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Abstract  

The Tibetan Plateau is one of the most geologically dynamic systems and the highest plateau in the 

world with ongoing three-dimensional crustal deformation. The Plateau is uplifting and deforming 

horizontally as observed by present-day global navigation satellite system (GNSS) and repeated 

leveling measurements. Crustal mass is conservative and less dense than the mantle, thus the horizontal 

shortening must be accompanied by crustal thickening and horizontal extrusion. According to the level 

of isostatic compensation, the thickening is partitioned into topographic uplift and Moho deepening. 

Here, we investigate the mass change induced gravity signal observed at or near the crust, and discuss 

whether this signal could be detected using terrestrial or satellite gravity observations. We set up a 

model for the Tibetan Plateau crustal thickening and calculate the expected gravity signal. The 

predictions are then compared with the present-day gravity changes observed by GRACE and with 

published in situ absolute gravity rates. We conclude that the crustal thickening signal cannot be 

neglected and that it contributes significantly to the observed signal. Those studies with focus on the 

mountain glacier and hydrologic mass fluxes should be aware that, if neglected, the crustal signal could 

introduce a significant bias. The observations give a positive gravity rate over central Tibetan Plateau, 

unexplained by the hydrologic or cryospheric signals, and a negative rate over the Himalayas and at its 

foothill, which is attributable to terrestrial hydrologic signals including human depletion of 
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groundwater.  Our model shows that the positive gravity rate could be explained by elevation uplift, 

and a stable or upwelling Moho. The negative gravity change signal is due primarily to the strong 

elevation-gradient at the foothill of the Himalayas, and to an uplift accompanied by crustal thickening 

and Moho lowering. The estimated gravity rates can be used when defining the requirements on future 

gravity missions, as the tectonic signal should be resolved in order to improve its separation from 

hydrologic and/or cryospheric processes. 

 

Introduction  

The Tibetan Plateau is an active geodynamic system, which has been continuously deforming driven by 

the northwards subduction of the Indian plate and the relatively stable and rigid platforms of Eurasia 

forming a non-deformable lithospheric barrier surrounding the Plateau. The Yarlung Zangbo line 

represents the suture between the India and Eurasian plates (Figure 1). The active deformation front 

migrated southwards from this suture at the onset of collision to the Main Boundary Thrust, where the 

Lesser Himalaya sequences are thrusted over the Quaternary molasses of the India plate  (DE CELLES et 

alii, 2002). The subduction of the Indian plate has been demonstrated by regional seismic studies, 

which have illuminated the gently dipping Indian lithosphere subducting below the Himalayas and 

reaching at least as far as the Tibetan Yarlung Zangbo suture (e.g. PRIESTLEY et alii., 2008; LI  et alii 

2008).  

The subduction of India reduces the volume space for the Plateau, which dynamically responds through 

deformation. The deformation is inhomogeneous as revealed by the in situ surface velocities derived 

from continuous and episodic GPS observations (WANG et alii, 2001; LIANG et alii, 2013; GAN et alii, 

2007). The horizontal velocities respect to a reference system anchored to northern Asia and Europe are 

near to NS in the central Plateau and turn east at the eastern plate margin, with high curvature iso-

amplitudes bending around the eastern syntaxis. Analogous bending is found around the western 
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syntaxis, although not as pronounced. The velocities degrade northwards, being highest in the Indian 

Plate. The northwards decreasing velocities imply that the Plateau is not moving northward as a rigid 

block, but that it is contracting in NS direction, the velocity at the northern border being very low. 

Vertical velocities from GPS are less accurate but nonetheless revealed significant information showing 

that the Plateau is presently uplifting. The uplift and the contraction are to be considered two aspects of 

the same phenomenon, which is the ongoing northward crustal shortening and eastward extrusion 

accompanied by thickening. When crust thickens, the vertical expansion is partitioned in topographic 

uplift and Moho sinking. Both effects change the mass along the lithospheric columns: uplift adds mass 

to the surface, replacing air with rock; the lowering of the Moho replaces the denser mantle with less 

dense crust. Mass changes can be deduced from observations of the gravity field, either terrestrial or 

from satellites, such as the Gravity Recovery And Climate Experiment or GRACE mission (TAPLEY et 

alii 2004). The gravity signal is opposite in the two cases, being a negative and positive gravity rate for 

Moho lowering and topographic uplift, respectively. We could imagine the uplift of topography is due 

to an upward dynamic push from below without crustal thickening, which would imply an upwelling of 

the Moho and replacement of crust with the denser mantle. In this case a mass increase at the Moho is 

obtained, the surface level would arise, with a positive gravity change. Figure 2 illustrates this concept 

in a schematic. The geodynamic gravity change competes with mass changes due to the hydrologic and 

cryospheric processes (ERKAN et alii, 2011). Independent from the focus of study, whether it is 

climatic, hydrologic or geodynamic, it is important to be able to separate these signals. Gravity 

measurements have been traditionally terrestrial, either with the difficult to transport absolute 

gravimeter or with the more common relative gravimeter. Observations of the geodynamic signal 

require repeated gravity observations, for which the absolute gravimeter is ideal. The relative 

gravimeters, instead require stable stations to detect the time-varying gravity signal. This means that, in 

the study area, the station network should include stations both in the Plateau and in the China craton, 
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covering an enormous area hundreds of km wide and including huge changes in the gravity values due 

to the height difference between the stable craton and the high topography. The small gravity changes 

in time would be very difficult to detect due to the uncertainties in the instrumental drift correction 

when stations are distant. The absolute observations do not have this problem and repeated single point 

measurements can be made without requiring a reference network. The number of stations that can be 

occupied is very limited due to the facilities required to make the observations. Only since a few years 

absolute gravimeters have become more portable and can be efficiently used for field measurements. 

Satellite gravimetry to observe geodynamic signals at large scale has been possible since launch of the 

twin satellite mission GRACE (TAPLEY et alii, 2004). The GRACE mission was targeted to reveal 

gravity field changes in time and has acquired today already over 12 years of continuous global gravity 

field time series. The Gravity Field and Steady-State Ocean Circulation Explorer or GOCE mission 

(FLOBERGHAGEN et alii, 2011) has superior resolution allowing geologic structures to be distinguished 

(BRAITENBERG, 2014; 2015), but had a too short of a mission life span (2009–2013) to potentially 

allow the detection of climatic or geodynamic changes. In the present paper we first make a review on 

the time variable gravity observations over the Tibetan Plateau, both from absolute gravity observations 

and from GRACE. We then estimate the expected signal for the varying gravity change based on the 

vertical uplift and assuming different models for Moho depth variations, and compare the predictions 

with the published observed rates. 

 

Observations of gravity time variations 

Absolute gravity measurements 

The first observations of gravity change in the Tibetan Plateau were made with repeated absolute 

gravity measurements in three stations of the Chinese National Geodetic Observation Network, Lhasa 

(29.66°N, 91.10°E, 3643 m a.s.l) on the Plateau, and Kunming (25.15°N, 102.76°E, 1952 m a.s.l) and 
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Dali (25.61°N, 100.25°E, 1958 m a.s.l) at the South Eastern foot of the Plateau (SUN et alii, 2009). 

Repeated measurements spanned the years 1990 to 2007, with the standard deviation of the absolute 

gravity measurements varying between 1 and 5 10-8 m/s2 (µGal = 10-8 m/s2) according to instrument 

type and repetition number of the observations. Between 1990 and 1995 the JILAG-3 and JILAG-5, 

from 1996 the FG5-112, FG5-107 and FG5-210 were used. The accuracy of the instrument is not given 

in the publication, but TIMMEN et alii (2006) estimate the accuracy of one FG5 instrument (FG5-220) 

to be ±3 10-8 m/s2, while the JILAG-3 has been estimated by TORGE (1991) to have an accuracy of  ±7 

10-8 m/s2 and an instrumental precision of ±4 10-8 m/s2. The JILAG-3 was found to have a bias of  +9 

10-8 m/s2 compared to two different FG5 instruments  (101 and 220) by TIMMEN et alii (2008). Due to 

the bias the estimated negative gravity rate could be a bit overestimated in SUN et alii (2009). The 

Lhasa station had the highest gravity decrease of –1.97±0.66 10-8 m/s2/yr, with station Kunming having 

the rate of –1.42±0.38 10-8 m/s2/yr and Dali being relatively stable with a rate of   –0.41±0.24 10-8 

m/s2/yr. Here and in the following, the uncertainty is given in terms of one standard deviation. The 

values have been summarized in Table 1. The gravity signal observed at the Dali station was thought to 

be affected by the annual water level change in a lake 100 m from the station. The data of the three 

stations were not corrected for the effects of loading from snow accumulation and melt, hydrology and 

the atmosphere. The vertical movement of the stations had been measured since 1990 by GPS 

belonging to networks established for tectonic studies (WANG et alii, 2001; GAN et alii, 2007). All 

three stations, Lhasa, Kunming and Dali exhibited positive vertical displacements, respectively 

+0.8±0.5, +2.3±0.5 and +0.5±0.5 mm/yr (SUN et alii, 2009). The gravity stations move upwards 

together with the Plateau, which causes two effects on the measured gravity with opposite sign. Gravity 

decreases with height at the standard rate of –0.31  10-8 m/s2 /mm (TORGE, 2001) but the uplift 

generates a mass surplus due to the topographic mass increase, which is estimated as +0.11 10-8 

m/s2/mm for a density of 2700 kg/m3. The latter effect is a first order estimate adopting the Bouguer 
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plate correction, valid for an infinite plate (e.g. HOFMANN-WELLENHOF  & MORITZ  (2006)). Using the 

Bouguer plate approximation and the approximated height gradient for a spherical earth, SUN et alii 

(2009) calculated the net effect of uplift for the terrestrial measurement as –0.19  10-8 m/s2/mm.  A 

further contribution was ascribed to the denudation of a total volume of 1.5 km3/yr from the entire 

Tibet Plateau (METIVIER et alii, 1999, LAL et alii, 2004). Distributing this mass over the Plateau and 

calculating again the effect of a horizontal plate, it contributed to an estimated gravity change of –0.25 

±0.1  10-8 m/s2/yr. The resulting height and denudation corrected gravity change rates in the stations of 

Lhasa, Kunming and Dali amounted to, respectively, –1.56±0.67, –0.73±0.39 and –0.06±0.26 10-8 

m/s2/yr (SUN et alii, 2009).  These rates are the most accurate that can be obtained to date, as they are 

terrestrial observations made with highly sophisticated instrumentation. The final result consists of a 

negative gravity rate, which cannot be attributed to the uplift or the denudation. A further gravity 

source can be ascribed at crust-mantle level, where the greatest density jump occurs and therefore the 

most important crustal contribution to gravity. SUN et alii (2009) estimate this effect again in the 

approximation of a Bouguer infinite slab with density equal to the difference between the assumed 

crustal (2,600±100 kg/m3) and mantle density (3,400±100 kg/m3), which amounted to 800±140 kg/m3. 

The gravity change related to this layer at Moho depth was estimated as 0.34 10-8 m/s2/cm in the 

Bouguer plate assumption, which implied that an average observed negative rate of –0.78 10-8 m/s2/yr 

could be due to a Moho lowering of 2.3 cm/yr. The chosen density contrast of 800±140 kg/m3 across 

the mantle is quite high compared to other findings (e.g. BRAITENBERG et alii., 2000b). WANG et alii., 

(2007) further find that lower crustal and upper mantle densities change laterally across Tibet and that 

the density contrast across the Moho is lower than 500 kg/m3. A 30% smaller density contrast (respect 

to 800 kg/m3) would lead to an increased Moho lowering of 3.3 cm/yr. 

 

Ratio between gravity change and topographic uplift 
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The parameter used to distinguish between crustal uplift and crustal thickening with Moho lowering is 

the ratio between gravity change rate and topographic uplift rate. The ratio is motivated by the first 

order estimates obtained applying the Bouguer plate assumption. Later in the paper we calculate the 

correct gravity effect using the discretization with prisms, but nonetheless here we discuss the relation 

between gravity and uplift using the approximation of the flat infinite plate (Bouguer plate), which 

allows to give a general insight to the problem. To first order the gravity effect of an infinite plate of 

density ρ and thickness h is dg=2 π ρ G h, G being the gravitational constant G=6.67 10–11 N/(kg/m)2. 

The effect of an increase Δh in topography of density ρc is then Δg1= 2 π ρc G Δh.  This corresponds to 

the mass change at the top of the topography in Figure 2a. The ratio between the gravity change and the 

topography change is Δg1/Δh = 2 π ρc G. If the topographic increase is due to a crustal uplift without 

crustal thickening, then we must add the mass increase at Moho level to the calculation. The mass 

change at Moho level is shown in Figure 2a in red.  The gravity change due to the mass at Moho level 

will be Δg2= 2 π (ρm – ρc) G Δh, and the net gravity change (topographic uplift and mass at Moho 

level)  Δg3= 2 π ρm G Δh. The ratio between gravity change and uplift will be Δg3/ Δh =2 π ρm G.  The 

above computation is under the assumption that the terrestrial measurements have been corrected for 

the gravity change due to the increase in height.  

If we include the uplift effect in the ratio, we obtain for the pure topographic height change the ratio 

Δg1/Δh = 2 π ρc G – 0.310-8 m/s2/mm and for the case with Moho uplift Δg3/Δh = 2 π ρm G – 0.3 10-8 

m/s2/mm. With standard crust and mantle density values as tose used in the next chapter, ρc = 2,670 

kg/m3 and ρm = 3,200 kg/m3, the change ratios are Δg1/Δh = 0.12–0.30  10-8 m/s2/mm = –0.19 10-8 

m/s2/mm (pure topography uplift) and Δg3/Δh = 0.13–0.30 10-8 m/s2/mm = –0.17 10-8 m/s2/mm 

(topographic uplift and Moho uplift). The values have been summarized in Table 2. In studies 
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concerned with postglacial uplift the ratio is termed viscous ratio (e.g., Sato et alii, 2012) and 

associated to the mantle influx below the uplifting area. 

At Lhasa station we divide the gravity rate by the uplift rate obtaining the observed ratio dg/dh=-1.97 

10-8 m/s2/yr/0.8 mm/yr = –2.4 10-8 m/s2/mm, for Kunming it is dg/dh = –1.42 10-8 m/s2/yr/2.3 mm/yr = 

–0.62 10-8 m/s2/mm and for Dali it is dg/dh = –0.41 10-8 m/s2/yr/0.5 mm/yr = 0.82 10-8 m/s2/mm.  The 

observed ratios show high variability with the Lhasa stations having a much greater value compared to 

the other two stations. The ratios are very large when compared to the expected values in the simple 

Bouguer assumption and show that a 3D calculation scheme is necessary in order to explain the 

observations. Another problem could be due to uncertainties in the estimated uplift rates, which could 

be underestimated due to insufficient length of time series or errors in calculated rates, or else the 

gravity rates could have been overestimated due to a possible bias using different  absolute gravity 

measurements.  Ratio values in South-East Alaska have been published by SATO et alii, (2012) where 

they are lower and near to –0.2±0.01 10-8 m/s2/mm  after correction of the mass effects of the present-

day glacier mass loss, and reasonably agree with predictions from postglacial rebound models.  

The terrestrial measurement has the drawback that it is a local measurement, and the common practice 

of extrapolation of the measurement over the entire Plateau in contemporary studies, would imply a 

homogeneous signal over the Plateau, which is an unrealistic assumption. 

 

Satellite observations 

The gravity rate observations from GRACE have a spatial resolution of about 330 km, which 

corresponds to an averaged rate over an area of about that size. The averaging is made in the data 

processing that uses a large amount of continuous along track observations on board the satellite. The 

resolution is given by the maximum degree 60 of the spherical harmonics expansion for the published 

monthly gravity changes. Significant changes have been published which reveal negative change rates 
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over the Plateau with variations in different areas of the Plateau. MATSUO & HEKI (2010) determine the 

gravity change from GRACE observations for 2003–2009 and attribute the yearly and long term 

gravity change to hydrologic effects concentrated at the outer border of the Tibetan Plateau, estimated 

to be 47±12 Gigaton/yr mass loss. These authors mentioned the uncertainty in the contribution of 

isostatic or tectonic uplift, but did not consider the effect of crustal thickening. The GRACE 

observations were filtered with a Gaussian filter of radius 400 km to reduce short wavelength noise. YI 

AND SUN (2014) extend the time series of GRACE to 2003–2012 and confirmed the spatially variable 

gravity change rate. They express the gravity signal in terms of equivalent surface mass loss in the 

Himalayas and in the Indian region south of the central Himalayas.  Two sources are assumed to be 

responsible for the negative change rate, the mountain glacier melt (–35±5.8 Gtons/yr), and the Indian 

groundwater depletion (–30.6±5 Gtons/yr). The observations have been corrected for soil moisture 

effects predicted from the terrestrial storage model of the Global Land Data Assimilation System 

(GLDAS) Data Products (RODELL et alii, 2004). The result is a significant positive gravity residual 

over the entire central Tibetan Plateau in the order of 0.4–0.6 10-8 m/s2/yr which cannot be explained 

by the terrestrial storage model. In the Himalayan foot hills the gravity residual results to be negative, 

which is interpreted as due to hydrologic depletion. The authors use a simple Bouguer plate model of a 

rising topography at a constant rate of 2 mm/yr to estimate the order of magnitude of the expected 

gravity change. The effect due to postglacial rebound is thought to be negligible. The authors find that 

further work must be done to explain the origin of the observed positive gravity change rate in central 

Tibetan Plateau. 

 

Gravity variations through crustal thickening 

In the previous paragraph we have shown that it is an open question whether crustal thickening in the 

Tibetan Plateau is observable by gravity, and that there is a lack of geodynamic modeling which goes 
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beyond the approximate Bouguer plate estimate. Here we make a more realistic approach with a 

complete forward calculation of the signal with different model situations taking into account 

topography change rates and Moho depth changes obeying different assumptions for the isostatic 

response mechanism.  

The goal being to calculate the gravity variation, we must model the expected mass change rate at 

topography and Moho level. The mass contributions above sea level are placed at the surface of the 

topographic Plateau. The digital elevation model of ETOPO1 (AMANTE & EAKINS, 2009) is discretized 

into rectangular prisms and an average uplift rate is applied which determines the mass to be added at 

the top of the starting prism model. Density is set to 2,670 kg/m3, the average value for granite (SCHÖN, 

2011). Density acts as a linear scaling factor for gravity, therefore deviations from this value linearly 

modify the calculated gravity. The distribution of GPS stations over the Tibet Plateau is 

inhomogeneous, with no stations with available data located in western Tibetan Plateau. To not 

introduce a bias due to lack of data coverage, we apply a uniform uplift rate to the high Plateau, 

limiting the uplifting area to elevations greater than 4,000 m. The rationale of adopting this height 

value is motivated by observing the uplift rate profile published in Fig. 7 of LIANG et alii (2013), with 

rate values rapidly decreasing when the elevation is lower than 4,000 m. Physically it shows that only 

the high Plateau and the Himalayas are affected by the uplift, the lower surrounding areas being stable 

or subsiding. Repeated leveling has determined uplift rates in Eastern Tibetan Plateau over 40 years of 

observation, revealing the rates of 6±1 mm/yr (HAO et alii, 2014), when compared to the stations in the 

Sichuan basin which are sinking, lead to relative rates of 8±2 mm/yr. Compared to the GPS derived 

rates calculated over the shorter time interval of 10 years, the rates from leveling are systematically 

higher by a factor of two to six.  

We use three models in our simulation of uplift, two end-member models and one mixed model.  The 

first case assumes the uplift being due to an upwelling of the mantle, motivated by the requirement at 
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mantle level to give away space to the steady state subduction of the Indian plate. The crustal thickness 

does not change and Moho is uplifting by the same rate of the increasing  topography (Figure 2A). We 

used the model in the previous chapter when estimating the ratio between gravity change and uplift in 

the Bouguer plate approximation. The mass change at Moho level is equal to the density difference 

between mantle and crust Δρ=(ρm - ρc) multiplied by the uplift topographic rate Δh/dt. A smaller 

positive gravity signal is obtained in a variant of the first model, with no mass change at Moho level, 

which corresponds to a lateral mass input into the Tibetan crust involving no mantle movement and 

mass change is only at the surface accompanying the observed topographic growing (not shown in 

Figure 2). The second case assumes that the uplift is due to crustal thickening, where the thickening 

rate is partitioned into a topographic uplift and a Moho lowering (Figure 2B). The isostatic equilibrium 

is assumed to be maintained. The Tibetan Moho has been shown previously (BRAITENBERG et alii, 

2000a,b; 2003) using the methodology developed in BRAITENBERG et alii (2002) to obey the 

predictions of a flexure model subject to vertical topographic loading and horizontal compressional 

forces  (SHIN et alii 2007; 2009; 2015). The large amplitude variations obey the lithospheric flexure 

involving longer wavelengths, and minor amplitude shorter wavelength oscillations obey folding due to 

horizontal compression. Here we limit calculations to the greater amplitude signal, the flexural part, 

which is in good agreement with the gravity observations from GOCE (SAMPIETRO et alii, 2014). 

Assuming a steady state process for the uplift, a time lag between uplift and flexural Moho response is 

irrelevant, as this would  induce a visible time shift only in case of non-stationary uplift. The third 

model is a combination of the first and second model, with crustal thickening applied to the Himalayas 

and other orogens surrounding the Tibet plateau and Moho uplift to the remainder part of the Plateau 

(Figure 2C). 

According to the model shown in Figure 2B, the net mass change is at the surface of the topographic 

relief and at the base of the Moho, with a mass increase above surface and a mass decrease at Moho 
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level in the case of isostatic compensation, with crust replacing mantle. The mass decrease at the Moho 

depends on the flexural parameter of rigidity. Rigidity zero is one end-member, which corresponds to 

the local compensation Airy model, with maximal Moho lowering and smallest topographic uplift for a 

given crustal thickening rate. High flexural rigidity, or equivalent lithospheric thickness, is the other 

end-member, where increasingly less Moho is lowered, and crustal thickening is entirely transferred to 

topographic uplift. Previous results have shown (BRAITENBERG et alii, 2003, SHIN et alii, 2007) that the 

elastic thickness is low over the Plateau, between 10 and 30 km, which implies that the flexural 

response to mass changes is close to local compensation. We use our software Lithoflex 

(http://www.lithoflex.org) and Tesseroids (http://tesseroids.leouieda.com/en/latest/, UIEDA et alii, 

2011) for the calculations, which allows the flexural response calculations, the prism discretization of 

topography, and the gravity field calculations of both topography and mass changes at the Moho. In the 

calculations made by us the gravity field of the mass is calculated by discretization with prisms, and is 

more realistic than the flat Bouguer plate assumption. Height of calculation is 10 km, to be above all 

elevations. We use now standard values for the relevant parameters: crustal density 2,670 kg/m3, 

mantle density 3,200 kg/m3, reference depth for the Moho 35,000 m (BRAITENBERG et alii, 2003). The 

reference depth is the depth of the Moho in absence of elevation below or above the zero level. 

According to the measured GPS uplift rates, we impose an uplift of 2 mm/yr for the elevations above 

4,000 m, and uplift of 0.7 mm/yr for elevations between 2,000 m and 4,000 m, and no uplift for lower 

elevation. The Moho is calculated first for today’s topography in the isostatic local compensation 

model, to obtain a reference Moho against to which calculate the gravity change induced by the 

different uplift mechanisms, and then for the uplifted topography. In the first model, with unchanged 

crustal thickness, the uplift at Moho level is equal to the uplift of topography. For the second model 

Moho obeys the Airy isostatic response to topography uplift. We also test a mixed model, with a 

spatially varying mechanisms for a belt extending from the Himalayas to Tien Shan, as distinguished 



Ac
ce

pt
ed

 m
an

us
cr

ip
t

13	
  
	
  

from the Tibetan Plateau, with the aim of reproducing the observation of a positive gravity rate over 

Tibet and a negative rate south of the Tibetan Plateau. For the mixed model, we assume crustal 

thickening for the Himalayas-Tien Shan, and crustal uplift at the same rate as topography at Moho level 

for the Tibetan Plateau. 

  

In Figure 3a the results for the gravity field changes are shown along profile AA' of Figure 1. The 

greatest positive change rate is found for the pure crustal uplift (first model: purple curve in central 

graph of Figure 3A), where mantle (yellow curve in top graph of Figure 3A) and elevated topography  

(red curve in top graph of Figure 3A) contribute a positive signal. Smallest change rate is found for the 

crustal thickening model (second, Airy isostatic model: green curve in central graph of Figure 3A), 

where the elevated mass surplus (red curve in top graph of Figure 3A) is cancelled out by the Moho 

deepening (blue curve in top graph of Figure 3A)  leading to a gravity change close to zero. Assuming 

that the topography change is fully recovered from the GPS network, it is interesting to consider the 

signal generated at Moho level, as it implies different geodynamic models. It is seen that a pure crustal 

uplift can be distinguished from crustal thickening in the case of the Tibetan Plateau at the 10-8 m/s2/yr 

rate level.  Figure 3b shows the expected field of the vertical gradient change rate, which would be the 

signal observed by a satellite mission as GOCE designed for picking up the time variable gradient 

change. The gradient picks up well the uplift of topography (red curve in top graph of Figure 3B)  , but 

is not so sensitive in distinguishing a crustal thickening (green curve in mid graph of Figure 3B) from a 

pure crustal uplift (purple curve in mid graph of Figure 3B). The strongest gradient signal of elevation 

uplift is found where lateral elevation changes are strong. 

The first and second models cannot reproduce a differential signal between Himalaya range and 

Himalaya foothill and the central Tibetan Plateau, as was observed from GRACE. We therefore modify 

the model assuming a differential crustal mechanism, with crustal thickening for the orogens 
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surrounding the Plateau from the Himalayas to the Tien Shan and lack of Moho deepening over the 

Tibetan Plateau. Equivalently it could be thought of phase transitions at the Moho level that densify the 

bottom crust. The result is shown in Figure 4. The uplift rate was kept equal as in the previous exercise, 

with the difference that over the Himalaya the crustal thickening is responding according to isostasy, 

whereas over Tibet crustal thickness is not changing and the entire crust is uplifting. Nearly the same 

results would be obtained by an uplifting topography and a stable depth of the Moho. The mixed model 

(green curve in mid graph of Figure 4A) is able to reproduce the higher positive gravity increase over 

the Tibetan Plateau, a lower positive increase over Himalaya, and a negative increase on the Indian 

Plate. This would correspond to the observations from GRACE (turqoise curve in mid graph of Figure 

4A). 

The change rate estimates consider the gravity effect, and reflect the signal observed by an airborne 

gravity survey. For terrestrial observations the decrease of gravity due to elevation change must be 

added to the calculated signal. In Figure 5 the gravity change rate for the two extreme models, the 

crustal thickening (Figure 5B) and the crustal uplift  (Figure 5A) and for the mixed model (Tibetan 

Plateau crustal uplift, Himalayas-Tien Shan crustal thickening) (Figure 5C)  is shown for the entire area 

and is compared to the observed residual GRACE rate (YI & SUN, 2014) (Figure 5D). The mixed model 

is closer to the observations than either one of the two end-member models.  

 

 

Discussions 

We first have shown that gravity change rates have been observed from terrestrial and satellite gravity 

observations over Tibet. The observed rates have an amplitude of a few µgal/year. The satellite derived 

rates have been compared to hydrological models and interpreted in terms of equivalent water layer 

variations, that is a mathematical model that projects the entire change rate signal into a surface water 
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layer of changing thickness. This equivalent water height is adequate for hydrologic purposes, as it is 

interpreted as water pumping from an aquifer or as glacier mass changes. When the signal is due to the 

combination of climatic and geodynamic effects, the equivalent water height model does not interpret 

the observed gravity signal correctly, as the sources are all placed at the Earth surface. We have tested 

different end-member situations concerning changes at Moho level in response to topographic level 

changes, and found that in the case of the Tibetan Plateau, the signal is of the same order of magnitude 

as the observed gravity change rates (Figure 3A).  

Uncertainties on the uplift rate variations over the Plateau exist, but the existing observations from 

repeated leveling and GPS are consistent. Due to the EW striking homogeneity of the Plateau it can be 

assumed that also the western part of the Plateau is uplifting as the eastern part, probably with a NS 

variation. It may be argued that the crust is stratified and a full crustal model should be used for the 

simulations. Certainly a refined model can be done in the future, but the gross features and order of 

magnitude of the results will not change since the signal is governed by the greatest density contrasts, 

which are between land and air and between crust and mantle. The vertical shift of the crustal layers 

will only mildly contribute to the signal as only very small mass changes are involved with vertical 

movements inside the crust.  Therefore the estimated gravity rates are realistic for the proposed model 

situation.. 

A future gravity mission with higher spatial resolution would allow to distinguish the subsiding Moho 

below the orogens placing tighter bounds on the geodynamic model. A higher spatial resolution 

compared to the present one of GRACE would allow to separate the climatic signal due to hydrology 

and ice from the tectonic signal which we show here to be present. An increased signal resolution 

combined with a higher spatial resolution would have the benefit of defining the geodynamic model 

better and then also the hydrologic estimate of drought in India, which can be expected to have a 
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smaller spatial scale than the tectonic signal. With the present resolution the two signals blend into a 

large scale positive or negative gravity variation. 

 

Conclusions 

This work describes a simulation of the expected gravity change rate over the Tibetan Plateau and 

surrounding orogens based on observed uplift rates of topography. The signal characteristics and 

amplitude have two extremes, corresponding to two end-member models. The maximum signal is 

reached for pure crustal uplift without crustal thickness change, the smallest signal is obtained for 

crustal thickening maintaining isostatic equilibrium where the topographic uplift is balanced by Moho 

lowering. We find that the crustal thickness signal cannot be neglected as it is within the order of 

magnitude of the expected hydrologic signal, the latter being generally used to interpret the gravity 

variation rates observed by GRACE satellites. For the Tibetan Plateau the observations give a positive 

gravity rate and a positive uplift rate, which is compatible with the crustal uplift model without crustal 

thickening. The positive gravity rate is not found for the Himalayas, although the range is presently 

uplifting, which is not compatible with the pure crustal uplift, but can be reproduced with the crustal 

thickening model. The distinction of the different mechanisms that lead to the topographic uplift is 

relevant in other disciplines, as in the modeling of crustal stresses and the estimate of accumulation of 

seismic energy. The simulations presented in this work give constraints for defining the requirements 

of the next generation of  gravity satellite missions. 
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Figure 1- Topography of Tibet Plateau including the Himalayas. Rivers and Coastlines in Blue. 

National borders in thin black. Principal faults and geologic boundaries in heavy black. AA’ is the 

profile along which gravity is calculated and shown in Figures 3 and 4. MBT: Main Boundary Thrust. 

ITS: Indus Tsangpo Suture. BNS: Bangong Nujian Suture. JS: Jinsha Sutrue, ATF: Altyn Tagh Fault. 

Triangles: Absolute gravity stations discussed in text. Pink outline: High Himalayas. Green Outline: 

Lesser Himalayas. Adopted from (YIN & HARRISON, 2000) and GOSCOMBE (2001). 

Figure 2 – Schematic illustrating the geodynamic models of crustal thickening and crustal uplift and the 

corresponding mass changes. A Crustal uplift without thickness change. B Crustal thickening model. C 

Mixed model, with crustal uplift over the Plateau and crustal thickening for the Himalayas. Yellow: 

positive mass change at topography; red: positive mass change at Moho level; blue: negative mass 

change at Moho level. 

Figure 3 Gravity changes over the Tibetan Plateau including the Himalayas for two different 

geodynamic models. Elevation increases at the rate of 2 mm/yr, accompanied with crustal thickening or 

with constant crustal thickness, which is uplifting. A) Gravity field B) Vertical Gravity Gradient. 

Location of profile shown in Figure 1 as AA’; the origin of the profile is in point A, the end in point 

A’. 
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Figure 4- Gravity changes over the Tibetan Plateau and the Himalayas for a mixed geodynamic model 

in the Tibetan Plateau and the Himalayas. Elevation increases at the rate of 2 mm/yr, accompanied with 

crustal thickening in the Himalayas and with constant crustal thickness, which is uplifting in the 

Tibetan Plateau. A) Gravity field. B) Gradient field. Location of profile shown in Figure 1 as AA’; the 

origin of the profile is in point A, the end in point A’. 

Figure 5- Gravity response of different geodynamic models for a given topographic uplift over Tibet 

and Himalaya and observed gravity rate. Elevation increases at the rate of 2 mm/yr, accompanied with 

A) crustal uplift everywhere B) crustal thickening everywhere C) mixed model, with crustal thickening 

from  Himalaya to Tien Shan and with constant crustal thickness which is uplifting in Tibet. White 

outline gives the area in which crustal thickening is assigned. D) Residual gravity rate from satellite 

GRACE according to YI & SUN (2014). Blue lines: rivers;  

 

Table captions 

Table 1- Gravity change rates mentioned in the text. 

Table 2- Expected and observed ratios between gravity and station height rates mentioned in the text. 



Ac
ce

pt
ed

 m
an

us
cr

ip
t

  

 

 

Figure 1- Topography of Tibet Plateau including the Himalayas. Rivers and Coastlines in Blue. National 
borders in thin black. Principal faults and geologic boundaries in heavy black. AA’ is the profile along which 
gravity is calculated and shown in Figures 3 and 4. MBT: Main Boundary Thrust. ITS: Indus Tsangpo Suture. 

BNS: Bangong Nujian Suture. JS: Jinsha Sutrue, ATF: Altyn Tagh Fault. Triangles: Absolute gravity stations 
discussed in text. Pink outline: High Himalayas. Green Outline: Lesser Himalayas. Adopted from (YIN & 

HARRISON, 2000) and GOSCOMBE (2001).  
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Figure 2 – Schematic illustrating the geodynamic models of crustal thickening and crustal uplift and the 
corresponding mass changes. A Crustal uplift without thickness change. B Crustal thickening model. C Mixed 
model, with crustal uplift over the Plateau and crustal thickening for the Himalayas. Yellow: positive mass 

change at topography; red: positive mass change at Moho level; blue: negative mass change at Moho level. 
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Figure 3 Gravity changes over the Tibetan Plateau including the Himalayas for two different geodynamic 
models. Elevation increases at the rate of 2 mm/yr, accompanied with crustal thickening or with constant 

crustal thickness, which is uplifting. A) Gravity field B) Vertical Gravity Gradient. Location of profile shown in 

Figure 1 as AA’; the origin of the profile is in point A, the end in point A’.  
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Figure 4- Gravity changes over the Tibetan Plateau and the Himalayas for a mixed geodynamic model in the 
Tibetan Plateau and the Himalayas. Elevation increases at the rate of 2 mm/yr, accompanied with crustal 

thickening in the Himalayas and with constant crustal thickness, which is uplifting in the Tibetan Plateau. A) 

Gravity field. B) Gradient field. Location of profile shown in Figure 1 as AA’; the origin of the profile is in 
point A, the end in point A’.  
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Figure 5- Gravity response of different geodynamic models for a given topographic uplift over Tibet and 
Himalaya and observed gravity rate. Elevation increases at the rate of 2 mm/yr, accompanied with A) 

crustal uplift everywhere B) crustal thickening everywhere C) mixed model, with crustal thickening 

from  Himalaya to Tien Shan and with constant crustal thickness which is uplifting in Tibet. White outline 
gives the area in which crustal thickening is assigned. D) Residual gravity rate from satellite GRACE 

according to YI & SUN (2014). Blue lines: rivers;  
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Table 1 

 

Station method Gravity rate Height rate Gravity rate 

corrected 

for 

denudation 

and uplift 

Author 

Lhasa Absolute gravity 

observation 

-1.97±0.66 

10
-8

 m/s
2
/yr 

+0.8±0.5 

mm/yr 

-1.56±0.67 

10
-8

 m/s
2
/yr 

SUN et alii 

(2009) 

Kunming Absolute gravity 

observation 

-1.42±0.38 

10
-8

 m/s
2
/yr 

+2.3±0.5 

mm/yr 

-0.73±0.39 

10
-8

 m/s
2
/yr 

SUN et alii 

(2009) 

Dali Absolute gravity 

observation 

-0.41±0.24 

10
-8

 m/s
2
/yr 

+0.5±0.5 

mm/yr 

-0.06±0.26 

10
-8

 m/s
2
/yr 

SUN et alii 

(2009) 

Gravity 

change at 

station due 

to uplift  

Flat Bouguer 

estimate+vertical 

gravity gradient 

-0.19 10
-8

 

m/s
2
/mm 

------------ ------------ SUN et alii 

(2009) 

Erosional 

denudation 

over Tibet 

plateau 

estimated -0.25±0.1  

10
-8

 m/s
2
/yr 

------------ ------------ SUN et alii 

(2009) 

Moho 

lowering 

estimated -0.78 

 10
-8

 m/s
2
/yr 

2.3 cm/yr ------------ SUN et alii 

(2009) 
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Table 2 

Station or model 

situation 

Ratio: gravity/uplift Model parameters 

Topography uplift, no 

mass change at Moho 

level  

-0.19 10
-8

 m/s
2
/mm ρc = 2,670 kg/m

3
 

ρm = 3,200 kg/m
3
 

Topography and Moho 

uplift 

-0.17 10
-8

 m/s
2
/mm  

“ 

Lhasa -2.4 10
-8

 m/s
2
/mm Gravity and uplift rates 

from SUN et alii (2009) 

Kunming -0.6 10
-8

 m/s
2
/mm “ 

Dali -0.8 10
-8

 m/s
2
/mm “ 
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