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Abstract 

Low intrinsic toxicity, high solubility and stability are important and necessary features of gold 

nanoparticles to be used in the bio-medical field. In this context, charged nanoparticles proved to be 

very versatile and among them charged mixed-monolayer gold nanoparticles, displaying 

monolayers with well-defined morphologies, represent a paradigm. By using mixtures of 

hydrogenated and fluorinated thiols, the formation of monolayer domains may be brought to an 

extreme because of the immiscibility of fluorinated and hydrogenated chains. Following this 

rationale, mixed monolayer gold nanoparticles featuring ammonium, sulfonate or carboxylic groups 

on their surface were prepared by using amphiphilic hydrogenated thiols and 1H,1H,2H,2H-

perfluoro-alkanethiols. The toxicity of these systems was assessed in HeLa cells and was found to 

be, in general, low even for the cationic nanoparticles which usually show a high cytotoxicity and is 

comparable to that of homoligand gold nanoparticles displaying amphiphilic – charge neutral – 

hydrogenated or fluorinated thiolates in their monolayer. These properties make the mixed ligand 

monolayer gold nanoparticles an interesting new candidate for medical application. 
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Introduction 

The unique lipophobic and hydrophobic nature of fluorocompounds represents a tremendous, but so 

far little exploited, opportunity in the design of self-assembled materials. Indeed, the use of 

fluorinated (F-) sub-units often yields species with very different structures and properties respect to 

hydrogenated (H-) analogues, offering a simple way to expand the diversity of systems for 

applications in the biomedical field. In this context, the extreme hydrophobicity of 

fluorocompounds may enable mechanisms of interaction with biologically relevant structures, such 

as cell membranes, that are different from those operative for hydrogenated systems. In addition, 

their stability, due to the strength of the C-F bonds, and low toxicity may also allow developing safe 

devices with extended lifetime in vivo. Several examples highlight the remarkable properties of 

nanosized fluorinated systems that hold promise of improving the efficacy of nanomedicine. For 

instance, decoration of gold nanoparticles (AuNPs) with short perfluoroether moieties1 allowed 

their spontaneous self-assembly – triggered by fluorophilic interactions – into hollow 

superstructures2 in the absence of external templates. A similar behavior was never reported for 

nanoparticles (NPs) bearing solely polyether units in their outermost layer. These NPs vesicles 

could be loaded with the fluorescent dye rhodamine or with the anticancer drug doxorubicin; this 

payload could then be released by laser irradiation at 532 nm,3 presenting potentialities as a drug 

delivery systems based on AuNPs.4,5 Soft NPs made of peptide nucleic acid (PNA) conjugated to 

perfluoroundecanoyl chains display a threefold higher cellular uptake by HeLa cells respect to 

undecanoyl PNA.6 Soft NPs obtained by complexation of polyampholites with perfluorododecanoic 

acid were found to hinder the formation of amyloid fibrils, while hydrogenated analogues were not 

effective.7,8 Furthermore, in a thermodynamic analysis of water soluble fluorinated AuNPs as 

putative drug delivery systems, we found that nanoparticles displaying fluorinated ligands on their 

surface interact with drug-like guests with higher affinity than hydrogenated NPs of similar 

structure.9 Fluorinated soft NPs have been, indeed, proposed as drug delivery systems for 

doxorubicin.10,11 An additional feature of fluorinated materials, including AuNPs, is that they may 

be easily engineered into contrast agents for 19F magnetic resonance imaging12,13 and by combining 

this application with drug delivery, novel theranostic platforms may become available.11 As far as 

monolayer protected AuNPs are concerned, the immiscibility of F- and H-thiolate ligands, arising 

from the lipophobicity of fluorocompounds, favors their self-sorting, with formation of domains, on 

the NPs surface.14-16 This finding is in keeping with what observed in many examples of self-

assembled systems comprising mixtures of hydrogenated and fluorinated components. For example, 

formation of phase segregated domains were indeed observed in the case of liposomes17 even when 

mixtures containing a mere 5% of fluorinated amphiphiles were used. The same behaviour was also 
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observed by AFM in supported lipid bilayer of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and of 

a semi-fluorinated analogue18 or in mixtures of Arachidic and partially fluorinated carboxylic 

acids.19 On the other hand, studies on mixed hydrogenated/fluorinated self-assembled monolayers 

(SAMs) on flat surfaces are suggestive of less facile phase segregation. In particular, the adsorption 

on Au(111) of mixed disulfides featuring a hydrogenated chain and a fluorinated chain of different 

lengths - in a single disulfide molecule - results in the formation of SAMs with no evidence of 

phase segregation.20,21 Occurrence of phase segregation was not observed even after thermal 

annealing.22 Interestingly, co-adsorption of a mixture of H- and F-thiols of the same length produces 

SAMs that are indistinguishable from the SAMs obtained by using the corresponding mixed 

disulfide.20 Instead, adsorption of blends of dissimilar H- and F-thiols, results in the formation of 

small islands of the fluorinated ligands.23 

The self-sorting of hydrogenated and fluorinated thiolates on curved surfaces may be the basis for 

the preparation of spontaneously patterned monolayers and provides a further approach to control 

the morphology of mixed monolayers in addition to those unraveled by the experimental and 

theoretical analyses of Stellacci24,25 and Glotzer.26,27 In the context of nanoparticles-cell interaction, 

aside from the surface charge28,29 and functionalization,30,31 the morphology of the coating 

monolayer is pivotal in determining the efficiency and the mechanism of the internalization 

process;32-34 the latter being also responsible for the toxicity of the NPs.35 This body of evidences 

comes from thorough analyses of mixed monolayer hydrogenated charged NPs of well-defined 

morphologies,32 while the effect of including F-ligands in the monolayer of these charged systems 

is, at present, completely unexplored. No information is also available on their toxicity in 

comparison to similar charged hydrogenated NPs. To start filling this gap, we then embarked in the 

synthesis of charged H-/F-mixed-monolayer AuNPs by using blends of thiols in which one of the 

components is a charged amphiphilic H-thiol while the F-component is selected among the readily 

available 1H,1H,2H,2H-perfluoro-alkanethiols. In particular, in order to favor the solubility in 

aqueous solutions the F-thiols length has to be shorter than that of H-thiols but presenting at least 

six F-methylene groups in order to exploit the lipophobicity properties for the monolayer 

organization.15 These NPs systems display good solubility in polar media, including water. Their 

toxicity and internalization pathway were preliminarily assessed on HeLa cells.   

 

Results and Discussion 

For this study we prepared a series of H-/F- mixed monolayer AuNPs with different surface charge 

by using a mixture of ligands as reported in Figure 1A. The sodium salts of the 11-

mercaptoundecansulfonic acid (HMUS) and 12-mercaptododecanesulfonic acid (HMDDS) were 
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used to provide NPs with permanent negative charges. The 12-mercaptododecanoic acid (HMDA) 

was used to provide the NPs with ionizable groups on the surface while 12-mercapto-N,N,N-

trimethyl-1-dodecanaminium chloride (HTMDA) was designed in order to obtain NPs featuring 

permanent positive charges. These thiols were used in combination with 1H,1H,2H,2H-perfluoro-1-

decanethiol (HF8) or 1H,1H,2H,2H-perfluoro-1-octanethiol (HF6) as the fluorinated components. 

The uptake by HeLa cells and the cytotoxicity of these charged H-/F- mixed monolayer AuNPs 

were compared to those of charge neutral NPs obtained by using the thiols N-1-{2-[2-(2-

methoxyethoxy)ethoxy]ethyl}-8-sulfanyloctanamide (HC8TEG) and 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-

Hexadecafluoro-10-(methoxy-PEG550)decan-1-thiol (HF8PEG), Figure 1B. The synthesis of the 

thiols HMDDS, HMDA and HTMDA is reported in the Supporting Information (SI). 
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Figure 1. Thiols used in the preparation of charged H-/F-mixed-monolayer NPs, panel A; thiols used for the 
preparation of charge neutral homoligand AuNPs, panel B; and for NPs labeling, panel C. 
   
Nanoparticles synthesis and characterization. The development of anionic H-/F- mixed 

monolayer NPs was attempted at first by using the hydrophilic thiols HMUS or HMDDS blended 

to the highly hydrophobic thiol HF8 in a 2:1 molar ratio while the gold to thiols ratio was set to 1:1; 

the preparations were achieved by direct synthesis following the procedure reported by Stellacci 

and co-workers.36 The obtained nanoparticles NP-MUS/F837 and NP-MDDS/F8 were essentially 

insoluble in water. In seeking an improvement of the system solubility, the F-ligand in the blend 

was replaced by the shorter thiol HF6 and this was used in combination with HMDDS, in order to 

ensure a better masking of the fluorinated thiolate and/or, of the fluorinated domains, from the 

solvent. The initial gold to thiols ratio was set to 2:1, in keeping with the previous cases, while the 
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HMDDS:HF6 ratio was set to 2:1.3 and the reducing agent was added dropwise over 15 minutes. 

The nanoparticles NP-MDDS/F6-a thus obtained displayed an average core diameter of 3.3 ± 0.5 

nm, while, interestingly, the molar ratio between the MDDS and F6 thiolates in the monolayer was 

close to 5:1, very different from the initial HMDDS:HF6 ratio, Table 1, indicating that the 

introduction of thiolate F6 in the monolayer of nanoparticles NP-MDDS/F6-a is a disfavored 

process.38,39  

 

Table 1. Characterization data for the nanoparticles used in this study. 
Sample initial Ha : F6 xF

in Final H: F6b xF
fin Diameter, nmc Nanoparticles Compositiond 

NP-MDDS/F6-a 1 : 0.65 0.40 5.0  : 1 0.17 3.3 ± 0.5 Au1150(MDDS)145(F6)29 

NP-MDDS/F6-b 1 : 0.77 0.44 2.5 : 1 0.29 3.2 ± 0.7 Au1289(MDDS)150(F6)60 

NP-MDDS/F6-c 1 : 0.90  0.47 1.5  : 1 0.40 3.4 ± 0.7 Au1415(MDDS)129(F6)87 

NP-MDA/F6-a 1 : 0.65 0.4 5.0 : 1 0.17 3.0 ± 0.5 Au976(MDA)136(F6)28 

NP-MDA/F6-b  1 : 0.77 0.44 2.9 : 1 0.26 2.5 ± 0.6 Au523(MDA)90(F6)30 

NP-MDA/F6-c 1 : 1.30 0.57 1.5 : 1 0.40 2.5 ± 0.3 Au523(MDDS)72(F6)49 

NP-TMDA/F6-a 1 : 0.65 0.40 5.0 : 1 0.17 3.9 ± 0.9 Au2406(TMDA)256(F6)51 

NP-TMDA/F6-b  1 : 0.77 0.43 1.1 : 1 0.48 4.2 ± 0.7 Au2406(TMDA)131(F6)119 

NP-TMDA/F6-c 1 : 1.30 0.57 1.3 : 1 0.43 4.0 ± 0.9 Au2406(TMDA)160(F6)124 
a H stands for the hydrogenated ligand. b determined on decomposed NPs by 1H NMR spectra analysis. c Measured by TEM. d The 
average NPs composition was calculated considering TEM and TGA data. 
 

In contrast to NP-MUS/F8 and NP-MDDS/F8, nanoparticles NP-MDDS/F6-a were nicely soluble 

in water. In order to explore these types of NPs in more detail, different values of the HMDDS/HF6 

ratios were tested. Nanoparticles NP-MDDS/F6-b with a core diameter of 3.2 ± 0.7 nm and a 

MDDS:F6 final molar ratio of 2.5:1 could be obtained by using an initial MDDS:F6 ratio of 1.3:1; 

hence, also in this case the introduction of the F6 thiolate in the monolayer of nanoparticles NP-

MDDS/F6-b is disfavored. The nanoparticles NP-MDDS/F6-c with an average gold core diameter 

of 3.4 ± 0.7 nm and a mixed monolayer with a MDDS:F6 molar ratio of 1.5:1 were obtained by 

using an initial HMDDS:HF6 ratio of 1:0.9. With increasing amounts of F-ligand in the blend used 

for the synthesis up to a HMDDS:HF6 ratio of 1:2, the NPs were only soluble in fluorinated 

solvents such as trifluorotoluene.  

The preparation of the H-/F-mixed monolayer nanoparticles NP-MDA/F6-a, NP-MDA/F6-b and 

NP-MDA/F6-c, featuring carboxylic groups on the surface was achieved by using blends of the 

ligands HMDA and HF6 of different composition while maintaining constant the gold to total thiol 

molar ratio. The nanoparticles were obtained by direct synthesis using ethanol as solvent and a 

dropwise addition of the reducing agent over 15 minutes. The relevant synthetic and 

characterization data are reported in Table 1. 
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Also with HMDA as hydrophilic ligand the molar fraction of the F-ligand in the self-assembled 

monolayer on the gold surface was lower than that used for the synthesis. All of these systems 

display good solubility in alcohols but are sparingly soluble in water. The average size of the gold 

core for the nanoparticles NP-MDA/F6 is similar to those of NPs obtained by using the MDDS/F6 

blends, Table 1. 

The preparation of H-/F-mixed monolayer NPs featuring a cationic surface was accomplished by 

using positively charged HTMDA in combination with HF6. As in the preceding examples, the 

preparation of the NPs was carried out by direct synthesis using a gold to thiols ratio of 3:2 while 

the HTMDA/HF6 ratio used was set to 1:0.65 for NP-TMDA/F6-a; 1:0.77 for NP-TMDA/F6-b 

and 1:1.3 for NP-TMDA/F6-c and their characterization data are reported in Table 1. Also in this 

case the introduction of the HF6 ligand in the monolayer of the NPs was found to be disfavored 

nicely matching the trend observed for the negatively charged and charge neutral nanoparticles NP-

MDDS/F6 and NP-MDA/F6, respectively. However, the size of the NPs core is slightly larger; see 

Table 1, than that obtained by using blends of thiols HMDDS/HF6 and HMDA/F6, the standard 

deviation of the core size is also larger. All nanoparticles NP-TMDA/F6 are soluble in methanol 

and ethanol and slightly soluble in water or basic buffers.  

The introduction of polar end groups in the H-thiolates of nanoparticles NP-MDDS/F6, NP-

MDA/F6 and NP-TMDA/F6 allows for the first time a solubility in water which was not observed 

for mixed ligand coated NPs featuring non-functionalized fluorinated thiolates.15,38 

A synoptic view of the solubility properties of NP-MDDS/F6-b, NP-MDA/F6-c and NP-

TMDA/F6-c is presented in Figure 2A. The relation between the composition of the H- and F- 

ligands used in the NPs synthesis and the composition of the resulting mixed monolayer can be 

conveniently analyzed by plotting the final molar fraction of the F-component in the monolayer 

against the molar fraction of the fluorinated ligand in the reaction mixture, Figure 2B. By using 

thiol HF8, the final monolayer composition closely matches the initial composition of the reaction 

mixture; while for NPs preparations where thiol HF6 was employed, the fraction of fluorinated 

thiolate was lower than its initial value. This is likely due to the combination of the lower number of 

fluorophilic interactions established between F6 chains and their shorter length respect to F8 chains. 

A similar effect was observed in the preparation of several mixed monolayer NPs protected by 

blends of unfunctionalized hydrogenated thiolates and 1H,1H,2H,2H-perfluoro-alkanethiolates.38  
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Figure 2. Panel A: synoptic view of the solubility properties of the H-/F-mixed monolayer NPs. Color code: 
red insoluble; green good solubility; indigo low solubility. Panel B: relationship between the initial 
composition of the reaction mixture and the final composition of the monolayer of the NPs expressed as the 
molar fraction of the F-ligand. 
 

Given the appreciable solubility of the nanoparticles NP-MDDS/F6 and NP-TMDA/F6 in aqueous 

media; these systems were used for cell uptake and cytotoxicity studies. For comparison purposes, 

homoligand – charge neutral – AuNPs NP-C8TEG and NP-F8PEG were prepared by using the 

ligands HC8TEG and HF8PEG, Figure 1B, according to procedures already reported by our 

group.40,41  

 

Tagging of gold nanoparticles with fluorescent labels. Nanoparticles NP-MDDS/F6-b; NP-

TMDA/F6-c; NP-C8TEG and NP-F8PEG, were labeled with a fluorescent ligand in order to 

monitor the internalization process by confocal fluorescence microscopy and cytofluorimetric 

analyses. For labeling we used the Bodipy functionalized thiol HBodipy,13 Figure 1C, obtaining the 

nanoparticles NP-C8TEG/Bodipy, NP-F8PEG/Bodipy, NP-MDDS/F6/Bodipy and NP-

TMDA/F6/Bodipy, Table 2. The fluorescent units were introduced in the monolayer of the NPs by 

place exchange; the NPs were dissolved in water or methanol, and the appropriate amount of the 

HBodipy was added as a 1.95 mM solution in a water/DMF 4:1 mixture. The place exchange 

reaction was performed for 3 days at 28 °C. The degree of substitution was established by 

decomposing the NPs and assessing the amount of dye in solution by means of UV-Vis 

spectroscopy and the resulting compositions are reported in Table 2. 

 

Table 2. Characterization data of the Bodipy labeled nanoparticles. 

 

 

 

 

Sample BODIPY units per NP Nanoparticle Composition 

NP-F8PEG/Bodipy  6 Au976(F8PEG)114(BODIPY)6 

NP-C8TEG/Bodipy 2 Au760(C8TEG)168(BODIPY)2 

NP-MDDS/F6/Bodipy  6 Au1289(MDDS/F6)204(BODIPY)6 

NP-TMDA/F6/Bodipy  5 Au2406(TMDA/F6)279(BODIPY)5 
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For all NPs the amount of fluorescent dye introduced in the ligand shell was kept lower than 10 

units per nanoparticle to avoid increasing the hydrophobicity of the NPs’ surface and, in general, 

modifying the features of the monolayer. 

 

Nanoparticles interaction with HeLa cells. The uptake of charged H-/F- mixed monolayer coated 

nanoparticles NP-MDDS/F6/Bodipy and NP-TMDA/F6/Bodipy by HeLa cells was assessed by FACS 

analysis and fluorescence confocal microscopy imaging and compared to the uptake of the charge 

neutral homoligand nanoparticles NP-C8TEG/Bodipy and NP-F8PEG/Bodipy. Prior to study the 

interaction with HeLa cells, the presence of free dye or free dye-labeled thiol HBodipy in the NPs 

preparations was tested by the red blood cells (RBCs) assay42 and no free dye could be detected, see 

Figure S22 and Figure S23. For the internalization studies the HeLa cells were plated at 3 x 105 

cells/mL in complete medium (with serum) and allowed to grow overnight. The cells were 

incubated with Bodipy labeled NPs at the concentrations of 0.05, 0.1 and 0.2 mg/mL for 3.5 hours 

at 37oC and imaged live by confocal laser scanning microscopy (CLSM). Cellular internalization of 

the Bodipy labeled NPs is shown by red fluorescence, the nucleus (in blue) was stained with 

Hoechst 33342. For all samples, cellular uptake is clear from confocal images with intense 

fluorescence signal in the cytosol and absence in the nucleus.  

 

 
Figure 3. Confocal fluorescence micrographs merged with light microscopy images of HeLa cells incubated 
for 3.5 hours at 37 oC at a concentration of 0.1 mg/mL with NP-MDDS/F6/Bodipy, (panel A), scale bar: 20 
m. Panel B: NP-TMDA/F6/Bodipy, scale bar: 20 m. Confocal fluorescence micrographs merged with 
light microscopy images of HeLa cells incubated for 3.5 hours at 4 oC at a concentration of 0.1 mg/mL with 
NP-MDDS/F6/Bodipy (panel C), scale bar: 20 m. Panel D: NP-TMDA/F6/Bodipy, scale bar: 20 m. The 
nucleus in all experiments was stained by Hoechst 33342 (blue). 
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At 37°C, both the negatively and positively charged nanoparticles NP-MDDS/F6/Bodipy and NP-

TMDA/F6/Bodipy were internalized, Figure 3A and Figure 3B, with a higher uptake in case of the 

positively charged NPs. At 4°C, a temperature at which the endocytic and pinocytic uptake 

pathways are inhibited, no fluorescence could be observed in the cytoplasm of HeLa cells treated 

with NP-MDDS/F6/Bodipy, Figure 3C, while in the case of NP-TMDA/F6/Bodipy, the cell 

cytoplasm displayed a significant red fluorescence, Figure 3D. This is clear indication that that the 

negatively charged particles are mainly internalized by an active energy dependent pathway while 

the positive particles are able to enter through the membrane into the cytosol of the cell. 

A similar effect has been reported for other cationic NPs43,44 and in silico analyses of the 

process45,46 explain it by NPs entry through nanosized holes in the plasma membrane usually 

connected to significant cytotoxicitity.  

Accordingly, the cytotoxicity of the tested nanoparticles was determined by FACS analyses, Figure 

4. For this, HeLa cells were incubated with NPs for 3.5 hours at the concentrations of 0.05 mg/mL, 

0.1 mg/mL and 0.2 mg/mL. Then the non-membrane permeable fluorescent DNA-binding 

propidium iodide (PI) was used to determine cell membrane integrity. 

 

 
Figure 4. FACS analysis of HeLa cells incubated for 3.5 hours at 37 °C with NP-MDDS/F6/Bodipy at a 
concentration of 0.05 mg/mL (panel A) and of 0.1 mg/mL (panel B), or with NP-TMDA/F6/Bodipy at a 
concentration of 0.05 mg/mL (panel C) and of 0.1 mg/mL (panel D). 
 

We observed that the negatively charged NP-MDDS/F6/Bodipy showed limited cytotoxicity to 

moderate toxicity in a concentration dependent manner with 38% of the cell population labeled with 

both NPs and PI indicating disruption of the cell membrane at a concentration of 0.2 mg/mL (Figure 

S24). In an assessment of NPs toxicity towards mammalian cells, Rotello and coworkers,47 reported 

that anionic NPs, featuring for instance carboxylate groups on their surface, are less toxic than 
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cationic NPs, with the anionic displaying LC50 values about one order of magnitude higher than the 

cationic. Surprisingly, we found that the positively charged NP-TMDA/F6/Bodipy showed at 

maximum 7% of PI positive cells after exposure to the highest tested NPs concentration of 0.2 

mg/mL (Figure S25). These percentages are comparable to those measured for untreated control 

cells. The limited toxicity of NP-TMDA/F6/Bodipy may imply that these cationic nanoparticles, at 

the concentrations tested, do not exert extensive damage to the plasma membrane upon 

internalization. For similar cationic hydrogenated nanoparticles Rotello and coworkers, reported a 

LC50 of about 1 M; in the case of NP-TMDA/F6/Bodipy the highest concentration tested for 

which we could not observe cytotoxic effects was 0.2 mg/mL, corresponding to 0.35 M, that is 

significantly lower than the LC50 value reported. It is thus intriguing that the anionic NP-

MDDS/F6/Bodipy, instead, exert a significantly higher toxic effect than NP-TMDA/F6/Bodipy 

when tested at similar concentration levels. However, a recent thorough investigation of 

nanoparticles toxicities, by Stellacci and Pompa,35 on six cell lines, including HeLa cells, displays 

that nanoparticles presenting sulfonate groups on their surface and whose monolayer featured 

stripe-like domains remains essentially non cytotoxic at the same concentration at which non-

structured anionic nanoparticles exert a cytotoxic effect. It is not unlikely that in the case of NP-

MDDS/F6/Bodipy the toxic effects observed are due to the organization of the monolayer. This 

hypothesis is also corroborated by the absence of internalization at 4 °C for nanoparticles NP-

MDDS/F6/Bodipy which might be expected if these nanoparticles present a stripe-like organization 

of the monolayer in analogy to similar mixed monolayer nanoparticles.24     

The charge neutral nanoparticles NP-C8TEG/Bodipy and NP-F8PEG/Bodipy were also 

efficiently internalized at 37 °C, as evidenced by the strong intensity of the red fluorescence in 

Figure 5A and Figure 6A respectively. By performing the same experiments at 4 °C, cellular uptake 

of NP-C8TEG/Bodipy or NP-F8PEG/Bodipy, Figure 6B and Figure 6B respectively, was 

inhibited. 
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Figure 5. Merged light microscopy and confocal fluorescence images of HeLa cells incubated with NPs at a 
concentration of 0.1 mg/mL for 3.5 hours with NP-C8TEG/Bodipy at 37 oC (A) NP-C8TEG/Bodipy or at 4 
oC (B), scale bars: 20 m. FACS analysis of HeLa cells incubated for 3.5 hours with NP-C8TEG/Bodipy at 
a concentration of 0.05 mg/mL (C) or 0.1 mg/mL (D).  
 

Cytofluorimetric analyses for NP-C8TEG/Bodipy showed no significant cytotoxicity; for all 

concentrations tested more than 90 % of the cells were viable after incubation with 0.05 and 0.1 

mg/mL of the NPs for 3.5 hours, Figure 5C and Figure 5D respectively.  

 

 
Figure 6. Merged light microscopy and confocal fluorescence images of HeLa cells incubated with NPs at a 
concentration of 0.1 mg/mL for 3.5 hours with NP-F8PEG/Bodipy at 37 oC (A) or at 4 oC (B), scale bars: 20 
m. FACS analysis of HeLa cells incubated for 3.5 hours with NP-F8PEG/Bodipy at a concentration of 
0.05 mg/mL (C) or 0.1 mg/mL (D).  
 

At the higher concentration of 0.2 mg/mL, (Figure S26), the percentage of dead cells remains fairly 

constant and close to that measured in control experiments with untreated cells.  
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Nanoparticles NP-F8PEG/Bodipy, gave similar results up to the concentration of 0.05 and 0.1 

mg/mL, Figure 6C and Figure 6D respectively, while at the higher concentration tested, some 

cytotoxicity could be observed. Indeed, after exposure to 0.2 mg/mL of NP-F8PEG/Bodipy the 

percentage of PI stained cells containing NPs was 16% (Figure S27). These data are in line with the 

toxicity of other homoligand PEG decorated fluorinated NPs.13 

 

Conclusions 

In this proof-of-principle study the preparation of a series of mixed H-/F-mixed monolayer AuNPs 

featuring cationic and anionic surfaces was achieved by direct synthesis using blends of simple 

hydrogenated thiols with charged end groups and commercially available 1H,1H,2H,2H-perfluoro-

alkanethiols. The exploration of the ligands structure highlights that the length of the fluorinated 

thiol or, most likely, the difference in length between the hydrogenated and fluorinated ligands is a 

critical parameter to be considered for obtaining NPs with acceptable solubility properties. The 

fluorinated thiol has to be short enough, compared to the hydrogenated ligand, to form fluorinated 

domains that are sufficiently small to be masked from the solvent. In the present study we explored 

this aspect and found that the thiol HF8 is too long, producing NPs that are poorly soluble; on the 

contrary, the use of the two CF2 units shorter HF6, gave NPs with improved solubility. By this 

approach we achieved a tremendous broadening of the solvents spectrum in which H-/F-mixed 

monolayer NPs can be studied, including acetone, alcohols and, most notably, water. At variance 

with previous examples, the systems presented here carry specific charged moieties paving the way 

to applications and studies thus far out of reach. The solubility in aqueous media of anionic NP-

MDDS/F6 and cationic NP-TMDA/F6 nanoparticles, though not yet optimal, allowed performing 

some preliminary uptake and cytotoxicity studies towards HeLa cells. Both the charged 

nanoparticle systems were readily internalized but in uptake studies performed at 4°C only NP-

TMDA/F6 were found to enter the cells, suggesting that different internalization pathways are 

available to the different NPs. Nanoparticles NP-TMDA/F6 displayed only a limited toxicity and 

were well tolerated by the cells up to a concentration of 0.2 mg/ml indicating that despite the 

cationic nature of this system, at this concentration there is little perturbation of the cell membrane. 

Instead nanoparticles NP-MDDS/F6 displayed some cytotoxicity when tested at the same 

concentration. The charge neutral homoligand nanoparticles NP-C8TEG and NP-F8PEG were also 

tested for their cytotoxicity and while the former were found to be non-toxic at all the concentration 

tested, the latter displayed some cytotoxicity when used at a concentration of 0.2 mg/ml. Overall, 

the cationic nanoparticles NP-TMDA/F6 display toxicity similar to that of the charge neutral NPs. 

Given the well-established tendency of fluorinated thiolates to self-sort on the surface of AuNPs 
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and the now available synthetic strategies to charged H-/F- mixed monolayer AuNPs we are 

confident that these systems, after further structural refinement, will significantly widen the span of 

NPs systems with anisotropic monolayers to probe the interactions of nanosized matter with the 

biological environment.   

 

Experimental Procedures 

Synthesis of NP-MDDS/F6-a. A 250 mL three neck round bottom flask was charged with 88.8 mg 

(2.29 x 10-4 mol, 1 equiv.) of HAuCl4∙3H2O dissolved in  50 mL of deoxygenated ethanol and 1.52 

x 10-4 mol (0.66 equiv.) of the thiols mixture (HF6 : HMDDS  = 0.65 : 1). Then a 0.11 M solution 

of NaBH4 in deoxygenated ethanol (2.59 x 10-3 mol, 11.3 equiv.) was added dropwise over 15 

minutes. The solution becomes brown-reddish and some precipitation of NPs was observed. The 

mixture was stirred for 3 hours at room temperature and afterwards, the reaction vessel was then 

kept at 4 °C overnight; the precipitated NPs were collected and the solvent was discarded. The NPs 

were washed with ethanol, methanol and acetone and dried under vacuum. To completely remove 

unbound ligands, particles were dialyzed against 1 liter of MilliQ water for a total time span of 72 

hours; the system was recharged with fresh water every 8 hours. The NPs solution was collected 

and the solvent was removed under vacuum at a temperature lower than 45 °C obtaining the NPs as 

a red solid. The final ratio between MDDS : F6 was 5 : 1. Solubility properties: Good solubility in 

water. Not soluble in ethanol, methanol and acetone. UV-Vis (water) λmax (nm): Weak surface 

plasmon band at 508 nm. 1H NMR (500 MHz, D2O): δ = 0.9 –1.60 (br, CH2), 1.77 (br, CH2CH2SH 

and CH2CH2SO3Na), 2.88 (br, CH2SO3Na). TEM: Xm =3.1 nm;  = 0.8 nm; n = 134. TG Analysis: 

19.5 %. Average composition: Au1150(MDDS)145(F6)29. 

 

Synthesis of NP-MDDS/F6-b. A 250 mL round bottom flask was charged with 100 mg (2.54 x 10-4 

mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 56 mL of deoxygenated ethanol and 1.69 x 10-4 mol 

(0.66 equiv.) of the thiols mixture (HF6 : HMDDS  = 0.77 : 1).  Then a 0.11 M solution of NaBH4 

in deoxygenated ethanol (2.87 x 10-3 mol, 11.3 equiv.) was added dropwise over 17 minutes. The 

solution becomes brown-reddish and some precipitation of NPs was observed. The mixture was 

stirred for 3 hours at room temperature and afterwards the reaction vessel was kept at 4 °C 

overnight; the precipitated NPs were collected and the solvent was discarded. The NPs were washed 

with ethanol, methanol and acetone and dried under vacuum. The NPs were dialyzed against 1 liter 

of MilliQ water for 72 hours recharging the system with fresh water every 8 hours. The NPs 

solution was collected and the solvent was removed under reduced pressure working at temperature 

below 45 °C. The residue was washed several times with hot ethanol to remove unbound thiols. The 
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final ratio between MDDS : F6 was 2.5 : 1. Solubility properties: Good solubility in water. Not 

soluble in ethanol, methanol and acetone. UV-Vis (water) λmax (nm): Weak surface plasmon band at 

508 nm. 1H NMR (500 MHz, D2O): δ = 0.9 – 1.60 (br, CH2), 1.77 (br, CH2CH2SH and 

CH2CH2SO3Na), 2.88 (br, CH2SO3Na). TEM:  Xm = 3.2 nm;  = 0.7 nm; n = 253. TG Analysis: 

21%. Average composition: Au1289(MDDS)150(F6)60. 

 

Synthesis of NP-MDDS/F6-c. A 250 mL round bottom flask was charged with 97.3 mg (2.47 x 10-

4 mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 55 mL of deoxygenated ethanol and 1.65 x 10-4 mol 

(0.66 equiv.) of the thiols mixture (HF6 : HMDDS = 1 : 1.1). Then a 0.11 M solution of NaBH4 in 

deoxygenated ethanol (2.80 x 10-3 mol, 11.3 equiv.) was added dropwise over 12 minutes. The 

solution becomes brown-reddish observing some precipitation of NPs. The mixture was stirred for 3 

hours at room temperature and afterwards the reaction vessel was then kept at 4 °C overnight; the 

precipitated NP were collected and the solvent was discarded. The NPs were washed with ethanol, 

methanol and acetone and dried under vacuum. The NPs were taken up with water and dialyzed 

against MilliQ water for 72 hours recharging the system with fresh water every 8 hours. The NPs 

solution was collected and the solvent was removed under reduced pressure working at a 

temperature lower than 45 °C. To completely remove unbound ligands NPs were washed several 

times with hot ethanol. The final ratio between MDDS : F6 was 1.5 : 1. Solubility properties: Good 

solubility in water. Not soluble in ethanol, methanol and acetone. UV-Vis (water) λmax (nm): Weak 

surface plasmon band at 510 nm. 1H NMR (500 MHz, D2O): δ = 0.9 – 1.60 (br, CH2), 1.77 (br, 

CH2CH2SH and CH2CH2SO3Na), 2.88 (br, CH2SO3Na). TEM:  Xm = 3.4 nm;  = 0.7 nm; n = 209. 

TG Analysis: 16%. Average composition: Au1415(MDDS)129(F6)87. 

 

Synthesis of NP-MDA/F6-a. A 250 mL round bottom flask was charged with 80 mg (0.20 x 10-3 

mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 44 mL of deoxygenated ethanol and 0.14 x 10-3 mol 

(0.66 equiv.) of the thiols mixture (HF6: HMDA = 0.65 : 1). Then a 0.11 M solution of NaBH4 in 

deoxygenated ethanol (2.3 x 10-3 mol, 11.3 equiv.) was added dropwise over 15 minutes. The 

mixture was stirred for 3 hours and the reaction vessel was then kept at 4 °C overnight; the 

precipitated NPs were collected and the solvent was discarded. The precipitated NPs were washed 

with ethanol and acetone and dried under vacuum.  The NPs were dialyzed against MilliQ water for 

72 hours recharging the system with fresh water ca. every 8 hours. The NP solution was collected 

and the solvent was removed under vacuum working at temperature below 45 °C. The NPs were 

further purified by size exclusion chromatography on Sephadex LH-20 using methanol as eluent. 

The final ratio between MDA: F6 was 5 : 1. Solubility properties: Good solubility in ethanol, 
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methanol and acetone. UV-Vis (water) λmax (nm): Weak surface plasmon band at 500 nm. 1H NMR 

(500 MHz, D2O): δ = 1.10 -1.50 (br, CH2), 1.60 (br, CH2CH2SH and CH2CH2COOH), 2.85 (br, 

CH2COOH) ppm. TEM: Xm = 3.01 nm;  = 0.52 nm; n = 234. TG Analysis: 20 %. Average 

composition: Au976(MDA)136(F6)28. 

 

Synthesis of NP-MDA/F6-b. A 250 mL round bottom flask was charged with 99.3 mg (0.25 x 10-3 

mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 56 mL of deoxygenated ethanol and 0.17 x 10-3 mol 

(0.67 equiv.) of the thiols mixture (HF6: HMDA = 0.76 : 1). Then a 0.11 M solution of NaBH4 in 

deoxygenated ethanol (2.83 x 10-3 mol, 11.3 equiv.) was added dropwise over 15 minutes. The 

mixture was stirred for 3 hours and the reaction vessel was then kept at 4 °C overnight; the 

precipitated NP were collected and the solvent was discarded. The precipitated NPs were washed 

with ethanol (3 x 20 mL), acetone (3 x 20 mL) and DCM (3 x 20 mL) and dried under vacuum 

obtaining 43.4 mg of NPs. The final ratio between MDA: F6 was 2.9 : 1. Solubility properties: Low 

solubility in ethanol, and acetone, good solubility in methanol. UV-Vis (methanol) λmax (nm): Weak 

surface plasmon band at 523 nm. 1H NMR (500 MHz, CD3OD): δ = 1.10 -1.50 (br, CH2), 1.60 (br, 

CH2CH2SH and CH2CH2COOH), 2.19 (br, CH2COOH) ppm. TEM: Xm = 2.45 nm;  = 0.56 nm; n 

= 488. TG Analysis: 33 %. Average composition: Au523(MDA)90(F6)30. 

 

Synthesis of NP-MDA/F6-c. A three neck round bottom flask was charged with 81.8 mg (2.08 x 

10-4 mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 45 mL of deoxygenated ethanol and 1.38 x 10-4 

mol (0.66 equiv.) of the thiols mixture (HF6 : HMDA = 1.3 : 1). Then a 0.11 M solution of NaBH4 

in deoxygenated ethanol (2.35 x 10-3 mol, 11.3 equiv.) was added dropwise over 11 minutes. The 

mixture was stirred at room temperature for 3 hours and then the NPs were precipitated by addition 

of hexane. The precipitate was repeatedly washed with hexane and the crude material was further 

purified by gel permeation chromatography on Sephadex LH-20 using methanol as eluent. The 

purified NPs were obtained as a brown-red solid. The final ratio between MDA : F6 was 1.5 : 1. 

Solubility properties: Good solubility in ethanol, methanol and acetone. UV-Vis (water) λmax (nm): 

Weak surface plasmon band at 508 nm. 1H NMR (500 MHz, CD3OD): δ = 0.9 –1.50 (br, CH2), 1.60 

(br, CH2CH2SH and CH2CH2COOH), 2.25 (br, CH2COOH). TEM: Xm = 2.5 nm;  = 0.3 nm; n = 

204. Average composition: Au523(MDA)72(F6)49. 

 

Synthesis of NP-TMDA/F6-a. A 250 mL three neck round bottom flask was charged with 80 mg 

(2.03 x 10-4 mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 44 mL of deoxygenated ethanol and 1.35 x 

10-4 mol (0.66 equiv.) of the thiols mixture (HF6 : HTMDA = 0.65 : 1). Then a 0.11 M solution of 
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NaBH4 in deoxygenated ethanol (2.3 x 10-3 mol, 11.3 equiv.) was added dropwise over 15 minutes. 

The solution becomes brown observing some precipitation of the NPs. The mixture was stirred for 3 

hours and the reaction vessel was then kept at 4 °C overnight; the precipitated NPs were collected 

and the solvent was discarded. The crude material was repeatedly washed with DCM to remove 

unbound ligands. The final ratio between TMDA : F6 is 5 : 1. Solubility properties: soluble in 

methanol, ethanol, low solubility in water. UV-Vis (water) λmax (nm): surface plasmon band at 525 

nm. 1H NMR (500 MHz, CD3OD): δ = 3.33 (br, CH2N(CH3)3), 3.17 (br, N(CH3)3), 1.78 (br, 

CH2CH2N(CH3)3), 1.60-0.9 (br, CH2). TEM: Xm = 3.9 nm;  = 0.9 nm; n = 583. TG Analysis: 19%. 

Average composition: Au2406(TMDA)256(F6)51.  

 

Synthesis of NP-TMDA/F6-b. A 250 mL three neck round bottom flask was charged with 101 mg 

(0.25 x 10-3 mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 56 mL of deoxygenated ethanol and 0.169 

x 10-3 mol (0.68 equiv.) of the thiols mixture (HF6 : HTMDA = 0.77 : 1). Then a 0.11 M solution 

of NaBH4 in deoxygenated ethanol (2.88 x 10-3 mol, 11.3 equiv.) was added dropwise over 20 

minutes. The solution becomes brown observing some precipitation of the NPs; the mixture was 

stirred for 3. The precipitated NPs were collected and the solvent discarded. The crude material was 

washes with acetone (3 x 20 mL), DCM (3 x 20 mL) and acetone (6 x 20 mL), the crude material 

was dissolved in few milliliters of methanol and the NPs were precipitated by adding hexane. The 

precipitate was washed with DCM (2 x 20 ml), acetone (2 x 20 mL) and DCM (2 x 5 mL) and dried 

obtaining 53.5 mg of clean NPs as a reddish solid. The final ratio between TMDA : F6 was 1.1 : 1. 

Solubility properties: soluble in methanol, ethanol, low solubility in water. UV-Vis (water) λmax 

(nm): surface plasmon band at 521 nm. 1H NMR (500 MHz, CD3OD): δ = 3.33 (br, CH2N(CH3)3), 

3.17 (br, N(CH3)3), 1.78 (br, CH2CH2N(CH3)3), 1.60-0.9 (br, CH2). TEM: Xm = 4.16 nm;  = 0.7 

nm; n = 339. TG Analysis: 15%. Average composition: Au2406(TMDA)131(F6)119. 

 

Synthesis of NP-TMDA/F6-c. A 250 mL three neck round bottom flask was charged with 98 mg 

(0.249 x 10-3 mol, 1 equiv.) of HAuCl4∙3H2O dissolved in 54 mL of deoxygenated ethanol and 

0.166 x 10-3 mol (0.66 equiv.) of the thiols mixture (HF6 : HTMDA = 1.3 : 1). Then a 0.11 M 

solution of NaBH4 in deoxygenated ethanol (2.82 x 10-3 mol, 11.3 equiv.) was added dropwise over 

15 minutes. The solution becomes brown observing some precipitation of the NPs; the mixture was 

stirred for 3 hours and afterwards the reaction vessel was placed at 4 °C overnight. The precipitated 

NPs were collected and the solvent discarded. The crude material was washes with DCM obtaining 

46 mg of clean NPs as a reddish solid. The final ratio between TMDA : F6 was 1.3 : 1. Solubility 

properties: soluble in methanol, ethanol, low solubility in water. UV-Vis (water) λmax (nm): surface 
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plasmon band at 525 nm. 1H NMR (500 MHz, CD3OD): δ = 3.33 (br, CH2N(CH3)3), 3.17 (br, 

N(CH3)3), 1.78 (br, CH2CH2N(CH3)3), 1.60-0.9 (br, CH2). TEM: Xm = 4.0 nm;  = 0.9 nm; n = 362. 

TG Analysis: 16%. Average composition: Au2406(TMDA)160(F6)124. 

 

Preparation of NP-MDDS/F6/Bodipy. In a 25 mL round bottom flask 11.4 mg of NP-MDDS/F6-

b were dissolved by using 5 mL of deoxygenated mQ water under an argon atmosphere and 150 µL 

of a 1.94 mM solution of HBodipy in DMF/H2O 4/1 were added; the mixture was kept under 

stirring at 25 °C for 4 days. To completely remove unbound ligands, particles were dissolved in 

MilliQ water and dialyzed against millQ water for a total time of 72 hours. The system was 

recharged with fresh water every 8 hours. The NPs solution was collected from the dialysis tube and 

used as such.  

 

Preparation of NP-TMDA/F6/Bodipy. In a 25 mL round bottom flask 10 mg of NP-TMDA/F6-c 

were dissolved by using 5 mL of deoxygenated mQ water under an argon atmosphere and 150 µL 

of a 1.94 mM solution of HBodipy in DMF/H2O 4/1 were added; the mixture was kept under 

stirring at 25 °C for 4 days. The NPs were purified by dialysis against 1 liter of milliQ for a total 

time of 72 hours recharging the system with fresh water every 8 hours. The NPs solution was used 

as such.  

 

Preparation of NPs-C8TEG/Bodipy. In a 25 mL round bottom flask 10 mg of NP-C8TEG were 

dissolved using 5 mL of deoxygenated methanol under an argon atmosphere and 150 µL of a 1.94 

mM solution of HBodipy in DMF/H2O 4/1 were added; the mixture was kept under stirring at 25 

°C for 4 days. The solvent was removed under reduced pressure at a temperature below 45 °C. To 

completely remove unbound ligands, the NPs were purified by size exclusion chromatography by 

using Sephadex LH-20 and methanol as eluent.  

 

Preparation of NP-F8PEG/Bodipy. In a 25 mL round bottom flask 10 mg of NPs-F8PEG were 

dissolved using 5 mL of deoxygenated methanol under an argon atmosphere and 150 µL of a 1.94 

mM solution of HBodipy in DMF/H2O 4/1 were added; the mixture was kept under stirring at 25 

°C for 4 days. The solvent was removed under reduced pressure at a temperature below 45 °C. The 

NPs were purified by size exclusion chromatography by using Sephadex LH-20 and methanol as 

eluent.  

 



18 
 

Cell culture and fluorescence imaging. Human cervical carcinoma cells (HeLa) were grown in a 

standard culture media at 37 °C and in 95% air, 5% CO2 atmosphere. Cells were seeded in a μ-Slide 

8-well ibidi plate (Martinsried, Germany) at a density of 5 x 104 cells per well (1.0 cm2) and were 

allowed to adhere overnight. Before cell incubation with nanoparticles, the medium containing fetal 

bovine serum was replaced with serum-free medium to avoid unspecific binding of the NPs to 

serum proteins. Cells were then incubated with Bodipy labeled NP for 3.5 h at 37 °C. After 

incubation the cells were washed 3 times with PBS. Nuclei were counterstained with Hoechst 

33342 (Invitrogen, Oregon, USA), according to the manufacturer’s instructions. Cellular 

internalization of the fluorescently labeled NP was visualized with an inverted confocal laser 

scanning microscope (CLSM, Carl Zeiss LSM 510) equipped with a 63×/1.3 oil DIC objective, 

using excitation lines at 405 (Hoechst 33342) and 633 nm (Bodipy (650/665 nm)). ImageJ software 

was used for image analysis. 
 

Cell Viability – FACS analysis. HeLa cell incubation with Bodipy labeled NPs in a concentration 

range of 0.05-0.2 mg/mL was performed as described above. After incubation, 5 x105cell were 

collected by trypsination and washed with PBS containing 1% BSA. The staining of nonviable cells 

was performed with Propidium Iodide (50 μg/mL in PBS) for 5 minutes at room temperature. The 

samples were analyzed immediately on a flow cytometer (FACS Canto II, BD Biosciences) with 

excitation at 488 nm for PI and an excitation at 633 nm for Bodipy. 
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