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ABSTRACT
Using a suite of cosmology simulations of a sample of >120 galaxy clusters with log (MDM, vir)
≤ 14.5. We compare clusters that form in purely dark matter (DM) run and their counterparts
in hydro-runs and investigate four independent parameters that are normally used to classify
dynamical state. We find that the virial ratio η in hydro-dynamical runs is ∼10 per cent
lower than in the DM run, and there is no clear separation between the relaxed and unrelaxed
clusters for any parameter. Further, using the velocity dispersion deviation parameter ζ , which
is defined as the ratio between cluster velocity dispersion σ and the theoretical prediction
σt = √

GMtotal/R, we find that there is a linear correlation between the virial ratio η and this
ζ parameter. We propose to use this ζ parameter, which can be easily derived from observed
galaxy clusters, as a substitute of the η parameter to quantify the cluster dynamical state.

Key words: galaxies: clusters: general – galaxies: evolution – galaxies: haloes – galaxies:
kinematics and dynamics – cosmology: theory.

1 IN T RO D U C T I O N

Currently, favoured models of cosmological structure formation are
hierarchical – lower mass systems merge progressively to form more
massive structures, with galaxy clusters representing the final state
of this process. The dynamical process, driven by gravity, deter-
mines the final properties of the dark matter (DM) halo, as well as
the baryonic contents in it – galaxies, intracluster medium (ICM),
etc. However, even at the final state of hierarchical structure forma-
tion, the galaxy clusters are not always in dynamic equilibrium. In
observations, galaxy cluster systems can be roughly separated into
relaxed and unrelaxed; the ICM in relaxed clusters is normally in
hydro-static equilibrium, while dynamically unrelaxed clusters are
undergoing, or have undergone a merger that leaves the ICM turbu-
lent (see Wen & Han 2013, and references therein). In simulations,
there are a vague of ways dynamical state can be evaluated.

Using DM-only simulations, Jing (2000) found that about
30 per cent of the simulated DM haloes cannot be fitted by the

� E-mail: weiguang.cui@uwa.edu.au

NFW profile (Navarro, Frenk & White 1997), and these haloes that
showed larger deviations from the NFW profile exhibited signifi-
cant internal substructures. Using the integral virial ratio parameter
2T/|W| + 1, here T is the kinetic energy, W is the potential energy,
Bett et al. (2007) suggested 2T/W + 1 < 1.5 to select haloes in quasi-
equilibrium states (see also Klypin et al. 2016). Neto et al. (2007)
expanded the criteria by including substructure mass fraction and
centre-of-mass offset. However, they adopted a narrower limit for
their virial ratio 2T/|W| < 1.35 (see also Ludlow et al. 2012). Shaw
et al. (2006), Poole et al. (2006) and Davis, D’Aloisio & Natara-
jan (2011) modified the virial ratio by taking the surface pressure
energy Es into account. This is because haloes are not isolated in
cosmology simulations and infalling materials alter 2T/W. Besides
the surface pressure energy, Davis et al. (2011) also considered
the potential energy from particles outside of haloes – Wext for the
virial ratio. However, they found that Wext is negligible. Neverthe-
less, different limits are used to calculate the virial ratio: (2T − Es)/
W + 1 > −0.2 for Shaw et al. (2006); |1 + 2T/(Es + W)| < 0.02
for Poole et al. (2006); while Knebe & Power (2008) suggested
−0.15 ≤ (2T − Es)/W + 1 ≤ 0.15 (with a mass dependence at
z = 1) to select out relaxed haloes. Power, Knebe & Knollmann
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(2012) studied the relation between centre-of-mass offset and equi-
librium state. Instead of using virial ratio, they suggested a centre-
of-mass offset value of 0.04 to select relaxed haloes.

All of these studies were based on DM-only simulations. How-
ever, as numerical simulations with sophisticated subgrid baryon
models have become more mature and successful in producing
observed-like galaxies, there has been great interest in studying the
baryonic effects on galaxy cluster properties (e.g. Schaller et al.
2015; Cui et al. 2016a), on power spectrum (e.g. van Daalen et al.
2011), on halo mass as well as halo mass function (e.g. Cui et al.
2012; Cui, Borgani & Murante 2014b; Velliscig et al. 2014), and
on substructure shapes and alignments (e.g. Knebe et al. 2010;
Velliscig et al. 2015). It is timely and interesting to study that how
baryons affect the dynamical state of galaxy clusters. Baryons, es-
pecially gas, are subject to other forces in addition to the gravity
from DM, which will lead changes on T and W.

In this paper, we study the dynamical state of galaxy clusters with
a volume- and mass-complete sample from a series of cosmological
simulations with three different baryon models, which we have
presented in Cui et al. (2016b, hereafter Paper I). We investigate
how different measures of dynamical state change between DM
only and hydro-dynamical runs.

In the following sections, we briefly describe these hydro-
simulations with different baryon models (see also Cui et al. 2012,
2014b) and the statistical sample of clusters (see also Paper I)
(Section 2), and present our dynamical state classification meth-
ods (Section 3). In Section 4, we present our results. Finally, we
summarize our conclusions in Section 5, and comment on the im-
plications for interpretation of observations of galaxy clusters.

2 SI M U L AT E D G A L A X Y C L U S T E R
C ATA L O G U E

These simulations use a flat �cold dark matter cosmology, with
cosmological parameters of �m = 0.24 for the matter density pa-
rameter, �b = 0.0413 for the baryon contribution, σ 8 = 0.8 for
the power spectrum normalization, ns = 0.96 for the primordial
spectral index, and h = 0.73 for the Hubble parameter in units of
100 h km s−1 Mpc−1. They used the same realization of the initial
matter power spectrum, and were run with the TREEPM-smoothed
particle hydrodynamics code GADGET-3, an improved version of the
public GADGET-2 code (Springel 2005). Three simulations were run:
we refer to the DM only simulation as the DM run; the hydro-
dynamical simulations including radiative cooling, star formation,
and kinetic feedback from supernovae: in one case, we ignore feed-
back from active galactic nuclei (AGN, which is referred as the CSF
run), while in the other, we include it (which is referred as the AGN
run). The DM run has two families of dark matter particles (DMPs):
the one with larger particle mass shares the same ID as the DMPs
in the CSF and AGN runs, while the one with smaller particle mass
has equal mass as the gas particles in the CSF and AGN runs at the
initial condition of z = 49. With this particular setup, we can make
an explicated investigation on the baryon effect.

Haloes are identified using the Python spherIcAl Overdensity
(SO) algorithm PIAO1 (Cui et al. 2014b) and are selected from
the DM run with a mass cut. We reselect 123 haloes, which have
the virial mass of log10(Mvir) > 14.5 h−1 M�. We use Bryan &
Norman (1998) to estimate �vir and compute Mvir. Counter-part
SO haloes in AGN and CSF runs are identified by cross-matching

1 It is publicly available at https://github.com/ilaudy/PIAO

DM components using their unique particle IDs (also see Cui et al.
2014b, for more details).

3 M E T H O D S

Virial ratio: the exact virial theorem for a self-gravitating system
is

1

2

d2I

dt2
= 2T + W − Es, (1)

where I is the moment of inertia. The proper way of calculating the
equation (1) is by using the time-averaged values of these quantities
(see the discussion in Poole et al. 2006). However, due to the limited
outputs of the simulation, we only calculate these quantities at
z = 0.

Total kinetic energy T is calculated differently for collisionless
(DM and star) particles and collisional (gas) particles. After remov-
ing the halo motion, which is given by the mass-weighted mean
velocity from particles within 30 kpc and the Hubble flow, T is sim-
ply 1

2 miv
2
i , where i is for all collisionless particles; we use the gas

thermal energy U for its kinetic energy. Total potential energy W is
directly calculated by using all particles inside haloes without any
approximation. Es is the energy from surface pressure P at the halo
boundary. As described in Chandrasekhar (1961), Es is

Es =
∫

P (r)r · d S. (2)

Assuming the ideal gas law, P, for collisionless particles (see Shaw
et al. 2006, for more details) can be written as

Pc =
∑

i miv
2
i

3V
, (3)

this summation is over all particles with mass mi, velocity vi inside
volume V, while P for gas particles (see Poole et al. 2006, for more
details) is

Pg =
∑

i NikBTi

V
, (4)

here Ni, Ti are the gas number and temperature, respectively; kB is
the Boltzmann constant.

We follow Shaw et al. (2006) to calculate P: first, we rank order
all particles by their radius and select the outermost 20 per cent;
then, we label the radius of the innermost particle in this shell as
R0.8, the outermost as Rvir, and the median as R0.9. V is the volume
occupied by the outermost 20 per cent particles, V = 4π

3 (R3
vir −

R3
0.8). The surface pressure energy from collisionless component

can be approximated by

Es,c ≈ 4πR3
0.9Pc = R3

0.9

R3
vir − R3

0.8

∑
i

miv
2
i . (5)

For gaseous particles, the gas number density n can be expressed
in terms of the mean molecular weight: μ = ρ/(nmp), where mp is
the mass of a proton, ρ is gas density. Following Mo, van den Bosch
& White (2010), we assume the elements heavier than helium have
a mass number Mi ≈ 2(Qi + 1), here Qi + 1 is the charge number
of a fully ionized atom. If we define the total mass as Xi = 1,
where Xi is the mass abundance of element i, then we have μ

= 4/(6XH + XHe + 2). Normally, we assume that the metallicity
Z = 1 − XH − XHe is very small, and the mass fraction for hydrogen
is around 0.76. Thus, we can have μ ≈ 0.588 and the gas number

N = nV = ρV

μmp
= m

μmp
. (6)
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Finally, we can calculate the surface pressure energy from the gas
component as,

Es,g ≈ 4πR3
0.9Pg = R3

0.9

R3
vir − R3

0.8

3kB

μmp

∑
i

miTi, (7)

where summation is over all the gas particles lying between R0.8

and Rvir. Es is contributed by both collisionless and gas particles.
If the system is in a steady state and dynamical equilibrium,

equation (1) will reduce to 2T + W − Es = 0, which can be rewritten
as (2T − Es)/|W| = 1. Therefore, we define η = (2T − Es)/|W|,
and expect η → 1 for dynamically relaxed galaxy clusters.

Total subhalo mass fraction: subhaloes are identified by SUBFIND

(Springel et al. 2001; Dolag et al. 2009; Cui et al. 2014a). For all the
galaxy clusters identified by PIAO, we run SUBFIND on them one by
one. The smallest subhalo has at least 32 particles. Subhaloes with
only gas particles are not taken into account (Dolag et al. 2009).
The subhalo mass fraction fs does not include the most massive
substructure as this is simply the bound component of the main
halo.

Centre-of-mass offset: for all the particles within the virial radius
Rvir, we compute the centre of mass as

Rcm = 1

M

n∑
i=1

miri, (8)

here mi is the ith particle mass, ri is its position, M is the halo virial
mass, and n is the total particle number within Rvir. The centre offset
is defined as �r = |Rcm − Rc|/Rvir. We note here that the density
peak position is used as cluster centre Rc (see Paper I, for more
discussion about different centre definitions).

Velocity dispersion deviation: the velocity dispersion σ is always
an important quantity for cluster dynamics. It is often used to predict
the cluster’s dynamical mass through the virial theorem:

1

2
Mtotalσ

2 ∝ GM2
total

R
, (9)

where G is the universal gravitational constant and Mtotal and R
are the cluster mass and radius. Thus, one can easily get the pre-
dicted dynamical mass through Mtotal ∝ (Rσ 2)/G. However, this is
based on the assumption that the cluster is in dynamical equilib-
rium, which is normally not true. Therefore, we define a parameter
to quantify the deviation to the dynamical equilibrium: ζ = σ

σt
, here

σt = √
(GMtotal)/R. Note that the velocity dispersion deviation ζ

can be different from unity even for perfectly relaxed clusters, be-
cause its exact value also depends on the density profile.

4 R ESULTS

4.1 Radial profiles

We first show the radial profiles of these four parameters: η, ζ , �r,
and fs, in Fig. 1 from upper to lower panels, respectively. We select
three clusters with different η values order as in plot (>1, ≈1 and
<1 from the DM run at Rvir). The results from all particles are
shown with solid lines and filled symbols, while the symbols with
dotted lines from only DMPs. Different colours and symbols styles
represent different versions of simulations, which are indicated on
the legend of the top middle panel.

It is worth to note here again that the DM run has two family
DMPs: the first (more massive) one shares the same mass and ID to

the DMP in the two hydro-dynamical runs, while the second family
only has its mass the same as the initial gas particles in the two
hydro-dynamical runs. We have verified that this separation in our
DM run does not show signs of mass segregation. This particular
set in the DM run allows us to make equal comparisons to the two
hydro-dynamical runs. If it is not particularly noted, the DMP from
the DM run refers to the first family (heavier) particle in the lower
part.

To calculate the values of these four parameters at each radius
Ri, we simply use the corresponding particles within that radius.
However, only particles inside the spherical shell Ri, 0.8 ≤ R ≤ Ri

are used to calculate the surface pressure energy Es,i.

(i) At inner region, the values of η are all larger than 1 for all three
galaxy clusters, which means that the values of 2T − Es are always
larger than their potential energy |W|. At outer radius (mostly R �
0.6Rvir), η becomes more flat for all three clusters and three runs. η

from both the CSF run and the AGN run is normally smaller than
from the DM run over all radii. However, there is a better agreement
between these three runs, when only DMP is taken into account,
especially at outer regions. It means that DMPs are less affected by
baryons.

(ii) ζ normally has a value smaller than 1 and shows a declining
trend from inner to outer radii, which is basically the same saw in η.
In agreement with η, galaxy clusters simulated with baryon models
also have smaller ζ values than the DM run. It not surprising that
the result from DMP is also similar to η. However, there is a slightly
larger disagreement between the three runs, especially for the two
with η ≤ 1.

(iii) The radial profile for the centre-of-mass offset �r shows
large difference between the three galaxy clusters and the three
simulation versions. As DMPs contribute the largest mass for galaxy
clusters, it is not surprising to see that the dotted lines basically
follow the solid lines. It seems to have less correlation between �

and η, seeing from these radial profiles.
(iv) It is not surprising that fs from the CSF run normally has a

larger value than the other two runs. This is caused by the over-
cooling problem, which affects not only central galaxies, but also
satellite galaxies. Similar to �r, there is very little difference be-
tween the total (solid lines) and DMP (dotted lines) for the fs profile.
fs for all three clusters show a clear increasing trend from inner to
outer regions. This is simply because substructures can be easily
destroyed when they are close to the cluster center. This trend is
anticorrelated with the radial profile from η.

From these three example clusters, η shows a decreasing trend
from inner to outer radii, which means that galaxy clusters can
be highly unvirialized at their centres than the outer region. In
agreement with Shaw et al. (2006), η at outer radius (R � 0.6Rvir)
becomes more flat, which means that η is primely determined by
materials inside 0.6Rvir. The in-falling materials at outer region
have less effect on η. It is interesting to see that baryons give a
systematic decreasing effects on η over the whole radii. However,
the η from DMP seems to be less affected. Because gravity is
the only interaction between DM and gas, and gas only occupy
a small mass fraction of clusters with a smoother distribution, it
not surprising to see this result. Because larger σ at fixed radius
corresponds to larger T, it is also not surprising to see that ζ basically
follows the trend of η.

There is no clear trend for the profile of �r. This is because the
centre of mass is largely relying on the mass distributions, especially
the substructure position. However, fs shows an increasing trend as
radius increases.

MNRAS 464, 2502–2510 (2017)
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Figure 1. The values of η, ζ , �r, fs (from top to bottom panels) as a function of normalized radius out to Rvir. From left-hand to right-hand columns, we show
the three example clusters with different ηDM values at Rvir: ηvir, DM = 1.01, 0.94, 1.25, respectively. As shown in the legend on the top middle panel, blue
filled circles are for the DM run, red filled triangles are for the CSF run, and green filled squares are for the AGN run. The corresponding open symbols with
dotted lines are the results from their DM components. We further note here that the DM component in the DM run refer to the first family of DM particles
(see more details in Section 4.1). Solid lines indicate the results from all particles inside the cluster.

4.2 The baryonic effects

We further investigate baryon effects on the four parameters in
Fig. 2. To explicitly show and understand this effect, changes of
these four parameters from the DM run to the two hydro-dynamical
runs are separated into two rows: the upper row shows the results
from all types of particles, while the lower row is from DMPs. These
results are shown as a function of their halo masses Mvir. As shown
in the legends of right-hand panels, the different colour and style
symbols indicate different simulations, while the different colour
and style lines are the mean of data points. The upper row shows
the results from all particles, while the lower row is from DMPs.

Through these comparisons, we find the following.

(i) The upper panel from the first column shows the ratio of
η, which is calculated with all particles. It is clear that η from
both the CSF run and the AGN run is about 10 per cent lower
than the one from the DM run. Nevertheless, there is very small
difference between the two hydro-dynamical runs evident from their
mean values. The ratio of η shows almost no dependence on cluster
masses.

The lower panel shows the results from DMPs. There is almost
no difference between the two hydro-dynamical runs and the DM
run, which is consistent with the finding from Fig. 1. Although the
red dashed line (the CSF run) is on top of the green dotted line (the

AGN run), there is very little difference between the CSF run and
the AGN run without any dependence on cluster masses.

(ii) We show the ratio of ζ in the second column of Fig. 2. Again,
the mean of ζ from both the CSF run and the AGN run is slightly
lower (∼0–10 per cent) than from the DM run. However, ζ from the
AGN run is closer to the DM results than from the CSF run. Again,
this ratio shows almost no dependence on cluster masses.

Similar to the η results from DMPs, the mean ratio of ζ from
both the CSF run and the AGN run to the DM run is around 1. The
difference between the CSF run and the AGN run is in consistent
the result from the upper panel: red dashed line (the CSF run) is
always on top of green dotted line (the AGN run).

(iii) The changes of �r are shown in log space in the third column.
Due to its sensitivity to the position of substructures, which seems
to be easily affected by baryons, there is a large scatter for these
data points. However, the mean ratio of �r is around 1 for the CSF
run; while this is also true for the AGN run at smaller mass, but a
slightly smaller �r than the DM run is shown at larger mass.

Since DM normally occupies more than 80 per cent of total
cluster mass, it is not surprising that the lower panel, which shows
the result from DMPs, gives very similar results as the upper panel.

(iv) We show how fs changes in the last column. fs is clear larger
from the CSF run than the DM run: it increases about 40 per cent
at smaller cluster mass; it is still about 20 per cent higher at larger

MNRAS 464, 2502–2510 (2017)
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Figure 2. From left to right, ratios, as a function of halo masses between the CSF/AGN run and the DM run for the virial ratio η, the velocity dispersion
deviation ζ , the centre-of-mass offset �r, and the substructure mass fraction fs, respectively. Lower panels show the same quantities but for DMPs. As indicated
in the legends on right-hand panels, red triangles with magenta dashed lines (which are the mean of data points) are coming from the CSF run, while green
squares with blue dotted lines indicate the AGN run. The reversed colour is used for the results from DMPs as shown in the legend of the lower right panel.
Similar to in Fig. 1, DMP in DM run refers to the first family of DM particles (see more details in Section 4.1), while upper panel shows the results including
all particles.

cluster mass. fs from the AGN run is 20 per cent lower than from
the CSF run, 20 per cent higher than the DM run at smaller cluster
masses, and almost no difference between the two runs at M �
1014.8 h−1 M�.

For the changes of fs from DMPs in the lower panel, we see very
similar result for the AGN run as in the upper panel. Nevertheless,
fs from the CSF run is around 10 per cent closer to the DM run than
its result in the upper panel over all cluster mass range.

The bottom-left panel in Fig. 2 shows that η is consistent for
DMPs between the three runs, which implies that baryons have
little effect on both the kinetic and potential energy of DM if Es is
ignored. We find a fixed value of ηDMP/ηAll for all clusters. This
value from the two hydro-dynamical runs is ∼10 per cent higher
than from the DM run. This means that baryons have a systematic
change on η. This is consistent with the finding from the top-left
panel of Fig. 2. We study this below.

Similar to the findings from radial profiles in Fig. 1, ζ also shows
the closest correlation with η for the change caused by baryons.
Although the ratio between ζ AGN and ζ DM is very similar to the
ratio of η, ζ CSF is much closer to ζ DM than ηCSF to ηDM. This shows
that the overcooling problem in the CSF run has more effect on ζ

than η.
In agreement with Fig. 1, baryons have a large influence on �r.

It is not surprising that �r, DMP follows �r, All and both have a large
scatter. However, the mean changes of �r seem to rest on 1, except
the drop at high-mass end from the AGN run. This large scatter
can be caused by the sensitivity of the mass distribution to baryons:
(1) galaxy cluster centres can be changed from the DM run to the two
hydro-dynamical runs; (2) the positions and masses of substructures
can be altered by baryons.

fs from the AGN run seems to suffer a weak baryon effect, except
at smaller mass clusters, which tend to have higher (∼20 per cent)
substructure mass fraction than the DM run, while the overcooling
problem is more obvious for fs: substructures from the CSF run are
more massive than from the DM run.

η is calculated from kinetic energy T, potential energy W, and
surface pressure energy Es. In Fig. 3, we study how η is derivative
to T, W, Es. From left-hand to right-hand columns, we show the
baryon effects on T, W, Es, and Mvir respectively. The upper row
shows the results from all particles, while the lower panel results
are coming from DMPs.

The key findings of Fig. 3 are summarized as follows.

(i) The ratio of kinetic energy T is shown in the first col-
umn. Again, the upper panel shows the results from all particles.
TCSF/TDM is about 0.95. However, the mean of this ratio drops to
∼0.9 at both larger and smaller mass end; while it reaches ∼1.0
at M ≈ 1014.8 h−1 M�. TAGN/TDM is about 0.85–0.9. For the result
coming from DMPs on the lower panel, both ratios have a constant
shift up of ∼10 per cent.

(ii) The second column shows the ratio of potential energy W.
For the results from all particles in the upper panel, WCSF/WDM is
about 1.05, which is gradually reaching ∼1.0 at the massive mass
end. On the contrary, WAGN/WDM is about 0.95, increasing to ∼1.0
for the most massive clusters. For the results from DMPs on the
lower panel, this ratio for the CSF run is almost the same, while the
AGN run slightly (∼3 per cent) shift up.

Although both the CSF and AGN runs tend to have similar virial
and DM masses as the DM run (actually, the total mass from the
AGN run is a little lower than the DM run at smaller halo masses;
see the fourth column of this figure for more detail), the overcooling
problem in the CSF run tends to result a much higher concentration
(see more discussion in Cui et al. 2016a), and so a higher potential
energy than the AGN run.

(iii) We show ratios of Es in the third column. We have verified
that Es only occupies ∼20 per cent of the total kinetic energy T. It
means that Es has a minor contribution to η. As shown on the upper
panel, the baryon effect on the total Es is very similar (∼5 per cent
lower than the DM run) between the AGN run and the CSF run. It
is not surprising that DMPs contribute similar to Es between these
three runs, which is shown on the lower panel.

MNRAS 464, 2502–2510 (2017)
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Figure 3. Similar plots as Fig. 2, but for kinetic energy T, potential energy W, surface pressure energy Es, and galaxy cluster mass Mvir. We refer to Fig. 2 and
the two legends on the right-hand panels for the meanings of the colours, symbols, and lines.

From this, we conclude that Es is irresponsible for the baryon
effect. The unchanged ηDMP for the CSF run is because baryons
have a similar increasing (∼5 per cent) effect on T and W, while
both T and W seem to be unaffected by baryons for the AGN run.

For the baryon effect on ηtotal, the key difference is in Ttotal. The
drops of Ttotal in both hydro-dynamical runs are possibly caused by
collisional gas, of which thermal energy is either dissipated due to
turbulences and frictions, or locked up into stars.

4.3 The classification of relaxed and unrelaxed clusters

Separating out relaxed clusters from unrelaxed ones is not an easy
task. Neto et al. (2007) adopted 2T/|U| < 1.35, �r < 0.07 and
fs < 0.1 to select relaxed galaxy clusters. They found that
∼50 per cent of haloes at Mvir = 1015 h−1 M� are relaxed. How-
ever, they did not take the surface pressure energy Es into account
in their virial ratio calculation. Shaw et al. (2006) adopted a slightly
narrower limit (β = 0.2, equivalent to |1 − η| < 0.2) to select virial
equilibrium haloes with Es in their η. With only this criterion, they
excluded 3.4 per cent of 2159 haloes (Mhalo � 3 × 1013 h−1 M�)
as unvirialized ones. Power et al. (2012) picked out dynamically
relaxed haloes with a slightly smaller �r < 0.04 at z = 0. From
this, we conclude that there is no consistency in the literature about
parameter for relaxed haloes.

In Fig. 4, we investigate relations between these parameters: η

versus ζ (left-hand column), �r (middle column), fs (right-hand
column), which are normally used for classifying cluster dynamical
states. From top to bottom, we show results from the AGN, the CSF
and the DM runs, respectively. Symbol colour encodes the clus-
ter velocity dispersion σ , indicated in the top colour bar. Dashed
vertical lines show η = 1, where clusters are in dynamical equilib-
rium. Grey regions indicate limits inside which galaxy clusters are
relaxed.

In agreement with Fig. 2, there is a good linear correlation be-
tween η and ζ shown in the left-hand column of Fig. 4. This is
because σ in ζ is equivalent to the square root of T in η, while σ t is
similar to a square root of W. For all three versions of simulations,
ζ is around 0.65 at η = 1. After excluding some noisy data points
with η < 0.8, we find very similar slopes after linear fitting. Thus,
we simply use all data points at the same time to fit, which results

in black dotted lines with a slope of 0.312. This leads us to propose
ζ as a proxy for η, which can be deduced from observation. All
particles are used to calculate σ and ζ here. Thus, to apply this
relation on observations, one needs to consider the bias of using
galaxies as the velocity dispersion tracer, which has been investi-
gated and corrected in Munari et al. (2013), while for cluster mass
M in σ t, one can use lensing mass from observation. Using sim-
ulations with mock observation images, Puchwein & Bartelmann
(2007) have shown that the recovered lensing mass does not de-
pend on the assumption of hydro-static equilibrium. Similar to our
proposal, Puchwein & Bartelmann (2007) also suggested to use the
difference between dynamically recovered mass from X-ray and
lensing mass to distinguish dynamical states.

Although smaller �r tends to have η closer to 1, there are clusters
that have larger �r with η → 1. Similarly, the same is true for fs.
The virial equilibrium implies that 〈d2I/dt2〉 = 0, time-averaged
over a period that is long compared to the local dynamical time-
scale (Poole et al. 2006; Shaw et al. 2006). Therefore, we expect
a roughly symmetric distribution around zero due to those haloes
that are oscillating around the virial equilibrium position. These
haloes with large �r and fs but η → 1 could be still in the pro-
cess of settling down to dynamical relaxation, but with a glimpse
of equilibrium.

For our limited cluster mass range, we do not see a clear mass
dependence on these parameters in Fig. 4. However, σ shows a
weak dependence on these parameters, especially in the left-hand
column, where higher σ value tends to have both higher η and ζ

values. However, this trend is not clear for �r and fs.
From Fig. 4, there is no bimodal distribution in any of the runs

for either single or combined parameters. Data points from all three
simulations have a similar distribution, other than a weak decrease
of η and a weak increase of fs from the DM run to the two hydro-
dynamical runs.

Applying the selection criteria from Neto et al. (2007), we find
that 70 (78 and 78) out of 123 haloes from the DM run (from the
CSF run and the AGN run, respectively) are dynamically relaxed.
This gives a similar relaxation fraction as Neto et al. (2007). One
can visually find out that most of unrelaxed clusters are cut out
by limits from �r and fs, which is also in agreement with Neto
et al. (2007). Power et al. (2012) suggested a smaller value of
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Figure 4. Relations between ζ (left-hand column), �r (middle column), fs (right-hand column) with the virial ratio η. From top to bottom panels, we show
results from the AGN, the CSF and the DM runs. Symbol colour is coding to its velocity dispersion σ , which is shown by the colour bar on the top of this plot.
Dashed vertical lines indicate η = 1, where the cluster is in dynamical equilibrium. Dotted lines on the left-hand column are fitting results to data points with
a fix slope of 0.312. Galaxy clusters located inside grey regions in the middle and right-hand columns can be classified as relaxed clusters.

�r ≈ 0.04 to select dynamically relaxed haloes (see also Macciò
et al. 2007). Observational results suggest a much lower relaxation
fraction: ∼28 per cent from Sloan Digital Sky Survey (SDSS) survey
(Wen & Han 2013), ∼16 per cent from X-ray selected clusters
(Mantz et al. 2015). Thus, we apply restricted criteria to select out
relaxed clusters: 0.85 < η < 1.15 (Knebe & Power 2008); � < 0.04
(Power et al. 2012); fs < 0.075. By applying these thresholds, we
select out 41, 43, and 48 dynamical relaxed clusters from the DM,
the CSF, and the AGN runs, respectively. This gives a relaxation
fraction of ∼35 per cent. 29 (∼65 per cent) of these relaxed clusters
are cross-identified in all three runs and 34 (∼75 per cent) of them
are cross-identified in both the CSF and the AGN runs. In agreement
with the baryon effect on individual parameters, most of haloes
have their dynamical relaxation states unchanged. Although AGN
feedback impacts on substructures as well as fs, it plays a minor role
in changing the dynamical state of clusters.

5 D I S C U S S I O N A N D C O N C L U S I O N S

Using our simulated galaxy cluster catalogue of 123 galaxy clusters
from Paper I, we investigated the dynamical state of clusters in

the DM (DM-only) run, the CSF (gas cooling, star formation and
supernova feedback) run, and the AGN (with also AGN feedback)
run. These three sets of simulations allow us to explore how baryons
affect cluster dynamical states. We examined four parameters: the
virial ratio η, the velocity dispersion deviation ζ , the centre of mass
offset �r and the substructure mass fraction fs, which are normally
used to separate dynamically relaxed clusters from unrelaxed ones.

The main results are summarized as follows.

(i) The radial profiles of η and fs become relatively constant at
outer radius (R � 0.6Rvir). However, �r does not show such features.
It means that we can expect η500 ≈ ηvir and fs, 500 ≈ fs, vir. However,
this is not applicable for �r.

(ii) The baryon models (both with and without AGN feedback)
have a weak effect on η, which is ∼10 per cent lower in the two
hydro-dynamical compared to the DM run. This is mainly caused
by the drop of kinetic energy T with gas dynamics. Therefore, ηDMP

shows very similar results between all three runs.
Baryon models have no impact on �R for the CSF run; this is

also true for the AGN run at smaller masses, but there is a slightly
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smaller �r in the AGN run than in the DM run at the higher mass
end.

fs is about 40 (20) per cent higher in the CSF run than in the DM
run at smaller (higher) masses, while fs from the AGN run is 20 per
cent lower than from the CSF run.

(iii) There is good linear correlation between η and ζ for all three
runs, which encourages us to use ζ as an indicator of η that cannot
be easily measured from observation. Using this relation, one can
deduce the virial ratio for observed galaxies.

(iv) For all the investigated parameters, there is no clear bimodal
distribution between relaxed and unrelaxed clusters.

(v) With more restricted thresholds for η, �r, and fs, we find
that ∼35 per cent of our sample clusters are relaxed, in which
∼65 per cent are cross-identified in all three runs. This means that
baryons play a minor role in regulating cluster dynamical states.

Using controlled cluster simulations, Poole et al. (2006) quanti-
fied the effects of mergers on the dynamical state of galaxy clusters
and showed that DM typically relaxes slightly later than gas. A
recent work by Zhang, Yu & Lu (2016), who also used controlled
cluster simulations but only with adiabatic gas, investigated baryon
effects on merger times. They found that merger time-scale can be
shortened by a factor of up to 3 for clusters with gas fractions of
0.15, compared to the one without gas. This indicates that clusters
with baryons will virialize faster than ones without baryons, which
is similar to the finding in Poole et al. (2006). With galaxy clusters
from cosmology simulations, we only find that baryons decrease the
virial ratio by ∼10 per cent from the DM run, which makes the mean
of η in the two hydro-dynamical runs much closer to 1. Because
clusters in cosmological volume can never be isolated because merg-
ers and in-falling material are ongoing, their dynamical states can
hardly be exactly in dynamical relaxed. We further note here that the
relaxation fraction seems to be unaffected (�5 per cent) by baryons.
This could be because (1) our cluster sample is not large enough and
(2) this relaxation fraction depends on the arbitrary selection limits.
The total baryon mass fraction is normally around 10–15 per cent
within galaxy clusters (e.g. Borgani et al. 2006; Sun 2012; Gonzalez
et al. 2013; Lagana et al. 2013; Planelles et al. 2013). It is interesting
to see that η is dragged down around a similar fraction by baryons,
while its value from DM component is almost untouched. Another
unchanged quantity is the linear relation between η and ζ , which
urges us to propose a simple fitting function for observers to get η

from observed galaxy clusters. However, there is no bimodal dis-
tribution between relaxed and unrelaxed galaxy clusters. It makes a
tough task for choosing the limits for these parameters to select out
galaxy clusters in dynamical equilibrium.

Using different wavelength tracers to determine dynamical states
of galaxy clusters can give different answers. Using photometric
data of the SDSS, Wen & Han (2013) derived the asymmetry, the
ridge flatness, and the normalized deviation of a smoothed optical
map, which is coming from the brightness distribution of member
galaxies. With their defined relaxation parameter from the upper
three quantities, they found that 28 per cent of 2092 clusters are
dynamically relaxed. In X-ray observation, the power ratio and
the centroid shift are normally used to select out dynamically
relaxed clusters (e.g. Böhringer et al. 2010; Rasia, Meneghetti
& Ettori 2013). In addition, Mantz et al. (2015) proposed the
symmetry-peakiness-alignment criterion for classifying cluster dy-
namical states. With their criterion, they report a relaxation fraction
of 16 per cent for their 361 X-ray selected clusters. Combining
different wavelength results could give accurate answers. For ex-
ample, Ge et al. (2016) has investigated the dynamical state of two

paired clusters under optical, X-ray, and radio emissions; Rossetti
et al. (2016) characterized the dynamical states of galaxy clusters
detected with the Sunyaev–Zeldovich (SZ) effect by the Planck
and compare them with their dynamical states derived from X-ray
surveys. They found a slightly higher relaxation fraction from the
X-ray sample (∼74 per cent) than from SZ sample (∼52 per cent),
which could be due to different selection effects.

The reliability and agreement between these tracers from differ-
ent wavelength observations, between different methods, as well
as the consistency with theoretical predictions are still unclear. We
will address these questions with our galaxy cluster sample in the
next paper.
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