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For a dilute two-dimensional Bose gas the universal equation of state has a logarithmic dependence on
the s-wave scattering length. Here we derive nonuniversal corrections to this equation of state, taking
account of finite-range effects of the interatomic potential. Our beyond-mean-field analytical results are
obtained performing dimensional regularization of divergent zero-point quantum fluctuations within the
finite-temperature formalism of functional integration. In particular, we find that in the grand canonical
ensemble the pressure has a nonpolynomial dependence on the finite- range parameter and it is a highly
nontrivial function of chemical potential and temperature.
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Introduction.—The equation of state of a uniform
weakly interacting Bose gas has a long history.
Universal beyond-mean-field theoretical results, which
depend only on the s-wave scattering length a, of the
interatomic potential, were obtained for the three-
dimensional (3D) bosonic system by Bogoliubov [1] and
by Lee, Huang, and Yang [2,3]. In one dimension, based on
a previous investigation of the 1D Bose-Fermi mapping [4],
Lieb and Liniger [5] obtained the exact equation of state of
a Bose gas with contact repulsive interaction. In the case of
two spatial dimensions, Schick [6] found that the equation
of state of a uniform 2D repulsive Bose gas contains a
nontrivial logarithmic term. This remarkable result was
improved by Popov [7] who obtained an equation of state
which, at the leading order, reduces to Schick’s one in
the dilute limit (see also Refs. [8—11]). More recently,
Andersen [12] and Mora and Castin [13] went one step
further than Popov, finding a next-next to leading universal
equation of state for the two-dimensional weakly interact-
ing Bose gas. It is important to stress that, in the last years,
various experiments with ultracold and dilute atomic gases
in three dimensions [14,15] and two dimensions [16,17]
have put in evidence beyond-mean-field effects on the
equation of state of repulsive bosons. Moreover, experi-
ments on 1D bosons [18,19] have shown that the
Lieb-Liniger theory is needed to accurately describe the
strong-coupling (i.e., low 1D density) regime.

The universal theory of the 3D weakly interacting
Bose gas has been extended including corrections due
to the finite range of the interatomic potential [20-27].
These corrections give a modified Gross-Pitaevskii
equation [24-29] for the nonuniform condensate and
nonuniversal effects for quantum fluctuations at zero
temperature [21,22]. For a deeper understanding of the
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behavior of interacting bosonic systems in lower dimen-
sionality, it is extremely important to analyze and control
the nonuniversal effect induced by the finite range in
the equation of state also in the case of 2D and 1D
Bose gases. In this Letter we investigate finite-range effects
on quantum fluctuations of a 2D Bose gas by using the
finite-temperature functional integration [30,31] on a local
effective action. We derive the finite-temperature beyond-
mean-field (one-loop, Gaussian) equation of state of the
bosonic system performing dimensional regularization [32]
of zero-point energy. The final nonuniversal analytical
result, which reduces to the universal Popov equation of
state [7] in the zero-range case, exhibits a nonpolynomial
dependence on the finite-range parameter.

Effective field theory for the 2D Bose gas.—In the study
of the 2D interacting Bose gas we adopt the path integral
formalism, where the atomic bosons are described by a
complex field w(r,7) [31]. The Euclidean Lagrangian
density of the system with chemical potential y is given by
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where V(|r—r’|) is the two-body interaction potential
between bosons.

Given the Fourier transform V(g) of the interaction
potential V(r) one can expand it at the second order in ¢
around g = 0 finding

V(g) = g0+ 94" = V,2(q). (2)

where
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Thus, within this approximation where the true interatomic
potential V(g) is substituted by the pseudopotential V', »(q)
of Eq. (2), the effective local Lagrangian density becomes
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The term proportional to g, gives an improvement with
respect to the contact (zero-range) approximation usually
adopted in the case of ultracold and dilute atoms. In the 3D
case, Gaussian (one-loop) results of Eq. (5) have been
obtained in Refs. [21-23], but only at zero temperature.
Here we investigate the 2D case, which is nontrivial also
in the absence of finite range corrections, both at zero and
finite temperature.

Partition function and grand potential.—The partition
function Z of the system at temperature 7" can then be
written as [31]

2= [Dwten (-2520) @

where

Sy’ = / i ety

is the Euclidean action, L? is the area of the system, and
p=1/(kgT) with kg being Boltzmann’s constant. The
grand potential Q of the system, which is a function of u
and 7, is then obtained as [31]
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All the thermodynamical properties of the system can be
deduced from Q but, due to the interaction, some approxi-
mated procedure is needed to explicitly calculate Q.

The mean-field plus Gaussian (one-loop) approximation
is obtained, setting

w(r,7) =y +n(r,7) )

and expanding the action S[y,y*] of Eq. (7) around
the uniform and constant y, up to quadratic (Gaussian)
order in 7(r, 7) and n*(r, 7). In this way, taking into account
Eq. (5), we find the grand potential (see also
Refs. [22,30,33])

0
Q(u. T. o) = Qo yo) + Q5 (. wo) + Q4 (. wo).
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where
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is the mean-field contribution (assuming a real y),
1
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q
is the zero-point energy of bosonic excitations
h2q2 - 2
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i.e., the zero-temperature contribution of quantum Gaussian
fluctuations, while

1
(o) = 5> I (1= e PRl (14)
q

takes into account thermal Gaussian fluctuations.
Zero-temperature results.—Imposing the crucial saddle-
point condition

0 (1. o)
——— =0, 15
e (15)
we get
wolu) = |/ (16)
90

and the following spectrum of collective excitations:

E, (1) = \/ﬁ (ﬂ(ﬂ)@Jﬂﬂ), (17)
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where
Ap) =1 g (18)

takes into account finite range effects of the interatomic
potential.

By using Eq. (16) the mean-field grand potential (11)
becomes

w2

Qy(u) = T2

(19)

Instead, the one-loop grand potential reads
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In the continuum limit, where ), — L* [ d*q/(2x)?,

Qéo) (1) is ultraviolet divergent with E,(u) given by
Eq. (17). This divergence can be regularized with dimen-
sional regularization, where the space dimension D is
analytically continued [22,32,33]. To this end, we extend
the two-dimensional integral to a generic complex D =
2 — e dimension, and then take the limit & — 0. In this way
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where the regulator « is a crucial scale wave number which
enters for dimensional reasons: L” = L?k¢. In Eq. (21)
we have defined A(u) = m/(2ahA(u)*/?) and T'(z) is the
Euler gamma function, such that I'(-2+¢/2) = 1/e +
O(€°) for £ — 0. Notice that the strengths g, and g, of the
2D Lagrangian density (5) become gyx° and ¢,x* in D
dimensions, but the adimensional parameter A(u) of
Eq. (18) remains unchanged.

It follows that, to leading order in 1/¢, the Gaussian
grand potential in D dimensions reads

6 _ AW o 22)
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This expression is still divergent. Nevertheless, comparing
Q,(u) with Qy(u) in D =2 — & dimensions we find the
total zero-temperature grand potential

0
Q) _ Qo) U o
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where it appears the “running constant”
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which runs by changing x and depends on the dimension D
through ¢ =2 — D [30,32,33].

To remove the divergence 1/¢ in Eq. (24) we calculate
the derivative of 1/&,(u, k, €) with respect to «, finding

1 d&r(/", K, 5) £ A(/,{)
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Now, in the limit € — 0 (i.e., D — 2) we get
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This first-order differential equation can be easily solved by
separation of variables, and the result is
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EGor.0) E(ur0) AU (—) @7)

We set the Landau pole of Eq. (27) at the high energy
scale of the system e¢.; i.e., we set 1/&,(u,x’,0) =0 at &/
such that A’x?/(2m) = e.. Then, when x corresponds
to the actual energy of our system, i.e., h’k*/(2m) = p.
It follows that, from Egs. (23) with ¢ > 0 and A(u) =
m/(2zh?A(u)3/?) we obtain

QO () m 5 (€
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Thus, taking into account Eq. (18) and the formula
P = —Q/L? that relates the pressure P to the grand
potential Q, we finally get the zero-temperature beyond-
mean-field pressure

2
PO =" H (& i 29
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with g, given by Eq. (3) and g, given by Eq. (4). Moreover,
following Mora and Castin [13], we set

4n?

oYk (31)

€, =
ma2e

which is the high-energy scale fixed by the 2D s-wave
scattering length a, with y = 0.5772 the Euler-Mascheroni
constant. Given the interatomic potential V(q), the corre-
sponding 2D scattering length a, is obtained calculating
the s-wave phase shift §,(g) that is related to a, by the
expression [13,34-38]

corlaa)l =21 (Jaer) +0(). (32)

In the case of contact interaction, where y = 0, Eq. (29)
reduces to the equation of state derived by Popov [7] from a
2D hydrodynamic Hamiltonian with €, an ultraviolet cut-
off, which depends on the s-wave scattering length a, [39].
Moreover, using Eq. (31), one finds exactly the grand
potential derived by Mora and Castin expanding the energy
in powers of a small parameter [13]. Instead, if y #0
Eq. (29) generalizes the zero-temperature Popov’s equation
of state, giving a nonpolynomial finite-range correction.
The relative difference of the pressure (29) with
and without the finite-range correction is given by
I[1/(1 + xu)*?] = 1] = (3/2)|gu| = 122nR*/| In (nag)|,
by using R =2+/|9»2/90| as characteristic range of the
interatomic potential [40] and u = 8zh’n/[m|In (na?)||
as leading-order chemical potential in terms of the gas
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parameter na?, with n = 9P (u)/0u the 2D number
density [6,7,12,13]. Choosing, for example, na? = 1073
and nR? = 6 x 1072 we get a correction to the pressure of
about 20% due to finite-range effects, which is much larger
than the Mora-Castin next-next-to-leading universal cor-
rection [13] of about 2% for the same value of the gas
parameter na? [13]. This regime can be experimentally
achieved with 8’Rb atoms, where R = 1.07 x 1072 micron
[41], using n = 524 atoms/micron’ and tuning the 2D
scattering length via Feshbach resonance [42] to
a, = 1.38 x 10~* micron. In general, given a quite small
gas parameter na?, finite-range effects become relevant for
larger values of the nonuniversal adimensional parameter
nR?. In other words, sizable nonuniversal effects without
next-next-to-leading universal corrections can be reached
experimentally by decreasing the scattering length a
(through Feshbach-resonance techniques) and increasing
the 2D number density 7.

Note that, instead of using Egs. (3) and (4), which
immediately give the parameters g, and g, knowing the
interatomic potential f/(q), one can alternatively establish
a connection between g, and g, and familiar low-energy
scattering quantities such as the s-wave scattering length a;
and the s-wave effective range r; (which is not the
characteristic range R of the potential). In two spatial
dimensions this connection is very cumbersome and highly
nonlinear [34,35].

Finite-temperature results.—The finite-temperature one-
loop contribution to the equation of state is obtained from
Eq. (12) with Eq. (16), which gives the finite-temperature
contribution

Oy = L (g @Ea 1
PO =5 [T et i 69

to the total pressure within our Gaussian scheme.
Introducing the variable x = E,, we get

kT

% 1
- dxq(x,u. T ——, (34
el xqQep T ——. (34)

where ¢(x) is given by

q(x.u,T) =

e Ly \/1 | Ak T)E (35)
) H

nA(u :

Expanding this expression at low temperature 7, we find

P00 = 5 (1) 6P [MG)EC)

4 \ 72
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where I'(x) is the Euler gamma function and A(u) is given
by Eq. (18). Thus, we get the final grand-canonical
equation of state P(u,T), which gives the pressure as a
function of both the chemical potential ¢ and the temper-
ature. Explicitly,

P(u,T) = PO () + P (u), (37)

where P(©)(y) is given by Eq. (29) and P{(]T) (u) is given by
Eq. (36). As clearly shown in Eq. (36), at finite temperature
T the role of nonuniversal effects [which are encoded into
A(u)] increases as the ratio kg7 /u grows. This effect is
somehow expected since the details of the potential become
more relevant when atoms scatter at higher energy.

Conclusions.—We have used finite-temperature one-
loop functional integration to obtain the nonuniversal
equation of state of a dilute and ultracold gas of bosons.
We have adopted an effective field theory which includes
a low-energy finite-range contribution of the interatomic
interaction. The divergent zero-point energy of the system
has been regularized by performing dimensional regulari-
zation. Our analytical results at zero and finite temperature
are highly nontrivial generalizations of old but tricky
universal formulas [6,7,13] that depend only on the s-wave
scattering length a;.
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