9, 14]. We performed a few ab-initio-based calculations to 
estimate the stable structures through open source database, 
Materials Project [22] that have been categorized on the basis 
of magnetic ordering and stability. Both ab-initio calculations 
and phase transformation diagrams through CALPHAD 
approach are effective for predicting properties of alloys with 
up to four alloying elements [21, 22]. 

These 80 initial alloys were then manufactured and tested 
for: magnetic energy density ((BH)max), magnetic coercivity 
(Hc), magnetic remanence (Br), saturation magnetization 
(Ms), remanence magnetization (Mr), ((BH)max)/mass, 
magnetic permeability (μ), intrinsic coercivity field (jHc). The 
experimental data were used to build eight-dimensional 
response surfaces linking alloy composition to desired pro-
perties. Several meta-models were developed using various 
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approaches, tested on various accuracy measures and the most 
accurate one was chosen for further study [5]. Meta-models 
that were selected were then used to simultaneously maximize 
the properties listed above, while minimizing cost of the raw 
materials and alloy mass density. We actually used several 
distinct multi-objective optimization algorithms [3–6]. Due 
to limitations of some of the optimizers, it was decided to 
Pareto-optimize chemical compositions of alloys for the three 
optimized properties ((BH)max, Br, and Hc) and then use these 
compositions to predict the other seven properties. From this 
Pareto set, we selected a few alloys for further manufacture 
and testing. Candidate alloys were screened on the basis of 
phase stability, along with several statistical measures [2, 5, 
14, 19–22]. Alloys that satisfied the above analysis were selected 
for manufacture and testing in the next cycle. The entire 
process was terminated after a total of 180 alloys (initial 
random chemistry of 80 alloys plus 100 alloys generated in 
10 computational design/experimental verification cycles) were 
created. Unsupervised learning algorithms such as principal 
component analysis (PCA) [5], hierarchical clustering analysis 
(HCA), [5] and self-organizing maps (SOM) [23] were used to 
discover various patterns within the dataset. 

Results and Discussion 

Figure 1 shows the second quadrant of the B–H curve with all 
the 180 alloys plotted on it. Alloys are marked according to the 
method that was used to generate that composition. 

It can be seen that alloy 124 predicted by this design 
methodology is the best alloy according to the three optimized 
properties. Figure 2 shows the distribution of all 10 properties 
and 8 alloying elements that will be helpful to determine the 
alloys (or a group of alloys) that perform best for most of 
the properties. 

In order to minimize the number of alloys compositions 
that need to be manufactured and experimentally tested, we 
also used a classification technique that is based upon an 
unsupervised neural network, popularly known as SOMs or 
self-organizing feature maps [23] proposed by Teuvo Kohonen 
in the 1980s. SOM implements a term competitive learning 
along with a neighborhood function to preserve the topologi-
cal properties of the dataset [23]. This makes SOM a perfect 
tool to visualize high-dimensional datasets in lower dimen-
sions, usually two to three, while preserving the topology for 
determining various correlations within the dataset [24]. 
SOMs can be considered as a nonlinear generalization of 
PCA [5, 25]. Recent studies demonstrate the advantage of 
using SOM over PCA [23, 26]. Most importantly, SOMs have 

been successfully used for feature extraction of scarce datasets 
(sample size of about 40), whereas conventional neural 
networks require large training sets [27, 28]. In this work, 
we used a commercial optimization package mode FRONTIER 
for SOM analysis [5] which uses the following steps. 
1. Learning cycle: For our dataset, we used Batch SOM, where

the learning cycle is updated after all the sample data are
presented to the network.

2. Setup training parameters: In the following text, key setting
parameters are introduced, that were adjusted during the
analysis.
.� X-dimension and Y-dimension: It is an integer positive

value and it represents the dimension of a component 
of the Kohonen map. The default value was set at 8 since 
there were 8 alloying elements. 

.� Map units: It is an integer positive value and it represents 
the dimension of the Kohonen map, which in this case 
was 64. The default value was set in a way that the ratio 
between X-dimension and Y-dimension is equal to the 
ratio between the first two principal eigenvalues of the 
dataset. 

.� Initialization type: We used linear initialization where 
the initial map is obtained by using a linear combination 
of Kohonen map dimension and the two principal 
eigenvalues of the dataset. 

.� Random seed: This is an integer number, usually used 
for sequence repeatability. That is, if two SOMs are 
generated with the same seed, they will return identical 
maps. For a more random distribution, seed value can 
be set to 0. In this case, the map is automatically seeded 
with a value that is based on the current time, which is 
never identical, and hence, there is less chance of 
sequence repetition. 

Apart from these, there exist a few more parameters, 
namely, initial rough radius, final rough radius, rough phase 
radius, initial fine tuning radius, final fine tuning radius, and 
fine tuning phase length. All of these parameters have an 

Table 1. Concentration bounds for alloying elements in AlNiCo type alloys [2].  
Variable bounds (weight percent)  

Alloying elements  1–85  86–143  144–180 
Cobalt (Co)  24–40  24–38  22.8–39.9 
Nickel (Ni)  13–15  13–15  12.35–15.75 
Aluminum (Al)  7–9  7–12  6.65–12.6 
Titanium (Ti)  0.1–8  4–11  3.8–11.55 
Hafnium (Hf)  0.1–8  0.1–3  0.095–3.15 
Copper (Cu)  0–6  0–3  0–4.5 
Niobium (Nb)  0–2  0–1  0–1.5 
Iron (Fe) Balance to 100%   

Figure 1. Scatter plot of 180 alloys on the second quadrant of B–H curve [2].  

2 R. JHA ET AL. 

2



integer positive value which needs to be fine tuned during the 
analysis so as to minimize the topological error that was found 
to be 0.043 in the present analysis [5]. Readers are advised to 
follow the cited references for better understanding of these 
parameters. 

Our purpose of using SOM maps can be listed as follows: 
.� Find correlations between various variables and properties 

that can be supported from the literature. 
.� Classify the dataset in various clusters and identify the 

units/clusters with candidate alloys with a set of superior 
properties. 

.� This way predicts the chemical composition of alloys for 
superior properties. 

.� This approach was used as an additional screening tool for 
selecting a set of alloys to be manufactured in the next alloy 
design cycle. 
Here, the experimentally verified alloys were added to 

Pareto-optimized predictions. Thereafter, the maps were 
created followed by clustering analysis through HCA over 
SOM maps. Pareto-optimized alloys that belonged to the units 
with superior properties (or alloys that were in the adjacent 
units) were given preference as these alloys are both Pareto- 
optimized and statistically verified and expected to perform 
similar to the previous best. This will be explained in more 
detail in the following sections. 

As mentioned before, SOM charts are divided into 
hexagonal units. In this case, the number of units was set at 
64. SOM D-matrix chart shows the average distance between

a unit and its six nearest neighboring units. For each unit, 
mean values of the distance from its six nearest neighbors 
are calculated and are used to represent that unit. Peaks of 
units can be used to detect clusters in the input dataset. 
SOM D-matrix is to be used in conjunction with SOM 
P-matrix chart for identifying the clusters within the dataset 
(Fig. 3). 

SOM P-matrix chart is a representation of the probability 
density of input data and can be used to detect probability 
density-based cluster structures. In this chart (Fig. 3), we can 
see for each cell the (relative) number of designs for which that 
cell and its six neighbors are the best matching unit. Here, 
peaks of dense zones of the input space are separated by valleys 
of sparse ones. SOM P-matrix chart must be used with 
D-matrix chart for identifying clusters. In D-matrix, all 180 
alloys were placed on the chart to show the way these alloys 
were distributed in 2D space. 

In the P-matrix chart, we decided to identify the units that 
consist mostly of alloys that are included in top 10 candidate 
alloys ranked on the basis of (BH)max values. This way, we 
identified three units, 48, 56, and 57, as the units that need 
to be examined for finding correlations in the dataset. 
Additionally, it must be noted that these three units are adjac-
ent to each other. This further proves the efficacy of using 
these maps to discover correlations within a high-dimensional 
dataset in reduced 2D space. One can see that there is a square 
present in the center of each unit. The size of the square 
depends on the number of alloys that are included in this unit. 

Figure 2. Distribution of properties and elements of the magnet for different classes (or approaches).  
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It can be seen that in a few units, the square is reduced to a 
point. These units can be removed from the chart and will 
not affect the analysis. The candidate alloys that were included 
in units 48, 56, and 57 were 
.� Unit 48 consists of alloys 95, 125, 147, 165. 
.� Unit 56 consists of alloys 111, 114, 117, 126, 127, 128, 143, 

161, 162, 163, 164, 166, 169, 180. 
.� Unit 57 consists of alloys 84, 86, 124, 139. 

All of these alloys are Pareto-optimized predictions apart 
from alloy 95 which was predicted by Sobol’s algorithm [18] 
and is the best performer in the 4th design cycle. Thus, this 
method can be used as an alternative method to screen alloys 
for manufacture as alloys in adjacent units have superior 
properties and have a better chance to mimic the properties 
of previous best alloys. 

Component chart (Fig. 4) shows the distribution of 
different components, variables, and properties on the SOM 
hexagonal grid where similar component maps are placed in 
adjacent positions. Hence, it is easy to spot correlations 
between the properties and variables. Figure 4 shows the 
component plots for all of the variables and properties in a 
2D plot. 

From Fig. 4, one can observe that (BH)max and (BH)max/ 
mass are in adjacent units. Thus, SOM maps were able to 
detect strong correlations between these two properties. 
Similarly, Br and Mr are adjacent to each other and it points 
toward a possible correlation between these two properties. 
Also, Hc is inverse of jHc, and it can also be seen that these 
two units are close to each other. This information will be 
helpful in reducing the number of properties to be optimized, 
thus, reducing the complexity of the problem. 

For better understanding of the system, our focus will be on 
the three units identified before, that is, alloys contained in 
units 48, 56, and 57. Table 2 shows the SOM prediction for 
properties of candidate alloys and alloying elements that are 
part of these units. 

Table 2 and Fig. 5 can be used to conclude the following. 
1. (BH)max: Units 56 and 57 have the highest (BH)max values.

Best alloys are placed in the adjacent units. This means that
the topology of the dataset is preserved.

Figure 3. SOM D-matrix and SOM P-matrix chart for 180 alloys.  

Figure 4. Component plot for 180 alloys.  

Table 2. SOM component analysis results for properties and alloying elements 
for units 48, 56, and 57. 

Properties/elements Unit 48 Unit 56 Unit 57  

(BH)max 5042 6046 6116 
Hc 944.76 996  957.82 
Br 0.296  0.323  0.331 
Ms 122.79  124.17  126.57 
Mr 33.03 36  37.02 
(BH)max/Mass  5.16E7  5.74E7  5.92E7 
µ  1.12E-4  1.41E-4  1.46E-4 
Cost  3035.45 3039 2974 
jHc 75173 79257 76220 
Density 7151 7152 7142 
Al  7.336  7.243  7.236 
Co  35.803  36.281  36.366 
Cu  2.856  2.826  2.62 
Fe  32.207  32.050  32.659 
Hf  2.471  2.351  2.119 
Nb  0.757  0.80  0.801 
Ni  13.49  13.44  13.395 
Ti  5.07  4.99  4.807   
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2. Units 48, 56, and 57 contain the best alloys that can be
classified on the basis of Br, Hc, Mr, Ms, μ, (BH)max/mass,
and jHc.

3. Three properties were optimized (maximized),
namely, (BH)max, Br, Hc, but SOM analysis shows that
Mr, Ms, μ, (BH)max/mass, and jHc were also maximized as
a result of it.

4. Ms: These units contain alloys with average Ms values.
5. Density: These units contain alloys with density that is

lower than average values.
6. Cost: These units contain the best alloys for several

properties but are comparatively the most expensive ones.
From Fig. 6, we can observe that optimized iron content is

slightly higher than the lowest value reported in the figure. 
Optimized cobalt composition is about the average value 
reported in the figure. Optimized aluminum content is about 
the lowest value reported in the figure. Optimized nickel con-
tent varies in a very narrow range that is slightly higher than 
the lower bound, but less than the average value reported in 
Fig. 6. From Table 2, one can observe that the SOM 
predictions for alloying elements of alloys contained in units 
48, 56, and 57 are within the composition range reported for 
commercial alloys. 

Figure 7 shows the component plot of titanium. It can be 
seen that units 48, 56, and 57 have titanium content that varies 
in a small range which is about the average value shown in the 
figure. The reported titanium contents of commercial alloys 
are also in this range. Thus, SOM plots proved to be helpful 
in optimizing the titanium content of alloys. 

Figure 7 also shows the component plot of copper. It can be 
seen that units 48 and 56 have similar copper contents that are 
about the highest value reported in the dataset, while unit 57 
has slightly lower copper content. It must be noted that similar 
trends were observed in the component plots of properties for 
Hc and jHc. From literature, it is known that copper precipi-
tates out of α2 phase and these precipitates were observed on 
the Cu–Ni-rich bridges between adjacent α1 phases [29]. Hc 
is an extrinsic property and it depends on the microstructure 
variation at the nanometer level. Thus, lower Hc for unit 57 
can be attributed to comparatively lower copper content of 
alloys in unit 57. The reported copper content of commercial 
alloys is also in this range. Thus, SOM plots proved to be 
helpful in optimizing the copper content of alloys. 

Figure 7 further shows the component plot of hafnium. It 
can be seen that units 48, 56, and 57 have hafnium content that 
varies in a small range which is between the average value and 
is slightly less than the highest value shown in the figure. 
Hafnium has not been used in commercial AlNiCo alloys. In 
our work, we observed traces of hafnium precipitates on the 
Cu–Ni bridges between adjacent α1 phases [29]. This topic 
needs further investigation. A detailed analysis of the effect 
of Hf on the formation of Cu–Ni-rich bridges will be helpful 
to understand the phenomenon of phase separation for 
improved magnetic properties. Figure 7 also shows the compo-
nent plot of niobium. It can be seen that units 48, 56, and 57 
have similar niobium content which is about the highest values 
reported in the figure. SOM predicted niobium content is 
within the reported niobium content of commercial alloys. 

Figure 5. SOM component plot for (BH)max, Br, Hc, and Mr.  
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Figure 6. SOM component plot for iron, cobalt, aluminum, and nickel.  

Figure 7. SOM component plot for titanium, copper, hafnium, and niobium.  
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Conclusions 

In this work, we presented a novel approach to design 
chemistry of a class of AlNiCo alloys using a set of computa-
tional tools that were routinely checked for improvements 
through experimentation. Such an approach can prove to be 
useful for designing new alloys and their accelerated 
implementation. Key components of the contribution of this 
work can be listed as 
1. Efficient use of a random number generator to predict the

initial set of compositions with the help of information
about the system reported in the open literature.

2. Efficient use of phase stability and transformation diagrams
for screening alloys prior to manufacture.

3. Use of ab-initio calculations to predict magnetic properties of
structures that need to be stabilized for improved properties.

4. Use of response surface methods to develop metamodels for
linking chemical composition to macroscopic properties of
alloys.

5. Multi-objective optimization of targeted properties to
predict the composition of new alloys for improvement in
their properties.

6. Use of phase transformation diagrams, and several statisti-
cal methods to screen candidate alloys to be manufactured
in the next cycle.

7. Use of SOM as a tool to predict the composition of alloys
that perform well for a set of properties.

8. A guideline for effective use of SOM maps for screening
alloys for improved properties.

9. (BH)max, Br, and Hc were maximized together, while
SOM analysis shows that for the optimized alloys that are
part of units 48, 56, and 57, seven properties were
maximized as a result of optimization, namely, (BH)max,
Br, Hc, Mr, μ, (BH)max/mass, and jHc. These alloys have
average Ms and density while most of these alloys were
expensive. This demonstrates the efficacy of meta-model- 
based prediction and multi-objective optimization followed
by data analysis by use of unsupervised learning methods in
alloy design.
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