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a b s t r a c t

A methodology to plan the trajectories of robots that move in an n-dimensional Euclidean space, have to
reach a target avoiding obstacles and are constrained to move in a region of the space is described. It is
shown that if the positions of the obstacles are known then a Hamiltonian function can be constructed
and used to define a collision-free trajectory. It is also shown that the method can be extended to the case

a three degrees-of-freedom manipulator are finally reported.
& 2016 European Control Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Robot path planning is an important topic that has been
extensively studied in the past three decades. Different approaches
have been proposed for solving the problem of reaching a (pos-
sibly moving) target while avoiding (possibly moving) obstacles
(see e.g. [24] and references therein). Among several ideas that
have been developed, we recall the workspace density [9], the
harmonic potential functions [20], the navigation functions [22],
the decomposition approaches [6,2,1], the distance function [14],
the vector field histogram [3,34], the dynamic window method
[11], the rule-based approach [12], the use of the so-called Particle
Swarm Optimization [32]. A well-known family of techniques is
that based on artificial potential fields [19], in which the point
representing the configuration of the robot behaves like a charged
particle moving in a force field. In particular, the point moves
along the antigradient of a potential field depending on both the
obstacles and the target position and generated in such a way that
a repulsive potential function is associated with each obstacle,
while an attractive one is generated by the goal. As a result, a
(possibly local) minimum of the potential function is placed in
correspondence of the goal. By using harmonic functions [7], or
restricting the admissible obstacle shapes [29], uniqueness of the
minimum can be guaranteed. Methods for facing other drawbacks,
such as chattering in narrow passages and mislocation of the
lished by Elsevier Ltd. All rights re
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minimum, or to broaden the field of applicability of the method,
are also available (see for example [13,28,16,35,27]).

Other approaches that have been widely used rely on
sampling-based algorithms, in particular the probabilistic road
maps (PRM) [18] and the rapidly exploring random tree (RRT)
algorithm (introduced by [23]), which can efficiently solve com-
plex high-dimensional problems. The main idea of such algorithms
is to perform a search in the configuration space, applying a proper
sampling scheme, instead to explicitly determine the sets of robot
configurations causing the collision of the robot with obstacles or
self-collision (see e.g. [24] for details). Variants of these methods
have been proposed. In particular, in [17] the optimality of PRM
and RRT algorithms is studied and modified versions, called PRM�

and RRT�, that are also proven to be asymptotically optimal are
described. In [21] the authors apply the RRT algorithm to the
minimization of a function defined on a vector field constructed ad
hoc on the basis of the environment and of the path planning
problem. In [33] the extra degrees of freedom of redundant
manipulators are used to satisfy geometric and kinematic con-
straints. In [25] a path planning strategy, based on the RRT para-
digm and a static field, applied in the robot's workspace, to
guarantee that the generated robot path keeps away from certain
areas as much as possible is illustrated. Attention has been devo-
ted also to improve efficiency and scalability of RRT variants, as
proposed in [30,10,15], among others.

In recent works [5,4], a novel approach to solve the obstacle
avoidance problem for planar robots, based on the construction of
a Hamiltonian function, has been described and analysed in its
simplest version. Similar to the potential field approach, the
Hamiltonian is a function of the environment, namely of the
configuration of the obstacles, but it is constructed by taking into
served.
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Fig. 1. An example of collision-free path. The dashed lines correspond to dynamics
described by _x ¼ a and _y ¼ b, while the solid line corresponds to the trajectories of
system (1). The closed lines surrounding the obstacles are the level lines associated
with HR.
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account only the shape and the position of the obstacles. Differ-
ently from the potential field method, instead, the information on
the target is not needed to construct the Hamiltonian function. A
similar approach is considered in [8], where the Hamiltonian
function is the sum of an energy term depending on the
momentum and an artificial potential field term depending on the
configuration. The method is exploited to generate periodic orbits
which are shown to remain far from the obstacles. However, the
Hamiltonian function is not used to generate a trajectory directed
to a target (avoiding the obstacles) which, on the contrary, is the
goal of the results described herein.

This property has the advantage that the Hamiltonian function
does not change its structure if the target moves. Once the
Hamiltonian function is constructed, the robot is driven towards
the target with a mixed strategy that exploits the level lines of the
Hamiltonian function only in the vicinity of the obstacle and only
to bypass it.

Herein we improve the mentioned technique to the following
respects:

� we show how to impose kinematic constraints such as limiting
the value of the speed and acceleration;

� we consider the case of moving target and moving obstacles;
� we show how to compress the information needed for the imple-

mentation and how it can be processed in compressed form.
(D

(D

1 In Sections 4 and 5 two methods to construct this function are described.
2 We denote by IntðXÞ the interior of the set X.
2. Obstacle avoidance in the planar case

In this section we consider a Hamiltonian robot, namely a point
mass, and we describe how the theory of Hamiltonian systems can
be exploited to determine a trajectory avoiding obstacles. For
further details we refer the reader to [5]; herein we present the
idea behind the method and the basic definitions that are needed
for the remainder of the paper.

We begin by recalling the structure of a planar Hamiltonian
system. Its dynamics can be described by the equations

_x ¼ ∂Hðx; yÞ
∂y

; _y ¼ �∂Hðx; yÞ
∂x

; ð1Þ

where H : R2-R is a continuously differentiable function that is
called the Hamiltonian function of the system. System (1) has two
important properties.

� The value of H along the trajectories of (1) is constant.
� For almost all (x,y), the unit velocity vector of the trajectory and

the unit gradient vector of H form a right-handed Cartesian
reference system. In other words, a virtual observer moving
along the trajectory of system (1) would have increasing values
of the function H on the left and decreasing values on the right.

Definition 2.1. Consider a continuous function H : R2-R. The
(super) level set associated with the value HR is the set
LHR 9fξAR2 : HðξÞZHRg. A connected set R�LHR is a maximal
connected component (MCC) of the level set LHR if for each con-
nected set R0aR, such that R�R0, there exists ξ0AR0⧹R such
that ξ0 =2LHR . The boundary of each MCC of a level set is a level
line. □

Suppose, now, that the continuous function H : R2-R has a
local maximum at a point ξM . Due to the continuity of H, we can
always choose a level set LHR such that ξMALHR and the MCC of
LHR containing ξM is compact. Let RM denote this MCC. The
boundary of RM is a closed level line and, due to the property
explained above, a dynamical system with initial condition on the
boundary of RM and evolving according to (1) runs along the level
line in a counter-clockwise direction. This fact may be used to
derive the solution of the obstacle avoidance problem.

2.1. Obstacle avoidance

Suppose that a point mass has to reach a target in the position
ξT AR2 starting from the initial position ξIAR2 avoiding some
obstacles O1;…;Om at least one of which lies on the straight line
connecting ξT and ξI . Moreover, suppose that there exist a
function1 H : R2-R and a value HR such that HðξIÞoHR,
HðξT ÞoHR, each MCC of LHR is simply connected and,2 for all i¼
1,…,m,

Oi � IntðLHR Þ: ð2Þ
This scenario is depicted in Fig. 1 where two obstacles (the grey
boxes) lie between the initial position and the target and LHR is the
union of the two “rectangles” with rounded vertices. In this sce-
nario, any path belonging to R2⧹IntðLHR Þ, namely any curve γ :

½0;1�-R2 such that γð0Þ ¼ ξI , γð1Þ ¼ ξT and for all sA ½0;1�,
γðsÞAR2⧹IntðLHR Þ; ð3Þ
is a collision-free path connecting the initial and the final position.
In particular, one of these collision-free paths may be obtained by
exploiting the properties of the Hamiltonian system described
above as follows. Let ξ¼ ðx; yÞ> be the state of the Hamiltonian
planar system, denote with ∇H the gradient of H, i.e. the vector

∇H ¼ ∂H
∂x

;
∂H
∂y

� �>
; ð4Þ

and let ρðξÞ : R2-R be defined by

ρðξÞ ¼∇H> ðξT �ξÞ: ð5Þ
Finally, let the dynamics of the planar system be described by the
following two-modes hybrid strategy.

1) If HðξðtÞÞoHR or ρðξðtÞÞo0, then _x ¼ a and _y ¼ b, with a and b
such that the resulting trajectory is a straight line connecting
ξðtÞ to the target.

2) If HðξðtÞÞ ¼HR, then _x and _y are as in (1).

Remark 2.1. In the case of noisy data, the strategy above may end
up chattering between D1 and D2. A simple solution to avoid this
chattering phenomenon is to introduce a hysteresis in the
switching between the two control laws.

An example of a collision-free path generated by the above
strategy is illustrated in Fig. 1.

From ξI to ξ1 the robot approaches the obstacle, hence the
value of the Hamiltonian function increases along the trajectory
and, as a consequence, ρðξÞ40. However, the value of H is less



Fig. 2. A continuously differentiable trajectory obtained with the continuous
dynamics (8).
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than HR and the dynamics D1 are selected, for instance with a¼1
and b¼0 (ξI and ξT lie on a horizontal line). When the robot
reaches the point ξ1 for which Hðξ1Þ ¼HR, the dynamics switch to
the Hamiltonian dynamics D2 and the robot moves along the level
line corresponding to HR. In ξ29 ðx2; y2Þ> the gradient of H and the
vector ξT �ξ2 are orthogonal, hence ρðξ2Þ ¼ 0. If τ denotes the time
instant such that ξðτÞ ¼ ξ2, then ρðξðτþ ÞÞo0 and the dynamics
in τþ switch back to D1, for instance with a¼1 and b¼
ðyT �y2Þ=ðxT �x2Þ. This procedure is repeated until the target is
reached.

The two-steps dynamics can be re-stated formally as follows.
Let εðtÞ be a piecewise-constant function from Rþ to f0;1g such
that

εðtÞ ¼
1 if HðξðtÞÞoHR or ρðξðtÞÞo0;
0 if HðξðtÞÞ ¼HR:

(
ð6Þ

If ξI =2 IntðLHR Þ, then the trajectory of the system that evolves
according to the dynamics

_ξ ¼ αðξT �ξÞεðtÞþβ
0 ð1�εðtÞÞ

�ð1�εðtÞÞ 0

 !
∇H ð7Þ

with initial conditions ξð0Þ ¼ ξI =2 IntðLHR Þ gives a collision-free path
for all α40 and all β40.

Remark 2.2. The parameters α and β can be used to change the
velocity of the point mass.
3 We denote with B0ðRÞ the (closed) ball of centre 0 and radius R, namely the
set B0ðRÞ9fξ : JξJrRg.
3. Continuous and bounded velocities

In a practical application of the method it is desirable to con-
sider the right-hand side terms in Eq. (7) as the true commands
according to which the point mass is steered. However, Eq. (7),
that represents the time-derivative of the motion along each
generalized coordinate, makes use of the piecewise-constant sig-
nal εðtÞ, which renders the overall dynamics discontinuous. In a
real system such a discontinuity is not allowed, since velocities
must be continuous.

Moreover, due to physical constraints, velocities must also be
bounded. In this section we consider both these requirements, we
describe a modified switching law or, more properly, a “transition
law” between the linear and the Hamiltonian dynamics to render
the velocities continuous and we show that the velocities are
bounded.

We first modify the dynamics (7) in such a way that the right
hand side term is continuous. This task can be performed by
substituting the switching signal (6) between the dynamics D1
and D2 with a continuous signal. The simplest continuous transi-
tion from the value εðtÞ ¼ 1, corresponding to the dynamics D1, to
the value εðtÞ ¼ 0, corresponding to the dynamics D2, is a linear
function. To uniquely determine it, we use the following proce-
dure. Instead of a single reference value HR, we select two refer-
ence values HR and HS, with HSoHR, and we set

εðtÞ ¼

1 if HðξðtÞÞoHS;

HR�HðξðtÞÞ
HR�HS

if HðξðtÞÞA ½HS;HRÞ or ρðξðtÞÞo0;

0 if HðξðtÞÞ ¼HR:

8>>><
>>>:

ð8Þ

In Fig. 2 a trajectory resulting from the use of (8) is shown.
Between ξI and ξ1, the value of the Hamiltonian function is less
than HS and the transition signal ε is equal to 1 (first equation in
(8)). Between ξ1 and ξ2 the value of the Hamiltonian function is
between HS and HR and ε decreases linearly (second equation in
(8)). Between ξ2 and ξ3 the trajectory lies on the level line corre-
sponding to HR and ε¼ 0 (third equation in (8)). In ξ3 the gradient
of the Hamiltonian function and the straight line connecting ξ3
with ξT are orthogonal and ρðξ3Þ ¼ 0; if t3 denotes the instant such
that ξðt3Þ ¼ ξ3, then ρðξðtþ3 ÞÞo0 and ε begins to increase linearly
(see again the second equation in (8)). Finally, between ξ4 and ξT
the value of the Hamiltonian function is again less than HS and
ε¼ 1.

We now show that, under the natural assumption that the
environment in which the robot moves is bounded, the velocities
expressed by (7)–(8) are bounded.

Proposition 3.1. If RARþ is such that3 B0ðRÞ contains ξI , ξT and all
the level lines corresponding to HS, then the velocities associated with
the dynamics described by (7) and (8) are bounded.

Proof. By the standard assumption that H is continuously differ-
entiable (see Eq. (1)), the gradient of H is bounded in B0ðRÞ. Hence,
there exists G40 such that, for all ξAB0ðRÞ,
∂H
∂x

ðξÞ
����

����rG;
∂H
∂y

ðξÞ
����

����rG: ð9Þ

The following chain of inequalities proves the claim for _x.

j _xðtÞj ¼ αðxT �xðtÞÞεðtÞþβð1�εðtÞÞ∂H
∂y

ðξðtÞÞ
����

����
rαjxT �xðtÞj þβ

∂H
∂y

ðξðtÞÞ
����

����r2αRþβG: ð10Þ

Analogous computations prove the claim for _y. □

Inequality (10) may be used to find α and β such that the
velocities always remain below their physical bounds. In fact,
suppose that the physical constraints may be modeled as j _x jrV1

and j _y jrV2 for some V140 and V240. Then it is sufficient to
choose α and β such that

2αRþβGrminfV1;V2g: ð11Þ
4. Obstacle avoidance for an n-dimensional manipulator

The problem of finding a collision-free path in the case of an n-
DOF manipulator is, from a theoretical point of view, analogous to
that of the 2D navigation problem considered above. In fact, they
both can be described as follows: given a set G�Rn (the set of
admissible configurations) and two points in G (the initial con-
figuration and the final configuration) find a curve connecting the
two points and belonging to G.
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Now, let each configuration of the manipulator be identified by
a point x¼ ðq1;…; qnÞ> belonging to some space X �Rn. If the set
of all forbidden configurations, being each of them forbidden due
to either a collision with an obstacle or to a self-collision [31], can
be constructed, then the problem of determining a feasible path
between two allowed configurations can be solved with the
Hamiltonian approach. In this section we first show how to
determine the set of forbidden regions and then how to build the
Hamiltonian function, thus solving the path planning problem.

4.1. Self-collisions

We begin by showing how the configurations yielding to a self-
collision may be represented. Any configuration xAX maps the
points of the robot into points in the Euclidean space R3. More
precisely, consider a feasible pose, i.e. a configuration that does not
yield self-collision, and let P �R3 denote the set of points in the
Euclidean space occupied by the robot when it is in that pose. Any
other configuration xAX maps P into a region φxðPÞ �R3. A self-
collision occurs if any two different points p1AP and p2AP are
mapped into the same point, namely if φxðp1Þ ¼φxðp2Þ. To avoid
this occurrence it is necessary and sufficient to require that φx be
injective. Therefore the configurations that are forbidden because
of self-collisions are represented by the set

RA ¼ fxAX : φx is not injectiveg: ð12Þ

4.2. Collisions with the environment and with the obstacles

In this section we consider collisions with the objects that
correspond to the environment, such as the walls and the floor,
and collisions with obstacles. These two kinds of collisions may be
treated analytically in the same way even though it is convenient
to distinguish between the two occurrences, as discussed
hereafter.

Let Y ¼X⧹RA and let ψ : Y � P-R3 be defined by ψ ðx; pÞ ¼
φxðpÞ. Then any point xAY, namely any configuration that does
not give rise to a self-collision, may be associated with the region
ψ ðx; PÞ �R3, representing the set of points occupied by the robot
(see Fig. 3).

Any object in the environment in which the robot moves is also
associated with a region in R3. We denote with E the union of the
regions corresponding to the floor, the walls and all the other
objects of the workspace that may be considered part of the
environmental constraints. On the other hand, we denote with O
the union of the regions corresponding to external obstacles. This
distinction is superfluous in the case of fixed obstacle but it
becomes important in the case of moving obstacles.

If ψ ðx; PÞ \ Ea∅ then the configuration x yields a collision
with the environment; the collection of all such configurations is
Fig. 3. Any configuration xAX maps the robot P into a region in the Euclidean
space R3. If ψ ðx; _Þ is injective and if φxðPÞ is disjoint both from the environment E
and from the obstacles O, then the configuration x is feasible.
the set

RE ¼ fxAX : ψ ðx; PÞ \ Ea∅g: ð13Þ
If ψ ðx; PÞ \ Oa∅, then the configuration x yields a collision with
an obstacle. The collection of all such configurations is the set

RO ¼ fxAX : ψ ðx;BÞ \ Oa∅g: ð14Þ
The set of forbidden configuration is then X F ¼RA [ RE [ RO.

Remark 4.1. In the following we suppose that the initial and the
final configurations of the robot are feasible, namely that they do
not belong to X F .

4.3. Characterization of the trajectory

Once the forbidden region X F has been identified, a continuous
Hamiltonian function H may be constructed in the following way.
Let Bσ ðxÞ be the open ball of centre x and radius σ and let

XG ¼ ⋃
xAX F

BσðxÞ: ð15Þ

Finally let HðxÞ ¼ 1 for all xAX F , HðxÞ ¼ 0 for all xAX⧹XG and
extend H to all the points in XG⧹X F in such a way that it is con-
tinuous for all xAX .

The n-dimensional case is conceptually similar to the planar
case. The generic structure of a Hamiltonian system of dimension
n is

_z ¼ JðzÞ∇HðzÞ; ð16Þ
where z¼ ðz1;…; znÞ> is the state vector and JðzÞ is a skew-
symmetric matrix, the off-diagonal entries of which depend on
the state. It is easy to check that, since J is skew-symmetric, _HðtÞ
¼ 0 for all t along the trajectories of (16). Therefore all trajectories
lie on a level surface. However, while in Rn a level surface is a
manifold of dimension n�1, the trajectory of system (16) is always
a manifold of dimension 1. Therefore when n¼2, namely in the
planar case, the trajectory support coincides with a level surface,
which is a line. On the contrary, in the n-dimensional case many
different Hamiltonian systems fulfill the constraint of moving
along a trajectory lying on the same level surface.

The degrees of freedom can be exploited to further specify the
trajectory. In particular, the trajectory of the Hamiltonian system
can be constrained in any hyperplane defined by the equation
γ> z¼ 0, with γ ¼ ðγ1;…; γnÞ> ARn. In fact, it is sufficient to
impose

γ1 _z1þ⋯þγn _zn ¼ 0 ð17Þ
to determine, by substitution, the corresponding algebraic condi-
tions on the entries of J. This property is useful if, for practical
reasons, some hyperplane turns out to be preferable than others.
5. Discrete implementation

In a practical implementation of the method described in the
previous section it is not possible to determine exactly the regions
RA, RE and RO since the set X of all possible configurations is an
uncountable set. However, one may discretize the problem thus
obtaining an approximate solution. In this section we describe a
method to obtain such a solution. Let X i, for i¼ 1;…;n, be the
interval to which qi belongs, let XS

i be a set of sampled points of X i

and let X S ¼X S
1 �⋯� X S

n. Since each X S
i is finite, so is X S; let s

denote its cardinality. Finally, suppose that the environment Ω in
which the robot works is a cube and divide each edge of it into L
sub-edges in such a way that the cube may be though of as made
of l9L3 sub-cubes.
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5.1. Forbidden configurations due to self-collisions

The first step in the method is to label the configurations giving
rise to self-collisions. This task can be performed by studying all
the configurations in X S and constructing the set

RS
A ¼ fyAX S : ψ ðy; PÞ is not injectiveg: ð18Þ

5.2. Forbidden configurations due to collisions with the environment
and with the obstacles

To treat the collisions with the obstacles (including the envir-
onment) we first enumerate all the configurations in X S⧹RS

A from
1 to r and all the sub-cubes from 1 to l. Then, for any of the con-
figurations we mark the sub-cubes that are occupied by the robot.
More precisely, for all i¼1,…,r, let xS

i AX S⧹RS
A be the i-th element

in the set of discretized configurations that does not cause self-
collisions and for all j¼ 1;…; l let δj be the j-th sub-cube. Construct
the matrix

C ¼
c1;1 ⋯ c1;l
⋮ ⋱ ⋮
cr;1 ⋯ cr;l

0
B@

1
CA ð19Þ

with

ci;j ¼
1 if ψ ðxS

i ; PÞ \ δja∅;

0 otherwise:

(
ð20Þ

Note that the matrix C does not depend on the obstacles. It con-
tains information on all the cubes occupied by each of the con-
figurations. Each row of C is associated with a configuration; the j-
th entry of the row is 1 if the configuration occupies (even par-
tially) the j-th cube. Each column of C is associated with a cube;
the i-th entry of the column is 1 if the i-th configuration occupies
(even partially) the cube. Once the matrix C is constructed, it is
easy to associate with a given obstacle a set of configurations
giving rise to collisions with it. Let O denote the set of points (in
the Euclidean space) occupied by an obstacle and let o¼
ðo1;…; olÞ> Af0;1gl be such that

oi ¼
1 if O \ δia∅;

0 otherwise:

(
ð21Þ

The configurations giving rise to collisions with the obstacle O are
the elements of the set

RS
OðoÞ ¼ fxS

i AX S⧹RS
A : Cioa0g; ð22Þ

where Ci is the i-th row of the matrix C. This relation may naturally
be extended to the case of several obstacles. If O1;…;Om are the
sets of points of m obstacles and o1;…;om are the associated
vectors constructed as in (21), then the configurations giving rise
to collisions with any of the obstacles are the elements of the set

RS
O ¼ ⋃

m

k ¼ 1
ROðokÞ ¼ xS

i AX S⧹RS
A : Ci

Xm
k ¼ 1

oka0

( )
: ð23Þ

5.3. Construction of a smooth Hamiltonian function

Let RS
F denote the set of all forbidden sampled configurations,

namely RS
F ¼RS

A [ RS
O, and denote its cardinality with N. Then a

smooth Hamiltonian function can be constructed as follows. For
each k¼1,…,N we associate with ykARS

F the function Hk : R
n-R

given by

HkðxÞ ¼ e�σ Jx�yk J
2
; ð24Þ
and we define the Hamiltonian function as

HðxÞ ¼ 1
N

XN
k ¼ 1

HkðxÞ: ð25Þ

In Eq. (24), σ is a free parameter that affects the shape of the
Hamiltonian function. A large value of σ corresponds to a narrow
Gaussian “bell” while a smaller value corresponds to a wider bell.
As a consequence, the trajectory avoiding the obstacle generated
by a large value of σ is closer to the obstacle than a trajectory
corresponding to a smaller value. This property can be exploited to
obtain the desired degree of precision (or of safety) of the
trajectory.

If the size of the sampling is sufficiently small, then the points
are close to each other and it is possible to choose a reference level
such that the corresponding connected components represent
with a good approximation the forbidden regions.

5.4. Boundedness of the hybrid trajectories

In the case of an n-DOFs robot, the hybrid dynamics (partly
linear and partly Hamiltonian) have a structure similar to the one
shown in Section 3 for the planar systems. In particular, we define
the transition signal as

εðtÞ ¼

1 if HðzðtÞÞoHS;

1
2
þ1
2
cos

HðzðtÞÞ�HS

HR�HS
π

� �
if HðzðtÞÞA ½HS;HRÞ or ρðzðtÞÞo0;

0 if HðzðtÞÞ ¼HR;

8>>><
>>>:

ð26Þ
and we steer the robot according to the hybrid dynamics

_zðtÞ ¼ αðzT �zðtÞÞεðtÞþβð1�εðtÞÞJðzðtÞÞ∇HðzðtÞÞ: ð27Þ
For the system described by Eqs. (26) and (27) a result similar to
Proposition 3.1 can be proven.

Proposition 5.1. Let RARþ be such that the ball of centre zero and
radius R, namely the set

B0ðRÞ9fz : jzjrRg; ð28Þ
contains zI , zT and all the level lines corresponding to HS. If JðzÞ is
chosen in such a way that there exists K140 such that, for all
zAB0ðRÞ,
max

i;j ¼ 1;…;n
j Ji;jðzÞjrK1; ð29Þ

then there exists M1 such that

j _ziðtÞjrM1; ð30Þ
for all i¼1,…,n and for all tZ0. □

Proof. Since H is smooth and B0ðRÞ is compact, there exists G140
such that for all i¼1,…,n and for all zAB0ðRÞ,
∂H
∂zi

ðzÞ
����

����rG1: ð31Þ

Hence

j _ziðtÞj ¼ αðzT ;i�ziðtÞÞεðtÞþβð1�εðtÞÞ
Xn
j ¼ 1

Ji;jðzðtÞÞ
∂H
∂zj

ðzðtÞÞ
������

������
rαj zT ;i�ziðtÞj þβG1

Xn
j ¼ 1

Ji;jðzðtÞÞ
�� ��r2αRþβG1nK1: ð32Þ

The claim is proven by setting M1 ¼ 2αRþβG1nK1. □

Proposition 5.2. If, in addition to the hypotheses of Proposition 5.1,
JðzÞ is chosen in such a way that there exists K240 such that, for all
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zAB0ðRÞ,

max
i;j;k ¼ 1;…;n

∂Ji;j
∂zk

ðzÞ
����

����rK2; ð33Þ

then there exists M2 such that

j €ziðtÞjrM2; ð34Þ
for all i¼1,…,n and for all tZ0. □

Proof. The second time-derivative of zi is

€zi ¼ �α _ziεþαðzT ;i�ziÞ _ε�β _ε
Xn
j ¼ 1

Ji;jðzÞ
∂H
∂zj

ðzÞ

þβð1�εÞ
Xn
j ¼ 1

Xn
k ¼ 1

∂Ji;j
∂zk

ðzÞ_zk
∂H
∂zj

ðzÞþ Ji;jðzÞ
∂2H
∂zj∂zk

ðzÞ_zk
� �

: ð35Þ

Moreover

j _ε j ¼ 1
2
sin

HðzÞ�HS

HR�HS
π

� �
π

HR�HS

Xn
i ¼ 1

∂H
∂zi

_zi

�����
�����r πnG1M1

2ðHR�HSÞ
ð36Þ

and, since H is smooth and B0ðRÞ is compact, there exists G240
such that for all j¼1,…,n, for all k¼1,…,n and for all zAB,
∂2H
∂zj∂zk

ðzÞ
����

����rG2: ð37Þ

Hence

j €zi jrαj _zi j þαj zT ;i�zi j j _ε j þβj _ε j
Xn
j ¼ 1

j Ji;jðzÞj
∂H
∂zj

ðzÞ
����

����
þβ

Xn
j ¼ 1

Xn
k ¼ 1

∂Ji;j
∂zk

ðzÞ
����

���� ∂H∂zjðzÞ
����

����þ Ji;jðzÞ
�� �� ∂2H

∂zj∂zk
ðzÞ

����
����

� �
j _zk j

rαj _zi j þ2αRj _ε j þnβj _ε jK1G1þβn
Xn
k ¼ 1

K2G1þK1G2ð Þj _zk j

rαM1þβn2ðK2G1þK1G2ÞM1þð2αRþnβK1G1Þ
πnG1M1

2ðHR�HSÞ
;

ð38Þ
which proves the claim. □

As a consequence of Proposition 5.1, the design parameters α
and β can be chosen in such a way that the velocities and the
accelerations of the trajectory defined by (26) and (27) are boun-
ded. In fact, suppose that the physical constraints on the velocities
and on the accelerations are such that, for all i¼1,…,n, j _zi jrVi for
some Vi40 and j €zi jrWi for some Wi40. Then it is sufficient to
choose α and β such that M1rmini V i and M2rmini Wi.
4 To explain the result of a RLE method, it is convenient to consider a Boolean
sequence a corresponding to a sequence of a0 zeros, followed by a sequence of a1
ones, followed by a sequence of a2 zeros, and so on. In this case, in fact, the output
of the run length encoding is the sequence A¼ a0; a1 ; a2 ; a3… . As an example, if
a¼ 00011110000111, then A¼ 3;4;4;3. Without loss of generality, one may sup-
pose that a starts with a zero.
6. Discussion on the implementation

In the present section we discuss some implementation strategies
that can be applied when the configuration space is uniformly sam-
pled. It is well-known that uniform sampling is not scalable because
the computational requirements grow exponentially. However, two
notes are in order. First, the method itself does not require uniform
sampling since the Hamiltonian function can have a “sparse” support,
therefore ideas from previous work dealing with nonuniform sam-
pling could be employed. Moreover, as explained below, with a proper
design we managed to apply a uniform sampling to a 3DOF manip-
ulator with consumer-level hardware (see Section 8).

Now, in the method described in the previous section the
construction of the entries of C is a step having a high computa-
tional cost, since it is performed by searching, for any possible
sampled configuration, all the sub-cubes that are occupied by the
robot. Clearly, the finer the sampling of the space X , and the
smaller the edges of the sub-cubes, the larger the dimensions of C
and the number of operations needed to determine its entries.

However, the matrix C is a feature of the robot and not of the
environment in which it is installed or of the obstacles that are
around it. Therefore its determination needs to be performed only
once; it could be performed by the robot manufacturer. A similar
operative context, where a large amount of data has to be collected
off-line only once, arises in other approaches to the real-time path
planning problem (see for instance [26]).

Now, despite the fact that the size of C is rl, i.e. the cardinality r of
the configuration set XS times the cardinality l of the set of sub-cubes,
the effective size of the data structure representing the matrix C may
be highly reduced by implementing a simple compression algorithm
like the classical “run length encoding” (RLE) method.4 In fact, suppose
that the set X is discretized using a sufficiently fine step; if the i-th
configuration occupies the j-th sub-cube, so that ci;j ¼ 1, then with
high probability the configuration occupies also the (j�1)-th and the
(jþ1)-th cubes. Analogously, if the i-th configuration does not occupy
the j-th sub-cube, then with high probability it does not occupy the
(j�1)-th and the (jþ1)-th cubes. This feature allows one to expect
that a compression algorithm, applied row-by-row, could effectively
reduce the storage memory of the collision matrix. As a matter of fact,
in the experiments reported in Section 8, a compression rate of about
99% has been achieved.

As explained in Section 5.3 to construct the Hamiltonian function
one needs to determine the set of forbidden configurationsRS

F and, in
particular, the set RS

O of configurations yielding collisions with the
environment or with the obstacles. In turn, RS

O can be determined by
computing the product Co (see Eq. (23)). As a consequence, if the
matrix C is stored in the compressed form described above, each row
should be de-compressed before performing the multiplication.
However, the de-compression is not necessary since we actually do
not need to know the result of the multiplication but only if the result
is different from zero. The following algorithm, which avoids the de-
compression of the vectors, can therefore be used.

6.1. Fast product algorithm

Suppose that A¼ ða0; a1;…Þ and B¼ ðb0; b1;…Þ represent the
compressed form (provided by the run length encoding) of two
Boolean vectors a and b belonging to f0;1gnþ1 and suppose that
we want to know if a>b is different from zero without de-
compressing A and B. We may use the following algorithm.

1 If b04a0 switch A and B.
2 If a0 ¼ nþ1 the answer is NO. STOP.
3 If a0ob0þb1 the answer is YES. STOP.
4 Set B’ðb2þ1; b3; b4;…Þ. Set n’n�b0�b1. Set a0’a0�b0�b1.

With the updated value of a0, set A’ða0þ1; a1; a2;…Þ. Go back
to step 1.

As an example, consider A¼ ð3;5;4Þ and B¼ ð1;2;3;6Þ, corre-
sponding to

a¼ ð0;0;0;1;1;1;1;1;0;0;0;0Þ; b¼ ð0;1;1;0;0;0;1;1;1;1;1;1Þ
ð39Þ

and n¼11. The result of the multiplication is 2 which is different
from zero. The algorithm works as follows.
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Fig. 4. Trajectory of a single vehicle in 2D space. The gray area represents an
obstacle.

Fig. 5. Trajectory of two vehicles in the 2D space. The gray area represents an
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ration 1
b0 ¼ 1 and a0 ¼ 3, thus b04a0 is false, hence there is no
switch between A and B. Go to step 2.
a0 ¼ 3 and n¼11, thus a0 ¼ nþ1 is false (hence the answer
may not be NO). Go to step 3.
a0 ¼ 3 and b0þb1 ¼ 1þ2¼ 3, thus a0ob0þb1 is false
(hence the answer may not be YES). Go to step 4.
Set B’ðb2þ1; b3Þ ¼ ð4;6Þ. Set n’n�b0�b1 ¼ 11�1�2¼ 8.
Set a0’a0�b0�b1 ¼ 3�1�2¼ 0. Set
A’ða0þ1; a1; a2Þ ¼ ð1;5;4Þ. Go back to step 1.
ration 2
b0 ¼ 4 and a0 ¼ 1, thus b04a0 is true, hence switch A and B:
A’ð4;6Þ and B’ð1;5;4Þ. Go to step 2.
a0 ¼ 4 and n¼8, thus a0 ¼ nþ1 is false (hence the answer
may not be NO). Go to step 3.
a0 ¼ 4 and b0þb1 ¼ 1þ5¼ 6, thus a0ob0þb1 is true, hence
the answer is YES. STOP.
obstacle.
The performance of this algorithm has been tested and it shows
to be about three times faster than the process of de-compressing
the vectors and computing the standard product (besides, of
course, reducing the memory consumption).

6.2. Use of a local Hamiltonian

An additional way to further speed up the implementation of
the method is to use, in the computation of the value of the
Hamiltonian function, only the forbidden points lying in a neigh-
borhood of the current state. In fact, the value of the k-th Gaussian
function (Eq. (24)) is close to 1 if x is close to yk while it decreases
rapidly when x is far from yk. For instance, if Jx�yk J ¼ 2 and
σ ¼ 1, then HkðxÞC0:018 which is negligible if compared to 1.
Therefore, one may fix a threshold θ and compute the Hamiltonian
function at the time t as

HðxðtÞÞ ¼ 1
MðtÞ

X
kAVðtÞ

HkðxðtÞÞ; ð40Þ

where

VðtÞ ¼ fkAf1;…;Ng : JxðtÞ�yk Joθg ð41Þ
and M(t) is the cardinality of V(t). The function defined by (40) is
not continuous (and not differentiable) for all t since V(t) changes
instantaneously when points “enter” or “leave” the neighborhood.
However, in a practical implementation, time intervals of constant
length T may be considered and the set V updated at time instants
that are multiple of T, thus obtaining, for all iAN and for all
tA ½iT ; ðiþ1ÞTÞ

HðxðtÞÞ ¼ 1
MðiTÞ

X
kAVðiTÞ

HkðxðtÞÞ: ð42Þ

This variation of the method, which yields a piece-wise smooth
Hamiltonian function, has been used to obtain the results shown
in Section 8.
7. Moving obstacles

The proposed approach allows us to deal also with the case of
moving obstacles. If an obstacle is not in a fixed position but
moves, namely if the set of points O is not constant but time-
varying, then the vector associated with it is also a time-
dependent vector oðtÞ. The method can be applied also in this
case, the only difference being that all the quantities are time-
varying. In particular,

oiðtÞ ¼
1 if OðtÞ \ δia∅;

0 otherwise;

(
ð43Þ



Fig. 6. Trajectory of a vehicle in the 2D space with moving obstacle. The obstacle moves from left to right and the order of the panels is from top to bottom and from left
to right.

5 Since we assume that the vehicle is holonomic, the direction of motion is not
constrained by the vehicle orientation which is therefore neglected.
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and the configurations yielding collisions at time t with the
obstacle O(t) are the elements of the set

ROðoðtÞÞ ¼ xS
i AX S⧹RS

A : CioðtÞa0
� �

: ð44Þ

Analogously, if O1ðtÞ;…;OmðtÞ are the sets of points of m obstacles
and o1ðtÞ;…;omðtÞ are the time-dependent associated vectors, then
the configurations yielding collisions at time t with any of the
obstacles are the elements of the set

ROðtÞ ¼ ⋃
m

k ¼ 1
ROðokðtÞÞ ð45Þ

ROðtÞ ¼ xS
i AX S⧹RS

A : Ci

Xm
k ¼ 1

okðtÞa0

( )
: ð46Þ

Finally, the Hamiltonian function is

Hðx; tÞ ¼ 1
NðtÞ

XNðtÞ
k ¼ 1

e� Jx�ykðtÞ J 2
: ð47Þ

Note that in this case the argument of the Hamiltonian function is
ðnþ1Þ-dimensional, since the function depends also on time.
However, if the velocities of the obstacles are slow with respect to
the parameters α and β, the method can be applied successfully.
The velocity bound for the obstacle depends on the shape of the
Hamiltonian function and on the angle between the velocity
vectors of the obstacle and of the robot. Its precise determination
is beyond the scopes of this work.
8. Simulation results

In this section the proposed approach is first applied to holo-
nomic vehicles navigating in the 2D space with possibly moving
obstacles and then to an industrial manipulator moving in the
3D space.

8.1. Vehicles in 2D environment

In this section we return to the planar case for which it is easier
to pictorially show the results of simulations in the presence of
moving obstacles. Consider a holonomic vehicle in a 2D environ-
ment the configuration of which is given by the pair (x,y), namely
by a point in the Cartesian space.5 In this case, there is no need for
mapping the obstacles into the configuration space to find the
forbidden configurations: the forbidden configurations are simply
those pairs (x,y) belonging to an obstacle. The Hamiltonian func-
tion is constructed by (25) and the vehicle moves along a curve



Fig. 7. Picture of the robot considered in the simulations.

Fig. 8. The robot in the test environment comprising the floor, a wall and a box. The
shown configuration corresponds to the first pose of the trajectory illustrated in
Fig. 10.

Fig. 9. The robot in the test environment comprising the floor, a wall and a box. The
shown configuration corresponds to the last pose of the trajectory illustrated in
Fig. 10.

Fig. 10. Five poses belonging to the trajectory (the leftmost pose is the starting one,
the rightmost the target).

6 It took about 40 h in a Intel-I7-equipped machine.
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belonging to the Cartesian space. As a first example, we consider a
single vehicle in a static environment, namely with fixed obstacles.
In Fig. 4 a trajectory from the initial position (labelled “I”) to the
final position (labelled “F”) is shown. The first part of the trajectory
corresponds to a level line of the Hamiltonian function. The last
part, due to the fact that the goal becomes visible, is a straight line.

The method can be easily adapted to the case in which there are
several vehicles. It is sufficient that each vehicle considers all the other
vehicles as obstacles. For instance, in Fig. 5 the case of two vehicles is
considered and the corresponding trajectories are shown. To ease the
comparison with the previous example, the initial and the final con-
figurations of vehicle 1, as well as the obstacle, are the same as that of
Fig. 4; however, the final trajectory is slightly different, since vehicle
1 has to avoid not only the obstacle but also vehicle 2.

Finally, we consider the case of a single vehicle with a moving
obstacle (Fig. 6). Also in this case the initial and the final positions,
as well as the shape and the initial position of the obstacle, are the
same as those used in Fig. 4. Comparing the last part of the tra-
jectory (the straight line) in Fig. 4 with the last part of the tra-
jectory in the case of a moving obstacle (the 4th frame in Fig. 6), it
can be noted that in the latter case the straight part of the vehicle
trajectory is longer than the corresponding part of the trajectory in
the first scenario. This difference is due to the fact that in the
situation depicted in Fig. 6 the obstacle is moving and the goal
becomes visible earlier than in the former case.

8.2. Industrial manipulator

In the second example we focus on the first 3 DOF of a 6 DOF
industrial manipulator, namely an ABB IRB 1600-1.2 (see Fig. 7).

As described above, the first step is to construct the matrix C given
the geometry of the links and the kinematics of the robot. The robot
workspace can be enclosed in a 3:10� 3:10� 2:36 m3 box. By
partitioning the workspace into sub-cubes of sides 0:06 m, we obtain
l¼108 160 sub-cubes which correspond to the number of columns of
C. The configuration space has been sampled with a resolution of
0.0175 rad, 0.035 rad and 0.0524 rad for q1, q2 and q3, respectively.
Given the range of each joint variable, a total of 361� 88� 98¼ 3
113 264 points belonging to X S are obtained. Hence C is a 3 113 264�
108 160 Boolean matrix. This step is rather time-consuming6 but it has
to be performed only once since the results depends only on the robot,
not on the environment. As explained in Section 5, the memory
requirements may result prohibitive; in fact, without compression, the
matrix C would occupy as much as 330 GB (in some environments
logic variables are stored in a byte). By compressing the matrix with
the RLE algorithm, we have obtained a memory consumption of about
3.1 GB, that nowadays can be processed by consumer-level hardware.



Fig. 11. A view of the forbidden regions and of the resulting trajectory for the
system described in Section 8.2.
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In Figs. 8 and 9, the initial and the final pose of the robot in the
Euclidean space are depicted, together with some static obstacles
(the floor, a wall and a box). The sub-cubes occupied by the
obstacles are assumed to be known. This is easy to achieve by using
a 3D camera, as it has been done to acquire the obstacles shown in
the figure, the flat zones representing the area not covered by the
sensor. In Fig. 10 five positions of the robot, belonging to the tra-
jectory determined by the method, are depicted.

The same scenario, but interpreted in the space of the joints, is
reported in Fig. 11 where the gray volume corresponds to the set
RS

O, namely the set of forbidden configurations computed by the
algorithm described in Section 5, while the small white circle and
the small white cross represent the initial and the final pose,
respectively. The white line represents the resulting trajectory
determined by the hybrid control law.

To test the navigation algorithm the initial pose qstart and the
final pose qgoal have been chosen in such a way that the straight
line connecting them intersects the set RS

O (see again Fig. 11). The
Hamiltonian function is constructed by using (25) with σ ¼ 0:05.

The matrix J in (16) has been computed as explained at the end of
Section 4.3 in order to force the trajectory to lie in the plane deter-
mined by qstart, qgoal and q ¼ ð1;2;0ÞT (the latter chosen arbitrarily).
9. Conclusions

The recently developed Hamiltonian-based path planning method
[5] has been refined by imposing fulfillment of kinematic constraints.
Moreover it has been extended to the case of mobile target and
obstacles. It has been applied to the case of an n-DOF robot showing
that it can comply with the requirements of the speed and accel-
eration limits. The precision of the method is associated with the
dimension of the matrices used in the computations. The more pre-
cise the requirements on the final trajectories are, the larger the
dimension of the matrices that have to be stored is. Future develop-
ments will consider non-uniform sampling of the configuration space
and applications to non-holonomic vehicles.
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