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Abstract

We find approximate solutions of partial integro-differential equations, which arise in financial mod-

els when defaultable assets are described by general scalar Lévy-type stochastic processes. We derive

rigorous error bounds for the approximate solutions. We also provide numerical examples illustrating

the usefulness and versatility of our methods in a variety of financial settings.
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1 Introduction

It is now clear from empirical examinations of option prices and high-frequency data that asset prices exhibit

jumps (see, e.g., Ait-Sahalia and Jacod (2012); Eraker (2004) and references therein). From a modeling

perspective, the above evidence supports the use of exponential Lévy models, which are able to incorporate

jumps in the price process through a Poisson random measure. Moreover, exponential Lévy models are

convenient for option pricing since, for a wide variety of Lévy measures, the characteristic function of Lévy

processes are known in closed-form, allowing for fast computation of option prices via generalized Fourier

transforms (see Lewis (2001); Lipton (2002); Boyarchenko and Levendorskii (2002); Cont and Tankov (2004);

Almendral and Oosterlee (2005)). However, a major disadvantage of exponential Lévy models is that they

are spatially homogeneous; neither the drift, volatility nor the jump-intensity have any local dependence.

Thus, exponential Lévy models are not able to exhibit volatility clustering or capture the leverage effect,

both of which are well-known features of equity markets.

In addressing the above shortcomings, it is natural to allow the drift, diffusion and Lévy measure of a

Lévy process to depend locally on the value of the underlying process. Compared to their Lévy counterparts,
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local Lévy models (also known as scalar Lévy-type models) are able to more accurately mimic the real-

world dynamics of assets. However, the increased realism of local Lévy models is matched by an increased

computational complexity; very few local Lévy models allow for efficiently computable exact option prices

(the notable exception being the Lévy-subordinated diffusions considered in Mendoza-Arriaga et al. (2010)).

Since an option price can directly related to the solution of a partial integro-differential equation (Kolmogorov

backward equation) by means of the Feynman-Kac formula, other classical numerical approaches, such as

finite difference or Monte Carlo methods, can be employed. However, such approaches are by no means free

of drawbacks (see, for instance, Andersen and Andreasen (2000); d’Halluin et al. (2005)).

Recently, there have been a number of methods proposed for finding approximate option prices in local

Lévy settings. We mention in particular the work of Benhamou et al. (2009), who use Malliavin calculus

methods to derive analytic approximations for options prices in a setting that includes local volatility and

Poisson jumps. We also mention the work of Jacquier and Lorig (2013), who use regular perturbation meth-

ods to derive option price and implied volatility approximations in a local-Lévy setting. Another polynomial

operator expansion technique was proposed in Pagliarani and Pascucci (2013) and Pagliarani et al. (2013)

to compute option prices in stochastic-local-Lévy volatility models.

More recently, Lorig, Pagliarani, and Pascucci (2015d) illustrate how to obtain a family of asymptotic

approximations for the transition density of the full class of scalar Lévy-type process (including infinite

activity Lévy-type processes). The methods developed in Lorig et al. (2015d) can be briefly described as

follows. First, one considers the infinitesimal generator of a general scalar Lévy-type process. One expands

the drift, volatility and killing coefficients as well as the Lévy kernel as an infinite series of analytic basis

functions. The infinitesimal generator can then be formally written as an infinite series, with each term

in the series corresponding to a different basis function. Inserting the expansion for the generator into the

Kolmogorov backward equation, one obtains a sequence of nested Cauchy problems for the density of the

Lévy-type process.

The polynomial expansion technique described in Lorig et al. (2015d) has also been applied in multi-

dimensional settings. In particular, Lorig et al. (2015c) derive explicit approximations and error bounds for

implied volatilities for a general class of d-dimensional diffusions. Lorig et al. (2015a) derive error bounds for

transition densities and option prices in a general d-dimensional diffusion setting. However, in neither of these

papers do the authors consider processes with jumps. For d-dimensional models with jumps, Lorig et al.

(2015b) derive explicit approximations for transition densities and option prices. However, the results are

only formal, as no rigorous error bounds are established for the approximation. The main contribution of this

paper is a rigorous proof of short-time error estimates on transition densities and option prices, under Local

Lévy models with Gaussian jumps. Furthermore, the proof, which is based on a non-trivial generalization

of the standard parametrix method, paves the road for further extensions in order to include more general

choices of Lévy measures.

The main contributions of this paper are as follows. First, we analytically solve the sequence of nested

Cauchy problems mentioned above and thereby derive an explicit expression of the approximate option price

(i.e., solution of the integro-differential equation) to arbitrarily high order. Second, we provide a rigorous and

detailed proof of some pointwise error estimates for the approximation. These estimates were announced,
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without proof, in Lorig et al. (2015d). Lastly, we illustrate how to implement our approximation formulas

in Mathematica, Wolfram’s symbolic computation software. In particular, we provide numerical examples

for transition densities, Call and Put prices, implied volatilities, bond prices and credit spreads. For the

readers’ convenience, example Mathematica code is also made freely available on the authors’ websites. The

numerical tests in this manuscript and the authors’ websites clearly demonstrate the versatility and accuracy

of the method.

The rest of this paper proceeds as follows: in Section 2 we describe a financial market in which a

defaultable asset evolves as an exponential Lévy-type process. We then relate the problem of the pricing of

a European-style option to the solution of a partial integro-differential equation (PIDE). Next, in Section 3,

we introduce a family of asymptotic solutions of the pricing PIDE. The main results are given in Sections 4,

where global error bounds are proved for both densities and option prices resulting from the Taylor-based

approximations for models with Gaussian jumps (Theorem 4.4 and Corollary 4.7. respectively). In addition

to their practical use, these estimates are interesting from the theoretical point, as they imply some non-

classical upper bounds for the fundamental solution of a certain class of integro-differential operators with

variable coefficients. The proof of Theorem 4.4 is postponed to Section 6. Before proving the theorem, we

provide in Section 5 a number of numerical examples, which are relevant for financial applications.

2 Market model and option pricing

For simplicity, we assume a frictionless market, no arbitrage, zero interest rates and no dividends. Our

results can easily be extended to include locally dependent interest rates and dividends. We take, as

given, an equivalent martingale measure Q, chosen by the market on a complete filtered probability space

(Ω,F, {Ft, t ≥ 0},Q) satisfying the usual hypotheses. All stochastic processes defined below live on this

probability space and all expectations are taken with respect to Q. We consider a defaultable asset S whose

risk-neutral dynamics are given by





St = I{ζ>t}e
Xt ,

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +
∫
R
zÑ(dt,Xt−, dz),

Ñ(dt,Xt−, dz) = N(dt,Xt−, dz)− ν(t,Xt−, dz)dt,

ζ = inf
{
t ≥ 0 :

∫ t

0
γ(s,Xs)ds ≥ E

}
.

(2.1)

Here, X is a Lévy-type process with local drift function µ(t, x), local volatility function σ(t, x) ≥ 0 and state-

dependent Poisson random and Lévy measures N(dt, x, dz) and ν(t, x, dz) respectively. The random variable

E ∼ Exp(1) has an exponential distribution and is independent of X. Note that ζ, which represents the

default time of S, is defined here through the so-called canonical construction (see Bielecki and Rutkowski

(2001)). This way of modeling default is also considered in a local volatility setting in Carr and Linetsky

(2006); Linetsky (2006), and for exponential Lévy models in Capponi et al. (2014). Notice that the drift

coefficient µ is fixed by σ, ν and γ in order to satisfy the martingale condition:

µ(t, x) = γ(t, x)− a(t, x)−
∫

R

ν(t, x, dz)(ez − 1− z), a(t, x) :=
1

2
σ2(t, x). (2.2)
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We assume that the coefficients are measurable in t and suitably smooth in x so as to ensure the existence

of a strong solution to (2.1) (see, for instance, Oksendal and Sulem (2005), Theorem 1.19). We also assume

that

ν̄(dz) := sup
(t,x)∈R+×R

ν(t, x, dz),

satisfies the following three boundedness conditions
∫

R

min{|z|, z2} ν̄(dz) < ∞,

∫

|z|≥1

ez ν̄(dz) < ∞, (2.3)

which is rather standard assumption for financial applications. We will relax some of these assumptions for

the numerical examples provided in Section 5. Even without the above assumptions in force, our numerical

tests indicate that our approximation techniques gives very accurate results.

We consider a European derivative expiring at time T with payoff H(ST ) and we denote by V its price

process. we introduce

h(x) := H(ex) and K := H(0).

Then, by no-arbitrage arguments (see, for instance, Linetsky (2006, Section 2.2)) the price of the option at

time t < T is given by

Vt = K + I{ζ>t}E
[
e−
∫ T
t

γ(s,Xs)ds (h(XT )−K) |Xt

]
, t ≤ T. (2.4)

From (2.4) we see that, in order to compute the price of an option, we must evaluate functions of the form1

u(t, x) := E

[
e−
∫ T
t

γ(s,Xs)dsh(XT )|Xt = x
]
. (2.5)

By a direct application of the Feynman-Kac representation theorem (see, for instance, Theorem 14.50 in

Pascucci (2011)) the classical solution of the following Cauchy problem,




(∂t +A)u(t, x) = 0, t ∈ [0, T [, x ∈ R,

u(T, x) = h(x), x ∈ R,
(2.6)

when it exists, is equal to the function u defined in (2.5). Here A ≡ A(t, x) is the integro-differential operator

associated with the SDE (2.1) and defined explicitly as

A(t, x)f(x) = a(t, x)∂xxf(x) + µ(t, x)∂xf(x)− γ(t, x)f(x)

+

∫

R

(f(x+ z)− f(x)− z∂xf(x)) ν(t, x, dz) (2.7)

with µ and a as in (2.2). We say that A is the characteristic operator2 of Xt.

Sufficient conditions for the existence and uniqueness of a classical solution of a second order elliptic

integro-differential equations of the form (2.6) are given in Theorem II.3.1 of Garroni and Menaldi (1992).

1Note: we can accommodate stochastic interest rates and dividends of the form rt = r(t,Xt) and qt = q(t,Xt) by simply

making the change: γ(t, x) → γ(t, x) + r(t, x) and µ(t, x) → µ(t, x) + r(t, x)− q(t, x) in PIDE (2.6).
2More precisely, A+ γ would be the characteristic operator of Xt.

4



In particular, given the existence of the fundamental solution p(t, x;T, y) of (∂t +A), we have that for any

integrable datum h, the Cauchy problem (2.6) has a classical solution that can be represented as

u(t, x) =

∫

R

h(y)p(t, x;T, y)dy.

Notice that p(t, x;T, y) is a “defective” probability density since (due to the possibility that ST = 0) we have

∫

R

p(t, x;T, y)dy ≤ 1.

3 Approximate densities and option prices via polynomial expan-

sions

In this section we describe the approximation methodology and define the notation that will be needed in

subsequent sections.

Definition 3.1. For any n ≤ N ∈ N0, let an = an(t, x), γn = γn(t, x) and νn = νn(t, x, dz) be such that the

following hold:

(i) For any t ∈ [0, T ], the functions an(t, ·), γn(t, ·) are polynomials with a0(t, x) ≡ a0(t), γ0(t, x) ≡ γ0(t),

and for any x ∈ R the functions an(·, x), γn(·, x) belong to L∞([0, T ]).

ii) For any t ∈ [0, T ], x ∈ R, we have

νn(t, x, dz) =

Mn∑

m=0

xmνn,m(t, dz), Mn ∈ N0, (3.1)

where each νn,m(t, dz) satisfies condition (2.3). Moreover, M0 = 0, ν0 ≥ 0 and

∫

|z|≥1

eλ|z|ν0(t, dz) < ∞, t ∈ [0, T ],

for some positive λ.

Then we say that (An(t))0≤n≤N , defined by

An(t, x)f(x) = an(t, x)(∂xxf(x)− ∂xf(x)) + γn(t, x) (∂xf(x)− f(x))

+

Mn∑

m=1

xm

(
−
∫

R

(ez − 1− z) νn,m(t, dz) ∂xf(x) +

∫

R

(
ez ∂x − 1− z ∂x

)
f(x) νn,m(t, dz)

)

≡ an(t, x)(∂xxf(x)− ∂xf(x)) + γn(t, x) (∂xf(x)− f(x))

−
∫

R

(ez − 1− z) νn(t, x, dz) ∂xf(x) +

∫

R

(f(x+ z)− f(x)− z∂xf(x)) νn(t, x, dz),

is an N -th order polynomial expansion of A(t).
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Definition 3.1 allows for very general polynomial specifications. The idea is to choose an expansion

(An(t)) that closely approximates A(t), i.e. formally one has

A(t, x) =

∞∑

n=0

An(t, x). (3.2)

The precise sense of this approximation will depend on the application. Below, we present three polynomial

expansions. The first two expansion schemes provide an accurate approximation A(t, x) in a pointwise local

sense, under the assumption of smooth coefficients. The last expansion scheme approximates A(t, x) in a

global sense and can be applied even in the case of discontinuous coefficients.

Example 3.2. (Taylor polynomial expansion)

Assume the coefficients a(t, ·), γ(t, ·) ∈ CN (R) and that the compensator ν takes the form

ν(t, x, dz) = h(t, x, z)ν̄(dz)

where h(t, ·, z) ∈ CN (R) with h ≥ 0, and ν̄ is a Lévy measure. Then, for any fixed x̄ ∈ R and n ≤ N , we

define an, γn and νn as the nth order term of the Taylor expansions of a, γ and ν respectively in the spatial

variables x around the point x̄. That is, we set

an(t, x) =
∂n
xa(t, x̄)

n!
(x− x̄)n, γn(t, x) =

∂n
xγ(t, x̄)

n!
(x− x̄)n, νn(t, x, dz) =

∂n
xh(t, x̄, z)

n!
(x− x̄)nν̄(dz).

The expansion proposed in Lorig et al. (2015c) and Lorig et al. (2014) is the particular case when ν ≡ 0.

Example 3.3. (Time-dependent Taylor polynomial expansion)

Under the assumptions of Example 3.2, fix a trajectory x̄ : R+ → R. We then define an, γn and νn as

the nth order term of the Taylor expansions of a, γ and ν respectively around x̄(t). This expansion for the

coefficients allows the expansion point x̄ of the Taylor series to evolve in time according to the evolution of

the underlying process Xt. For instance, one could choose x̄(t) = E[Xt]. In Lorig et al. (2015c) this choice

results in a highly accurate approximation for option prices and implied volatility in the Heston (1993)

model, recently included in the open-source financial library QuantLib.

Example 3.4. (Hermite polynomial expansion)

Hermite expansions can be useful when the diffusion coefficients are discontinuous. A remarkable example in

financial mathematics is given by the Dupire’s local volatility formula for models with jumps (see Friz et al.

(2014)). In some cases, e.g., the well-known Variance-Gamma model, the fundamental solution (i.e., the

transition density of the underlying stochastic model) has singularities. In such cases, it is natural to

approximate it in some Lp norm rather than in the pointwise sense. For the Hermite expansion centered at

x̄, one sets

an(t, x) = 〈Hn(· − x̄), a(t, ·)〉ΓHn(x− x̄), γn(t, x) = 〈Hn(· − x̄), γ(t, ·)〉ΓHn(x− x̄),

νn(t, x, dz) = 〈Hn(· − x̄), ν(t, ·, dz)〉ΓHn(x− x̄),

where the inner product 〈·, ·〉Γ is an integral over R with a Gaussian weighting centered at x̄ and Hn(x) is

the n-th one-dimensional Hermite polynomial (properly normalized so that 〈Hm,Hn〉Γ = δm,n with δm,n

being the Kronecker’s delta function).
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Example 3.5. (Legendre polynomial expansion)

Another polynomial expansion that can be useful when the diffusion coefficients are discontinuous is the

Legendre polynomial expansion. Standard Legendre polynomials Ln are orthogonal in L2([−1, 1]) with a

Lebesgue measure weighting. For any finite interval I = (L,R) ⊂ R one can define

LI
n(x) :=

1√
I
Ln

(
x− x̄

I

)
, x̄ =

L+R

2
,

so that LI
n are orthogonal in L2([L,R]). For the Legendre expansion in the interval I ⊂ R, one sets

an(t, x) = 〈LI
n, a(t, ·)〉ILI

n(x), γn(t, x) = 〈LI
n, γ(t, ·)〉ILI

n(x), νn(t, x, dz) = 〈LI
n, ν(t, ·, dz)〉ILI

n(x),

where the inner product 〈·, ·〉I is an integral over the interval I with a Lebesgue measure weighting and the

Legendre polynomials are normalized so that 〈LI
n,L

I
m〉I = δn,m.

Example 3.6. (Other L2 polynomial expansions)

More generally, for any measure ρ on R for which polynomials of all orders are integrable, one can define

polynomial basis functions Pρ
n so that

〈Pρ
n,P

ρ
m〉ρ :=

∫

R

Pρ
n(x)P

ρ
m(x)ρ(dx) = δn,m.

If the diffusion coefficients belong to L2(R, ρ), then one can expand these coefficient into basis functions as

follows

an(t, x) = 〈Pρ
n, a(t, ·)〉ρPρ

n(x), γn(t, x) = 〈Pρ
n, γ(t, ·)〉ρPρ

n(x), νn(t, x, dz) = 〈Pρ
n, ν(t, ·, dz)〉ρPρ

n(x).

It is natural to choose a measure ρ that has most of its mass near the location where one wishes to best

approximate the function u.

Remark 3.7. Although in each of the above examples, an, γn and νn are polynomials in x of degree n, this

is not a requirement of our expansion method. The degree of an, γn and νn may be greater than, equal to,

or less than n.

We now return to Cauchy problem (2.6). Following the classical perturbation approach, we expand the

solution u as an infinite sum

u =

∞∑

n=0

un. (3.3)

Inserting (3.2) and (3.3) into (2.6) we find that the functions (un)n≥0 satisfy the following sequence of nested

Cauchy problems



(∂t +A0)u0(t, x) = 0, t ∈ [0, T [, x ∈ R,

u0(T, x) = h(x), x ∈ R,
(3.4)

and




(∂t +A0)un(t, x) = −
n∑

k=1

Ak(t, x)un−k(t, x), t ∈ [0, T [, x ∈ R,

un(T, x) = 0, x ∈ R.

(3.5)
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Remark 3.8. In fact, the nested sequence of Cauchy problems (3.4)-(3.5) satisfied by the sequence of

functions (un) is a particular choice. This choice can be motivated by considering a family of Cauchy

problems, indexed by a small parameter ε

(∂t +Aε)uε = 0, uε(T, x) = h(x), Aε =
∞∑

n=0

εnAn, ε ∈ [0, 1]. (3.6)

Note that, by (3.2), we formally have Aε|ε=1 = A. If one seeks a solution to (3.6) of the form uε =
∑∞

n=0 ε
nun,

then, collecting terms of like powers of ε one finds that u0 and un satisfy (3.5) and (3.5), respectively.

3.1 Expression for u0

Notice that A0 = A0(t, x) is the characteristic operator of the following additive process

dX0
t =

(
γ0(t)− a0(t)−

∫

R

(ez − 1− z) ν0(t, dz)

)
dt+

√
2a0(t)dWt+

∫

R

z
(
N

(0)
t (dt, dz)− ν0(t, dz)dt

)
, (3.7)

whose characteristic function p̂0(t, x;T, ξ) is given explicitly by

p̂0(t, x;T, ξ) := E[eiξX
0
T |X0

t = x] = exp (iξx+Φ0(t, T, ξ)) , (3.8)

where

Φ0(t, T, ξ) =

(
iξm(t, T )− 1

2
C(t, T )ξ2 +Ψ(t, T, ξ)−

∫ T

t

γ0(s)ds

)
, (3.9)

and with m(t, T ), C(t, T ) and Ψ(t, T, ξ) being defined as

m(t, T ) :=

∫ T

t

(
γ0(s)− a0(s)−

∫

R

(ez − 1− z) ν0(s, dz)

)
ds,

C(t, T ) :=

∫ T

t

2a0(s)ds,

Ψ(t, T, ξ) :=

∫ T

t

∫

R

(eizξ − 1− izξ) ν0(s, dz)ds. (3.10)

Note, the additive process X0 in (3.7) is assumed to be defined on an appropriate probability space. It is well-

known that additive processes can be constructed as time-changed Lévy processes (see (Cont and Tankov,

2004, Chapter 14)). The fundamental solution p0 of (∂t +A0), which exists if a0 > 0 (Sato, 1999, Proposition

28.3), can be recovered by Fourier inversion since, by the first equality in (3.8), we have

p̂0(t, x;T, ξ) = Fyp0(t, x, ;T, ·)(ξ) :=
∫

R

eiyξp0(t, x, ;T, y)dy, (3.11)

and therefore

p0(t, x, ;T, y) = F−1
y p̂0(t, x;T, ·)(y) :=

1

2π

∫

R

e−iyξp̂0(t, x;T, ξ)dξ. (3.12)

Given the fundamental solution p0(t, x, ;T, y), we have the representation for the solution u0 of problem (3.4)

u0(t, x) =

∫

R

p0(t, x;T, y)h(y) dy, t < T, x ∈ R. (3.13)
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Assume that the payoff function h and its Fourier transform ĥ(y) ∈ L1(R, dy). Then, by inserting the

expression (3.12) for p0(t, x, ;T, y) into (3.13) and integrating with respect to ξ, we also have the following

alternative representation

u0(t, x) =
1

2π

∫

R

p̂0(t, x;T, ξ)ĥ(−ξ) dξ. (3.14)

3.2 Expression for un

The following theorem provides an explicit formula for un(t, x) in (3.5) expressed in terms of integro-

differential operators applied to u0(t, x) in (3.13).

Theorem 3.9. Fix N ∈ N and let (An(t))0≤n≤N be an N th order polynomial expansion of A as in Definition

3.1. For any 1 ≤ n ≤ N , we have

un(t, x) = Lx
n(t, T )u0(t, x), t < T, x, ξ ∈ R, 1 ≤ n ≤ N, (3.15)

with u0 as in (3.13) and

Lx
n(s0, T ) :=

n∑

h=1

∫ T

s0

ds1

∫ T

s1

ds2 · · ·
∫ T

sh−1

dsh
∑

i∈In,h

Gx
i1(s0, s1) · · ·G

x
ih
(s0, sh), (3.16)

where3

In,h = {i = (i1, . . . , ih) ∈ Nh | i1 + · · ·+ ih = n}, 1 ≤ h ≤ n, (3.17)

and Gx
n(t, s) is the operator (see Remark 3.10 below)

Gx
n(t, s) := An (s,M

x(t, s)) , (3.18)

with Mx(t, s) acting as

Mx(t, s)f(x) = (x+m(t, s) +C(t, s) ∂x) f(x) +

∫ s

t

∫

R

(f(x+ z)− f(x)) z ν0(r, dz)dr. (3.19)

Remark 3.10. The operator in (3.18) can be written more explicitly as

An (s,M
x(t, s)) f(x) =an(t,M

x(t, s))(∂xxf(x)− ∂xf(x)) + γn(t,M
x(t, s)) (∂xf(x)− f(x))

−
Mn∑

m=1

(
Mx(t, s)

)m
∫

R

(ez − 1− z) νn,m(t, dz) ∂xf(x)

+

Mn∑

m=1

(
Mx(t, s)

)m
∫

R

(
f(x+ z)− f(x)− z∂xf(x)

)
νn,m(t, dz).

Remark 3.11. Theorem 3.9 extends the novel representation given in (Lorig et al., 2015a, Theorem 3.8),

which is given for the purely diffusion case. When no jump component is present the operator Mx in (3.19)

reduces to

Mx(t, s) = x+m(t, s) +C(t, s) ∂x.
3 For instance, for n = 3 we have I3,3 = {(1, 1, 1)}, I3,2 = {(1, 2), (2, 1)} and I3,1 = {(3)}.
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Remark 3.12. The expression for un given in (3.15) can be used in two ways. First, if the fundamental

solution p0(t, x;T, y) is explicitly available (this is always the case in the purely diffusive setting), then to

obtain un one can apply the operator Lx
n(t, T ) directly to p0(t, x;T, y) in (3.13). Second, if p0(t, x;T, y) is not

available explicitly, then one can obtain a Fourier representation for un by applying the operator Lx
n(t, T )

directly to p̂0(t, x;T, ξ) in (3.14). The details of the latter approach will be shown in Subsection 3.2.1.

Proof of Theorem 3.9. Let p0 be formally defined by (3.11). The proof of Theorem 3.9 relies on the following

symmetry properties: for any t < s and x, y ∈ R, we have

p0(t, x; s, y) = p0(t, 0; s, y − x), (3.20)

∂xp0(t, x; s, y) = −∂yp0(t, x; s, y), (3.21)

and

y p0(t, x; s, y) = Mx(t, s)p0(t, x; s, y), (3.22)

x p0(t, x; s, y) = M̄y(t, s)p0(t, x; s, y), (3.23)

with M̄y(t, s) acting as

M̄y(t, s)f(y) = (y −m(t, s) +C(t, s)∂y) f(y) +

∫ s

t

∫

R

(f(y + z)− f(y)) zν0(r,−dz)dr.

Identities (3.20)-(3.21) follow directly from the spatial-homogeneity of the coefficients of A0. In order to

prove (3.22)-(3.23), we shall use some standard properties of the Fourier transform. For any function f in

the Schwartz space we have

iξFx(f) = Fx(−∂xf), Fx(xf) = −i∂ξFxf, (3.24)

and for any Lévy measure m such that
∫
|x|>1

|x|m(dx) < ∞, we have

Fx

(∫

R

(f(x− z)− f(x)) zm(dz)

)
(ξ) =

∫

R

(eizξ − 1)zm(dz)Fxf(ξ). (3.25)

Thus, by (3.24) we obtain

Fy(y p0(t, x; s, y))(ξ)

= −i∂ξFy(p0(t, x; s, y))(ξ)

= (x+m(t, s) +C(t, s)iξ − i∂ξΨ(t, s, ξ))Fyp0(t, x; s, y)(ξ) (by (3.8)-(3.9))

=

(
x+m(t, s) +C(t, s)iξ +

∫ s

t

∫

R

(eizξ − 1) z ν0(r, dz)dr

)
Fyp0(t, x; s, y)(ξ) (by (3.10))

= Fy ((x+m(t, s)−C(t, s)∂y) p0(t, x; s, y)) (ξ)

+ Fy

(∫ s

t

∫

R

(p0(t, x; s, y − z)− p0(t, x; s, y)) ν0(r, dz)dr

)
(ξ) (by (3.24) and (3.25))

= Fy (M
x(t, s)p0(t, x; s, y)) (ξ). (by (3.21), (3.20) and (3.19))
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The identity (3.23) arises from the same arguments and because, by the symmetry property (3.20), we have

Fxp0(t, · ;T, y)(ξ) = exp

(
iξ(y −m(t, T ))− 1

2
C(t, T )ξ2 +Ψ(t, T,−ξ)−

∫ T

t

γ0(s)ds

)
.

As indicated in Remark 3.11, Theorem 3.9 reduces to (Lorig et al., 2015a, Thorem 3.8) in case of a null

Lévy measure ν(t, x, dz) ≡ 0. The proof of the (Lorig et al., 2015a, Thorem 3.8) is based on a system-

atic use of symmetry properties of Gaussian densities combined with some classical relations such as the

Chapman-Kolmogorov equation and the Duhamel’s principle. Using the same classical relations, the proof

of Theorem 3.9 follows by replacing the Gaussian symmetry properties in (Lorig et al., 2015a, Lemma 5.4)

with the symmetries properties (3.20)-(3.21)-(3.22)-(3.23) outlined above for additive processes. We refer to

(Lorig et al., 2015a, Section 5) for the details.

3.2.1 Fourier representation for un

Using (3.8), (3.14) and (3.15), we obtain

un(t, x) = Lx
n(t, T )u0(t, x) =

1

2π

∫

R

eΦ0(t,T,ξ)
(
Lx

n(t, T )e
ixξ
)
ĥ(−ξ)dξ.

The term in parenthesis Lx
n(t, T )e

ixξ can be computed explicitly. However, Lx
n(t, T ) is, in general, an integro-

differential operator (when X is a diffusion Lx
n(t, T ) is simply a differential operator). Thus, for models with

jumps, computing Lx
n(t, T )e

ixξ is a challenge. Remarkably, we will show that there exists a differential

operator L̂ξ
n(t, T ) such that

Lx
n(t, T )e

ixξ = L̂ξ
n(t, T )e

ixξ, (3.26)

where, for clarity, we have explicitly indicated using the superscript ξ that L̂ξ
n(t, T ) acts on ξ. With a slight

abuse of terminology, we call L̂ξ
n the symbol 4 of the operator Lx

n(t, T ) in (3.16).

Let us consider the operator Mx(t, s) in (3.19); its symbol M̂ξ(t, s) is defined analogously to (3.26), i.e.

Mx(t, s)eixξ = M̂ξ(t, s)eixξ. (3.27)

Explicitly, we have

M̂ξ(t, s) = F (ξ, t, s)− i∂ξi ,

where the function F is defined as

F (ξ, t, s) = −iξΨ(t, s, ξ) +m(t, s)ds+ iξC(t, s)

=

∫ s

t

∫

R

z
(
eizξ − 1

)
ν0(τ, dz)dτ +m(t, s)ds+ iξC(t, s).

4 The operator L̂
ξ
n is not a function as in the classical theory of pseudo-differential calculus. However e−i〈ξ,x〉L̂

ξ
ne

ixξ is the

symbol of Lx
n(t, T ). For the interested reader, any book on pseudo-differential operators is an appropriate resource to learn

about symbols. See, for example Jacob (2001) or Hoh (1998).
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We note that, while Mx is a first order integro-differential operator, its symbol M̂ξ is a first order differential

operator. For this reason, it is more convenient to use the symbol M̂ξ instead of the operator Mx. From

identity (3.27) we obtain directly the expression of the symbol of Gj in (3.18). Indeed, recalling the expression

(3.1) of νj we have

Ĝ
ξ
j(t, s) = −(ξ2 + iξ) an

(
s, M̂ξ(t, s)

)
+ (iξ − 1) γn

(
s, M̂ξ(t, s)

)

+

Mn∑

m=1

(
−iξ

∫

R

(ez − 1− z) νn,m(s, dz) +

∫

R

(
eizξ − 1− izξ

)
νn,m(s, dz)

)(
M̂ξ(t, s)

)m
.

Thus we have proved the following lemma

Lemma 3.13. We have

L̂ξ
n(t, T ) =

n∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk
∑

i∈In,k

Ĝ
ξ
i1
(t, t1)Ĝ

ξ
i2
(t, t2) · · · Ĝξ

ik
(t, tk), (3.28)

with In,k as defined in (3.17).

The following theorem extends the Fourier pricing formula (3.14) to higher order approximations.

Theorem 3.14. Assume that h, ĥ ∈ L1(R, dy). Then, for any n ≥ 1 we have

un(t, x) =
1

2π

∫

R

p̂n(t, x, T, ξ)ĥ(−ξ) dξ, (3.29)

where p̂n(t, x, T, ξ) is the nth order term of the approximation of the characteristic function of X. Explicitly,

we have

p̂n(t, x, T, ξ) := p̂0(t, x, T, ξ)
(
e−ixξL̂ξ

n(t, T )e
ixξ
)

where p̂0(t, x, T, ξ) is the 0th order approximation in (3.8) and L̂ξ
n(t, T ) is the differential operator defined in

(3.28).

Proof. We first note that, since the approximating operator Lx
n acts in the x variables, then it commutes5

with the Fourier pricing operator (3.14). Thus, by (3.15) combined with (3.14), we get

un(t, x) = Lx
n(t, T )u0(t, x) =

1

2π

∫

R

Lx
n(t, T )e

ixξ+Φ0(t,T,ξ)ĥ(−ξ) dξ

=
1

2π

∫

R

p̂0(t, x, T, ξ)
(
e−ixξLx

n(t, T )e
ixξ
)
ĥ(−ξ) dξ,

and the thesis follows from (3.26).

Remark 3.15. Computing the term in parenthesis above
(
e−ixξL̂ξ

n(t, T )e
ixξ
)
is a straightforward exercise

since the symbol L̂ξ
n(t, T ), given in (3.28), is a differential operator.

5This was one of the main points of the adjoint expansion method proposed by Pagliarani et al. (2013).
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Example 3.16. Let (A0,A1) the 1-st order Taylor expansion of A proposed in Example 3.2. Then we have

p̂1(t, x;T, ξ) = p̂0(t, x;T, ξ)

∫ T

t

Ā1(s, ξ)
(
x− x̄+m(t, s) + iξC(t, s)− i∂ξΨ(t, s, ξ)

)
ds,

with

Ā1(s, ξ) = γ1(s)(iξ − 1) + a1(s)(−ξ2 − iξ)− iξ

∫

R

(ez − 1− z) ν1(s, dz) +

∫

R

(
eizξ − 1− izξ

)
h1(s, x̄, z)ν̄(s, dz),

and

γ1(s) = ∂xγ(s, x̄), a(s) = ∂xa(s, x̄), h1(s, x̄, z) = ∂xh(s, x̄, z).

Remark 3.17. If h(y) /∈ L1(R, dy) but h(y)ecy ∈ L1(R, dy) for some c ∈ R (which is the case for Call

and Put payoffs), one can still use expressions (3.14) and (3.29) by fixing an imaginary component of ξ.

This technique, known as a generalized Fourier transform, is described in detail in Lewis (2000) and Lipton

(2002).

4 Gaussian jumps: explicit densities and pointwise error bounds

We examine here the particular case when the Lévy measure ν coincides with a normal distribution with

state dependent parameters. Specifically, throughout this section we will assume

ν(t, x, dz) = λ(t, x)Nm(x),δ2(x)(dz) :=
λ(t, x)√
2πδ(x)

e
− (z−m(x))2

2δ2(x) dz. (4.1)

We will show that, under such a choice, the representation formula given in Theorem 3.9 leads to closed

form (fully explicit) approximations for densities, prices and Greeks. Furthermore we will prove some sharp

pointwise error bounds for such approximations at a given order N ∈ N0.

The results of this section apply only to the Taylor series expansion of Example 3.2. Throughout this

section we will often make use of the convolution operator

Cρ,θf(x) := Cx
ρ,θf(x) =

∫

R

f(x+ z)
1√
2πθ

e−
(z−ρ)2

2θ dz, ρ ∈ R, θ > 0. (4.2)

Let us first observe that the leading term p0(t, x;T, y) in the expansion of the fundamental solution p(t, x;T, y)

is the transition density of a time-dependent compound Poisson process with Lévy measure

ν0(t, dz) = λ0(t)Nm0,δ20
(dz) :=

λ0(t)√
2πδ0

e
− (z−m0)2

2δ20 dz,

and thus it can be written as

p0(t, x;T, y) = e−
∫ T
t

(λ0(s)+γ0(s))ds
∞∑

n=0

(∫ T

t
λ0(s)ds

)n

n!
p0,n(t, x;T, y) (4.3)

p0,n(t, x;T, y) =
1

√
2π
(∫ T

t
a0(s)ds+ n δ20

) 1
2

exp


−

(
x− y + nm0 −

∫ T

t

(
a0(s)

2 + λ0(s)e
δ20
2 − λ0(s)

)
ds

)2

2
(∫ T

t
a0(s)ds+ n δ20

)


 .

(4.4)
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This also implies that the leading term u0(t, x) in the price expansion is explicit, as long as the integrals of

the payoff function h against the Gaussian densities p0,n(t, x;T, ·) are computable in closed form.

Moreover we have the following representation for the operators (Gx
n)n≥1 appearing in Theorem 3.9.

Proposition 4.1. For any n ≥ 1, the operator Gx
n in (3.18) is given by

Gx
n(t, s) = (Mx(t, s)− x̄)

n
An(s),

where

Mx(t, s)f(x) = x+

∫ s

t

(
γ0(r)− a0(r)− λ0(r)

(
e

δ20
2 +m0 − 1

))
dr + 2

∫ T

t

a0(r)dr ∂x

+

∫ s

t

λ0(r)dr
(
m0 − δ20∂x

)
Cx
m0,δ20

,

and

An(s) = an(s)(∂xx − ∂x) + γn(s)(∂x − 1)− gn(s, ∂x)

(
e

δ20
2 +m0 − 1

)
∂x + gn(s, ∂x)(C

x
m0,δ20

− 1),

an(s) =
1

n!
∂n
xa(s, x̄), γn(s) =

1

n!
∂n
xγ(s, x̄), (4.5)

with (gn(s, ·))n≥0 being polynomials whose coefficients only depend on

λi(t) :=
1

i!
∂i
xλ(t, x̄), mi :=

1

i!
∂i
xm(x̄), δi :=

1

i!
∂i
xδ(x̄), 0 ≤ i ≤ n. (4.6)

Remark 4.2. Note that the action of the operators Gx
n on the Lévy type density p0(t, x;T, y), as well as on

u(t, x), can be explicitly characterized. Indeed, a direct computation shows that, for any k ≥ 0,

∂xp0,k(t, x;T, y) = −
x− y + nm0 −

∫ T

t

(
a0(s)

2 + λ0(s)e
δ20
2 − λ0(s)

)
ds

2
(∫ T

t
a0(s)ds+ n δ20

) p0,k(t, x;T, y),

Cx
m0,δ20

p0,k(t, x, ;T, y) = p0,k+1(t, x;T, y),

and

Cx
m0,δ20

(x p0,k(t, x, ;T, y)) = (x+m0 − δ20∂x)C
x
m0,δ20

p0,k(t, x, ;T, y),

Cx
m0,δ20

(∂xp0,k(t, x, ;T, y)) = ∂xC
x
m0,δ20

p0,k(t, x, ;T, y).

We now fix N ≥ 0 and prove some pointwise error estimates for the N -th order approximation of the

fundamental solution of p(t, x;T, y), defined as

p(N)(t, x;T, y) =

N∑

n=0

pn(t, x;T, y),

where the functions pn(·, · ;T, y) solve (3.4)-(3.5) with h = δy. Hereafter, we will assume the coefficients of

the operator A in (2.7), with ν as in (4.1), to satisfy the following assumption.

Assumption 4.3. There exists a constant M > 0 such that
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i) (parabolicity) for any t ∈ [0, T ] and x ∈ R,

M−1 ≤ a(t, x) ≤ M ;

ii) (non degeneracy of the Lévy measure) the Lévy measure ν is as in (4.1) and, for any t ∈ [0, T ] and

x ∈ R,

M−1 ≤ δ2(x) ≤ M, 0 ≤ λ(t, x) ≤ M, t ∈ [0, T ], x ∈ R;

iii) (regularity and boundedness) for any t ∈ [0, T ], the functions a(t, ·), γ(t, ·), λ(t, ·), δ(·), m(·) ∈ CN+1(R),

and all of their x-derivatives up to order N +1 are bounded by M , uniformly with respect to t ∈ [0, T ].

Theorem 4.4. Let N ∈ N0, and x̄ = y or x̄ = x in (4.5)-(4.6). Then, under Assumption 4.3, for any

x, y ∈ R and t < T we have6

∣∣∣p(t, x;T, y)− p(N)(t, x;T, y)
∣∣∣ ≤ gN (T − t)

(
Γ̄(t, x;T, y) + ‖∂xν‖∞ Γ̃(t, x;T, y)

)
, (4.7)

where

gN (s) = O

(
s

1+min(1,N)
2

)
, as s → 0+.

Here, the function Γ̄ is the fundamental solution of the constant coefficients jump-diffusion operator

∂tu(t, x) +
M̄

2
∂xx + M̄

∫

R

(u(t, x+ z)− u(t, x))NM̄,M̄ (dz),

where M̄ is a suitably large constant, and Γ̃ is defined as

Γ̃(t, x;T, y) =

∞∑

k=0

M̄k/2(T − t)k/2√
k!

Ck+1Γ̄(t, x;T, y),

with CM̄ = Cx
0,M̄

being the convolution operator defined in (4.2).

The proof the Theorem 4.4 is postponed to Section 6.

Remark 4.5. As we shall see in the proof of Theorem 4.4, the functions CkΓ̄ take the following form

CkΓ̄(t, x;T, y) = e−M̄(T−t)
∞∑

n=0

(
M̄(T − t)

)n

n!
√

2πM̄(T − t+ n+ k)
exp

(
−
(
x− y + M̄(n+ k)

)2

2M̄(T − t+ n+ k)

)
, k ≥ 0, (4.8)

and therefore Γ̃ can be explicitly written as

Γ̃(t, x;T, y) = e−M̄(T−t)
∞∑

n,k=0

(
M̄(T − t)

)n+ k
2

n!
√
k!
√
2πM̄(T − t+ n+ k + 1)

exp

(
−
(
x− y + M̄(n+ k + 1)

)2

2M̄(T − t+ n+ k + 1)

)
.

6Here ‖∂xν‖∞ := max{‖∂xλ‖∞ , ‖∂xδ‖∞ , ‖∂xµ‖∞}, where ‖·‖∞ denotes the sup-norm on (0, T )×R. Note that ‖∂xν‖∞ = 0

if λ, δ, µ are constants.
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By Remark 4.5, it follows that, when k = 0 and x 6= y, the asymptotic behaviour as t → T of the sum

in (4.8) depends only on the n = 1 term. Consequently, we have Γ̄(t, x;T, y) = O(T − t) as (T − t) tends to

0. On the other hand, for k ≥ 1, CkΓ̄(t, x;T, y), and thus also Γ̃(t, x;T, y), tends to a positive constant as

(T − t) goes to 0. It is then clear by (4.7) that, with x 6= y fixed, the asymptotic behavior of the error, when

t tends to T , changes from (T − t)
1+min(1,N)

2 to (T − t)
1+min(1,N)

2 +1 depending on whether the Lévy measure

is locally-dependent or not.

Remark 4.6. The proof of Theorem 4.4 is also interesting for theoretical purposes. Indeed, it actually rep-

resents a procedure to construct p(t, x;T, y). Note that with p(N)(t, x;T, y) being known explicitly, equation

(4.7) provides pointwise upper bounds for the fundamental solution of the integro-differential operator with

variable coefficients (∂t +A).

Theorem 4.4 extends the previous results in Pagliarani et al. (2013) where only the purely diffusive case

(i.e λ ≡ 0) is considered. In that case an estimate analogous to (4.7) holds with

gN (s) = O

(
s

N+1
2

)
, as s → 0+.

Theorem 4.4 shows that for jump processes, one obtains an improvement on the asymptotic convergence

from (T − t)
1
2 to (T − t) when passing from N = 0 to N = 1. On the other hand, increasing the order of

the expansion for N greater than one, theoretically does not give any gain in the rate of convergence of the

approximation expansion as t → T−; this is due to the fact that the expansion is based on a local (Taylor)

approximation while the PIDE contains a non-local part. We refer to Section 6.2 for further details about

this aspect. As for the estimate (4.7), this is in accord with the results in Benhamou et al. (2009) where

only the case of constant Lévy measure is considered. Thus Theorem 4.4 extends the latter results to state

dependent Gaussian jumps using a completely different technique. Extensive numerical tests showed that

the first order approximation gives very accurate results and the precision appears to be further improved

by considering higher order approximations.

A straightforward corollary of Theorem 4.4 is the following estimate of the error for the N -th order

approximation of the price, defined as

u(N)(t, x) =

N∑

n=0

un(t, x), (4.9)

where the functions un(·, · ;T, y) solve (3.4)-(3.5).

Corollary 4.7. Let x̄ = y or x̄ = x in (4.5)-(4.6). Then, for any x, y ∈ R and t < T we have

∣∣u(t, x)− u(N)(t, x)
∣∣ ≤ gN (T − t)

∫

R

|h(y)|
(
Γ̄(t, x;T, y) + ‖∂xν‖∞ Γ̃(t, x;T, y)

)
dy,

where

gN (s) = O

(
s

1+min(1,N)
2

)
, as s → 0+.

Remark 4.8. Corollary 4.7 is an asymptotic convergence result for the small time-to-maturity limit. We

remark explicitly that the expansion for the transition density p(N)(t, x;T, y) and the expansion for prices
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u(N)(t, x), in general, do not converge as N goes to infinity. This is a common feature of most perturbative

techniques in literature, both in pure diffusion settings (see for instance Lorig et al. (2015a) and Watanabe

(1987)) and in jump-diffusion settings (see Benhamou et al. (2009)). A typical feature of small-time asymp-

totic expansions is that they are remarkably accurate for small maturities, even for low values of N . Indeed,

we shall see in Section 5.7 that this is the case for our expansion.

Some possible extensions of these asymptotic error bounds to general Lévy measures are possible, though

they are certainly not straightforward. Indeed, the proof of Theorem 4.4 is based on some pointwise uniform

estimates for the fundamental solution of the constant coefficient operator, i.e., the transition density of a

compound Poisson process with Gaussian jumps. When considering other Lévy measures these estimates

would be difficult to carry out, especially in the case of jumps with infinite activity, but they might be

obtained in some suitable normed functional space. This might lead to error bounds for short maturities,

which are expressed in terms of a suitable norm, as opposed to uniform pointwise bounds. We aim to

elaborate more on this direction in our future research.

5 Examples

In this section, in order to illustrate the versatility of our asymptotic expansion, we apply our approxima-

tion technique to a variety of different Lévy-type models. We study not only option prices and transition

densities, but also implied volatilities and credit spreads. In each setting, if the exact or approximate den-

sity/option price/credit spread has been computed by a method other than our own, we compare this to the

density/option price/credit spread obtained by our approximation. For cases where the exact or approximate

density/option price/credit spread is not analytically available, we use Monte Carlo methods to verify the

accuracy of our method.

Note that, some of the examples considered below do not satisfy the conditions listed in Section 2. In

particular, we will consider coefficients (a, γ, ν) that are not bounded. Nevertheless, the formal results of

Section 3 work well in the examples considered.

5.1 CEV-like Lévy-type processes

We consider a Lévy-type process of the form (2.1) with CEV-like volatility and jump-intensity. Specifically,

the log-price dynamics are given by

a(x) =
1

2
δ2e2(β−1)x, ν(x, dz) = e2(β−1)xN(dz), γ(x) = 0, δ ≥ 0, β ∈ [0, 1],

where N(dx) is a Lévy measure. When N ≡ 0, this model reduces to the CEV model of Cox (1975).

Note that, with β ∈ [0, 1), the volatility and jump-intensity increase as x → −∞, which is consistent with

the leverage effect (i.e., a decrease in the value of the underlying is often accompanied by an increase in

volatility/jump intensity). This characterization will yield a negative skew in the induced implied volatility

surface. For the numerical examples for this model, we use the one-point Taylor series expansion of A as in

Example 3.2 with x̄ = Xt.
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We will consider the case where the Lévy measure N(dz) is Gaussian:

N(dz) = λ
1√
2πη2

exp

(−(z −m)2

2η2

)
dz. (5.1)

In our first numerical experiment, we consider the case of Gaussian jumps. That is, N(dz) is given by (5.1).

We fix the following parameters

δ = 0.20, β = 0.5, λ = 0.3, m = −0.1, η = 0.4, S0 = ex = 1. (5.2)

In order to examine the convergence of our density approximation, in Figure 1 we plot the approximate

transition density p(N)(t, x;T, y) for different values of N . We note that, for T − t ≤ 5, the transition

densities p(4)(t, x;T, y) and p(3)(t, x;T, y) are nearly identical. This is typical in our numerical experiments.

Numerical results associated with Figure 1 are given in Table 1.

Computation times are also an important consideration. From Theorem 3.14 and (4.9), we observe that

u(N)(t, x) =
1

2π

∫

R

p̂0(t, x, T, ξ)ĥ(−ξ)

(
1 +

N∑

n=1

e−ixξL̂ξ
n(t, T )e

ixξ

)
dξ,

where, to obtain p(N)(t, x;T, y) from u(N)(t, x), one simply sets h = δy. Thus, the N -th order approximation

(either for an option price u(N) or the transition density p(N)) as a single Fourier integral, which must be

computed numerically. The difference in computation times for a given order of approximation will depend

only on the factor in parenthesis, which is simply a polynomial in ξ and can always be computed explicitly.

To gauge the numerical cost of computing the Nth order approximation of the transition density, we measure

the average time needed to compute p(N)(t, x;T, y) over a range of y-values. We call the average time it

takes to compute p(N) divided by the average time it takes to compute p(0) the computation time of p(N)

relative to p(0). Computation times relative to p(0) are given in Table 1.

5.2 Comparison with Jacquier and Lorig (2013)

In Jacquier and Lorig (2013), the author considers a class of time-homogeneous Lévy-type processes of the

form:

a(x) =
1

2

(
b20 + εb21η(x)

)
,

γ(x) = c0 + εc1η(x),

ν(x, dz) = ν0(dz) + εη(x)ν1(dz).





Here, (b0, b1, c0, c1, ε) are non-negative constants, the function η ≥ 0 is smooth and ν0 and ν1 are Lévy

measures. When η(x) = eβ(x) := eβx, the authors obtain the following expression for European-style

options written on X

u(t, x) =

∞∑

n=0

εnwn(T − t, x), (5.3)

wn(t, x) = enβ(x)

∫

R

dξ

(
n∑

k=0

etπξ−ikβ

∏n
j 6=k(πξ−ikβ − πξ−ijβ)

)(
n−1∏

k=0

χξ−ikβ

)
ĥ(ξ)eixix.
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where x = Xt and

πξ =
1

2
b20
(
−ξ2 − iξ

)
+ c0(iξ − 1)−

∫

R

ν0(dz) (e
z − 1− z) iξ +

∫

R

ν0(dz)
(
eiξz − 1− iξz

)
,

χξ =
1

2
b21
(
−ξ2 − iξ

)
+ c1(iξ − 1)−

∫

R

ν1(dz) (e
z − 1− z) iξ +

∫

R

ν1(dz)
(
eiξz − 1− iξz

)
.

As in (3.14), ĥ(ξ) is the (possibly generalized) inverse Fourier transform of the option payoff h(x).

In our numerical experiment, we use the Taylor series expansion of A as in Example 3.2 with x̄ = Xt.

We consider Gaussian jumps (i.e., N given by (5.1)) and we fix the following parameters:

β = −2.0, bi = 0.15, ci = 0.0, νi = N, i = {0, 1},
ε = 1.0, λ = s = 0.2, m = −0.2, T − t = 0.5, Xt = 0.0,



 (5.4)

where the Lévy measure N is given by (5.1). Using Theorem 3.9, we compute the approximate prices

u(0)(t, x;K) and u(2)(t, x;K) of a series of European puts with strike prices K ∈ [0.5, 1.5] (we add the

parameter K to the arguments of u(N) to emphasize the dependence of u(N) on the strike price K). We also

compute the price u(t, x;K) using (5.3). In (5.3), we truncate the infinite sum at n = 8.

As prices are often quoted in implied volatilities, we convert prices to implied volatilities by inverting the

Black-Scholes formula numerically. That is, for a given put price u(t, x;K), we find σ(t,K) such that

u(t, x;K) = uBS(t, x;K,σ(t,K)),

where uBS(t, x;K,σ) is the Black-Scholes price of the put as computed assuming a Black-Scholes volatility

of σ. For convenience, we introduce the notation

IV[u(t, x;K)] := σ(t,K)

to indicate the implied volatility induced by option price u(t, x;K).

The results of our numerical experiment are plotted in Figure 2. We observe a nearly exact match between

the induced implied volatilities IV[u(2)(t, x;K)] and IV[u(t, x;K)], where u(t, x;K) (with no superscript) is

computed by truncating (5.3) at n = 8.

5.3 Comparison to NIG-type processes

There is a one-to-one correspondence between the generator A of a Lévy-type process and its symbol φ, the

correspondence being given by

A(t, x)eiξx = φ(t, x, ξ)eiξx.

Thus, Lévy-type processes can be uniquely characterized either through their generator A or their symbol

φ. If X0 is an additive or Lévy process with symbol φ, we have the following expression for p̂0(t, x;T, ξ)

p̂0(t, x;T, ξ) := E[eiξX
0
T |X0

t = x] = exp

(
iξx+

∫ T

t

φ(s, x, ξ)ds

)
.
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A Normal Inverse Gaussian (NIG) (see Barndorff-Nielsen (1998)) is a Lévy process X0 with symbol

φ(ξ) = iµξ − δ
[√

α2 − (β + iξ)2 −
√
α2 − β2

]
.

In Chapter 14, equation (14.1) of Boyarchenko and Levendorskii (2000), that authors consider NIG-like Feller

processes with symbol

φ(x, ξ) = iµ(x)ξ − δ(x)
[√

α2(x)− (β(x) + iξ)2 −
√
α2(x)− β2(x)

]
,

where µ, δ, α, β ∈ C∞
b (R), δ, α > 0, µ, β ∈ R, and where there exist constants c and C such that δ(x) > c,

α(x) − |β(x)| > c and |µ(x)| ≤ C. Note that if X is a NIG-type process with symbol φ(x, ξ), then S = eX

is a martingale if and only if φ(x,−i) = 0. Thus, the triple (α, β, δ) fixes µ.

Boyarchenko and Levendorskii (2000) deduce the following asymptotic expansion for u(t, x) (see the

equations following (14.27) and equation (16.40)).

u(t, x) := E [h(XT )|Xt = x]

=

∫

R

dξ
1√
2π

eiξxe(T−t)φ(x,ξ)

(
1 +

1

2
(T − t)2[i∂xφ(x, ξ)][∂ξφ(x, ξ)] + · · ·

)
ĥ(ξ), (5.5)

We note that, if one uses the Taylor series expansion of A as in Example 3.2 with x̄ = x, then expansion

(5.5) is contained within u0 + u1, the first order price approximation obtained in Theorem 3.9.

In our numerical experiment, we use the Taylor series expansion from Example 3.2 with x̄ = Xt. We fix

the following parameters

δ(x) = δ0e
2(γ−1)x, γ = 0.5, δ0 = 2.0, α = 40, β = −10, Xt = 0.0, T − t = 0.25,(5.6)

and, using Theorem 3.9, we compute the approximate prices u(0)(t, x; k) and u(3)(t, x; k) of a series of

European puts with strike prices k = logK ∈ [−0.3, 0.3] (we once again add the parameter k to the arguments

of u(N) to emphasize the dependence of u(N) on the log strike price k). We also compute the exact price u

using Monte Carlo simulation. After converting prices to implied volatilities we plot the results in Figure 3.

We observe a nearly exact match between the induced implied volatilities IV[u(3)(t, x; k)] and IV[u(t, x; k)].

5.4 Yields and credit spreads in the JDCEV setting

Consider a defaultable bond, written on S, that pays one dollar at time T > t if no default occurs prior to

maturity (i.e., ST > 0, ζ > T ) and pays zero dollars otherwise. Then the time t value of the bond is given

by

Vt = E[I{ζ>T}|Xt] = I{ζ>t}u(t,Xt;T ), u(t,Xt;T ) = E[e−
∫ T
t

γ(s,Xs)ds|Xt].

We add the parameter T to the arguments of u to indicate dependence of u on the maturity date T . Note

that u(t, x;T ) is both the price of a bond and the conditional survival probability : Q(ζ > T |Xt = x, ζ > t).

The yield Y (t, x;T ) of such a bond, on the set {ζ > t}, is defined as

Y (t, x;T ) :=
− log u(t, x;T )

T − t
. (5.7)

20



The credit spread is defined as the yield minus the risk-free rate of interest. Obviously, in the case of zero

interest rates, we have: yield = credit spread.

In Carr and Linetsky (2006), the authors introduce a class of unified credit-equity models known as

Jump to Default Constant Elasticity of Variance or JDCEV. Specifically, in the time-homogeneous case, the

underlying S is described by (2.1) with

a(x) =
1

2
δ2e2βx, γ(x) = b+ c δ2e2βx, ν(x, dz) = 0,

where δ > 0, b ≥ 0, c ≥ 0. We will restrict our attention to cases in which β < 0. From a financial perspective,

this restriction makes sense, as it results in volatility and default intensity increasing as S → 0+, which is

consistent with the leverage effect. Note that when c > 0, the asset S may only go to zero via a jump from a

strictly positive value. That is, according to the Feller boundary classification for one-dimensional diffusions

(see Borodin and Salminen (2002), p.14), the endpoint −∞ is a natural boundary for the killed diffusion X

(i.e., the probability that X reaches −∞ in finite time is zero). The survival probability u(t, x;T ) in this

setting is computed in Mendoza-Arriaga et al. (2010), equation (8.13). We have

u(t, x;T ) =
∞∑

n=0

(
e−(b+ωn)(T−t)Γ(1 + c/|β|)Γ(n+ 1/(2|β|))

Γ(ν + 1)Γ(1/(2|β|))n!

×A1/(2|β|)ex exp
(
−Ae−2βx

)
1F1(1− n+ c/|β|; ν + 1;Ae−2βx)

)
(5.8)

where 1F1 is the Kummer confluent hypergeometric function, Γ(x) is a Gamma function and

ν =
1 + 2c

2|β| , A =
b

δ2|β| , ω = 2|β|b.

We compute u(t, x;T ) using both equation (5.8) (truncating the infinite series at n = 70) as well as using

Theorem 3.9. We use the Taylor series expansion of A expansion of Example 3.2 with x̄ = Xt. After

computing bond prices, we then calculate the corresponding credit spreads using (5.7). Approximate spreads

are denoted

Y (N)(t, x;T ) :=
− log u(N)(t, x;T )

T − t
.

The survival probabilities are and the corresponding yields are plotted in Figure 4. Values for the yields

from Figure 4 can also be found in Table 2.

Remark 5.1. To compute survival probabilities u(t, x;T ), one assumes a payoff function h(x) = 1 and

obtains

u(t, x;T ) =

∫

R

p(t, x;T, y)dy = p̂(t, x;T, 0).

Thus, when computing survival probabilities and/or credit spreads, no numerical integration is required.
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Rather, one uses (3.15) and easily obtains

u0(t, x;T ) = e−(b+δ2ce2xβ)τ ,

u1(t, x;T ) = e−(b+δ2ce2xβ)τ
(
−δ2bce2xβτ2β +

1

2
δ4ce4xβτ2β − δ4c2e4xβτ2β

)
,

u2(t, x;T ) = e−(b+δ2ce2xβ)τ
(
− δ4ce4xβτ2β2 − 2

3
δ2b2ce2xβτ3β2 + δ4bce4xβτ3β2

− 2δ4bc2e4xβτ3β2 − 1

3
δ6ce6xβτ3β2 + 2δ6c2e6xβτ3β2

− 4

3
δ6c3e6xβτ3β2 +

1

2
δ4b2c2e4xβτ4β2 − 1

2
δ6bc2e6xβτ4β2 + δ6bc3e6xβt4β2

+
1

8
δ8c2e8xβτ4β2 − 1

2
δ8c3e8xβτ4β2 +

1

2
δ8c4e8xβτ4β2

)
.

where τ := T − t. It is interesting to note that

u(N)(t, x;T ) =

N∑

n=0

un(t, x;T ) = e−(b+δ2ce2xβ)τ (1 + O(τ2)
)
,

which guarantees that the ∂τu
(N)|τ=0 < 0 (i.e., as τ increases from zero, the approximate survival probability

decreases, as expected).

5.5 Hermite vs Taylor approximations

We are interested in comparing the relative accuracy of the Taylor series and Hermite polynomial approxi-

mations (examples 3.2 and 3.4). To this end, we consider the Constant Elasticity of Variance (CEV) model

of Cox (1975). The log dynamics are given by

a(x) =
1

2
δ2e2(β−1)x, ν(x, dz) = 0, γ(x) = 0, β ∈ [0, 1],

We consider two approximations for the variance function a – Taylor and Hermite. We have

Taylor : a
(N)
T (x) :=

N∑

n=0

∂n
xa(x̄)

n!
(x− x̄)n,

Hermite : a
(N)
H (x) :=

N∑

n=0

〈a,Hn(· − x̄)〉ΓHn(x− x̄).

Fix a maturity date T and let t < T . Denote by u(t, x;K) the price at time t < T of a call option with strike

priceK. The exact call option price is given in Cox (1975). Denote by u
(N)
T (t, x;K) theNth order approxima-

tion of a call price, as obtained using the Taylor series approximation of a. Likewise, denote by u
(N)
H (t, x;K)

the Nth order approximation of a call price, as obtained using the Hermite polynomial approximation of a.

In Figure 5 we plot as a function of log moneyness k := (logK−x) the exact implied volatility IV[u(t, x;K)]

as well as the Taylor and Hermite approximations of implied volatility IV[u
(N)
T (t, x;K)] and IV[u

(N)
H (t, x;K)]

for N = {0, 1, 2, 3, 4}. We also plot, as a function of x the exact diffusion coefficient a(x) as well as the

Taylor and Hermite approximations of the diffusion coefficient a
(N)
T (x) and a

(N)
H (x) for N = {0, 1, 2, 3, 4}.

It is clear from Figure 5 that the Taylor expansion a
(N)
T (x) provides a more accurate approximation of a(x)
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than the Hermite expansion a
(N)
H (x) for every N ≤ 4. Not surprisingly, Figure 5 also shows that implied

volatility induced by the Taylor expansion IV[u
(N)
T (t, x;K)] provides a more accurate approximation of the

exact implied volatility IV[u(t, x;K)] than does the Hermite approximation IV[u
(N)
H (t, x;K)]. Though, for

N = 4, both approximations are remarkably accurate for log moneyness k ∈ (−0.4, 0.4).

5.6 Legendre expansion discontinuous diffusion coefficients

As previously mentioned, when the diffusion coefficients are not differentiable, the Taylor series approxima-

tion will not work. In this case, one must use the Hermite polynomial expansion (Example 3.4), the Legendre

polynomial expansion (Example 3.5) or some other L2 polynomial expansion (Example 3.6). Consider a set-

ting in which the log dynamics are given by

a(x) = A+B|x|, A,B > 0, ν(x, dz) = 0, γ(x) = 0.

We will consider the Legendre approximation for the variance function a. We have

Legendre: a
(N)
L (x) :=

N∑

n=0

〈a,LI
n〉ILI

n(x).

Fix a maturity date T and let t < T . Denote by u(t, x;K) the price at time t < T of a call option with

strike price K. The exact call option price is not available. As such, it must be computed via Monte Carlo

approximation or finite difference methods. Denote by u
(N)
L (t, x;K) the Nth order approximation of a call

price, as obtained using the Legendre series approximation of a. In Figure 6 we plot as a function of log mon-

eyness k := (logK − x) the 95% confidence interval of the exact implied volatility IV[u(t, x;K)] (computed

via Monte Carlo) as well as the Nth order Legendre approximation of implied volatility IV[u
(N)
L (t, x;K)] for

N ∈ {2, 4, 6}. We also plot, as a function of x the exact diffusion coefficient a(x) as well as the Legendre

approximation of the diffusion coefficient a
(N)
L (x) for N ∈ {2, 4, 6}.

5.7 Accuracy: jumps vs no jumps

As mentioned in Section 4, for jump-diffusion models, the rate of asymptotic convergence of the approxima-

tion does not improve as N increases. Nevertheless, one typically observes with asymptotic expansions that,

for a fixed maturity T , the accuracy of the N -th order approximation improves as N grows. In the next

numerical test we show that this feature is present in our expansion.

In this example, we examine (numerically) whether or not the addition of jumps affects the accuracy of

our asymptotic approximation for Call prices. To this end, we consider the CEV-like Lévy-type process with

Gaussian jumps, introduced in Section 5.1. We fix the following parameters:

δ = 0.20, β = 0.5, m = −0.1, η = 0.2, S0 = ex = 1, T − t = 0.5.

We consider two scenarios: λ = 0 (no jumps) and λ = 0.2 (with jumps). In each scenario we compute our

nth order approximation for Call prices u(N)(t, x;K) (N = 0, 1, 2) using the Taylor series approximation

(Example 3.2). We also compute, in the case of no jumps, the exact call price using the formulas given in
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Cox (1975). In the case where the jump intensity λ is non-zero, we compute a 95% confidence interval for call

prices via Monte Carlo simulation. Finally, call prices are converted to implied volatilities: IV[u(t, x;K)]. The

results are plotted in Figure 7. It is clear from Figure 7 that the 2nd order expansion gives an approximation

that is well within the typical bid-ask spread of quoted option prices.

6 Proof of Theorem 4.4

For sake of simplicity we only prove the assertion when the default intensity and mean jump size are

zero γ = m = 0, when the jump intensity and diffusion component are time-independent a(t, x) ≡ a(x),

λ(t, x) ≡ λ(x) and when the standard deviation of the jumps is constant δ(x) ≡ δ. Thus we consider the

integro-differential operator

Lu(t, x) = ∂tu(t, x) +
a(x)

2
(∂xx − ∂x)u(t, x)− λ(x)

(
e

δ2

2 − 1
)
∂xu(t, x)

+ λ(x)

∫

R

(u(t, x+ z)− u(t, x)) νδ2(dz),

with

νδ2(dz) =
1√
2πδ

e−
z2

2δ2 dz.

We will give some details on how to extend the proof to the general case at the end of the section. Our

idea is to use our expansion as a parametrix. That is, our expansion will serve as the starting point of

the classical iterative method introduced by Levi (1907) to construct the fundamental solution p(t, x;T, y)

of L. Specifically, as in Pagliarani et al. (2013), we take as a parametrix our N -th order approximation

p(N)(t, x;T, y) with x̄ = y in (4.5)-(4.6). The case x̄ = x can be analogously proved by using the backward

parametrix approach (see Corielli et al. (2011)). For sake of brevity we skip the details for the latter case.

By analogy with the classical approach (see, for instance, Friedman (1964) and Di Francesco and Pascucci

(2005), Pascucci (2011) for the pure diffusive case, or Garroni and Menaldi (1992) for the integro-differential

case), we have

p(t, x;T, y) = p(N)(t, x;T, y) +

∫ T

t

∫

R

p(0)(t, x; s, ξ)Φ(s, ξ;T, y)dξds, (6.1)

where Φ is determined by imposing the condition

0 = Lp(t, x;T, y) = Lp(N)(t, x;T, y) +

∫ T

t

∫

R

Lp(0)(t, x; s, ξ)Φ(s, ξ;T, y)dξds− Φ(t, x;T, y).

Equivalently, we have

Φ(t, x;T, y) = Lp(N)(t, x;T, y) +

∫ T

t

∫

R

Lp(0)(t, x; s, ξ)Φ(s, ξ;T, y)dξds,

and therefore by iteration

Φ(t, x;T, y) =

∞∑

n=0

Z(N)
n (t, x;T, y), (6.2)
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where

Z
(N)
0 (t, x;T, y) := Lp(N)(t, x;T, y), (6.3)

Z
(N)
n+1(t, x;T, y) :=

∫ T

t

∫

R

Lp(0)(t, x; s, ξ)Z(N)
n (s, ξ;T, y)dξds. (6.4)

The proof of Theorem 4.4 is based on several technical lemmas which we relegate to Section 6.3. In particular,

we will use such preliminary estimates to provide pointwise bounds for each of the terms Z
(N)
n in (6.2).

Finally, these bounds combined with formula (6.1) give the estimate of
∣∣p(t, x;T, y)− p(N)(t, x;T, y)

∣∣.
For any α, θ > 0 and ℓ ≥ 0, consider the integro-differential operators

Lα,θ,ℓu(t, x) = ∂tu(t, x) +
α

2
(∂xx − ∂x)u(t, x)− ℓ

(
e

θ
2 − 1

)
∂xu(t, x) + ℓ

∫

R

(u(t, x+ z)− u(t, x)) νθ(dz),

L̄α,θ,ℓu(t, x) = ∂tu(t, x) +
α

2
∂xxu(t, x) + ℓ

∫

R

(u(t, x+ z)− u(t, x)) νθ(dz).

The function Γα,θ,ℓ(t, x;T, y) := Γα,θ,ℓ(T − t, x− y) where

Γα,θ,ℓ(t, x) := e−ℓt
∞∑

n=0

(ℓt)n

n!
Γα,θ,ℓ
n (t, x), (6.5)

Γα,θ,ℓ
n (t, x) :=

1√
2π(αt+ nθ)

exp


−

(
x−

(
α
2 + ℓe

θ
2 − ℓ

)
t
)2

2(αt+ nθ)


 , (6.6)

is the fundamental solution of Lα,θ,ℓ. Analogously, the function Γ̄α,θ,ℓ(t, x;T, y) := Γ̄α,θ,ℓ(T − t, x− y) where

Γ̄α,θ,ℓ(t, x) := e−ℓt
∞∑

n=0

(ℓt)n

n!
Γ̄α,θ
n (t, x),

Γ̄α,θ
n (t, x) :=

1√
2π(αt+ nθ)

exp

(
− x2

2(αt+ nθ)

)
, (6.7)

is the fundamental solution of L̄α,θ,ℓ. Note that under our assumptions, at order zero, by (4.3)-(4.4) we have

p(0)(t, x;T, y) = Γa(y),δ2,λ(y)(t, x;T, y). (6.8)

We also recall the definition of convolution operator Cθ:

Cθf(x) = Cx
0,θf(x) :=

∫

R

f(x+ z)
1√
2πθ

e−
z2

2θ dz. (6.9)

Note that, for any θ > 0, we have

CθΓ
α,θ,ℓ(t, ·)(x) = e−ℓt

∞∑

n=0

(ℓt)n

n!
Γα,θ,ℓ
n+1 (t, x),

CθΓ̄
α,θ,ℓ(t, ·)(x) = e−ℓt

∞∑

n=0

(ℓt)n

n!
Γ̄α,θ
n+1(t, x),

with Γ̄α,θ
n and Γα,θ,ℓ

n as in (6.6) and (6.7) respectively.
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Proposition 6.1. For any c > 1 and τ > 0, there exists a positive constant C, only dependent on c, τ,M,N ,

and (‖ai‖∞, ‖λi‖∞)i=1,··· ,N+1, such that

∣∣Z(N)
n (t, x;T, y)

∣∣ ≤ Cn+1(T − t)
min (1,N)+n−1

2

√
n!

(
1 + ‖λ1‖∞C

n+1
cM

)
Γ̄cM,cM,cM (t, x;T, y), (6.10)

for any n ∈ N0, x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ .

The proof of Proposition 6.1 is postponed to Section 6.1. We are now in position to prove Theorem 4.4.

Indeed, by equations (6.1), (6.2) and Proposition 6.1 we have

∣∣p(t, x;T, y)− p(N)(t, x;T, y)
∣∣

≤
∞∑

n=0

Cn+1

√
n!

∫ T

t

(T − s)
min (1,N)+n−1

2

∫

R

p(0)(t, x; s, ξ)
(
1 + ‖λ1‖∞C

n+1
cM

)
Γ̄cM,cM,cM (s, ξ;T, y)dξds

(and by Lemma 6.4 with η = 0)

≤
∞∑

n=0

Cn+1

√
n!

∫ T

t

(T − s)
min (1,N)+n−1

2

∫

R

Γ̄cM,cM,cM (t, x; s, ξ)
(
1 + ‖λ1‖∞C

n+1
cM

)
Γ̄cM,cM,cM (s, ξ;T, y)dξds .

Now, by the semigroup property
∫

R

Ck
θ Γ̄

α,θ,ℓ(t, x; s, ξ)CN
θ Γ̄α,θ,ℓ(s, ξ;T, y) dξ = C

k+N
θ Γ̄α,θ,ℓ(t, x;T, y), k,N ∈ N0, (6.11)

we get

∣∣p(t, x;T, y)− p(N)(t, x;T, y)
∣∣ ≤ 2 (T − s)

min (1,N)+1
2

( ∞∑

n=0

Cn+1(T − t)
n
2

√
n!

(
1 + ‖λ1‖∞C

n+1
cM

)
Γ̄cM,cM,cM (t, x;T, y)

)
,

for any x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ , and since

∞∑

n=0

Cn+1(T − t)
n
2

√
n!

C
n+1
cM Γ̄cM,cM,cM (t, x;T, y)

can be easily checked to be convergent, this concludes the proof of Theorem 4.4.

We conclude this section with a brief discussion on how to drop the additional hypothesis on the coef-

ficients introduced at the beginning of the section. In order to include state-dependency in the standard

deviation of the jumps, i.e. δ = δ(x), no modification is required in the first part of the proof since all

the preliminary lemmas in Section 6.3 naturally apply to the general case. On the other hand, the proof

of Proposition 6.1 requires some simple modifications to account for the additional terms in the expansion

introduced by the state dependency of the convolution operator (see Proposition 4.1). To extend the proof

to non-null mean of the jumps, i.e. m = m(x) 6= 0, it is enough to extend Lemmas 6.4-6.10 to the more

general functions such as

Γα,m,θ,ℓ(t, x) := e−ℓt
∞∑

n=0

(ℓt)n

n!
Γα,m,θ,ℓ
n (t, x),

Γα,m,θ,ℓ
n (t, x) :=

1√
2π(αt+ nθ)

exp


−

(
x+ nm−

(
α
2 + ℓe

θ
2 − ℓ

)
t
)2

2(αt+ nθ)


 .
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As for the time-dependency of the coefficients a(t, x) and γ(t, x), the proof easily follows by the regularity

hypothesis iii) in Assumption 4.3.

6.1 Proof of Proposition 6.1

The proof of Proposition 6.1 is based on the two following propositions.

Proposition 6.2. For any c > 1 and τ > 0, there exists a positive constant C, only dependent on

c, τ,M, ‖λ1‖∞ and ‖a1‖∞, such that

∣∣(x− y)2−n(∂xx − ∂x)pn(t, x;T, y)
∣∣ ≤ C(1 + ‖λ1‖∞CcM ) Γ̄cM,cM,cM (t, x;T, y), (6.12)

for any n ∈ {0, 1}, x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ .

Proof. Recalling the expression of p0(t, x;T, y) ≡ p(0)(t, x;T, y) in (6.8), the case n = 0 directly follows from

Lemmas 6.5, 6.8 and 6.4 with η = 0.

For the case n = 1 we first observe that, by Theorem 3.9 along with Proposition 4.1, the function

p1(t, x;T, y) takes the form

p1(t, x;T, y) =

(
(T − t)(x− y) +

(T − t)2

2
J

)
A1p

(0)(t, x;T, y),

where J is the operator

J = a0(2∂x − 1)− λ0

(
e

δ2

2 − 1 + δ2∂xCδ2

)
,

whereas A1 acts as

A1 = a1(∂xx − ∂x)− λ1

((
e

δ2

2 − 1
)
∂x − Cδ2 + 1

)
,

and Cδ2 is the convolution operator defined in (6.9). Therefore, we have

(x− y)(∂xx − ∂x)v1(t, x;T, y) = (T − t)(x− y) ((x− y)(∂xx − ∂x) + 2∂x − 1)A1p
(0)(t, x;T, y)

+
(T − t)2

2
(x− y)J(∂xx − ∂x)A1p

(0)(t, x;T, y),

In the computations that follow below, in order to shorten notation, we omit the dependence of t, x, T, y in

any function. By the commutative property of the operators ∂x and C, and by applying Lemmas 6.5, 6.6

and 6.8 with η = 1, there exists a positive constant C1 only dependent on c, τ,M, ‖λ1‖∞ and ‖a1‖∞ such

that

|(T − t)(x− y) ((x− y)(∂xx − ∂x) + 2∂x − 1) a1(∂xx − ∂x)p
(0)| ≤ C1Γ

ca(y),cδ2,λ(y),
∣∣∣(T − t)(x− y) ((x− y)(∂xx − ∂x) + 2∂x − 1)λ1

((
e

δ2

2 − 1
)
∂x + 1

)
p(0)
∣∣∣ ≤ C1

(
Γca(y),cδ2,λ(y) + Γca(y),4cδ2,λ(y)

)
,

(T − t)2

2
|(x− y)J(∂xx − ∂x)a1(∂xx − ∂x)p

(0)| ≤ C1

(
Γca(y),cδ2,λ(y) + Γca(y),4cδ2,λ(y)

)
,

(T − t)2

2

∣∣∣(x− y)J(∂xx − ∂x)λ1

((
e

δ2

2 − 1
)
∂x + 1

)
p(0)
∣∣∣ ≤ C1

(
Γca(y),cδ2,λ(y) + Γca(y),4cδ2,λ(y)

)
,

(6.13)

27



for any x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ . Analogously, by the commutative property of ∂x and C,

and by applying Lemmas 6.8, 6.5, 6.9 and 6.7 with η = 2, there exists a positive constant C2 only dependent

on c, τ,M, ‖λ1‖∞ and ‖a1‖∞ such that

|(T − t)(x− y) ((x− y)(∂xx − ∂x) + 2∂x − 1)λ1Cδ2p
(0)|‖λ1‖∞ ≤ C2

(
Ccδ2Γ

ca(y),cδ2,λ(y) + C4cδ2Γ
ca(y),4cδ2,λ(y)

)
,

(T − t)2

2
|(x− y)J(∂xx − ∂x)λ1Cδ2p

(0)| ≤ ‖λ1‖∞ C2

(
Ccδ2Γ

ca(y),cδ2,λ(y) + C4cδ2Γ
ca(y),4cδ2,λ(y)

)
,

(6.14)

for any x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ . Then, (6.12) follows from (6.13) and (6.14) by applying

Lemma 6.4 with η = 0 and η = 1 respectively.

Proposition 6.3. For any c > 1 and τ > 0, there exists a positive constant C, only dependent on

c, τ,M, ‖λ1‖∞ and ‖a1‖∞, such that

∣∣∣(x− y)2−n
((

e
δ2

2 − 1
)
∂x + Cδ2 − 1

)
pn(t, x;T, y)

∣∣∣ ≤ C(1 + CcM ) Γ̄cM,cM,cM (t, x;T, y), (6.15)

for any n ∈ {0, 1}, x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ .

Proof. For simplicity we only prove the thesis for n = 0. The proof for n = 1 is entirely analogous to that

of Proposition 6.2. Once again, hereafter we omit the dependence of t, x, T, y in any function we consider.

Recalling the expression of p0(t, x;T, y) ≡ p(0)(t, x;T, y) in (6.8), by Lemmas 6.5, 6.8 and 6.9, there exists a

positive constant C1 only dependent on c, τ,M such that

∣∣∣(x− y)2
((

e
δ2

2 − 1
)
∂x + Cδ2 − 1

)
v0

∣∣∣ ≤ C1

(
Γca(y),4cδ2,λ(y) + (1 + C16cδ2)Γ

ca(y),16cδ2,λ(y)
)
,

for any x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ . Then, (6.15) follows from Lemma 6.4 with η = 0 and with

η = 1.

We are now in position to prove Proposition 6.1.

Proof of Proposition 6.1. We first prove the case N = 1. Let us define the operators

L0 = ∂t +A0, L1 = ∂t +A0 + (x− y)A1.

Let us recall that, by (3.4) and (3.5) with n = 1, we have

L0p0 = 0, L0p1 = −(L1 − L0)p0.

Thus, by (6.3) we have

Z
(1)
0 (t, x;T, y) = Lp(1)(t, x;T, y) = Lp0(t, x;T, y) + Lp1(t, x;T, y)

= (L− L1)p0(t, x;T, y) + (L− L0)p1(t, x;T, y),
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where (L− L0) and (L− L1) are explicitly given by

(L− L0) = (a(x)− a(y))(∂xx − ∂x) + (λ(x)− λ(y))
((

e
δ2

2 − 1
)
∂x + Cδ2 − 1

)
, (6.16)

(L− L1) = (a(x)− a(y)− a′(y)(x− y))(∂xx − ∂x)

+ (λ(x)− λ(y)− λ′(y)(x− y))
((

e
δ2

2 − 1
)
∂x + Cδ2 − 1

)
.

Thus, by the Lipschitz assumptions on a, λ and their first order derivatives, we obtain

|Z(1)
0 (t, x;T, y)| ≤ ‖a2‖∞|x− y|2|(∂xx − ∂x)p0(t, x;T, y)|+ ‖a1‖∞|x− y||(∂xx − ∂x)p1(t, x;T, y)|

+ ‖λ2‖∞|x− y|2
∣∣∣
((

e
δ2

2 − 1
)
∂x + Cδ2 − 1

)
p0(t, x;T, y)

∣∣∣

+ ‖λ1‖∞|x− y|
∣∣∣
((

e
δ2

2 − 1
)
∂x + Cδ2 − 1

)
p1(t, x;T, y)

∣∣∣ .

and, as ‖λ1‖∞ = 0 implies ‖λ2‖∞ = 0, by Propositions 6.2 and 6.3 there exists a positive constant C, only

dependent on c, τ,M ,‖λ1‖∞,‖λ2‖∞, ‖a1‖∞ and ‖a2‖∞, such that (6.10) holds for N = 1 and n = 0. To

prove the general case, we proceed by induction on n. First note that, by (3.4) we have

|Lp(0)(t, x;T, y)| = |(L− L0)p
(0)(t, x;T, y)|

(and by (6.16) and the Lipschitz property of α, λ)

≤ ‖a1‖∞|x− y||(∂xx − ∂x)p
(0)(t, x;T, y)|

+ ‖λ1‖∞|x− y|
∣∣∣
((

e
δ2

2 − 1
)
∂x + Cδ2 − 1

)
p(0)(t, x;T, y)

∣∣∣

(and by applying Lemmas 6.4, 6.5, 6.8 and 6.9 with η = 0, 1)

≤ C0

(
1√
T − t

+ ‖λ1‖∞CcM

)
Γ̄cM,cM,cM (t, x;T, y), (6.17)

for any x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ , and where C0 is a positive constant only dependent on

c, τ,M, ‖λ1‖∞ and ‖a1‖∞. Assume now (6.10) holds for n ≥ 0. Then by (6.4) we obtain

|Z(1)
n+1(t, x;T, y)| ≤

∫ T

t

∫

R

|Lp(0)(t, x; s, ξ)||Z(1)
n (s, ξ;T, y)|dξds

(and by inductive hypothesis and by (6.17))

≤ Cn+1C0√
n!

∫ T

t

(T − s)
n
2

∫

R

(
1√
s− t

+ ‖λ1‖∞CcM

)
Γ̄cM,cM,cM (t, x; s, ξ)

·
(
1 + ‖λ1‖∞C

n+1
cM

)
Γ̄cM,cM,cM (s, ξ;T, y)dξds.

Now, by the semigroup property (6.11), and by the fact that7

∫ T

t

(T − s)
n
2

√
s− t

ds =

√
π(T − t)

n+1
2 ΓE

(
2+n
2

)

ΓE

(
3+n
2

) ≤ κ(T − t)
n+1
2

√
n+ 1

,

7Here ΓE represents the Euler Gamma function.
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with κ =
√
2π, we obtain

|Z(1)
n+1(t, x;T, y)| ≤

Cn+1C0√
n!

(
κ(T − t)

n+1
2

√
n+ 1

(
1 + ‖λ1‖∞C

n+1
cM

)
)
Γ̄cM,cM,cM (t, x;T, y)

+
Cn+1C0√

n!

(
2(T − t)

n+2
2

n+ 2
‖λ1‖∞

(
CcM + ‖λ1‖∞C

n+2
cM

)
)
Γ̄cM,cM,cM (t, x;T, y). (6.18)

Now, by Lemma 6.10 we have

C
n+1
cM Γ̄cM,cM,cM (t, x;T, y) ≤ 2Cn+2

cM Γ̄cM,cM,cM (t, x;T, y),

CcM Γ̄cM,cM,cM (t, x;T, y) ≤
√
n+ 2Cn+2

cM Γ̄cM,cM,cM (t, x;T, y).

Inserting the above results into (6.18) we obtain

|Z(1)
n+1(t, x;T, y)| ≤

Cn+1C0√
n!

(T − t)
n+1
2

√
n+ 1

(
κ+ 2‖λ1‖∞

(
κ+

√
τ(1 + ‖λ1‖∞)

)
C
n+2
cM

)
Γ̄cM,cM,cM (t, x;T, y)

≤ Cn+1C1(T − t)
n+1
2

√
(n+ 1)!

(
1 + ‖λ1‖∞C

n+2
cM

)
Γ̄cM,cM,cM (t, x;T, y),

where

C1 = 2C0

(
κ+

√
τ(1 + ‖λ1‖∞)

)
.

Now, without loss of generality we can assume C1 ≤ C, and thus we obtain (6.10) for n+ 1.

The proof for N > 1 is based on the same arguments. However, in the general case the technical details

become significantly more complicated. In practice, proceeding by induction, one can extend Propositions

6.2 and Proposition 6.3 to a general n ∈ N. Eventually, after proving the identity

Lp(N)(t, x;T, y) =
N∑

n=0

(L− Ln)pN−n(t, x;T, y), (6.19)

one will be able to prove the estimate (6.10) on
∣∣Z(N)

n (t, x;T, y)
∣∣ for a generic N ≥ 1. Finally, the case N = 0

is simpler because the identity (6.19) simply reduces to

Lp(0)(t, x;T, y) = (L− L0)p0(t, x;T, y),

and the proof becomes a simple application of Lemmas 6.4-6.10.

6.2 Discussion on the difference with respect to the diffusion case

It has been proved by Pagliarani et al. (2013) that, in the purely diffusive case (i.e λ ≡ 0), error bounds

analogous to (4.7) hold with

gN (s) = O

(
s

N+1
2

)
, as s → 0+.

In other words, the rate of convergence of the N -th order approximation as t → T− is proportional to

(T − t)
N+1

2 . The expansion
∑

n pn(t, x;T, y) is thus asymptotically convergent in T − t. On the other hand,
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Theorem 4.4 shows that, when considering non-null Lévy measures, the rate of convergence do not improve

for N greater than 1.

The reasons for this discrepancy can be found in the different asymptotic behaviors of the leading term

p0(t, x;T, y) = Γa(y),δ2,λ(y)(t, x;T, y) in the fundamental solution expansion of L, with and without jumps.

Indeed, while the short-time asymptotic behavior at the pole x = y does not change whether λ ≡ 0 or

not, namely p0(t, x;T, x) ∼ 1√
T−t

as T − t goes to 0, the asymptotic behavior away from the pole radically

changes when passing from the purely diffusion to the jump-diffusion case. In particular, by (6.5)-(6.6)-(6.8)

it is clear that in general p0(t, x;T, y) ∼ T − t as T − t goes to 0. On the other hand, in the particular case

of L being strictly differential, i.e. λ ≡ 0, the leading term reduces to

p0(t, x;T, y) = Γa(y),0,0(t, x;T, y) = Γ
a(y),0,0
0 (t, x;T, y),

which is the Gaussian fundamental solution of a heat-type operator, and thus tends to 0 exponentially as

T − t goes to 0. For this reason, the differential version of Lemma 6.9 becomes

|x− y|Γa(y),0,0(t, x;T, y) ≤ C
√
T − tΓca(y),0,0(t, x;T, y),

as it is also clear by Lemma 6.8 with n = 0. Due to this fact, in the purely diffusive case, higher order

polynomials of the kind (x−y)N+1 arising from the N -th order Taylor expansion of the operator L, allow to

gain an accuracy factor equal to (T − t)
N+1

2 . On the contrary, in the jump-diffusion case, such polynomials

can be only used to cancel out the negative powers of the time introduced by the space derivatives, by

combining Lemma 6.5 and Lemma 6.8.

6.3 Pointwise estimates

In the rest of the section, we will always assume that

M−1 ≤ α, θ ≤ M, 0 ≤ ℓ ≤ M. (6.20)

Even if not explicitly stated, all the constants appearing in the estimates (6.21), (6.22), (6.23), (6.26), (6.27)

and (6.31) of the following lemmas will depend also on M .

Lemma 6.4. For any T > 0 and c > 1 there exists a positive constant C such that8

C
η
θΓ

α,θ,ℓ(t, x) ≤ C C
η
cM Γ̄cM,cM,cM (t, x), (6.21)

for any t ∈ (0, T ], x ∈ R and η ∈ N0.

Proof. For any n ≥ 0 we have

Γα,θ,ℓ
n (t, x) ≤

√
cMqn(t, x)Γ̄

cM,cM
n (t, x),

where

qn(t, x) = exp


−

(
x−

(
α
2 + ℓe

θ
2 − ℓ

)
t
)2

2(αt+ nθ)
+

x2

2cM(t+ n)


 .

8Here C0

θ
denotes the identity operator.
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A direct computation shows that

max
x∈R

qn(t, x) = exp




s2
(
α+ 2

(
e

θ
2 − 1

)
ℓ
)2

8 (cM(n+ s)− sα− nδ2)


 ≤ exp



T
(
α+ 2

(
e

θ
2 − 1

)
ℓ
)2

8(cM − α)


 ,

for any t ∈ (0, T ], n ≥ 0 and α, θ, ℓ in (6.20). Then the thesis is a straightforward consequence of the fact

that qn(t, x) is bounded on (0, T ]× R, uniformly with respect to n ≥ 0 and α, θ, ℓ in (6.20).

Lemma 6.5. For any T > 0, k ∈ N and c > 1, there exists a positive constant C such that

∣∣∂k
xΓ

α,θ,ℓ
n (t, x)

∣∣ ≤ C

(αt+ nθ)k/2
Γcα,cθ,ℓ
n (t, x), (6.22)

for any x ∈ R, t ∈]0, T ] and n ∈ N0.

Proof. For any k ≥ 1 we have

∂k
xΓ

α,θ,ℓ
n (t, x) =

1

(αt+ nθ)k/2
Γα,θ,ℓ
n (t, x)pk



x−

(
α
2 + ℓe

θ
2 − ℓ

)
t

√
αt+ nθ


 ,

where pk is a polynomial of degree k. To prove the Lemma we will show that there exists a positive constant

C, which depends only on m,M, T, c and k, such that




∣∣∣x−
(

α
2 + ℓe

θ
2 − ℓ

)
t
∣∣∣

√
αt+ nθ




j

Γα,θ,ℓ
n (t, x) ≤ C Γcα,cθ,ℓ

n (t, x), j ≤ k.

Proceeding as above, we set




∣∣∣x−
(

α
2 + ℓe

θ
2 − ℓ

)
t
∣∣∣

√
αt+ nθ




j

Γα,θ,ℓ
n (t, x) = Γcα,cθ,ℓ

n (t, x)qn,j(t, x),

where

qn,j(t, x) =




∣∣∣x−
(

α
2 + ℓe

θ
2 − ℓ

)
t
∣∣∣

√
αt+ nθ




j

exp


−

(
x−

(
α
2 + ℓe

θ
2 − ℓ

)
t
)2

2(αt+ nθ)
+

(
x−

(
cα
2 + ℓe

cθ
2 − ℓ

)
t
)2

2(cαt+ ncθ)


 .

Then the thesis follows from the boundedness of qn,j on (0, T ] × R, uniformly with respect to n ≥ 0 and

α, θ, ℓ in (6.20). Indeed the maximum of qn,j can be computed explicitly and we have

lim
n→∞

(
max

x∈R, t∈]0,T ]
qn,j(t, x)

)
=

(
cj

(c− 1)e

) j
2

.

Lemma 6.6. For any T > 0 and η ∈ N, there exists a positive constant C such that

ℓtCη
θΓ

α,θ,ℓ(t, x) ≤ C Γα,2(η+1)θ,ℓ(t, x) (6.23)

for any t ∈ (0, T ] and x ∈ R.
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Proof. We first prove there exists a constant C0, which depends only on m,M, T and η, such that

Γα,θ,ℓ
n+η (t, x) ≤ C0 Γ

α,2(η+1)θ,ℓ
n (t, x), (6.24)

Γα,θ,ℓ
η (t, x) ≤ C0 Γ

α,2(η+1)θ,ℓ
1 (t, x), (6.25)

for any t ∈]0, T ], x ∈ R, n ≥ 1 and α, θ, ℓ in (6.20). To prove (6.24) we observe that

Γα,θ,ℓ
n+η (t, x) ≤

1√
2π(αt+ (n+ η)θ)

exp

(
−
(
x−

(
α
2 + ℓe(η+1)θ − ℓ

)
t
)2

2(αt+ 2n(η + 1)θ)

)
qn(t, x),

where

qn(t, x) = exp


−

(
x−

(
α
2 + ℓe

θ
2 − ℓ

)
t
)2

2(αt+ (n+ η)θ)
+

(
x−

(
α
2 + ℓe(η+1)θ − ℓ

)
t
)2

2(αt+ 2n(η + 1)θ)


 .

Now it is easy to check that

max
x∈R

qn(t, x) = exp




(
e(1+η)θ − e

θ
2

)2
t2ℓ2

2(n− η + 2nη)θ


 ≤ exp




(
e(1+η)θ − e

θ
2

)2
t2ℓ2

2ηθ


 .

for any t ≥ 0. Thus qn is bounded on (0, T ] × R, uniformly with respect to n ∈ N and α, θ, ℓ in (6.20). To

see the above bound, simply observe that
√
αt+ 2n(η + 1)θ√
αt+ (η + n)θ

≤
√
2(η + 1).

The proof of (6.25) is completely analogous. Finally, by (6.24)-(6.25) we have

ℓtCη
θΓ

α,θ,ℓ(t, x) = e−ℓtℓtΓα,θ,ℓ
η (t, x) + ℓt e−ℓt

∞∑

n=1

(ℓt)n

n!
Γα,θ,ℓ
n+η (t, x)

≤ C0

(
e−ℓtℓtΓ

α,2(η+1)θ,ℓ
1 (t, x) + ℓt e−ℓt

∞∑

n=1

(ℓt)n

n!
Γα,2(η+1)θ,ℓ
n (t, x)

)

≤ C0(1 +MT ) Γα,2(η+1)θ,ℓ(t, x).

Lemma 6.7. For any T > 0 and η ∈ N with η ≥ 2, there exists a positive constant C such that

C
η
θΓ

α,θ,ℓ(t, x) ≤ C C2ηθΓ
α,2ηθ,ℓ(t, x) (6.26)

for any t ∈ (0, T ] and x ∈ R.

Proof. By (6.24)

C
η
θΓ

α,θ,ℓ(t, x) = e−ℓt
∞∑

n=0

(ℓt)n

n!
Γα,θ,ℓ
n+1+(η−1)(t, x) ≤ C e−ℓt

∞∑

n=0

(ℓt)n

n!
Γα,2ηθ,ℓ
n+1 (t, x) = C C2ηθΓ

α,2ηθ,ℓ(t, x).
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Lemma 6.8. For any T > 0, η ∈ N and c > 1, there exists a positive constant C such that
( |x|√

αt+ nθ

)η

Γα,θ,ℓ
n (t, x) ≤ CΓcα,cθ,ℓ

n (t, x), (6.27)

for any x ∈ R, t ∈ (0, T ] and n ∈ N0.

Proof. We first show that there exist three constants C1 = C1(M,T, η, c), C2 = C2(η, c) and C3 =

C3(M,T, η, c) such that

e−

(

x−

(

α
2

+ℓe
θ
2 −ℓ

)

t

)2

2(αt+nθ) ≤ C1e
− x2

2c1/3(αT+nθ) , (6.28)
( |x|√

αt+ nθ

)η

e
− x2

2c1/3(αT+nθ) ≤ C2e
− x2

2c2/3(αT+nθ) , (6.29)

e
− x2

2c2/3(αT+nθ) ≤ C3e
−

(

x−

(

cα
2

+ℓe
cθ
2 −ℓ

)

t

)2

2c(αt+nθ) , (6.30)

for any x ∈ R, t ∈ (0, T ] and n ≥ 0. In order to prove (6.28) we consider

qn(t, x) = exp


−

(
x−

(
α
2 + ℓe

θ
2 − ℓ

)
t
)2

2(αt+ nθ)
+

x2

2c1/3(αt+ nθ)


 ,

and show that

max
x∈R

qn(t, x) = exp




(
α
2 + ℓe

θ
2 − ℓ

)2
t2

2(c1/3 − 1) (tα+ nθ)


 ≤ exp




(
α
2 + ℓe

θ
2 − ℓ

)2
T

2(c1/3 − 1)


 ,

for any t ∈ (0, T ]. Thus qn is bounded on (0, T ] × R, uniformly in n ≥ 0 and α, θ, ℓ in (6.20). The proof of

(6.30) is completely analogous. Equation (6.29) comes directly by setting

C2 = max
a∈R+

(
aηe

− a2

2c1/3
+ a2

2c2/3

)
= e−

η
2

(
c1/3

√
η√

c1/3 − 1

)η

.

Now, by (6.28) we have

( |x|√
αt+ nθ

)η

Γα,θ,ℓ
n (t, x) ≤ C1

( |x|√
αt+ nθ

)η
e
− x2

2c1/3(αT+nθ)

√
2π(αT + nθ)

(by (6.29))

≤ C1C2
e
− x2

2c2/3(αT+nθ)

√
2π(αT + nθ)

(by (6.30))

≤ C1C2C3

√
c Γcα,cθ,ℓ

n (t, x).
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Lemma 6.9. For any T > 0, c > 1 and j ∈ N ∪ {0} there exists a positive constant C such that

|x|Cj
θΓ

α,θ,ℓ(t, x) ≤ C
(
C
j
cθΓ

cα,cθ,ℓ(t, x) + C
j
4cθΓ

cα,4cθ,ℓ(t, x)
)
, (6.31)

for any t ∈ (0, T ] and x ∈ R.

Proof. By Lemma 6.8 there is a constant C0, only dependent on m,M, T and c, such that

|x|Cj
θΓ

α,θ,ℓ(t, x) ≤ C0e
−ℓt

∞∑

n=0

(ℓt)n

n!

√
αt+ (n+ j)θΓcα,cθ,ℓ

n+j (t, x)

≤ C0

√
M(

√
T + j)Cj

cθΓ
cα,cθ,ℓ(t, x) + C0

√
Me−ℓt

∞∑

n=0

(ℓt)n

n!
nΓcα,cθ,ℓ

n+j (t, x)

≤ C0

√
M(

√
T + j)Cj

cθΓ
cα,cθ,ℓ(t, x) + C0M

3
2 tCj+1

cθ Γcα,cθ,ℓ(t, x),

for any t ∈ (0, T ] and x ∈ R and α, θ, ℓ in (6.20). Therefore, the thesis follows from Lemma 6.6 for j = 0

and from Lemma 6.7 for j ≥ 1.

Lemma 6.10. For any T > 0 and η, k ∈ N we have

C
η
θ Γ̄

α,θ,ℓ(t, x) ≤
√
k + 1Cη+k

θ Γ̄α,θ,ℓ(t, x), t ∈]0, T ], x ∈ R.

Proof. A direct computation shows that

max
x∈R

Γ̄α,θ
n+η(t, x)

Γ̄α,θ
n+η+k(t, x)

=

√
αt+ (n+ η + k)θ√
αt+ (n+ η)θ

≤
√
k + 1,

for any t ≤ T , n ≥ 0, η ≥ 1 and α, θ, ℓ in (6.20). This concludes the proof.
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supy |p(N)(t, x;T, y)− p(N−1)(t, x;T, y)|

N T − t = 1 T − t = 3 T − t = 5

1 0.1232 0.1138 0.1078

2 0.0083 0.0160 0.0217

3 0.0014 0.0056 0.0118

4 0.0004 0.0028 0.0088

Computation time relative to p(0)

N T − t = 1 T − t = 3 T − t = 5

1 1.14 1.07 1.04

2 1.59 1.50 1.45

3 2.32 2.28 2.21

4 3.46 3.30 3.25

Table 1: Numerical results from Figure 1. Left: We list as a function of n and T − t the maximum difference

between p(N)(t, x;T, y) and p(N−1)(t, x;T, y). The supremum is taken over the range of values for y shown

in Figure 1. Right: We list as a function of N and T − t the average computation time of p(N) relative to

p(0). Relative computation times are described in the last paragraph of Section 5.1. In both tables we use

the parameter values listed in equation (5.2).
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N = 1 N = 1 N = 1

N = 2 N = 2 N = 2

N = 3 N = 3 N = 3

N = 4 N = 4 N = 4

T − t = 1.0 T − t = 3.0 T − t = 5.0

Figure 1: Using the model considered in Section 5.1 we plot p(N)(t, x;T, y) (solid black) and p(N−1)(t, x;T, y)

(dashed black) as a function of y for N = {1, 2, 3, 4} and t = {1.0, 3.0, 5.0} years. For all plots we use

the Taylor series expansion of Example 3.2. Note that as N increases p(N) and p(N−1) become nearly

indistinguishable. Numerical values for supy |p(N)(t, x;T, y)−p(N−1)(t, x;T, y)| as well as computation times

are given in Table 1. In all plots we use the parameter values are those listed in equation (5.2).
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Figure 2: Implied volatility (IV) is plotted as a function of log-strike k := logK for the model of Section 5.2.

The dashed line corresponds to the IV induced by u(0)(t, x). The solid line corresponds to the IV induced by

u(2)(t, x). To compute u(N)(t, x), N ∈ {0, 2}, we use the Taylor series expansion of Example 3.2 The crosses

correspond to the IV induced by the exact price, which is computed by truncating (5.3) at n = 8. Truncating

(5.3) at n = 8 ensures a high degree of accuracy since, according to Jacquier and Lorig (2013), the error in

implied volatility encountered by truncating the series at any n ≥ 4 is less than 10−4. Parameters for this

plot are given in (5.4).
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Figure 3: Implied volatility (IV) is plotted as a function of log-strike k := logK for the model of Section 5.3.

The dashed line corresponds to the IV induced by u(0)(t, x). The solid line corresponds to the IV induced

by u(3)(t, x). The dotted lines correspond to the 95% confidence interval of IV resulting form a Monte Carlo

simulation. We use parameters given in equation (5.6).
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Figure 4: Left: survival probabilities u(t, x;T ) := Qx[ζ > T |ζ > t] for the JDCEV model described

in Section 5.4. The dotted line, dashed line and solid line correspond to the approximations u(0)(t, x;T ),

u(1)(t, x;T ) and u(2)(t, x;T ) respectively, all of which are computed using Remark 5.1. The crosses indicate

the exact survival probability, computed by truncating equation (5.8) at n = 70. Our numerical tests indicate

that truncating (5.8) at any n ≥ 40 resulted in numerical values of u that differ by less than 10−5. Right:

the corresponding yields Y (N)(t, x;T ) := − log(u(N)(t, x;T ))/(T − t) on a defaultable bond. The parameters

used in the plot are as follows: x = log(1), β = −1/3, b = 0.01, c = 2 and a = 0.3.

T − t Y Y − Y (0) Y − Y (1) Y − Y (2)

1.0 0.1835 -0.0065 0.0022 0.0001

2.0 0.1777 -0.0123 0.0048 0.0003

3.0 0.1720 -0.0180 0.0071 0.0003

4.0 0.1663 -0.0237 0.0089 -0.0001

5.0 0.1605 -0.0295 0.0099 -0.0006

6.0 0.1548 -0.0352 0.0102 -0.0011

7.0 0.1493 -0.0407 0.0101 -0.0013

8.0 0.1442 -0.0458 0.0095 -0.0011

9.0 0.1394 -0.0506 0.0087 -0.0005

10.0 0.1351 -0.0549 0.0077 0.0007

Table 2: The yields Y (t, x;T ) on the defaultable bond described in Section 5.4: exact (Y ) and Nth order

approximation (Y (N)). We use the following parameters: x = log(1), β = −1/3, b = 0.01, c = 2 and δ = 0.3.
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N = 0 N = 0

N = 1 N = 1

N = 2 N = 2

N = 3 N = 3

N = 4 N = 4

Figure 5: We consider the CEV model described in Section 5.5 with x = 0, T − t = 1, δ = 0.2 and β = 1/2.

LEFT: We plot as a function of log moneyness (logK − x) the exact implied volatility IV[u(t, x;K)] (solid)

as well as the Taylor and Hermite approximations: IV[u
(N)
T (t, x;K)] (dashed) and IV[u

(N)
H (t, x;K)] (dotted).

RIGHT: We plot as a function of x the exact diffusion coefficient a(x) (solid) as well as the Nth order Taylor

and Hermite approximations: a
(N)
T (x) (dashed) and a

(N)
H (x) (dotted).
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N = 2 N = 2

N = 4 N = 4

N = 6 N = 6

Figure 6: We consider the model described in Section 5.6 with x = 0, T − t = 1, A = 0.02 and B = 0.0625.

LEFT: We plot as a function of log moneyness (logK − x) the 95% confidence interval of the exact implied

volatility IV[u(t, x;K)] (dashed) as well as the Legendre approximation: IV[u
(N)
L (t, x;K)] (solid). RIGHT:

We plot as a function of x the exact diffusion coefficient a(x) (dashed) as well as the Nth order Legendre

approximations: a
(N)
T (x) (solid).
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Figure 7: Implied volatility (IV) is plotted as a function of log-strike k := logK for the model of Section

5.7. The lower solid line corresponds to the implied volatility induced by the exact call price in the case

of no jumps. The higher solid lines indicate the 95% confidence interval of implied volatility, computed via

Monte Carlo simulation, for the model with jumps. The dotted, dot-dashed and dashed lines correspond to

the implied volatility induced by our 0th, 1st and 2rd order Taylor series approximations, respectively. Note

that the bottom dashed line and the solid line are nearly indistinguishable, while the top dashed line falls

strictly within the two solid lines.
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