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ABSTRACT 

 
The scarcity of fossil fuel and the increased pollution leads the use of Electric Vehicles (EV) 

and Hybrid Electric Vehicles (HEV) instead of conventional Internal Combustion (IC) 

engine vehicles. An Electric Vehicle requires an on-board charger (OBC) to charge the 

propulsion battery. The objective of the project work is to design a multifunctional on-board 

charger that can charge the propulsion battery when the Electric Vehicle (EV) connected to 

the grid. In this case, the OBC plays an AC-DC converter. The surplus energy of the 

propulsion battery can be supplied to the grid, in this case, the OBC plays as an inverter. 

The auxiliary battery can be charged via the propulsion battery when PEV is in driving 

stage. In this case, the OBC plays like a low voltage DC-DC converter (LDC). An OBC is 

designed with Boost PFC converter at the first stage to obtain unity power factor with low 

Total Harmonic Distortion (THD) and a Bi-directional DC-DC converter to regulate the 

charging voltage and current of the propulsion battery. The battery is a Li-Ion battery with 

a nominal voltage of 360 V and can be charged from depleted voltage of 320 V to a fully 

charged condition of 420 V. The function of the second stage DC-DC converter is to charge 

the battery in a Constant Current and Constant Voltage manner. While in driving condition 

of the battery the OBC operates as an LDC to charge the Auxiliary battery of the vehicle 

whose voltage is around 12 V. In LDC operation the Bi-Directional DC-DC converter works 

in Vehicle to Grid (V2G) mode. A 1KW prototype of multifunctional OBC is designed and 

simulated in MATLAB/Simulink. The power factor obtained at full load is 0.999 with a 

THD of 3.65 %. The Battery is charged in A CC mode from 320 V to 420 V with a constant 

battery current of 2.38 A and the charging is switched into CV mode until the battery current 

falls below 0.24 A. An LDC is designed to charge a 12 V auxiliary battery with CV mode 

from the high voltage propulsion battery. 

 

Keywords: Bi-directional DC-DC converter; Boost PFC converter; electric vehicle; low 

voltage DC-DC converter; vehicle-to-grid. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Conventional Internal Combustion (IC) engine vehicles use petroleum products (i.e. 

petrol, diesel, or LPG) as the source of energy for driving purpose. The shortage of fossil 

fuel is the most critical issue over worldwide and the immediate solution is to minimize the 

use of fossil fuel as much as possible. Moreover, conventional IC engine vehicles emit 

carbon dioxide and various greenhouse gasses by making it harder to satisfy environmental 

regulations. The solution leads to adopting alternate fuel vehicles such as Electric Vehicles 

(EV) and Hybrid Electric Vehicle (HEV). EV does not emit tailpipe pollutant like 

particulates, ozone, volatile organic compounds, carbon monoxide, hydrocarbons, lead and 

oxides of nitrogen which plays a vital role in air pollution and greenhouse gas Moreover the 

fossil fuel issue can be minimized. 

As of September 2015 around 30 models of commercial electric cars and utility vans 

are launched mainly in China, United States, Western European countries and Japan. Over 

620,000 light-duty electric vehicles have been sold by mid of September 2015 [1].Some of 

the EV manufacturers are BMW, Nissan, Mahindra, Tesla motor etc. Table 1.1 shows the 

technical specification of an EV from Mahindra. As in one full charge the vehicle produces 

a range of 120 Km, hence, EV can be adapted for commercial usage. 

Table 1.1 Technical specifications of Mahindra REVA 

Parameter Value 

Power 19 kW @ 3750 rpm 

Torque 53.9 N-m @ [0-3400] rpm 

Battery 48 V Li-ion 

Range 120 km in one full charge 

Charging time 5 hours from a 220 V,15 A socket 

(http://mahindrareva.com/product/specifications) 

 

http://mahindrareva.com/product/specifications
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1.2 Electric Vehicle vs. Hybrid Electric Vehicle 

Electric vehicles have only one source of energy i.e. the on-board battery bank and 

by utilizing the stored energy, they drive the vehicle. The battery bank can be charged by 

taking electricity from either conventional or non-conventional sources. The schematic 

shows the block diagram of an electric vehicle. As shown in the figure the power electronic 

converter matches the electrical ratings of the battery bank and the motor. The motor can be 

a DC motor or AC motor, depending on the motor the converter can be a DC-DC converter 

or DC-AC converter. Large charging time, limited range of driving due to the limited 

capacity of the on-board battery pack are the challenges that can be considered [2]. 

 

Fig 1.1 Block diagram of electric vehicle 

Unlike EVs hybrid electric vehicles (HEV) have two or more sources of energy. The 

sources can be a battery bank and a fuel cell or an IC engine along with a battery 

bank.Fig.1.2 shows the block diagram of an HEV. It can be observed from the block diagram 

that both the IC engine and the Battery bank van be utilized to drive the vehicle hence by 

improving the range of the vehicle [3]. 

 

Fig 1.2 Block diagram of hybrid electric vehicle 
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1.2 Battery Chargers for Plug-In Electric Vehicles 

In order to utilize the battery to its maximum capacity the battery charger plays a 

crucial role. The remarkable features of a battery charger are efficiency and reliability, 

weight and cost, charging time and power density. The characteristics of the charger depend 

on the components, switching strategies, control algorithms. This control algorithm can be 

implemented digitally using micro-controller [4]. 

The figure below shows the block diagram of an EV charger. The charger consists 

of two stages. First, one is the AC-DC converter with power factor correction which 

converts the AC grid voltage into DC ensuring high power factor and low THD. The later 

stage regulates the charging current and voltage of the battery according to the charging 

method employed. 

 

Fig 1.3 Block diagram of EV charger 

The charger can be unidirectional i.e. can only charge the EV battery from the grid 

or bidirectional i.e. can charge the battery from the grid in charging mode and can pump the 

surplus amount of power of the battery into the grid. Both isolated and non-isolated 

topologies can be employed for the charger. The details of each stage are thoroughly 

described in subsequent chapters. 

1.3 Battery study 

1.3.1 Introduction 
 

The very first step of designing an Electric Vehicle (EV) or Hybrid Electric Vehicle 

(HEV) is to design the suitable propulsion battery which is responsible for driving the motor. 

The battery must be able to satisfy the electric specifications such as operating voltage, 

power, power and energy densities and long working cycle and life. 

Presently Lithium-Ion battery is the most commonly used in automobile industries. 

The advantages of Li-Ion battery are listed below 
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1. The energy density of Li-Ion battery is around twice of Ni-Cd battery and the load 

characteristics are almost similar as Ni-Cd battery. 

2. A single cell of Li-Ion battery is of 3.6 volts where it is 1.2 volts and 2 volts in the case 

of Ni-Cd and Lead Acid battery respectively. 

3. The discharge rate of the battery is fairly flat i.e. it delivers a constant power over 80% 

of the discharge cycle. 

4. The weight of Li-ion battery pack is much less than Ni-Cd. For example 20kWh Li-ion 

battery pack weights around 160 kg while Ni-Cd weights around 275-300 kg for the same 

ratings. 

With above advantages, Li-ion batteries also have some major drawbacks which are 

the battery is very costly, flammable and the life cycle is limited between 400 and 700 

cycles. The safety issue can be eliminated by using Lithium ion phosphate batteries which 

life cycle is around 1000 cycles. 

1.3.2 Electrical Model of Li-Ion Battery 
 

The main objective to model a battery is to represent the battery operation via a 

mathematical equation or equivalent circuit or both. Equivalent circuit model is convenient 

for power system simulations as it can be modeled with basic electrical components such as 

voltage source, resistor, and capacitors. 

 

Fig 1.4 Equivalent model of Li-Ion battery 

The above figure shows the Thevenin’s equivalent model of a Li-Ion battery. The 

open circuit voltage is 𝑉𝑜𝑐. Both ohmic resistance 𝑅𝑜 and polarization resistance 𝑅𝑇ℎ are 
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accounted for internal resistance and the transient response during charging are discharging 

are modelled by an equivalent capacitance𝐶𝑇ℎ. 𝑉𝐵  represents the effective battery voltage. 

1.3.3 Charging profile of Li-Ion Battery 
 

 

Fig 1.5 Charging characteristics of Li-ion cell 

The CC/CV mode charging is most commonly used for Li-ion battery. Fig 1.5 shows 

the charging characteristics of a single Li-ion cell with a nominal voltage of 3.6 V during 

charging. Four key points can be marked during the charging process [5]. The beginning 

and end point related to the starting and termination of the charging. The nominal point 

where the battery voltage equals to the nominal voltage and the turning point where the 

charging mode is converted from CC to CV. The depleted voltage of the Li-ion cell is below 

the nominal voltage of the cell. First, the battery is charged in a CC mode up to the turning 

point where the battery voltage reached s to the maximum voltage with 100% SoC the 

battery is charged with CV mode toil the charging current falls below a permissible limit. 

1.4 Charger infrastructure and power levels 

The total amount of power that can be transferred, charging time, cost, location and 

effect on the grid are some important features of the charger. Some important issues like 

charging time, standardization of charging stations, distribution, and demand policies can 

be addressed by the deployment of charging infrastructure and electric vehicle supply 

equipment (EVSE) [6]. 

Based on power levels the chargers are classified into three categories and are 

described below.  
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Level 1 charging: 

It is the slowest method and according to U.S. standard 120 V/15A single phase 

outlet can be used for the charging purpose. A standard J1772 connector can be used to 

connect the EV ac port with the charging outlet. No extra infrastructure is necessary and the 

vehicle can be charged in home or office overnight. The charger is an on-board charger 

(OBC) i.e. the charger can be mounted inside the vehicle. 

Level 2 charging: 

It is the semi-fast charging method. According to U.S. standards, a 240 V outlet is 

necessary for level 2 charging. Dedicated equipment may be required at home or office for 

this charging method. 

Level 3 charging: 

Generally, level 3 charging offers DC fast charging or AC fast charging ad the time 

taken is less than 1 hour. Dedicated charging stations are required and an off-board charger 

is employed to convert the AC power into DC in order to charge the battery. 

The details of the charging levels and connectors are listed in the table below: 

Table 1.2 Charging power levels and rating of EV 

Power level types Voltage and 

current ratings 

Expected 

power level 

Connector 

Level 1 120 V/15 A 2 k W SAEJ1772,NEMA 5-15 

Level 2 240 V/(12-80) A 2.9-19.2 kW SAEJ1772,IEC62196 

Level 3 400 V AC/(32-63) A 22.1-43.7 kW EC 60309 

 

1.5 Literature Review 

The charger in [7] requires a four switch AC-DC converter for PFC operation and a 

full bridge DC-DC converter for CC/CV mode charging operation. The PFC controller is 

designed with battery voltage and current references i.e by making the control circuit more 

complex. 
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A level 2 charger combining bridgeless boost PFC converter as front-end converter 

and isolated phase shifted full bridge DC-DC converter is presented in [8].To obtain high 

density and high-efficiency silicon carbide power switches(SiC) are utilized. A maximum 

efficiency of 95 % and minimum THD 4.2 % is obtained at a frequency of 200 kHz. 

Smart Homes and Smart Grid based operation modes for EV is described in 

[9].Usually, two modes of power transfer occur between EV and Grid i.e. Grid to Vehicle 

and Vehicle to Grid. The literature proposes additional two modes namely Vehicle for Grid 

and home to Vehicle. A Vehicle to Home operation is proposed. In H2V mode, the charger 

current is controlled depending on the in home appliances and their consumption of 

power.V4G operation is aimed for the reactive power compensation in the home itself with 

the utilization of the vehicle charger. In V2H mode, the vehicle supplies power to a single 

home unlike in V2G mode where the vehicle is supposed to supply power to the grid. A 3.6 

kW charger prototype is developed with bi-directional power flow capabilities to achieve 

all modes of operations. 

In [10] an on-board battery charger for the electric scooter is developed. The charger 

is designed for a lead-acid battery of 180 V and 12 Ah and the charger can charge the battery 

from an 110 V, 60 Hz, single phase outlet. The concept of low voltage DC-DC converter 

(LDC) is proposed. In order to charge a 12 V auxiliary battery from the 180 V propulsion 

battery, a DC-DC converter is proposed. 

A resonant synchronous DC-DC converter operating in DCM is proposed in 

[11].The required amount of dead time and reversed current for DCM operation can be 

calculated for a ZVS operation in the entire range of operation. The parameter selections 

can be directly done from the datasheets of the components without performing any 

simulation or experimental verification. 

Different PFC topologies which include Diode Bridge at first stage followed by 

Buck, Boost, Buck-Boost, SEPIC can be used to feed Brush Less DC Motors. In [12] 

different topologies are simulated and analyzed in order to choose appropriate topology for 

the desired application. The paper suggests diode bridge rectifier based PFC topologies are 

best choice for low power applications. Boost PFC topology make an advantage where 

output DC voltage more than input is desired. When output DC voltage less than RMS value 

of input AC voltage is essential Buck based PFC topologies are suitable. Buck-Boost 

derived topologies like Cuk, SEPIC are drawn an advantage where power less than 500 W 
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is desired. Half Bridge and Push Pull topologies have low THD with the medium power of 

operation than Boost PFC converter. However, the component count increases and the 

selection should be based on the trade-off between performance and cost and complexity. 

A Buck PFC converter with Constant on-time control has been proposed in [13].The 

experimental validation of the proposed design is carried out for 100 W power with a supply 

of 90 V. The design meets the IEC61000-3-2 harmonic standards. The efficiency is 

calculated as 0.96 with a full load and universal voltage operation. The main disadvantage 

of Buck type PFC converter is the discontinuous input current, which requires a large filter 

at the input. 

A novel two-switch Boost-interleaved buck-boost topology has been proposed in 

[14].The designed converter having an advantage of less voltage stress on the switches and 

reduced conduction loss in switch and inductor with reduced size. An efficiency of 93 % is 

obtained during universal line voltage input with low THD. 

1.6 Motivation 

As the world is moving towards alternate fuel vehicles, EVs and HEVs can be 

adopted to restrict the usage of fossil fuel and increased environmental pollutions. Most of 

the EVs have a lower driving range for which a frequent charging process is essential. The 

charger must be compatible enough so that it can be mounted on the vehicle itself and the 

vehicle can be charged when the suitable outlet is available. 

1.7 Objective 

The objective of this thesis work is to provide an On-Board EV charger for level 1 

charging purpose. The designed OBC is a two stage charger with Boost PFC converter at 

the front end for conversion of AC to DC with very high PF whereas the second stage is a 

Non-Isolated DC-DC converter for battery voltage and current regulation. 

The high voltage propulsion battery is considered as a Li-Ion type and CC/CV 

charging algorithm is developed for the battery. An LDC is designed with the utilization of 

the OBC for charging the Auxiliary battery from the propulsion battery. 
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1.8 Organization of Thesis 

The thesis is organized in the following manner 

Chapter 2 described the Front end AC-DC converter which is required to convert the grid 

voltage into a suitable DC voltage with low current harmonic and thus by ensuring a high 

power factor. 

Chapter 3 explains the second stage of an OBC i.e. a DC-DC converter to regulate the 

charging current and voltage. Furthermore, a Vehicle-to-Grid mode operation of the DC-

DC converter is presented. An LDC is designed and analyzed to charge the auxiliary battery 

from the propulsion battery by utilizing the designed OBC. 

Chapter 4 deals with the overall concluding points of the designed EV charger for charging 

both propulsion battery and auxiliary battery. The next design aspects of the OBC is stated 

in this chapter.  

1.9 Conclusion 

The basic difference between EV and HEV is stated in 1.1 of this chapter. A brief 

explanation of two stage EV charger with the power converters required for each stage is 

described in 1.2.New era EVs and HEVs use high voltage Lithium Ion battery pack for 

driving purpose. The various advantages of Li-ion battery and the charging profile i.e. 

CC/CV mode charging which is suggested by the battery manufacturers and the equivalent 

electrical model of the battery are thoroughly explained in 1.3.section 1.5 describes different 

classifications of EV charger based on the power levels and power flow capability i.e. 

unidirectional and bidirectional. In 1.5 previous work regarding EV charger and the 

converters associated with the charger has been stated. As the first stage of an OBC is the 

AC-DC converter, hence, the AC-DC converter topology is explained in chapter 2.The 

conventional Diode Bridge Rectifier with its associated key issues are presented and the 

solution to the difficulties are addressed. 

 



 

CHAPTER 2 

FRONT-END AC-DC CONVERTER 

2.1 Introduction 

The Electric Vehicle can be charged from a suitable outlet via an OBC the AC-DC 

converter or rectifier is the first stage of an OBC which converts the available AC supply 

into DC.A constant voltage with less ripple at the output terminals of the AC-DC converter 

is desired which can be further utilized by the load or any other converter. Most common 

rectifier topology is Diode bridge rectifier with capacitive filter and phase controlled 

rectifiers. The first one is preferred for low power applications where the later one is for 

high power applications and three phase applications. 

One most serious issue with the conventional rectifiers is the harmonics components 

of the line current which are responsible for distorting the voltage at the point of common 

coupling due to source inductance and produce some undesirable effects. Due to the 

presence of harmonics, the power factor becomes worst. The effect of low PF and high THD 

are described in section 2.2. 

2.2 Basic Definitions 

Power factor (pf) simply defined as the ratio of real power to apparent power. The 

instantaneous product of voltage and current over one complete cycle gives the real power 

where the product of RMS voltage and RMS current gives the apparent power. 

The cosine of the angle between voltage phasor ad current phasor is defined as PF. 

But this definition is not valid everywhere, especially at nonlinear loads. The definition is 

limited up to resistive, inductive, or capacitive loads[15]. 

Consider a non-linear load connected with a sinusoidal voltage source. The voltage 

and current can be expressed as v(t) and i(t). 

v(t)=𝑉𝑚𝑠𝑖𝑛𝜔𝑡 and i(t)=𝐼𝑂 + ∑ 𝐼𝑛sin (𝑛𝜔𝑡 + ∅𝑛)∞
𝑛=1                                                                          (2.1) 

𝑉𝑚is the maximum value of supply voltage. 𝐼𝑛 is the maximum value of 𝑛𝑡ℎ harmonics 

component of current and ∅𝑛is the 𝑛𝑡ℎharmonic phase displacement. 
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RMS value of current can be expressed as  

𝐼𝑅𝑀𝑆 = √𝐼𝑂
2 + ∑ 𝐼𝑛

2∞
𝑛=1                                                                                                                 (2.2) 

Power factor can be expressed as the product of displacement factor and distortion factor. 

The displacement factor can be defined as the cosine of angle between fundamental 

component of voltage and current and as denoted by 𝑘∅. 

𝑘∅ = 𝑐𝑜𝑠∅                                        (2.3) 

Where ∅ is the phase displacement between fundamental voltage and current. 

The distortion factor can be defined as the ratio of fundamental component of current to the 

RMS current and is denoted as 𝑘𝑑. 

𝑘𝑑 =
𝐼1(𝑅𝑀𝑆)

√𝐼𝑂
2 +∑ 𝐼𝑛

2∞
𝑛=1

               (2.4) 

The Total Harmonic Distortion can be calculated as  

THD (%) =
1

√𝑘𝑑
2−1

                          (2.5) 

Power factor can be defined as the product of displacement factor and distortion factor. 

pf =𝑘𝑑 × 𝑘∅                (2.6) 

When the fundamental component of current is in phase with the voltage, the displacement 

factor is 1 and the PF =𝑘𝑑. 

pf =
1

√1+(
𝑇𝐻𝐷(%)

100
)

2
               (2.7) 

Effects of current Harmonics: 

 The current harmonics distorts the grid voltage at Point of Common Coupling (PCC) 

via line impedance of the power system and the distorted voltage cause malfunction in 

various electrical equipment connected to the grid. 

 In AC machines, a fundamental component of current is useful and desired to produce 

required amount of power. Harmonic current add to the fundamental and result in 

increased current which in turn increases the losses in distribution transformer and AC 
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machines. Due to additional loss machines undergo overheating and cannot be used up 

to their actual rating. 

 Large neutral current flows in the power system due to triple harmonics. 

 Malfunctions in protection system caused by the current harmonics. 

Effects of low pf: 

 At low pf, the load draws more current and the loss in the converter and the transmission 

system increases and efficiency reduces. 

 The Reactive power increases which increase the rating of the electrical components 

and additional reactive power has to be supplied by shunt elements or generator. 

2.3 Harmonic standards 

Due to the adverse effects of the harmonics, various agencies have adopted standards 

i.e. the maximum allowable harmonic current that can be injected into the power system by 

any load. A few standards are listed below. 

IEC 61000-3-2 Standard: 

Table 2.1 IEC 61000-3-2 standard for Class A equipment 

Harmonic Number(n) Maximum permissible current(A) 

3 2.30 

5 1.14 

7 0.77 

9 0.40 

11 0.33 

13 0.21 

15-39 0.15 

 

IEC stands for International Electrotechnical Commission and enforced in Europe. 

It defines a limit for current harmonics of equipment with a maximum input current of 16 

A. The standard applies to both single phase, and three phase equipment, and the frequency 

may be 50 Hz or 60 Hz. Harmonic limits for Class A equipment is shown in Table 2.1.Some 

examples of class An equipment are rectifiers for office and computer. 
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IEEE Standard: 

According to IEEE, the current harmonics are measured by the ratio of load current 

to the short circuit current. This ratio can also define as the ratio of load kVA to short circuit 

kVA at PCC. 

The voltage harmonics distortion on the power system is limited to 5 % THD with 

voltage rating up to 69 kV and the current harmonics depend on the short circuit capacity 

of the line at PCC according to IEEE standard 519 [16]. 

Table 2.2 Voltage harmonic limits 

Voltage at PCC THD limit (%) Individual harmonic limit (%) 

<69 kV 5.0 3.0 

69 kV-161 kV 2.5 1.5 

>161 kV 1.5 1.0 

 

Table 2.3 Current harmonic limits 

𝑰𝑺𝑪
𝑰𝑳

⁄  h<11 11≤h<17 17≤h<23 23≤h<35 h>35 TDD (%) 

<20 4.0 2.0 1.5 0.6 0.3 5.0 

20<50 7.0 3.5 2.5 1.0 0.5 8.0 

50<100 10.0 4.5 4.0 1.5 0.7 12.0 

100<1000 12.0 5.5 5.0 2.0 1.0 15.0 

>1000 15.0 7.0 6.0 2.5 1.4 20.0 

 

Where, 
𝐼𝑆𝐶

𝐼𝐿
⁄ maximum harmonic current distortion in percent of 𝐼𝐿. 

h = the harmonic order (odd harmonics). 

𝐼𝑆𝐶  = short circuit current at PCC. 

𝐼𝐿 = fundamental component of load current at PCC. 

TDD=Total demand distortion. 

PCC=Point of common coupling. 
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2.4 Diode Rectifier 

One of the commonly used AC-DC converters is a diode bridge rectifier for low 

power applications. Fig 2.1(a) shows a diode bridge rectifier without any filter. The 

operation of the converter is very simple. Diagonal diodes 𝐷1 and 𝐷2 conduct for positive 

half cycle of the supply voltage and similarly diodes 𝐷3and 𝐷4 conducts for negative half 

of the supply voltage. The rectifier behaves as a pure resistive load to the input AC source 

and, the input current is in phase with the voltage, providing unity power factor operation. 

        

(a)      (b) 

Fig 2.1 Diode bridge rectifier (a) power stage diagram (b) output voltage (𝑉𝑆=230 V RMS) 

From the Fig 2.1(b) it can be observed that the output voltage of rectifier or load 

voltage 𝑉𝐷𝐶 is the rectified sine wave but the ripple in the load voltage is very high which 

should be minimized. In most cases the output of the rectifier is a DC-DC converter which 

accept an input DC voltage of a ripple within permissible limit. To reduce the ripple of the 

output voltage various filters are implemented which are discussed below. 

2.4.1 with C filter  
 

In order to minimize the ripple voltage at the output and maximize the average 

output voltage, filters are added to the conventional rectifier. A capacitive filter is one of 

the basic filters and widely used one. Fig 2.2(a) shows a diode bridge rectifier with C filter. 

Usually, the value of the capacitor is decided by the amount of allowable ripple in output 

voltage. 
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(a) 

 

(b)       (c) 

Fig 2.2 Diode rectifier with C filter (a) power stage diagram(b)output voltage(c)input 

current(𝑉𝑆=230 V RMS and C =200µF) 

As shown in Fig 2.2 (b) the voltage is having a ripple of 60 V peak-to-peak. The 

ripple can be minimized further by increasing the value of filter capacitor. The input current 

is not sinusoidal, but it contains harmonics that can be verified from the FFT of the input 

current in Fig 2.3(a).The input current is discontinuous i.e. the diagonal diodes does not 

conduct for the entire half cycle of the supply. With the increase in the capacitance value, 

the conduction period of the diodes decreases and the input current peak increases with the 

increase in THD. The reason for the momentary current is explained below. 

 

(a) 
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(b) 

Fig 2.3 Diode rectifier with C filter (a) input current FFT analysis (b) rectified voltage capacitor 

voltage and input current (input current is magnified by ten times for better visibility) 

Fig 2.3(b) shows the steady state capacitor voltage and input current waveform. The 

rectified voltage without any filter is shown in green color. When the input voltage or 

rectified voltage less than the voltage across capacitor the diodes are reverse biased and no 

current flows into the converter and the load current is supplied by the capacitor. When the 

supply voltage more than the capacitor voltage the diodes become forward bias and the 

capacitor draw charging current from the supply for a short duration. When the supply 

voltage is less than the capacitor voltage simultaneously the four diodes, get reverse biased. 

If the capacitor tends to infinity, the input current is an impulse current only. The power 

factor of the converter is 0.657, and the THD is 144.5% which exceeds the standards. 

2.4.2 With LC filter 
 

With LC filter, the rectifier operates in two modes i.e. CCM and DCM. When the 

inductor is very large as compared to the capacitor, the rectifier operates in CCM. The large 

inductor does not allow a sudden change in current and hence the inductor current is 

constant. The constant inductor current is supplied by the input diode rectifier with at least 

two diodes conducting. The input current is in phase with the input voltage . Hence the 

displacement factor is unity. However, the shape of current is not sinusoidal hence by 

introduces THD. In Discontinuous Conduction Mode the inductance value is small as 

compared to the capacitor. Due to the presence of inductor the input current width increases 

and inductor smoothens the current. 
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Several LC branches can be connected as a filter, and harmonic trap filter can be 

implemented at the input side with a series branch of RLC. With the addition of inductor on 

the output side of the diode rectifier the THD and PF improves. The results are shown in 

Fig 2.4. 

 

(a) 

 

(b) 

Fig 2.4 Diode rectifier with LC filter (a) input current (b) FFT of input current(L= 20 mF and 

C=200µF) 

The THD reduces from 144 % to 74 % with the addition of filter inductance. With 

the increase in L value, the THD decreases and at the same instance the output voltage 

decreases and to maintain the desired output voltage another DC-DC converter with boost 

operation is necessary. The THD gets better with the harmonic trap filter at the input side. 

Fig 2.5 shows a graph between Inductance and THD. With infinite inductance, the pf cannot 

reach more than 0.9 [17]. 

Passive filters cannot make power factor more than 0.75 and only applicable for low 

power applications. Some disadvantages of passive filters are size, high THD, low pf, 
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unwanted resonance. Due to the disadvantages, active techniques are adopted at high power 

levels. 

 

Fig 2.5 Filter inductance versus THD graph 

2.5 Active PFC Converter 

Due to various limitations of passive PFC techniques and to achieve unity power 

factor with very less THD active PFC techniques are implemented. Various switching 

converter topologies are used to force the input current to follow the shape of input voltage 

thus by reducing the harmonics and improving the PF. With the implementation of active 

PFC, the AC-DC converter behaves like a resistive load and draws sinusoidal input current. 

Active PFC devices produce less ripple voltage and the size of reactive elements much 

reduced because of high switching frequencies. 

 

Fig 2.6 Block Diagram of Active PFC  

The block diagram shows a basic AC-DC converter with power factor correction. 

The Diode rectifier is suitable only for unidirectional power flow i.e. Grid to Vehicle in the 

case of an On-Board EV charger. To achieve bi-directional power flow in G2V and V2G 

manner, the diode is replaced by IGBT or MOSFET and the rectifier can operate as an 

inverter in V2G mode of operation. 
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The DC-DC converter can be a Buck, Boost or Buck-Boost depending on the output 

voltage requirement. Buck converter produce an output voltage lower than input supply 

voltage whereas Boost converter produces a voltage higher than the supply voltage at the 

output terminals. The output voltage can be higher or lower than the supply voltage in the 

case of a Buck-Boost converter, but the component stress of Buck-boost converter is double 

to that of Buck or Boost topology hence it is not recommended. The DC-DC converter stage 

can be an isolated converter i.e. flyback or forward which can provide galvanic isolation 

between the Grid and EV. Depending on the operation of these converters in CCM or DCM 

the inductor current can be continuous or discontinuous. A discontinuous inductor current 

reaches zero in each switching cycle whereas a continuous inductor current never touches 

zero and have less ripple. Only in the case of Boost converter the input current is continuous 

and in Buck and Boost it is discontinuous because of the interruption of the switch in each 

switching cycle. 

2.6 Boost PFC Converter 

 

Fig 2.7 Boost PFC converter 

Fig 2.7 shows a power stage circuit diagram of a Boost PFC converter. The input 

supply voltage is first rectified by a diode bridge rectifier and a Boost converter added at 

the later stage to make soppy current sinusoidal. 

2.6.1 Switching operation of Boost converter 
 

The line voltage is converted into a rectified DC voltage via Diode rectifier before 

the Boost converter. The input voltage to the Boost converter is the rectified voltage which 

varying from zero to peak value of the supply voltage. The pulsating input DC voltage can 
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be assumed as a constant DC voltage source for the analysis and operation of the Boost 

converter purpose. The Boost converter circuit configuration with both ON and OFF 

interval equivalent circuits are shown in Fig 2.8. 

 

(a) 

 

                                     (b)                                                                                    (c) 

Fig 2.8 (a) Boost converter and equivalent circuit during (b) ON interval (c) OFF interval 

Fig 2.8 describes the ON and OFF interval circuit model of Boost converter. During 

the time interval, 0 st DT  the Boost switch BS  is turned ON by gate pulse, where D is 

the duty cycle and sT is the switching period which is reciprocal of switching frequency. At 

this interval, the boost inductor BL gets short-circuited via switch and input voltage RECTV

.The boost diode is reverse biased, and the load is supplied by the DC link capacitor. The 

inductor current Li  and capacitor voltage Cv can be described by 

RECTL
Vdi

dt L
                                                                                                                                                (2.8) 
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C DC
DC

dv V
I

dt R
                                                               (2.9) 

During the interval, s sDT t T   the switch is turned OFF while the boost diode is 

forward biased. The load is connected across the supply via the inductor. The OFF stage of 

the circuit is shown in Fig 2.8I. The dynamic equations of the inductor current and capacitor 

current can be written as 

 
1L

RECT DC

di
V V

dt L
              (2.10) 

C
L DC

dv
i I

dt
               (2.11) 

Both modes are repeated for every switching cycles. 

2.6.2 Different modes of operation 
 

Depending on the inductor current waveform boost converter operation is classified 

into three types i.e. Continuous Conduction Mode (CCM), Discontinuous Conduction Mode 

(DCM) and Critical Conduction Mode (CrCM) or Boundary Conduction Mode (BCM). 

In CCM, the inductor current never reaches to zero. From Eq. 2.8 and 2.10 it can be 

observed that the inductor current increases during ON time and decreases during OFF 

time.During OFF time, there is a possibility of DCM if the inductor current reaches to zero. 

The advantages of CCM is the higher efficiency of the converter and low current stress on 

components. However, the disadvantage is a separate current controller is necessary for 

input current shaping so that the input current will follow the input voltage. 

In DCM, the inductor current goes to zero in OFF interval if each switching cycle. 

The voltage and current stress on power devices are more in DCM but DCM has an 

advantage of inherited wave shaping of the input current. No separate current controller is 

required in case of DCM for input current shaping. 

In BCM, the inductor current is just discontinuous. 

The simulated inductor current waveform of both CCM and DCM mode are shown 

in Fig 2.9.The DCM provides a sinusoidal input current whereas the input current in case of 

CCM is non-sinusoidal and needs a further current controller. For CCM operation, the boost 
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inductance is taken as one mH whereas for DCM operation the inductance is chosen as 

20𝜇H. 

 

(a) 

 

(b) 

Fig 2.9 Inductor current in (a) CCM (b) DCM 

2.6.3 CCM Boost PFC Converter Design 
 

To achieve CCM of operation with the regulated output voltage and a sinusoidal 

input current, the parameters of the Boost PFC converter are designed on the basis of the 

specification listed in Table 2.3. According to the input and output specifications, various 
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components of Boost PFC converter are designed. The guidelines for designing is described 

in [18][19]. 

 

Table 2.3 AC-DC PFC converter specifications 

Parameter Value 

Output Power 𝑃𝑂=1000 W 

Nominal output voltage 𝑉𝐷𝐶=450 V 

Supply voltage 𝑉𝑆=230 V (rms) 

Supply frequency f =50 Hz 

Switching frequency 𝑓𝑠𝑤=200 kHz 

Hold up time 𝑡ℎ=20 ms 

 

Considering the efficiency of the power stage is more than 95%.So 𝜂𝑚𝑎𝑥 ≥ 95 %. 

Maximum input power at lowest efficiency can be calculated as: 

𝑃𝑖𝑛(𝑚𝑎𝑥) =
𝑃𝑂(𝑚𝑎𝑥)

𝜂𝑚𝑎𝑥
=

1000

0.95
= 1053 𝑊                                                                                                   (2.12) 

The maximum and minimum input voltage can be assumed as 250 V and 210 V respectively. 

The maximum input RMS and peak current can be calculated by taking minimum value of 

input voltage. 

𝐼𝑆(𝑟𝑚𝑠)𝑚𝑎𝑥 =
𝑃𝑖𝑛(𝑚𝑎𝑥)

𝑉𝑆(𝑟𝑚𝑠)𝑚𝑖𝑛
=

1053

210
= 5.01 𝐴                                                                                              (2.13) 

𝐼𝑆(𝑝𝑒𝑎𝑘)𝑚𝑎𝑥 = √2 × 𝐼𝑆(𝑟𝑚𝑠)𝑚𝑎𝑥 = 7.1 𝐴                                                                                       (2.14) 

Boost inductor can be calculated by taking the inductor current ripple. Here the ripple 

current is taken as 10 % of the peak input current. 

∆𝑖𝑙 = 0.1 × 𝐼𝑆(𝑝𝑒𝑎𝑘)𝑚𝑎𝑥 = 0.71 𝐴                                                                                             (2.15) 

Where ∆𝑖𝑙 is the inductor ripple current. 

Maximum Duty cycle of the converter can be calculated as: 

𝐷𝑚𝑎𝑥 = 1 −
𝑉𝑆(𝑝𝑒𝑎𝑘)𝑚𝑖𝑛

𝑉𝑂
= 0.34                                                                                                  (2.16) 
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Minimum value of inductor to satisfy the ripple current requirement is 

𝐿𝐵(𝑚𝑖𝑛) =
𝑉𝑆(𝑝𝑒𝑎𝑘)𝑚𝑖𝑛×𝐷𝑝𝑒𝑎𝑘

𝑓𝑠𝑤×∆𝑖𝑙
= 711.1𝜇𝐻                                                                                    (2.17) 

Output capacitor must satisfy the allowable output voltage ripple Δ𝑣𝐷𝐶 = 10 𝑉 peak-peak. 

𝐶𝐷𝐶 ≥
𝑃𝑂

2𝜋×𝑓× Δ𝑣𝑑𝑐×𝑉𝐷𝐶
                                                                                                                         (2.18) 

And  𝐶𝐷𝐶 ≥
2×𝑃𝑂×𝑡ℎ

𝑉𝐷𝐶
2 −𝑉𝐷𝐶(𝑚𝑖𝑛)

2                                                                                                                   (2.19) 

𝐶𝐷𝐶 is calculated as 700𝜇𝐹. 

2.7 Controller Design 

The power stage diagram of the Boost PFC converter is shown in Fig 2.7.The circuit 

consists of a diode bridge rectifier followed by a Boost converter for power factor 

correction. Switch 𝑆𝐵 can be controlled in a close loop manner to maintain a desired voltage 

across the DC link capacitor and a sinusoidal input current. One common control method of 

PFC converters is Average Current Mode(ACM) Control [20][21]. 

 

Fig 2.10 Boost PFC converter with ACM controller  
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The block diagram of a controller with the converter is shown in Fig 2.10. The 

controller consists of two loops. The outer loop is voltage loop to maintain the desired 

voltage at output terminals and the inner current loop controls the shape of the input current 

and enables the input current to follow the shape of the input voltage. The switching 

frequency of the converter is much higher than the supply frequency. In the case of the 

designed converter, the supply frequency is 50 Hz where the switching frequency is 200 

kHz. The inner current loop is much faster than the outer voltage loop. Usually, the current 

loop bandwidth is in between one fifth and one tenth of switching frequency while the 

voltage loop bandwidth is around one-tenth of the bandwidth of the current loop or one-fifth 

of supply frequency. The voltage controller compares the desired DC link voltage with the 

actual one and generates an output depending on the error voltage. The error voltage 

multiplied with a reference sinusoidal shape to generate a reference current. The obtained 

reference current compared with the actual rectified current and given to the current 

controller. The controller produces an output in order to track the reference current. The 

amplitude of the reference current is decided by the output of voltage controller. 

The output of voltage error amplifier is multiplied with the sensed DC output voltage 

of diode bridge rectifier RECTV which is a rectified sinusoidal wave to generate a sinusoidal 

reference current. The reference current refI  is compared with actual inductor current LI

.Depending on the error in the current the current controller produces a control signal which 

is compared with a sawtooth wave to produce gate pulse for the switch BS .The frequency 

of the sawtooth carrier is same as designed switching frequency of the converter. 

2.7.1 Current Controller 
 

As described above the current loop is a fast loop with a bandwidth of in-between 

one tenth to one fifth of switching frequency. The inductor current is sensed by a current 

sensor and compared with the reference current that is generated by voltage error amplifier. 

 

Fig 2.11 Current loop block diagram 
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Fig 2.11 shows the current loop of the PFC converter. While designing the current 

loop the voltage controller is assumed to be unity and the reference current is perfectly 

sinusoidal. ( )idG s  is the control-to-inductor current transfer function of the converter. 

( )PWMG s  is the transfer function of the PWM generator and the value is 
( )

1

pwm p pV 

, where 

( )pwm p pV 
 is the peak-to-peak voltage of sawtooth carrier. ( )ciG s is the current controller. 

By considering the saw-tooth carrier peak-to-peak voltage equals to one volt, the high 

frequency approximated open loop transfer function of the converter is  

( ) DC
id

B

V
G s

sL
                                                                                                                                                      (2.20) 

The current controller is a PI type controller, and the transfer function can be written as 

( ) vi
ci pi

k
G s k

s
                                                                                                                                                  (2.21) 

Where, pik and vik are the proportional and integral values. 

The bandwidth is chosen as 30 kHz, and the controller is designed according to with 

frequency response analysis. The Bode plot of the converter in open loop and closed loop 

is shown in Fig 2.12.The phase margin is found to 49 degrees with a bandwidth of 26.5 kHz 

which is desired for current loop design. 

 

Fig 2.12 Bode plot of plant and plant with current controller 
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2.7.2 Voltage Controller 
 

The design of voltage controller is similar to the current controller, but the 

bandwidth is chosen as less than line frequency i.e. around 20 Hz. Due to very low 

bandwidth, the voltage loop is very slow in operation. The feedback voltage is sensed across 

the load and then passed through a low-pass filter in order to suppress high-frequency 

components of the output voltage. The error voltage is generated after comparison of the 

output voltage with the desired and fed to the voltage error amplifier. The voltage error 

amplifier is a PI type controller with low BW to suppress the ripple in the error voltage. The 

voltage controller is designed by following PI controller designed procedure, and the total 

controller is implemented in the PFC converter to get desired results which are shown in 

section 2.8. 

The controller does not have any information about the input voltage, so with the 

variation of the input voltage, the response of the controller does not change. To make the 

controller dependent on the input voltage, a voltage feedforward block is added to the 

controller in conventional PFC controllers. However, implementation of voltage feed 

forward is more challenging. A new approach to design the controller to track the input 

voltage is by adjusting the gain of the reference current depending on the RMS value of the 

input voltage. 

2.8 Simulation and Results 

The CCM Boost PFC converter described above is simulated using 

MATLAB/27Simulink with Peak Current Mode control, and some of the simulated results 

are shown below. 

 

(a) 
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(b) 

Fig 2.13 Boost PFC results for 1000 W load (a) input voltage and current (scaled ten times) and 

output voltage, (b) THD of input current(𝐿𝐵 = 1𝑚𝐹, 𝐶𝐷𝐶 = 700 𝜇𝐹, 𝑓𝑠𝑤 = 200𝑘𝐻𝑧, 𝑉𝑠 =

230 𝑉 𝑟𝑚𝑠) 

As it can be noted from the waveforms in Fig 2.13 (a), the nominal output voltage 

is 450 V with a ripple of 10 V peak-to-peak and the RMS current is 4.9 A and follows the 

input voltage waveform. The input current is enlarged ten times for better visibility. The 

THD is found to be 3.65 % as shown in the FFT analysis of input current in Fig 2.13(b) and 

using Eq. 2.7 the pf is calculated as 0.9993.The THD of the designed converter is very less 

than a conventional diode rectifier, and the THD satisfies the IEEE standard of harmonics. 

As explained before the output stage of an AC-DC converter is usually a DC-DC 

converter with constant power application. However if the power decreases the converter 

operates satisfactorily with desired output voltage and an increased value of current 

harmonic. The output voltage, input voltage and current and the FFT of the input voltage of 

the designed converter at half load are shown in Fig 2.14.The THD is found to be 5 % with 

a pf of 0.9987. 

Various simulations are performed with varying the load power and input voltage in 

order to get the desired voltage across the DC link and THD below the prescribed standards. 

The load power varies between a range of 760 W to 1000 W when the battery charging from 

beginning point to turning point with maximum power at turning point. The designed PFC 

converter produces a THD less than 5 % over the wide range of variation of load power i.e. 

760 W to 1000 W. 
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Fig 2.14 Boost PFC converter operating at Half-Load output voltage, input voltage and 

current(scaled ten times for better visibility) of Boost PFC converter operating at Half-Load 

 (𝐿𝐵 = 1𝑚𝐹, 𝐶𝐷𝐶 = 700 𝜇𝐹, 𝑓𝑠𝑤 = 200𝑘𝐻𝑧, 𝑉𝑠 = 230 𝑉 𝑟𝑚𝑠) 

Fig 2.15 shows the input and output current waveform when the load changes from 

500 W to 1000 W. The transient period stays for 5-7 line cycles then the voltage and current 

stabilizes after 7 line cycles i.e. 140 ms.The output and input currents are 1.11 A and 2.48 

A (RMS) when the load is 500 W and the input current chnages to 4.95 A (RMS) when the 

load changes to 1000 W and the output current also doubles after the load change. 

 

Fig 2.15 Input current and output current when a step load changes from 500 W to 1000 W. 

(𝐿𝐵 = 1𝑚𝐹, 𝐶𝐷𝐶 = 700 𝜇𝐹, 𝑓𝑠𝑤 = 200𝑘𝐻𝑧, 𝑉𝑠 = 230 𝑉 𝑟𝑚𝑠) 
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2.9 Conclusion 

In this chapter, the basic definitions and calculations of power factor and total 

harmonic distortion are explained. The important disadvantages of commonly used diode 

rectifier are stated, and the solution of THD is resolved using active PFC converters. A 

CCM Boost PFC converter is designed and simulated calculated parameters in section 

2.6.3.The ACM controller is designed with a high bandwidth inner loop current controller 

and a slow speed voltage controller. The input current is observed to be perfectly sinusoidal 

with very less harmonics under full load condition. However with any variations of output 

power or input voltage the THD gets affected so as the pf. With the decrease in load power 

the THD increases. The PFC converter usually followed by a resistive load or a DC-DC 

converter which operates with a constant power. But, in the case of OBC, the PFC converter 

is followed by a DC-DC converter demanding variable power depending on the state of 

charge of battery. The DC-DC converter’s output power varies widely in between 760 W to 

1000 W and in this range of operation, the designed PFC converter maintains preferred DC 

link voltage with low THD that satisfies the standards provided in Table 2.2 and 2.3. The 

bidirectional DC-DC converter followed by Boost PFC converter to control the battery 

voltage and current is described in next chapter. 

 



 

 

CHAPTER 3 

BACK-END DC-DC CONVERTER 

3.1 Introduction 

The charging profile of a Li-ion cell is explained in 1.3.The EV battery bank is 

usually a series-parallel combination of Li-ion cells to increase energy by increasing the 

voltage and current rating. To charge the high voltage battery in CC/CV modes, a second 

stage DC-DC converter is implemented on OBC. As described in the previous chapter 2 the 

output voltage of the front end AC-DC PFC converter is 450 V DC with a ripple voltage of 

10 V peak-to-peak. The nominal voltage of the battery is 360 V from depleted condition 

320 V to fully charged condition 420 V. A second stage converter is desired which can 

operate with an oscillating input voltage that is produced by the first stage AC-DC converter 

and can produce a wide range of output voltage. A DC-DC converter is adopted for the 

necessary operation. 

The surplus amount of energy of the EV battery can be supplied to the Grid when 

connected in V2G manner. To support power flow in a reverse direction the second stage 

DC-DC converter should be capable of bidirectional power flow.V2G operation is not the 

objective of an OBC as the vehicle battery energy is very less as compared to the Grid. 

However in the case of emergency, the battery energy can be utilized to run home appliances 

by allowing the power flow through DC-DC converter in a reverse manner. 

Addition to the high voltage battery pack another low-voltage auxiliary battery is 

present in EV or HEV. Auxiliary battery is a low voltage battery (12 V) utilized to supply 

power to the electronic loads of the vehicles such as lights music system etc. Conventionally 

alternators are employed to charge the auxiliary battery while driving in IC engine vehicles 

even in EVs. The losses associated with charging the auxiliary battery via the alternator is 

relatively more as the electrical energy is converted into mechanical and again into electrical 

and require additional power converters. In order to minimize the losses, the OBC is 

modified to work as a Low-Voltage DC-DC Converter (LDC) by supplying the power from 

propulsion battery into auxiliary battery in driving stage [25]. 
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Advantages of Bi-Directional DC-DC converter in Battery charging operation: 

 Both G2V and V2G mode of power flow 

 Maximum efficiency and minimum circuit complexity. 

 Desired CC/CV mode of control with wide output voltage range. 

 Less ripple in charging mode. 

 Suitable for charging the auxiliary battery via the propulsion battery. 

Bidirectional DC-DC converter classification: 

The major purpose of the bidirectional converter is to control power flow in both 

directions. Many topologies are available with bi-directional power flow capability. One 

major reason for classifying the bidirectional DC-DC converter is the presence of Isolation. 

An isolation transformer provides galvanic isolation between the two voltage levels of the 

converter [21]. Depending on the isolation the converter is classified into two categories 

 Non-isolated Bidirectional DC-DC converter 

 Isolated Bidirectional DC-DC converter 

The operation of Non-Isolated Bidirectional Converter is explained in this research 

work. The controller is designed with CC/CV mode operation for the same. 

3.2 Non-Isolated Bidirectional DC-DC Converter 

Conventional DC-DC topologies such as Buck and Boost converters support only 

unidirectional operation. In order to achieve G2V and V2G modes of operation two 

converters are required for each operation which will increase the components and circuit 

complexity. The traditional unidirectional converters can be modified to bidirectional with 

a minute change in circuit configuration and by replacing the diodes into MOSFETs or 

IGBTs. 

3.2.1 Bidirectional Half-Bridge DC-DC Converter 
 

A Half-Bridge Converter is a Buck-Boost derived converter where both converters 

connected antiparallel that supports bidirectional power flow [22, 23]. The circuit diagram 

is shown in Fig.3.1, and the operation of both forward and reverse directions are discussed 

below. 
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Fig 3.1 Non-isolated Half-Bridge DC-DC Converter 

Where, 

𝑉𝐷𝐶: DC link Voltage 

𝐿𝑂: Filter Inductance 

𝐶𝑂: Filter Capacitance 

𝑉𝐵: Propulsion Battery 

𝐼𝐵: Battery current 

The above topology operates both in Buck mode and Boost mode depending on the 

operation of switched 𝑆1 and 𝑆2. 𝐷1 and  𝐷2 are antiparallel diodes with the switches and 

behave as freewheeling diodes. As the DC link voltage is about 450 V and the battery 

voltage varies 320-420 V the converter operates as a buck converter during charging the 

battery from the grid and during V2G operation it boost the battery voltage to 450 V by 

operating as Boost converter. A brief explanation of the above converter is presented below. 

3.2.1.1 G2V Mode 
 

In this mode, the converter operates as a Buck converter i.e. output voltage is less 

than the input. Switch 𝑆1and diode 𝐷2 conduct while 𝑆2 and 𝐷2 remains OFF during 

complete cycle as shown in Fig 3.2. 
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        (a)                             (b) 

Fig 3.2 Half-Bridge DC-DC Converter (a) G2V mode (b) V2G mode 

When 𝑆1 is turned ON the battery 𝑉𝐵 is connected to the DC link through filter 

inductor 𝐿𝑂 and the inductor stores energy. Inductor current increases in with a slope of  

𝑉𝐷𝐶−𝑉𝑂

𝐿𝑂
  and stores energy. The load current is the difference of inductor current and 

capacitor current. After 𝑆1 turned OFF the inductor releases the energy via forward biasing 

the diode 𝐷2.The current decreases linearly. Load current remains at steady state value as 

the high frequency components of inductor ripple current bypassed through the filter 

capacitor. Both ON and OFF intervals are shown in Fig 3.3. 

 

                                   (a)                                                                                     (b) 

Fig 3.3 G2V operation (a) ON interval (b) OFF interval 

The equations for output voltage, ripple current, and ripple voltage are same as 

conventional Buck converter [24]. 

𝑉𝐵 = 𝐷 × 𝑉𝐷𝐶                                                                                                                  (3.1) 

∆𝐼𝐿 =
𝐷(1−𝐷)𝑉𝐷𝐶

𝑓×𝐿𝑂
                                                                                                               (3.2) 

∆𝑉𝐵 =
𝐷(1−𝐷)𝑉𝐷𝐶

8×𝑓2×𝐿𝑂×𝐶𝑂
                                                                                                           (3.3) 
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Where, 

∆𝐼𝐿: Ripple in battery current 

∆𝑉𝐵: Ripple in battery voltage 

D: Converter duty cycle 

f: switching frequency 

3.2.1.2 V2G Mode 
 

In V2G mode, the converter acts as a Boost converter by stepping up the battery 

voltage into DC link voltage 450 V for further application. Here switch 𝑆2 and diode 𝐷1 

conducts depending on the duty ratio while 𝑆1 and 𝐷2 remains OFF during complete cycle. 

When 𝑆2 is gated the battery gets short circuited through the inductor 𝐿𝑂 and the 

inductor stores charge. In the second mode when the switch 𝑆2 turned OFF the stored charge 

in the inductor forward bias the diode 𝐷1 and the battery is connected to 𝑉𝐷𝐶 via the inductor 

𝐿𝑂.The expression for𝑉𝐷𝐶, 𝐿𝑂 and 𝐶𝐷𝐶 are similar as conventional Boost converter. 

𝑉𝐷𝐶 =
𝑉𝐵

1−𝐷
                                                                                                                        (3.4) 

The above converter can operate as a synchronous Buck converter in G2V mode and 

synchronous Boost converter in V2G application and that can be done by operation both 

switches 𝑆1 and  𝑆2 in a complementary manner. For example in G2V mode the converter 

works as Buck converter. During ON interval switch 𝑆1 is triggered with a positive gate 

pulse while its complementary gate pulse is given to 𝑆2 and 𝑆2 remains in OFF condition. 

During OFF condition the positive gate signal withdrawn from 𝑆1 where as 𝑆2 is turned ON 

due the complementary gate signal which is a positive pulse. As both switched as turned 

ON or OFF with a single gate pulse in a synchronous manner the converter is named as 

synchronous DC-DC converter. In this work the DC-DC converter operates in a 

synchronous manner. 

3.4 State Space Averaging 

A system can be described by various linear and non-linear equations. In state space 

averaging the converter is expressed by the differential equations. The converter can be an 

ideal one or a practical including the parasitic resistances of inductor and capacitors with 
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switch resistances. The number of reactive elements associated with the converter provides 

the state variables X (t).In this discussion, the state space model of Buck and Boost converter 

is derived. 

The generalized state space equations are 

𝑑𝑋(𝑡)

𝑑𝑋
= 𝐴. 𝑋(𝑡) + 𝐵. 𝑈(𝑡)                                                                                                       (3.5) 

𝑌(𝑡) = 𝐶. 𝑋(𝑡) + 𝐸. 𝑈(𝑡)                                                                                                        (3.6) 

Where X (t): state matrix 

U(t): input matrix 

Y(t): output matrix 

The state equations can be written for both ON and OFF intervals. 

During ON interval, the converter can be expressed as 

( )
( ) ( )ON ON

dX t
A X t B U t

dt
                                                                                                      (3.7) 

( ) ( ) ( )ON ONY t C X t E U t                                                                                                        (3.8) 

Similarly during OFF interval the converter can be stated as 

( )
( ) ( )OFF OFF

dX t
A X t B U t

dt
                                                                                                          (3.9) 

( ) ( ) ( )OFF OFFY t C X t E U t                                                                                                               (3.10) 

At equilibrium state of the converter 

0=A.X+B.U                                                                                                                                   (3.11) 

Y=C.X+D.U                                                                                                                                    (3.12) 

Where A, B, C, D are averaged matrices and are expressed as 

'

ON OFFA DA D A                                                                                                                            (3.13) 

'

ON OFFB DB D B                                                                                                                            (3.14) 

'

ON OFFC DC DC                                                                                                                         (3.15) 
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'

ON OFFE DE D E                                                                                                                            (3.16) 

The state and output vector can be derived by solving the above equations. The state and 

output vectors are 

1X A BU                                                                                                                                   (3.17) 

1( )Y CA B E U                                                                                                                            (3.18) 

3.4.1 G2V Mode 
 

In G2V mode, the converter operation is similar as a Buck converter. The small 

signal modeling of a synchronous buck converter is derived here. The battery is modeled as 

its equivalent resistance for simplicity. 

 

                                    (a)                                                                                      (b) 

Fig 3.4 Buck Converter (a) ON interval (b) OFF interval 

Fig 3.4 shows the ON and OFF interval circuit of the synchronous Buck converter. 

L and C are the filter inductance, and capacitance is the equivalent battery 

resistance.𝑉𝑔 𝑎𝑛𝑑 𝑉𝑂 are input and battery voltage respectively. The parasitic resistances are 

neglected and the converter is assumed to be ideal. The state equations are derived as 

follows. 

As explained in 3.2 when 𝑆1 is ON and 𝑆2 is OFF the load is connected to the input voltage 

via inductor. 

𝑉𝑔 = 𝐿
𝑑𝑖𝐿

𝑑𝑡
+ 𝑣𝐶                                                                                                                          (3.19) 

𝑑𝑖𝐿

𝑑𝑡
= −

1

𝐿
𝑣𝐶 +

1

𝐿
𝑉𝑔                                                                                                                      (3.20) 

The capacitor current is the difference of inductor current and load current. 
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𝑖𝐶 = 𝑖𝐿 − 𝑖𝑂                                                                                                                                 (3.21) 

𝑑𝑣𝐶

𝑑𝑡
=

1

𝐶
𝑖𝐿 −

1

𝑅𝐶
𝑣𝐶                                                                                                                      (3.22) 

The output voltage 𝑉𝑂 = 𝑣𝐶 

Rearranging Eq. (3.7) and (3.8) into state space form  

[

𝑑𝑖𝐿

𝑑𝑡
𝑑𝑣𝐶

𝑑𝑡

] = [
0

−1

𝐿
1

𝐶

−1

𝑅𝐶

] [
𝑖𝐿

𝑣𝐶
] + [

1

𝐿

0
] 𝑉𝑔                                                                                                  (3.23) 

[
𝑉𝑂

𝑖𝑔
] = [

0 1
1 0

] [
𝑖𝐿

𝑣𝐶
] + [

0
0

] 𝑉𝑔                                                                                                        (3.24) 

Renaming the matrices 

𝐴𝑂𝑁 = [
0

−1

𝐿
1

𝐶

−1

𝑅𝐶

]                                                                                                                                  (3.25) 

𝐵𝑂𝑁 = [
1

𝐿

0
]                                                                                                                                      (3.26) 

𝐶𝑂𝑁 = [
0 1
1 0

]                                                                                                                                            (3.27) 

𝐸𝑂𝑁 = [
0
0

]                                                                                                                                             (3.28) 

OFF Period: 

When the switch 1S  is turned OFF and 2S is turned ON the source is disconnected from the 

load and the stored inductor energy freewheels via load. 

Appling KVL to the loop we get 

L Ov V                                                                                                                                       (3.29) 

1L
C

di
v

dt L
                                                                                                                                     (3.30) 

The capacitor current is the difference of inductor and load current as in the previous 

condition. 
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1 1C
L C

dv
i v

dt C RC
                                                                                                                           (3.31) 

Rearranging Eq. (3.9) and (3.10) into state space form 

1
0

0

1 1 0

L

L

g

CC

di

idt L
V

vdv

C RCdt

   
       

        
      

     

                          

(3.32) 

0 1 0

0 0 0

O L

g

g C

V i
V

i v

      
       
     

                

(3.33) 

Renaming the matrices 

1
0

1 1
OFF

L
A

C RC

 
 

  
 

  

                                                                                                                             (3.34) 

0

0
OFFB

 
  
 

                                                                                                                                 (3.35) 

0 1

0 0
OFFC

 
  
 

                                                                                                                                 (3.36) 

0

0
OFFE

 
  
 

                                                                                                                            (3.37) 

Linearization 

The small signal model of the converter can be derived using perturbation around the steady 

state operating points (X, U,D). 

x X x                                                                                                                                (3.38) 

u U u               (3.39) 

d D d               (3.40) 
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x ,u and d  are small variations around the steady state values. 

Substituting  

   ON OFF ON OFFAx Bu B B U A A X dx


                (3.41)

y Cx Eu               (3.42) 

Taking Laplace of the Eq.(3.41) and (3.42) 

   ( ) ( ) ( ) ( )ON OFF ON OFFsx s Ax s Bu s B B U A A X d s              (3.43) 

( ) ( ) ( )y s Cx s Eu s              (3.44) 

Appling superposition theorem to Eq. (3.43) and (3.44) 

       
1 1

( ) ( ) ( )ON OFF ON OFFx s SI A Bu s SI A B B U A A X d s
 

             (3.45) 

       
1 1

( ) ( ) ( ) ( )ON OFF ON OFFy s C SI A Bu s SI A B B U A A X d s Eu s
            

 (3.46)                    

Substituting the matrices the open loop transfer functions are obtained as 

Control-to-output transfer function,
2

( )
o

g

v d

V R
G s

s RLC sL R


 
                                             (3.47) 

Control-to-current transfer function, 
2

(1 )
( )

L

g

i d

V SRC
G s

s RLC sL R




 
                                           (3.48) 

3.4.2 V2G Mode 
 

The transfer function of the converter in V2G mode can be derived using the above 

procedure. The converter works as a Boost Converter in V2G mode. 

Control-to-output transfer function,

 2
2

2 2

( (1 ) )
(1 )

( )
(1 )o

g

v d

V
R D sL

D
G s

s LCR SL R D

 
   

  
               (3.49) 

Control-to-current transfer function, 
 2 2

(2 )
( )

(1 ) (1 )L

g

i d

V sCR
G s

D s LCR sL R D




   
          (3.50) 
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3.5 Design of Controller 

The controller is divided into two categories. One is to regulate the battery voltage 

and current in G2V operation another is to control the power and voltage during V2G 

operation. 

3.5.1 G2V operation 
 

 

Fig 3.5 Controller for DC-DC converter in G2V operation 

The objective of the controller is to regulate the charging process in CC/CV manner. 

The EV battery is charged in a CC mode up to the maximum voltage limit after than the CV 

mode is switched until the battery current limited to a predefined value. It is discussed 

formerly that the battery has a nominal voltage of 360 V with 420 V at fully charged and 

320 V at the fully discharged condition. As shown in Fig 3.5 the controller consist of two 

control loops, first one is the current loop to regulate the battery current in CC mode and the 

second one is a voltage loop to monitor the battery voltage in CV mode. 

A reference battery current is necessary for CC mode operation. The reference 

current can be chosen depending on the charging power level. For level 1 charging the 

reference current is considered as 2.38 A. The reference current is compared with the actual 

battery current and depending on the difference between the two an error signal is produced. 

The error is the input to the current controller and the output of the controller given to the 

PWM generator where the controller output is compared with a sawtooth signal having a 

frequency same as the desired switching frequency. The PWM generator produces the gate 

pulses for the switch 𝑆1.Switch 𝑆2 is triggered in a 180 degree phase difference manner. 

The maximum battery voltage i.e. 420 V is the reference voltage for voltage 

controller. The battery voltage is compared with the reference voltage and given to the 
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voltage controller. Depending on the controller output the PWM generator provides gate 

pulses to both switches. 

A logic and switching block is required for automatic switching between CC/CV 

modes depending on the battery voltage. The charging process starts with CC mode with 

minimum battery voltage 320 V(Beginning point).The battery voltage gradually increases 

keeping the battery current constant at the reference value. The logic unit continuously 

senses the battery voltage and when the voltage reaches maximum permissible voltage i.e. 

420V (Turning point) CV mode is switched ON and the battery continues to charge in a 

constant voltage manner. The battery current gradually decreases while the voltage is 

constant. After reaching a predefined value the charging process stops (Endpoint). 

3.5.1.1 Voltage Controller Design 
 

As explained above the function of the voltage controller is to maintain a constant 

voltage across the battery in order to accomplish CV mode of charging. The voltage must 

remain constant in spite of any change in input DC link voltage or battery current variation. 

The controller continuously compares the battery voltage with the reference and generate 

duty ratio to maintain the desired voltage. The controller design is based on the control-to-

output voltage transfer function in G2V mode. 

From Eq. 3.47 the transfer function of the converter obtained as 

2
( )

B

DC B
v d

B O O O B

V R
G s

s R L C sL R


 
                                                                                             (3.51) 

Putting the derived value of circuit elements the transfer function can be written as 

10 2 5

450
( )

1.4 10 3.98 10 1Bv dG s
s s 


    

                                                                                 (3.52) 

The phase margin and gain crossover frequency are 9  and 284 kHz respectively. A 

PI controller is required to boost the phase margin around 60  at a crossover frequency one 

tenth of switching frequency i.e. 20 kHz. 

The transfer function of the PI controller is  

i
CV p

k
G k

s
                                                                                                                                   (3.53) 
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Where, 
pk = proportional gain and ik  is integral gain. 

The steps for designing the controller are as follows: 

Desired Phase Margin (PM) = 60  at a crossover frequency of 20 kHz. 

The uncompensated plant gain and phase at the desired crossover frequency are 39 dB and

104 . (From bode plot of the uncompensated plant) 

Phase margin can be calculated as 

1180 90 tan ( )
gc

P

w
PM G

a

                                                                                                    (3.54) 

Where,  

gcw =cross over frequency in rad/s. 

PG =phase of the uncompensated system at gcw . 

i

p

k
a

k
  

The gain of compensated system at crossover frequency should be zero i.e. the sum of 

controller and plant gain has to be 0 dB at
gcw . 

2

20log 1 0P p

gc

a
G k dB

w

 
       

  
 

                                                                                              (3.55) 

PG =gain of the uncompensated plant at gcw . 

On solving Eq. 3.55 The value of pk and ik  are obtained. 

 

Fig 3.6 Bode plot of the plant with and without controller 
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Fig 3.6 shows the Bode plot of the system without a controller and with a controller. 

It can be observed that after adding the PI controller the phase margin is 60.5  at a frequency 

of 19.9 kHz as desired. After addition of the controller, the PM of the system improves 

hence by stability. 

3.5.1.2 Current Controller Design 
 

The Current controller ensures the operation of the above-described converter in a 

CC mode of operation. A PI controller is designed for current mode control. The design 

procedure is same as voltage controller which is explained earlier. While designing the 

controller the control-to-current transfer function is required which is derived in section 

3.3. 

3.5.2 V2G operation 
 

 

Fig 3.7 Controller for V2G mode 

As described earlier in V2G mode the EV battery discharges to supply power in a 

reverse direction than can be fed back to the Grid or can be utilized for auxiliary battery 

charging purpose. Fig 3.7 shows a control structure for G2V operation. The objective of the 

controller is to deliver the desired amount of power from the traction battery to the Grid and 

Auxiliary battery. The amount of power that can be extracted from the battery is the 

reference power of the controller. The reference battery current is generated by dividing the 

reference power with the instantaneous battery voltage. The instantaneous battery current is 

compared with the reference battery current and the error acts as the input of the PI 

controller. Depending on the error the controller generates a gate driving pulses for both 

switches S1 and S2.As in the case of V2G mode, the DC-DC converter acts as a synchronous 

Boost converter the gate pulse is given to S2 first whereas the complementary pulse is given 

to S1. 
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3.6 Low-Voltage DC-DC Converter 

 

 

Fig 3.8 Block Diagram of Power distribution in EV 

Every vehicle comprised of a low voltage battery (12 V) to supply low voltage loads 

i.e. lights, fan, music system etc. Conventionally an alternator is used to charge the low 

voltage battery in driving condition. The energy loss is more with the charging process 

because of energy conversion. As IC engine vehicles do not have any alternative to charging 

the low voltage battery hence the alternator cannot be omitted. EVs have the advantage that 

one High voltage battery pack is placed inside the vehicle for driving the vehicle i.e. 

propulsion battery. The low voltage battery i.e. Auxiliary battery can be charged from the 

propulsion battery directly and the alternator can be omitted by increasing the efficiency. A 

complete block diagram of different voltage levels is shown in Fig.3.8. The propulsion 

battery voltage varies usually in-between 150 to 600 V depending on the number of cells 

connected[22] .For driving purpose the battery voltage is converted into AC through a DC-

AC converter. An LDC is required to charge the Auxiliary battery from the propulsion 

battery. A separate DC-DC converter can be employed to charge the low voltage battery or 

the same OBC can be employed to charge while in driving condition.AS the propulsion 

battery voltage is very high a forward converter with suitable transformer is a satisfactory 

option for LDC. The Auxiliary battery can supply energy to the HV Bus at starting. An 

isolated bidirectional converter can be employed for charging the low-voltage battery while 

driving and providing energy from the low voltage battery at starting operation. Additional 

converter leads to increase in cost and complexity of the vehicle. For level 1 charging the 
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charger is mounted on the vehicle itself .The OBC can serve the purpose of charging the 

auxiliary battery in a V2G or V2A (Vehicle to Auxiliary) manner [23]. The detailed 

operation of the proposed LDC is described below. 

3.6.1 Power Stage Design and Operation of LDC 
 

  

Fig 3.9 Low-Voltage DC-DC converter 

An LDC is designed from the OBC and shown in Fig 3.9 and the diode bridge 

rectifier is omitted from the OBC as in Fig 1.2. The complete LDC can be divided into two 

parts. First, one is the synchronous DC-DC converter which is same as the converter 

explained in section 3.2 for V2G operation. The converter is operating as Boost converter 

to maintain 450 V across the DC link capacitor. The second stage is a synchronous Buck 

converter to step down the voltage level to 12 V for Auxiliary battery charging purpose. The 

second stage synchronous Buck converter is derived from the Boost PFC converter 

described in chapter 1 by allowing the power flow in reverse direction. 

The operation of the converter is similar to cascades Buck-Boost converter. When 

𝑆2 and 𝑆𝐿𝐷𝐶 is turned ON, 𝑆1 and 𝑆𝐵 are turned OFF as switches are synchronised with 

complementary gate pulse. Inductor 𝐿𝑂 stores energy while DC link capacitor 𝐶𝐷𝐶 supplies 

power to the auxiliary battery via Boost inductor𝐿𝐵.After first mode switches 𝑆1 and 𝑆𝐵 are 

turned ON and 𝑆2 and 𝑆𝐿𝐷𝐶 are turned OFF. The stored energy in the inductor and propulsion 

battery 𝑉𝐵 both supply power to DC link and The Boost inductor energy freewheels via 

auxiliary battery and switch𝑆𝐵 [24][25].The inductor and capacitor values are same as 

designed before for each converter. 
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3.6.2 Controller Design of LDC 
 

During driving condition the EV utilizes the energy of the propulsion battery and 

the voltage varies. As the Auxiliary battery is supplied from the propulsion battery the 

voltage of the auxiliary battery varies without a close loop controller. The purpose of the 

LDC controller to maintain 12 V across the auxiliary battery irrespective of the propulsion 

battery voltage. 

The controller could be two stage controller by considering each converter 

individually. The first one to control the power from the propulsion battery as explained in 

section 3.5.2 in a G2V mode and the second one is a voltage control loop to maintain a 

constant voltage across the auxiliary battery. However, the control strategy is more 

complicated because of involvement of two controllers. A simple single stage control 

structure can be adopted to control both converters simultaneously. A voltage controller 

design the controls the two cascaded converters as one Buck converter. The controller can 

be designed as the procedure explained in section 3.5.1.1. 

3.7 Simulation and Results 

The described Non–Isolated Bi-directional DC-DC converter is simulated using 

MATLAB/Simulink for both G2V and V2G operation. Moreover, the Auxiliary Battery 

charging simulation is carried out using LDC. The detailed results are shown below. 

3.7.1 G2V Mode 

  

(a)      (b) 

  

(c)            (d) 
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(e)           (f) 

  

(g)          (h) 

Fig 3.10 Simulated Results of Charging operation of the propulsion battery (a)Voltage and 

(b)Current in Beginning Point(c)voltage and (d)current in Nominal Point (e)voltage and (f)current 

in Turning Point(g)voltage and (h)current in End Point 

Fig 3.10 shows the simulation results of G2V mode of operation. The results are 

emphasized on the four key points as described before. Simulation is performed by replacing 

the battery by its equivalent resistance which is the ratio of battery voltage to current. The 

depleted battery is charged from 320 V to maximum of 420 V via CC mode and then in CV 

mode till the battery current falls to 0.32 A. At the turning point the battery voltage reached 

to 420 V and the CC mode charging changes to CV mode. It can be verified from the 

simulation waveforms the battery current ripple is limited to 0.02 A peak-to-peak whereas 

the voltage ripple is limited to 3 V peak-to-peak. 

3.7.2 V2G Mode 
 

The V2G mode is simulated where the DC-DC converter acts as a Boost converter 

and supplies a desired amount of power to the DC link for further applications. The 

simulation is performed with a nominal battery voltage of 360 V and reference power of 

800 Depending on the instantaneous battery voltage and reference power the controller 

generates a current reference and the switching of the two switches controlled in order to 

maintain the desired power flow. 
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Fig 3.11 DC link voltage and current during G2V operation (The current is multiplied by 100 for 

batter visibility) 

Fig 3.11 shows the simulated voltage and current waveform of the DC link when the 

power reference is 800 W. The DC link voltage is found to be 450 V as desired and the 

current is 1.78 A. 

3.7.3 LDC 
 

The simulation result in Fig 3.12 shows the Auxiliary battery voltage and current 

when the Auxiliary battery is charged from the propulsion battery via. LDC. The control 

strategy employed here is one stage controller as described in 3.6.2.The voltage of the 

battery is around 12 V with a small ripple of 0.1 V whereas the current is 1 A with negligible 

ripple. The propulsion battery is considered as in fully charged condition i.e. 420 V and all 

the power stage parameters are same as derived earlier. 

 

 

Fig 3.12 Voltage and Current of Auxiliary battery during charging 

(Current is multiplied by 10 for better visibility) 
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3.8 Conclusion 

The second stage of OBC i.e. DC-DC converter is essential as it regulates the battery 

voltage and current. The most common method of charging Li-Ion batteries i.e. CC/CV 

mode charging is obtained by using a DC-DC converter in this chapter. The Battery is 

charged from 320 V to 420 V in a CC manner with a constant current of 2.38 A and further 

in a CV manner by keeping the battery voltage fixed at 420 V. The designed DC-DC 

converter supports Bi-directional power flow and the V2G mode of operation is simulated 

with the V2G controller, a new concept of LDC is designed here by utilizing the OBC to 

charge in Auxiliary battery from the propulsion battery. A single stage controller is 

developed in order to maintain a desired voltage across the Auxiliary battery. 
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CHAPTER 4 

CONCLUSION AND FUTURE SCOPE 

4.1 Conclusion 

An On-Board Electric Vehicle charger is designed for level 1 charging with a 230 V 

input supply. Different stages of an OBC is stated and the challenges are listed. The 

developments have been implemented to overcome key issues. A two stage charger 

topology with active PFC converter at the front end followed by a Bi-directional DC-DC 

converter is designed. The active PFC which is a Boost converter type produces less than 5 

% THD at full load. Moreover, the PFC converter is applicable to wide variation in loads. 

The detailed design of the power stage, as well as the controller, is discussed with the 

simulated results. 

A second stage DC-DC converter is designed and simulated for the charging current 

and voltage regulation. The converter performs very precisely by charging the propulsion 

battery in CC/CV mode over a wide range of voltage. A V2G controller has been developed 

for the DC-DC converter in order to supply power to the grid from the propulsion battery. 

A new Low-Voltage DC-DC converter is proposed to charge the Auxiliary battery via the 

propulsion battery utilizing the same OBC. The battery voltage and current waveforms are 

presented and the performance of the designed converter is verified. 

4.2 Future Scope 

The designed OBC is of two stage type whereas a single stage prototype can be 

designed which will reduce the losses associated with the components and maximize 

efficiency. Moreover, the Boost PFC converter is designed with an analogue controller the 

digital mode of the controller can be designed which can be implemented using 

microcontrollers. 

A Bi-directional isolated DC-DC converter can be designed for both G2V and V2G modes 

and can operate as LDC. To reduce the switching losses a ZVS or ZCS topology of the 

designed DC-DC converter can be developed which will reduce the losses associated with 

the switches during turn ON or turn OFF.
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