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Network meta-analysis (NMA) combines direct and indirect evidence from trials

to calculate and rank treatment estimates. While modelling approaches for contin-

uous and binary outcomes are relatively well developed, less work has been done

with time-to-event outcomes. Such outcomes are usually analysed using Cox pro-

portional hazard (PH) models. However, in oncology with longer follow-up time,

and time-dependent effects of targeted treatments, this may no longer be appropri-

ate. Network meta-analysis conducted in the Bayesian setting has been increasing

in popularity. However, fitting the Cox model is computationally intensive, making

it unsuitable for many datasets. Royston-Parmar models are a flexible alternative

that can accommodate time-dependent effects. Motivated by individual participant

data (IPD) from 37 cervical cancer trials (5922 women) comparing surgery, radio-

therapy, and chemotherapy, this paper develops an IPD Royston-Parmar Bayesian

NMA model for overall survival. We give WinBUGS code for the model. We show

how including a treatment-ln(time) interaction can be used to conduct a global

test for PH, illustrate how to test for consistency of direct and indirect evidence,

and assess within-design heterogeneity. Our approach provides a computationally

practical, flexible Bayesian approach to NMA of IPD survival data, which readily

extends to include additional complexities, such as non-PH, increasingly found in

oncology trials.
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1 INTRODUCTION

Network meta-analysis (NMA) is the extension of pairwise

meta-analysis (MA) to a network of clinical trials in which

each trial compares at least 2 treatments from a set of treat-

ments in a specific disease area. Network meta-analysis uses

a single statistical model to combine both direct and indirect

evidence from all of the trials in a network to calculate treat-

ment effect estimates for every treatment comparison, regard-

less of whether 2 treatments have been compared directly, and

thus permits ranking of the treatments.

Most NMA methods have developed as a result of extend-

ing MA methods for 2 treatments to 3 or more treatments

to take advantage of the indirect evidence. Modelling

approaches for continuous and binary outcomes are rela-

tively well developed, but less work has been done with

time-to-event outcomes. Such outcomes have usually been

analysed using semiparametric Cox proportional hazard (PH)

models,1 but in oncology with longer follow-up of trials, and

time-dependent effects of targeted treatments, we are see-

ing increasing evidence of non-PH so this may no longer be

appropriate.2,3
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Network meta-analysis can be conducted using individ-

ual participant data (IPD) or aggregate data (AD) with IPD

considered the gold standard for both MA and NMA.4 Indi-

vidual participant data allows trials to be re-analysed in a

consistent manner standardising inclusion and exclusion cri-

teria, re-coding covariates, including previously excluded

patients and using up-to-date follow-up information. Data can

be checked against the published results to ensure the quality

of randomisation and follow-up.4 Most importantly, IPD pro-

vides greater statistical power for subgroup analyses, enables

the analysis of patient level covariates, and is essential for

investigating interactions between treatment and patient level

covariates.5,6

Network meta-analysis conducted in the Bayesian set-

ting has been increasing in popularity in recent years.7 The

Bayesian framework naturally handles random effects, avoid-

ing awkward numerical integration. In particular, Crowther

et al8 reported that—when the number of trials in the MA is

small—maximum likelihood tends to underestimate random

effect variances, and this issue is alleviated with a Bayesian

analysis (albeit at the expense of some overestimation of

the variances). Other attractions include ready inference for

treatments never compared directly, easy assessment of net-

work consistency, a natural ranking method, which allows

calculation of cumulative rankings to determine the prob-

ability of a treatment being 1 of the top 3 most effective

treatments, and the ability to adjust for correlations that

arise from the inclusion of multiarm trials.9-11 Another poten-

tial advantage of the Bayesian approach is that, if we wish

to extend the models by adjusting for patient level covari-

ates, then a Bayesian model can readily incorporate the

imputation of any missing values (Carpenter and Kenward12,

p. 47). Bayesian inference also provides a natural framework

for prediction.13

Bayesian NMA models are commonly fitted in WinBUGS.

However, fitting the Cox PH model in the Bayesian setting

is computationally intensive, as each individual's data have

to be repeated for each risk set they belong to. This makes

it extremely cumbersome even for moderately sized datasets,

such as our motivating cervical cancer data described below.

Therefore, alternative methods for time-to-event data are

needed.

Crowther proposed 2 alternatives to the Cox model for

time-to-event outcomes, which could be used for MA.8,14

First, a one-step IPD MA using a Poisson generalised lin-

ear model (GLM), which could be implemented with fixed

or random effects and with baseline hazard stratified by

trial. This model was extended to include treatment-covariate

interactions and to allow non-PH of the treatment effects.14

Crowther et al14 demonstrated the use of Poisson GLM in

both the frequentist and Bayesian settings. To fit a Poisson

GLM with time-to-event data, the time scale must be split into

intervals.14 A substantial number of intervals may be required

in applications, and their location and length may be

important.15(p65) Royston and Lambert further comment (p90)

on the potential computational issues with the piecewise

exponential approach with large datasets. For example, when

fitting the piecewise hazard model in WinBUGS, the data for

patients in the risk set at the beginning of each interval need

to be repeated. Assessing and modelling non-PH is also rela-

tively complex using this approach relative to a spline-based

approach (see Subsection 4.1.1).

By contrast, Royston and Lambert (p78) find that (pro-

vided the log cumulative hazard is modelled) the precise

knot location is relatively unimportant. These points, along-

side the flexibility of splines, motivated Crowther et al8 to

develop maximum likelihood approaches for random effect

models with splines, using Gauss-Hermite quadrature for the

numerical integration. However, maximum likelihood meth-

ods become increasingly challenging as the number of ran-

dom effects increase and may also struggle when the number

of trials in an MA is small.8,15

In this context, Jansen16,17 explored using fractional

polynomials18 to model the baseline hazard in two-step

random effects NMA of IPD time-to-event data. This

work and the work of Ouwens19 were extended to include

treatment-covariate interactions, which allowed the model to

adjust for confounding.17 However, fractional polynomials

can result in unexpected end effects. Specifically, the shape

of a fractional polynomial at each end of the dataset, where

there is often less information, may be unduly influenced by

what happens in the middle of the dataset.

In the light of this, we concluded that the Royston-Parmar

model,20 with the baseline log-cumulative hazard modelled

by restricted cubic splines (RCSs), is a natural way forward.

The complexity and flexibility of the model are determined

by the degrees of freedom of the RCS. Restricted cubic

splines have the advantage over fractional polynomials that

they are linear at each end, and so reduce the possibility of

undesirable end effects. They are therefore more likely to pro-

vide a flexible yet robust approach, appropriate for trials in

most networks.

Further, as we show below, such models can be readily fit-

ted in WinBUGS,21 but without the need to expand the data.

For networks containing many thousands of patients, this is a

key practical advantage.

Therefore, in this paper, we bring together the flexibility of

Bayesian modelling and the Royston-Parmar model, describ-

ing a one-step IPD NMA of time-to-event data to a network

of clinical trials in cervical cancer. We show how includ-

ing a treatment-ln(time) interaction can be used to conduct

a global test for PH, illustrate how we can test for consis-

tency of direct and indirect evidence, and assess within design

heterogeneity (ie, heterogeneity between trials of the same

design). We give commented WinBUGS code for fitting the

model. Network meta-analysis combines direct randomised
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evidence with indirect evidence, and this combination essen-

tially relies on the external validity of the direct evidence.

When presenting the results, we therefore propose and illus-

trate, presenting the direct and indirect treatment estimates

alongside the combined estimate.

The paper is structured as follows. We start by describ-

ing our dataset in Section 2. In Section 3, we review the

Royston-Parmar model and apply it to the MA setting before

extending it to the NMA setting in Section 4. In Section 5, the

Royston-Parmar NMA model is applied to the cervical can-

cer dataset with annotated code implementing our approach

provided in Appendix A. We conclude with a discussion in

Section 6.

2 CERVICAL CANCER DATA

Our motivating data come from 3 meta-analyses of

randomised controlled trials (RCTs) in cervical cancer per-

formed by the Chemoradiotherapy for Cervical Cancer Meta-

Analysis Collaboration22 and the Neoadjuvant Chemotherapy

for Cervical Cancer Meta-Analysis Collaboration.23 The 3

meta-analyses considered 4 different treatments: radiotherapy

(RT), chemoradiation (CTRT), neoadjuvant chemotherapy

plus radiotherapy (CT+RT), and neoadjuvant chemother-

apy plus surgery (CT+S) using 4 different designs: RT vs

CTRT (18 trials), RT vs CT+RT (16 trials), RT vs CT+S

(5 trials), and RT vs CT+RT vs CT+S (2 trials) (Figure 1).

The Neoadjuvant Chemotherapy for Cervical Cancer

Meta-Analysis Collaboration23 conducted one systematic

review to consider 2 related but separate treatment compar-

isons: RT vs CT+RT and RT vs CT+S. Trial accrual periods

ranged from 1982 to 1999. The Chemoradiotherapy for Cer-

vical Cancer Meta-Analysis Collaboration22 conducted one

systematic review to compare RT and CTRT. Trial accrual

periods ranged from 1987 to 2006. Both systematic reviews

were completed following detailed prespecified protocols.

The RT vs CTRT comparison included a total of 18 RCTs

and 4818 patients. In the original publication, 5 of these trials

were excluded from the main analysis, as patients on at least

one of the treatment arms received additional treatment. This

resulted in a subset of 13 trials (3104 patients), which were

identified and used for the main analysis. Within this subset

of 13 trials 2 three-arm trials combined 2 different forms of

CTRT and compared them with a single control arm and 3

4-arm trials were split into 2 unconfounded comparisons of

RT vs CTRT for analysis as separate trials. This resulted in

16 trials included in the main analysis. As in the original pub-

lication, the data will be treated in the same way throughout

this paper.

Across the 3 meta-analyses that form our network of trials,

overall survival data were available for 5922 patients from 37

RCTs (35 two-arm RCTs, 2 three-arm RCTs).

FIGURE 1 Cervical cancer network diagram. Node size and edge thickness are proportional to the number of studies involved in each direct

comparison. RT, radiotherapy; CTRT, chemoradiation, CT+RT, neoadjuvant chemotherapy plus radiotherapy; CT+S, neoadjuvant chemotherapy

plus surgery. NB: the numbers for each treatment arm do not add up to the total number of patients included in the network as multiarm patients are

counted twice. There are a total of 37 trials in this network; however, in the figure, the 2 multiarm trials are counted 3 times each as they are included

in the number of trials for each pairwise comparison. Arrows denote direction of treatment comparison in NMA models

(see Section 4.1)
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3 REVIEW OF THE
ROYSTON-PARMAR MODEL
AND IMPLEMENTATION
OF PAIRWISE META-ANALYSIS
METHODS

3.1 Royston-Parmar model for the log
cumulative hazard rate
To implement the Royston-Parmar model in the NMA set-

ting, we use an RCS to model the log baseline cumulative

hazard rate for each trial. An RCS is a piecewise polynomial

with additional constraints to ensure a smooth log baseline

cumulative hazard. An RCS has a number of interior knots

as well as boundary knots at the minimum and maximum of

the uncensored survival times. The fitted RCS is continuous,

has continuous first and second derivatives, and is forced to

be linear before the first knot and after the last knot.24 Fur-

ther details on RCS can be found in Lambert and Royston,24

Royston and Parmar,20 and Royston and Lambert.15

The spline function for patient i in trial j with p interior

knots can be written as

sj
(

ln(ti)
)
= 𝛾1 + 𝛾2u0

(
ln(ti)

)
+ 𝛾3u1

(
ln(ti)

)
+ · · · + 𝛾p+2up

(
ln(ti)

)
,

(1)

where ln(ti) is the natural logarithm of event time for patient

i, u0

(
ln(ti)

)
, u1

(
ln(ti)

)
, … , up

(
ln(ti)

)
are the orthogonalised

basis functions and the 𝛾 's their coefficients. Basis functions

are defined in Appendix A.

The RCS for the log cumulative hazard can be incorpo-

rated into a PH flexible parametric model with xi the treatment

indicator for patient i and 𝛽 the coefficient,

log{H(t|xi)} = 𝜂ij = sj
(

ln(ti)
)
+ 𝛽xi. (2)

Covariates can also be included in (2) as adjustment factors

if necessary. To fit this flexible parametric model (2), the log

likelihood of the observed data must be calculated. To derive

the log likelihood, the derivative of 𝜂ij is required,

d𝜂ij = 𝛾2du0

(
ln(ti)

)
+ 𝛾3du1

(
ln(ti)

)
+ · · · + 𝛾p+2dup

(
ln(ti)

)
,

(3)

where dup is the derivative with respect to ln(ti) of up.

The likelihood lij for patient i is then

log(lij) =
{

log(d𝜂ij) + 𝜂ij − exp(𝜂ij) for an observed event,

− exp(𝜂ij) for a censored observation.
(4)

WinBUGS can be used for Bayesian inference with this

likelihood. WinBUGS does not have an appropriate inbuilt

distribution for the Royston-Parmar model; therefore, the

“zeros trick” is required to enable a general likelihood to be

specified.15 The probability density function of the Poisson

distribution is f (y|𝜆) = 𝜆y exp(−𝜆)
y!

. The “zeros trick” works

because when y is set equal to zero, the Poisson likelihood

is exp(−𝜆). Therefore, if we set 𝜆 equal to the negative log

likelihood contribution for each patient and we use a psuedo

observation “y = 0” for each patient, using a Poisson model

gives us the correct likelihood.15 As a Bayesian approach,

WinBUGS has the added advantage of the flexibility to extend

models (eg, to include multiple random effects and covari-

ates) without involving numerical integration. Then, the fixed

effect of treatment in (2) can be readily replaced by a random

effect if desired.

3.1.1 Testing for non-PHs
Non-PH can be assessed by including a treatment-ln(time)

interaction in (2):

ln{H(t|xij)} = sj
(

ln(ti)
)
+ 𝛽xi + 𝛼xi (ln (ti)) , (5)

where xi (ln (ti)) is the treatment-ln(time) interaction term for

patient i and 𝛼 the coefficient. In (3), the derivative of (2) is

calculated with respect to ln(t); therefore, (3) must be updated

appropriately when we include treatment-ln(time) interac-

tions. A further extension is to allow 𝛼 to be random across

(groups of) trials; see Section 4.1.1. If the treatment-ln(time)

interaction term is statistically significant, then there is evi-

dence of non-PH in the pairwise comparison. If this is the

case, then a treatment-ln(time) interaction for this pairwise

comparison should be included in the NMA model.

Before conducting MA or NMA, each trial should be

assessed individually for evidence of non-PH. A natural way

to do this is to calculate the Schoenfeld residuals, which can

be examined graphically and formally tested for nonpropor-

tionality using a 𝜒2 test. As each trial is independent of each

other, in each MA, if desired, we can add up the values of

the 𝜒2 statistics to provide an overall nonspecific test with

degrees of freedom equal to the number of trials in the MA.

The Schoenfeld residual test, applied to each trial in turn,

looks for any evidence of a different trend in the Schoenfeld

residuals between the treatment groups.25 It highlights any

trials that show a marked departure from PH, which should

be investigated further before including the trial in a PH

NMA. Such departures may be due to quirks of the design

or follow-up. By contrast, testing the null hypothesis that
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𝛼 = 0 in (5) provides a more powerful test of the specific

hypothesis that the log-cumulative hazard has a different lin-

ear trend in log(t) in the different treatment groups. If, across

the (N)MA, we reject 𝛼 = 0, then summarising treatment

effects by a single hazard ratio is inappropriate.

3.2 Estimation
To fit the Royston-Parmar model in WinBUGS, the basis

functions for the RCS must be calculated and then orthog-

onalised using Gram-Schmidt orthogonalisation. The basis

functions can be calculated in Stata or any other statistical

software package. Full details on this process are provided in

Appendix A and Lambert and Royston.24

Once calculated, the basis functions are passed to Win-

BUGS to fit the one-step NMA model (6) in which the

logarithm of the baseline cumulative hazard function is mod-

elled as a “natural” cubic spline function of log time.20 The

default knot locations for RCS are based on centiles of the

uncensored survival times with additional boundary knots

placed at the minimum and maximum values of the uncen-

sored survival times. Royston and Lambert do not recommend

models with more than 3 knots, as the resulting curves can be

unstable; however, they do acknowledge that in larger datasets

a larger number of knots may be required.15 It has been shown

recently that parameter estimates are generally robust to knot

locations26; however, it is also possible to choose knot loca-

tions. With the cervical cancer data, we chose our own knot

locations because we wanted to ensure that the log cumulative

hazard resulting from the WinBUGS model was as similar to

the nonparametric Nelson-Aalen estimate of the log cumula-

tive hazard as possible for each trial. Starting with the default

knot locations, we plotted the log cumulative hazard resulting

from the WinBUGS model with 1, 2, and 3 knots against log

time alongside the Nelson-Aalen estimate of the log cumula-

tive hazard and its 95% confidence intervals. For each trial,

we chose the model with the number of knots that showed

the best agreement between the WinBUGS model and the

Nelson-Aalen estimate. This resulted in 34 trials with 2 knots

and 3 trials with 1 knot. Knot locations were then tweaked

where necessary to improve the agreement between the Win-

BUGS model and the Nelson-Aalen estimate and to ensure the

log cumulative hazard from the WinBUGS model fell within

the 95% confidence intervals of the Nelson-Aalen estimate. A

table of knot locations can be found in Appendix B.

Data formatting including the calculation of basis functions

can be conducted in any statistical package. All models were

run in WinBUGS21 version 1.4.3. The Stata suite of com-

mands winbugs27 was used to control all aspects of model fit-

ting in WinBUGS through Stata28 version 14. Example Stata

code for calculating basis functions and running WinBUGS

from Stata along with the WinBUGS model is provided in

Appendix A.

Initially, we considered fixed treatment effect (FTE) mod-

els with random treatment effect (RTE) models considered

where there was evidence of heterogeneity. Final models were

run with 20 000 burn-in and then 20 000 iterations and with 2

sets of initial values. Convergence was checked by examining

the trace and histograms of the posterior distribution. Models

were compared using the deviance information criteria (DIC)

statistic.29,30

3.3 Results of pairwise MA using
the Royston-Parmar method
Initially, we treated the network as 4 separate pairwise

meta-analyses and conducted a one-step MA of each compar-

ison using (2). Figure 2 shows 4 forest plots of log hazard

ratios (LogHR) and 95% credible intervals (CrI). The result-

ing FTEs are presented in Table 1. The treatment effects

were consistent with the treatment effects from a two-stage

pairwise MA using the Cox model. Results of the pairwise

MA suggest CTRT improves overall survival by 19% com-

pared to RT (LogHR=−0.215, 95% CrI: −0.336, −0.086),

CT+S improves overall survival by 36% compared to RT

(LogHR=−0.447, 95% CrI: −0.654, −0.243), and CT+S

also improves overall survival by 36% compared to CT+RT

(LogHR=−0.444, 95% CrI: −0.830, −0.061).

Cochran's Q statistic can be used to assess heterogeneity

within each treatment comparison.31 There was no evidence

of statistical heterogeneity within the RT vs CTRT (P=.625,

Table 1), RT vs CT+S (P=.065), and CT+RT vs CT+S

(P=.939) comparisons while there was some evidence of

statistical heterogeneity in the RT vs CT+RT comparison

(P<.001, also noted in the original publication23). When we

split the RT vs CT+RT comparison into subgroups based on

length of chemotherapy cycles, we found no evidence of het-

erogeneity in the trials with chemotherapy cycles greater than

14 days (P=.263). However, there was evidence of hetero-

geneity in the trials with chemotherapy cycle lengths of 14

days or less (P=.002). Heterogeneity can also be assessed

visually by considering the forest plots in Figure 2. Due to

the presence of heterogeneity in one of the pairwise com-

parisons going forward, we will need to consider RTE NMA

models. There was no evidence globally of non-PH in any of

the treatment comparisons (Table 1, column 4); however, the

Schoenfeld residuals indicate that there may be some trials

in the RT vs CTRT comparison, which are at risk of non-PH

(P=.059, Table 1, column 5). However, we have performed

multiple tests, and this is only borderline significant. More-

over, the global test of nonproportionality in log(t) is far from

significant; therefore (in the light of our discussion at the end

of Section 3.1), we continue under the assumption of PH in

the cervical cancer network.
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FIGURE 2 Pairwise fixed treatment effect meta-analysis for all pairwise comparisons in the cervical cancer network. Top left: RT vs CTRT, top

right: RT vs CT+RT, bottom left: RT vs CT+S, bottom right: CT+RT vs CT+S

TABLE 1 Meta-analysis results using Royston-Parmar models

Comparison FTE* Cochran's Q Global Non-PH Test Schoenfeld Residuals

RT vs CTRT −0.215 (−0.336, −0.086) 12.71, 15 df, P=.625 𝜒2=0.161, 1 df, P=.688 𝜒2=25.64, 16 df, P=.059

RT vs CT+RT −0.191 (−0.375, −0.007) 20.69, 6 df, P=.002 𝜒2=2.522, 1 df, P=.112 𝜒2=10.34, 7 df, P=.170

⩽14 days

RT vs CT+RT 0.227 (0.073, 0.385) 12.34, 10 df, P=.263 𝜒2=0.006, 1 df, P=.944 𝜒2=7.65, 11 df, P=.744

>14 days

RT vs CT+S −0.447 (−0.654, -0.243) 8.85, 4 df, P=.065 𝜒2=0.118, 1 df, P=.731 𝜒2=8.65, 5 df, P=.124

CT+RT vs CT+S −0.444 (−0.830, −0.061) 0.01, 1 df, P=.939 𝜒2=0.164, 1 df, P=.686 𝜒2=0.49, 2 df, P=.783

Abbreviations: CTRT, chemoradiation; CT+RT, neoadjuvant chemotherapy plus radiotherapy; CT+S, neoadjuvant chemotherapy plus surgery; FTE, fixed treatment

effect; RT, radiotherapy; PH, proportional hazard.* Values are log hazard ratios and 95% credible intervals.

4 NETWORK META-ANALYSIS
USING ROYSTON-PARMAR METHOD

4.1 One-step IPD NMA model
for time-to-event data
The one-step NMA model models the log cumulative hazard

individually for each trial with its own spline function (1) and

location of knots. For patient i in trial j in a network of q + 1

treatments, the FTE model takes the following form:

ln{Hj(t|xij)} = sj
(

ln(ti)
)
+ 𝛽1trt1i + · · · + 𝛽qtrtqi, (6)

where trtqi is a treatment contrast variable. Some care is

needed in defining the treatment contrasts to ensure that they

are in the right direction. This is necessary for the model

to be properly defined. The treatment contrasts are patient

level variables, which can take the value 0, 1, or −1. Where

there are treatment loops in the network, the treatment con-

trasts represent the consistency equations. For example, in a

3-treatment network consisting of treatments A, B, and C,

where 𝜇AB is the treatment effect of treatment B compared

to treatment A, the treatment effect for treatment C com-

pared to treatment B can be calculated as 𝜇BC = 𝜇AC − 𝜇AB.
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This means that only 2 treatment contrast variables (repre-

senting the coefficients of 𝜇AB and 𝜇AC) need defining.

Specifically, in the cervical cancer network where there are

4 treatments (with one 3-treatment loop, Figure 1), we need to

define 3 treatment contrast variables. We chose to define the

treatment contrast variables for RT vs CTRT, RT vs CT+RT,

and RT vs CT+S. In Figure 1, the arrows indicate the direc-

tion of the treatment effects. RT is the reference treatment for

trials comparing RT and CTRT, RT and CT+RT, and RT and

CT+S. For trials comparing CT+RT and CT+S, CT+RT is

the reference treatment and the treatment contrasts need to

reflect this. For patients in a CT+RT vs CT+S trial receiv-

ing CT+S there must be a “−1” for the coefficient of RT

vs CT+RT and a “1” for the coefficient of RT vs CT+S.

For patients in a CT+RT vs CT+S trial receiving CT+RT,

the coefficients of RT vs CT+RT and RT vs CT+S must

both be “0.”

In other words, if trt1i is the treatment contrast variable for

RT vs CTRT, trt2i is the treatment contrast variable for RT vs

CT+RT, and trt3i is the treatment contrast variable for RT vs

CT+S, then

trt1i =

{
1 if patient was randomised to CTRT and is from a trial comparing

RT and CTRT
0 otherwise

trt2i =

⎧⎪⎪⎨⎪⎪⎩
1 if patient was randomised to CT+RT and is from a trial comparing

RT and CT+RT
−1 if patient was randomised to CT+S and is from a trial comparing

CT+RT and CT+S
0 otherwise

trt3i =

{
1 if patient was randomised to CT+S and is from a trial comparing

RT and CT+S or CT+RT and CT+S
0 otherwise.

The corresponding RTE model takes the form:

ln{Hj(t|xij)} = sj
(

ln(ti)
)
+ 𝛽1jtrt1i + · · · + 𝛽qjtrtqi (7)

(
𝛽1

⋮
𝛽q

)
∼ MVN(𝜇,T),

where T is the unstructured inverse between-study

variance-covariance matrix. In this paper, we use an unstruc-

tured covariance matrix because the cervical cancer network

is a simple network with lots of data, which can support

the estimation of an unstructured covariance matrix. Unless

there is a strong a priori reason for a common heterogene-

ity variance, this is more plausible. However, when there

are fewer trials, a simpler approach such as the Higgins

and Whitehead32 approach to estimating the between-study

variance-covariance matrix could also be used. This approach

requires the estimation of only one parameter, and so is

particularly popular when there is relatively little information

available to estimate an unstructured covariance matrix.

4.1.1 Global test for non-PHs
We now detail 2 approaches for testing the assumption of PH.

Firstly, a network test for non-PH can be conducted by includ-

ing an interaction between treatment and ln(time) in a FTE or

RTE model:

ln{Hj(t|xij)} = sj
(

ln(ti)
)
+ 𝛽1jtrt1i + · · · + 𝛽qjtrtqi

+ 𝛽(q+1)jtrt1i (ln(ti)) + · · · + 𝛽(2q)jtrtqi (ln(ti)) ,
(8)

As before (Section 3.1.1), the derivative (3) of the log cumu-

lative hazard must also be updated. Annotated model code

based on the cervical cancer network in Figure 1 is provided

in Appendix A. After fitting the model, we can perform an

approximate global Wald test on the treatment-ln(time) inter-

action terms to determine whether there is, on average, any

evidence of non-PH within the network. The null hypothesis

states that the treatment-ln(time) interactions are simultane-

ously equal to zero so that there is no evidence of non-PH in

the network. Details for conducting a Wald test can be found

in Appendix C.

Our second approach that gives more insight into which

trials are driving any nonproportionality is to allow the inter-

action terms to vary by trial. We can extend the FTE model

(6) in this way:

ln{Hj(t|xij)} = sj
(

ln(ti)
)
+ 𝛽1jtrt1i + · · · + 𝛽qjtrtqi

+
(
𝛽(q+1)j + uj

)
trt1i (ln(ti)) + …

+
(
𝛽(2q)j + uj

)
trtqi (ln(ti))

(9)

uj ∼ N
(
0, 𝜎2

u
)
,

Annotated model code based on the cervical cancer net-

work in Figure 1 is provided in Appendix A. As before, an

approximate global Wald test of the fixed treatment-ln(time)

and variance parameters can then be conducted to determine

whether there is any evidence of non-PH within the network.

By allowing a random effect of treatment-ln(time) by trial,
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we obtain a shrinkage estimate of the departures from PH in

each trial. We can display this graphically by plotting the val-

ues of the uj parameters along with an interval of uj ±1.96sdj,

where sdj is the standard deviation of uj for trial j.
Non-PH in some or all of the trials can be accommodated

by re-fitting (8) or (9) and restricting the treatment-ln(time)

interaction terms to apply only to the trials exhibiting evi-

dence of non-PH. The timescale could then be divided up and

the log hazard ratios assessed within each time interval. Alter-

natively, a spline that allows the treatment effect to vary over

time could be added.

4.2 Assessment of inconsistency
A network is considered to be consistent when the treatment

effect estimates from the direct comparisons are in agreement

with the treatment effect estimates from the indirect compar-

isons. Therefore, inconsistency occurs within a treatment loop

when the indirect evidence is not in agreement with the direct

evidence. As a result, inconsistency is a property of a treat-

ment loop not of a treatment comparison.33 This is different

to heterogeneity, which can be defined as the amount of dis-

agreement between trial-specific treatment effects amongst

trials comparing the same treatments.34

To assess inconsistency, we introduced a fixed effect incon-

sistency parameter to (6) following the method of Lu and

Ades.11 This allowed us to obtain estimates of the direct and

indirect information for each comparison within the treatment

loop formed by RT, CT+RT, and CT+S. In a network con-

taining one 3-treatment loop between treatments A, B, and C,

let 𝜔ABC represent the inconsistency parameter for this loop.

We can then extend (6) in this way:

ln{Hj(t|xij)} = sj
(

ln(ti)
)
+ 𝛽1trt1ij

+ 𝛽2trt2ij − 𝜔ABCtrt1ijtrt2ij,
(10)

An inconsistency parameter can be added to the RTE model

in the same way. In passing, the inclusion of an inconsis-

tency parameter allows us to test for inconsistency between

two-arm trials only as by definition multiarm trials are inter-

nally consistent. Note, we only need to fit one model with the

inconsistency parameter to separate out the direct and indirect

evidence for all trials in the loop. The cervical cancer network

contains one treatment loop so only one inconsistency param-

eter was included in the model. See annotated model code in

Appendix A for cervical cancer network shown in Figure 1.

As noted in Section 4.4, similar results could be obtained

by back-calculation. For more complex networks, our models

could readily be extended to incorporate node-splitting.35

4.3 Inconsistency and heterogeneity
We briefly consider how to proceed if there is some evidence

of heterogeneity (when we do not model inconsistency) and

inconsistency (when we do not model heterogeneity, ie, in the

FTE model).

First, suppose there is no funnel plot asymmetry in the pair-

wise MAs within the network so that the FTE point estimate

and RTE point estimate are virtually identical. In this case, if

there is inconsistency, then the extent of inconsistency will be

the same in both the FTE and RTE model. However, if there

is heterogeneity, then the standard error of the point estimate

will be (appropriately) larger in the RTE than the FTE esti-

mate. This will reduce the power to detect inconsistency in

the RTE model.

Alongside, this is the fact that even in the FTE model,

the inconsistency test has relatively low power. Therefore, in

practice, if we find inconsistency in the FTE model, but there

is also heterogeneity, then moving to a RTE model may mean

the inconsistency is no longer detectable.

In practice, we would lean to the following approach: (1) fit

the FTE model, test for inconsistency, and include an incon-

sistency parameter if needed; (2) fit the RTE model if needed

(retain the inconsistency parameter if it was needed in the

FTE model); (3) if the RTE model is needed, explore whether

the conclusions are sensitive to including the inconsistency

parameter (regardless of its formal significance); if they are,

we would prefer to retain it. This approach could usefully be

complemented by an initial assessment of heterogeneity in

pairwise MA. If inconsistency is present, results should not

be used for clinical inference without resolving the cause of

the underlying inconsistency/heterogeneity.

4.4 Assessment of heterogeneity
Heterogeneity should be assessed within each pairwise com-

parison before an NMA model is fitted, both visually through

the use of forest plots and using formal statistical tests. For

the cervical cancer network, this was reported in Section 3.3.

Once an FTE NMA model is fitted, Cochran's Q statistic can

be used to assess heterogeneity within the network. The over-

all Q statistic from the FTE NMA model can be decomposed

into within-design heterogeneity (Qhet) and between-design

heterogeneity representing inconsistency between designs

(Qinc). Let �̂�ij be the treatment effect estimate for trial i of

design j, �̂�j be the treatment effect from the direct evidence for

design j only, and �̂�Nj be the network estimate of the treatment

effect for design j, then

Q =
∑

j

∑
i

{
�̂�ij − �̂�Nj

�̂�ij

}2

Qinc =
∑

j

{
�̂�j − �̂�Nj

�̂�j

}2

Qhet =
∑

j

∑
i

{
�̂�ij − �̂�j

�̂�ij

}2

,
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with Q = Qinc +Qhet. A corresponding matrix decomposition

holds for multiarm trials. An alternative method of assessing

heterogeneity would be to present values of 𝜏2.

4.5 Ranking of treatments
To rank the treatments, we took each iteration in turn and

ranked the treatments from most effective to least effective.

The most effective treatment had the smallest log hazard

ratio value, and the least effective treatment had the largest

log hazard ratio value. We then counted how many times

each treatment was considered the first, second, third, fourth,

and fifth most effective treatment and expressed these as

percentages.

4.6 Prior distributions
In the FTE model, parameters representing the spline func-

tion for the baseline log cumulative hazard function, treatment

effects, inconsistency parameters, and treatment-ln(time)

interactions were fitted with noninformative normal prior dis-

tributions (𝛾 ∼ N(0, 10000), 𝛽 ∼ N(0, 1000), 𝜔 ∼ N(0, 10)).
For model (9), 𝜎u ∼ N(0, 1000), which was restricted to

be positive.

In the RTE model 𝛽 ∼ MVN(𝜇,T) with 𝜇 ∼ (0, 𝜎) and

𝜎 a matrix with 0.001 on the diagonal and 0 elsewhere. The

prior distribution for T is an inverse Wishart distribution T ∼
IW(V, k) where V is a pxp scale matrix with the degrees of

freedom, k(⩾ p), as small as possible to reflect vague prior

knowledge. Prior distributions for all other parameters remain

the same as for the FTE model.

5 RESULTS

Here, we present the results of using the one-step IPD

Royston-Parmar approach for NMA with the cervical can-

cer dataset introduced in Section 2. Parameter estimates are

presented as log hazard ratios with 95% credible intervals for

the posterior mean. A log hazard ratio of 0 indicates a null

effect. A log hazard ratio less than zero indicates a beneficial

effect relative to the reference treatment. In Section 3.3, we

identified heterogeneity in the RT vs CT+RT comparison and

presented results with the trials split by chemotherapy cycle

length. In this section, the NMA model includes an additional

parameter for cycle length, which, through the use of an indi-

cator variable, can only contribute to the hazard in trials with

long chemotherapy cycles. By doing this, we treat CT+RT

short cycles and CT+RT long cycles as 2 separate treatments,

so explaining this source of heterogeneity. Due to the pres-

ence of heterogeneity in one of the pairwise comparisons, we

will consider both FTE and RTE models. The RTE model will

take into account statistical heterogeneity.

Prior to conducting the NMA, to check that an appropriate

spline model was chosen for each trial, the log cumulative

hazard was fitted individually for each trial in WinBUGS and

then plotted against the nonparametric Nelson-Aalen estimate

to assess the fit of the model to the data. All trials, except

3, used spline models with 2 interior knots, the remaining 3

trials used 1 interior knot.

We start by fitting FTE and RTE models in Section 5.1 and

assessing the assumptions of PH (Section 5.1.1) and inconsis-

tency (Section 5.2). In Section 5.3, we assess the network for

any evidence of heterogeneity before ranking the treatments

in order of effectiveness (Section 5.4).

5.1 Model results
Figure 3 shows the direct, indirect, and network treatment

effects for the cervical cancer network. The direct and indi-

rect treatment effects are estimated through the inclusion of

an inconsistency parameter as described in Section 4.2. We

see that in this network, we have limited indirect evidence

so that our network treatment effects are fairly close to the

FIGURE 3 Cervical cancer results. Left: fixed treatment effect, right: random treatment effect
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TABLE 2 Results of the fixed treatment effect (FTE) and random treatment effect (RTE) NMA models and DIC

FTE RTE
Treatment Effects Model Fit Treatment Effects Model Fit

RT 0 pD 138.6 RT 0 pD 152.2

CTRT −0.211 (−0.337, −0.087) D̄ 12182.9 CTRT −0.207 (−0.374, −0.046) D̄ 12163.6

CT+RT 0.028 (-0.164, 0.220) DIC 12321.5 CT+RT 0.086 (-0.229, 0.428) DIC 12315.8

⩽14 days ⩽14 days

CT+RT 0.223 (0.065, 0.380) CT+RT 0.273 (0.031, 0.538)

>14 days >14 days

CT+S −0.396 (-0.611, −0.185) CT+S −0.333 (−0.701, 0.011)

Abbreviations: CTRT, chemoradiation; CT+RT, neoadjuvant chemotherapy plus radiotherapy; CT+S, neoadjuvant chemotherapy plus surgery;

DIC, deviance information criteria; NMA, network meta-analysis; RT, radiotherapy.Results for treatment effects are log hazard ratios (95%

credible intervals).

direct effects. Assuming consistency, the network treatment

effect for CTRT compared to RT is statistically significant

in both the FTE and RTE model with the RTE model sug-

gesting an 18% improvement in overall survival with CTRT

(LogHR=−0.207, 95% CrI: −0.374, −0.046, Table 2). The

results of the FTE and RTE models are consistent with each

other. The DIC provides only weak evidence in favour of the

RTE model (difference in DIC of 5, Table 2); however, the

presence of heterogeneity suggests that the RTE model is the

best choice.

5.1.1 Global test for non-PHs
Here, we present the results from our 2 methods for assess-

ing the assumption of PH. From the first approach, the

Wald test for non-PH from the RTE model with random

treatment-ln(time) interactions gave 𝜒2 = 0.324 on 3 degrees

of freedom (P=.955) suggesting that, on average, there is no

evidence of non-PH within the network.

In the second approach, when we allow the treatment-

ln(time) interaction parameters to vary by trial, the Wald test

for the RTE model gave 𝜒2 = 0.663 on 4 degrees of freedom

(P=.956) suggesting that, on average, there is no evidence of

non-PH within the network. Figure 4 displays the amount of

variation in the treatment-ln(time) interactions for each trial

from the RTE model with random treatment-ln(time) inter-

actions. There is little variation between trials supporting the

conclusion, from the Wald test, that there is no evidence of

non-PH within the network.

5.2 Assessment of inconsistency
To assess inconsistency and to obtain estimates of the direct

and indirect information for each comparison within the treat-

ment loop, a fixed effect inconsistency parameter was intro-

duced to the treatment loop formed by RT, CT+RT, and

CT+S, as described in Section 4.2 and (10). From the RTE

model, the inconsistency parameter was estimated as −0.484

(95% CrI: −1.314, 0.354). In Figure 3, we separate out the

direct and indirect evidence for each treatment comparison

and display these alongside the network estimates. It can be

seen that the direct and indirect treatment effects differ from

each other with the network estimates balancing out these 2

sources of information. Therefore, the cervical cancer net-

work has a suggestion of inconsistency and the model results

should be cautiously interpreted.

5.3 Assessment of heterogeneity
From the FTE model, there was evidence of statistically sig-

nificant heterogeneity in the whole network (Q=56.86 on 35

df, P=.011) and between designs (Q=10.32, 2 df, P=.006).

There was also some evidence of heterogeneity within each

design (Q=46.21 on 33 df, P=.063), which was largely driven

by the heterogeneity within the RT vs CT+RT (chemother-

apy cycles less than 14 days) comparison (Q=16.74, 6 df,

P=.010), as previously identified in Figure 2. The heterogene-

ity between designs was driven by the Sardi 96 trial.36 Sensi-

tivity analysis excluding the Sardi 96 trial reduced the overall

Q to borderline significance (Q=47.98 on 33 df, P=.044) and

removed the inconsistency between designs (Q=2.53 on 2 df,

P=.282). Treatment effect estimates for RT vs CT+RT with

chemotherapy cycles less than or equal to 14 days and RT vs

CT+S were slightly reduced in both the FTE and RTE models

and remained consistent with each other.

5.4 Ranking of treatments
The ranking of treatments in order of most effective to least

effective is consistent between the FTE and RTE models. In

both models, CT+S comes out as the most effective treat-

ment, CTRT the second most effective treatment, CT+RT

with chemotherapy cycles less than or equal to 14 days the

third most effective treatment, RT the fourth most effective

treatment and CT+RT with chemotherapy cycles greater than

14 days as the least effective treatment (Figure 5).
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FIGURE 4 Variation in treatment-ln(time) interactions for assessment of nonproportional hazard in random treatment effect network

meta-analysis model. Top left: RT vs CTRT, top right: RT vs CT+RT, bottom left: RT vs CT+S, bottom right: CT+RT vs CT+S

FIGURE 5 Treatment ranks from fixed treatment effect NMA model (left) and random treatment effect NMA model (right). NMA, network

meta-analysis

6 DISCUSSION

The literature for conducting NMA with time-to-event data

is rather sparse. This paper extends work by Royston and

Parmar20 to the NMA setting, showing that Royston-Parmar

models, fitted in WinBUGS, provide a flexible, practical

approach for Bayesian NMA with time-to-event data. They

avoid the computational issues that beset a Bayesian imple-

mentation of the Cox model, which (see Section 1) we found

computationally intractable for our cervical cancer network.

An advantage of this approach is that, if we wish, we can read-

ily obtain an estimate of the baseline hazard, pooled across

trials. To do this, we make the coefficients for the RCS ran-

dom across trials (this requires the knots to be in the same

position for all studies). The Bayesian approach also provides

a computationally straightforward and inferentially natural

framework for ranking treatments.

The proposed approach naturally allows the inclusion of

patient level covariates. The Bayesian aspect means we can

readily allow covariates to have random coefficients, avoid-

ing the numerical integration needed to maximize the cor-

responding likelihoods. This in turn naturally allows us to

test for, and accommodate, departures from proportional-

ity in some or all of the studies, by including appropriate

treatment-ln(time) interactions. Making these random (as in

Equation 9) gives us a Bayesian shrinkage estimate of the

extent of each study's departure from PH (Figure 4). The

shrinkage reduces the likelihood of overinterpreting apparent
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departures from proportionality in smaller studies. Where

proportionality is not appropriate, it naturally allows for—for

example—effect estimation using restricted mean survival

time as an estimate of treatment efficacy,37 which has so far

been considered only in the MA setting.38

Network meta-analysis combines direct and indirect evi-

dence. Since the latter requires much stronger assumptions,

it is sensible to check that they are consistent. We illustrated

how this may be done using the model-based version of the

method proposed by Bucher.33 One inconsistency parame-

ter is required for each treatment loop within a network, and

we simply refit the NMA model with all these parameters

included. This allows us to separate the direct and indirect

contributions to each treatment effect (Figure 3). We believe

these should always be presented, because readers should

be aware of the extent to which conclusions rest on indirect

evidence, with its attendant additional assumptions.

Besides the Cox model (discussed in Section 1), another

option is a piecewise constant hazard model, also referred to

as a piecewise Poisson model. With this model, the dataset

needs to be expanded for each piecewise constant hazard.

Thus, this approach is affected by the same issue as the Cox

model, especially if a large number of intervals of piecewise

constant hazard are required. Crowther14 suggested alleviat-

ing the computational burden this causes by collapsing across

covariate patterns; however, this is not ideal and not pos-

sible with continuous covariates. By contrast, as our code

shows, the Royston-Parmar model avoids these issues. Nev-

ertheless, there is a price to be paid in computational time.

Where the same model can be fitted using a generic Bayesian

program such as WinBUGS, and by maximum likelihood,

WinBUGS will typically be slower than the corresponding,

model specific, maximum likelihood software. However, this

drawback is far from prohibitive. On a laptop with an Intel

Core i7-3540M processor with 4Gb of RAM, Model (6) took

0.045 second per update, so a burn in of 1000 updates fol-

lowed by 4000 further updates to estimate the posterior takes

less than 4 minutes.

It is also possible to conduct an IPD NMA using the

Royston-Parmar model as a two-step approach and to fit the

Royston-Parmar model in the frequentist setting. In a two-step

approach, the Royston-Parmar model is fitted individually to

each trial and then study estimates of the log hazard ratio and

its standard error can be pooled together in the second step.

In the same way, a two-step approach could be used with the

Cox model. Indeed, we found the results of the one-step FTE

Royston-Parmar MA model fitted in the Bayesian setting were

consistent with the two-step approach using the Cox model

fitted in the frequentist setting for all 4 treatment comparisons

in the cervical cancer network.

In the frequentist setting, the Royston-Parmar model can

be fitted in Stata using the stpm224 command and in R

using the flexsurv39 package. Two-step IPD MA, using the

Royston-Parmar model or the Cox model, can be conducted in

Stata using the ipdmetan40 command. A random effects MA

using the Royston-Parmar model could be fitted in the fre-

quentist setting using the Stata command stmixed8 or using

SAS PROC NLMIXED. However, both rely on numerical

integration, which—as discussed in the Introduction—has

some drawbacks.

This paper provides a base for further extensions. Work

is currently ongoing to extend the Royston-Parmar model

to include covariates and treatment-covariate interactions. A

one-stage Bayesian approach to fitting these models has many

benefits as the models increase in complexity. This includes

the ability to handle missing patient level covariates as part of

the modelling. However, estimating treatment-covariate inter-

actions in an NMA needs to be done with care. We need to

decide whether to model the covariate with trial specific or

arm specific coefficients and need to separate out the within

study and across network information, which is at risk of

ecological bias.41

The NMA literature contains many examples when we

wish to synthesize IPD and aggregate data. For example,

Donegan42 showed how to combine IPD and aggregate data

for dichotomous endpoints. Saramago43 showed how to do

this in an FTE NMA model under the assumption that event

times are Weibull distributed. In both cases, covariates can be

included, with patient level values used for IPD trials and trial

mean values used for aggregate data trials; however, PH can

only be assessed in IPD trials. Synthesis of IPD and aggre-

gate data is particularly natural in the Bayesian framework,

where random effects can be naturally included to accom-

modate the inevitable heterogeneity. Therefore, the approach

proposed here provides a flexible method of synthesising IPD

and aggregate data for time-to-event outcomes, which avoids

distributional assumptions.

We fitted our RTE models using an inverse Wishart prior

for the between-study variance-covariance matrix. It has been

highlighted by Wei and Burke that a Wishart prior may

not be the most appropriate choice of prior distribution.44,45

However, in the NMA setting where we have multiple

treatments, there are few alternatives. A Wishart prior can

become influential in the estimation of the between-study

variance-covariance matrix and can lead to the overestimation

of heterogeneity parameters particularly when the true hetero-

geneity is close to zero.44 Conducting NMA in the Bayesian

framework allows for the possibility of including empiri-

cal evidence in the prior distributions, which could result

in a more realistic prior distribution for the between-study

variance-covariance matrix particularly when small numbers

of trials are available.46

Network meta-analysis models play a key role in pol-

icy decisions. Yet they are complex, both in terms of

assumptions and modelling. We have found the following

diagnostics useful:
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1. using the shrinkage estimator to test for PH: the shrink-

age reduces the likelihood of overinterpreting departures

from PH;

2. graphically comparing the NMA spline estimate of the log

cumulative hazard with the Nelson-Aalen nonparametric

estimate;

3. fitting a version of the model with an inconsistency

parameter in each of the network loops, and using the

results to present the direct, indirect, and combined treat-

ment estimates;

4. using the Q statistics to identify heterogeneity. This

may be addressed by including random effects in some

trial comparisons or by conducting sensitivity analysis

in which trials whose treatment effects diverge from the

norm are excluded.

In summary, Bayesian NMA of IPD offers many practi-

cal advantages but is computationally problematic with the

Cox PH model, even with moderate size datasets. We have

shown that the Royston-Parmar model provides a flexible,

computationally practical, way forward which has the poten-

tial to extend to accommodate issues such as non-PH which

are increasingly arising in oncology studies.

ACKNOWLEDGEMENTS
The authors would like to thank the Medical Research Coun-

cil for funding this research. They would also like to thank the

Chemoradiotherapy for Cervical Cancer Meta-analysis Col-

laboration (CCCMAC) and the Neoadjuvant Chemotherapy

for Cervical Cancer Meta-analysis Collaboration (NACCC-

MAC) who brought together the individual participant data

for the meta-analyses used in the case studies, and the groups

that contributed to these meta-analyses for permission to

use data from their trials for this research. The contents of

this publication and the methods used are, however, the sole

responsibility of the authors and do not necessarily represent

the views of the meta-analyses collaborative groups or the

trial groups listed. CCCMAC: Gynecologic Oncology Group,

USA; Yale University School of Medicine; Cross Cancer

Institute and University of Alberta, Canada; Instituto de Radi-

ologa y Centro de Lucha Contra el Cancer, Uruguay; Univer-

sity Medical Center Groningen and University of Groningen,

Netherlands; Institute for Oncology and Radiology of Serbia;

Toronto Sunnybrook Cancer Center, Canada; First Teaching

Hospital, China; Acybadem Oncology and Neurological Sci-

ence Hospital, Turkey; Sanjay Gandhi Postgraduate Institute

of Medical Sciences, India; Chiang Mai University, Thai-

land; University of Yamanashi, Japan. NACCCMAC: MRC

Clinical Trials Unit, UK MRC CECA; Libera Universita

“Campus Bio-Medico” di Roma, Italy; Buenos Aires Univer-

sity, Argentina; Royal Marsden Hospital, UK; Centro Estatal

de Cancerologia, Mexico; Chang Gung Memorial Hospital,

Taiwan; Istituto Nazionale per la Ricerca sul Cancro, Italy;

Institut Bergonie, France; Derbyshire Royal Infirmary, UK;

Tottori University School of Medicine, Japan; All India Insti-

tute of Medical Sciences, India, Hospital Pereira Rossell,

Uruguay; City Hospital Birmingham, UK; Hopital General

de Montreal, Canada; The Norwegian Radium Hospital, Nor-

way; Leicester Royal Infirmary, UK; University of Sydney,

Australia.

SCF received a Doctoral Training Grant (MC_UU_

12023/21) from the UK Medical Research Council.

JRC is part of the London Hub for Trials Method-

ology Research and is supported by the MRC Clinical

Trials Unit Methodology Programme Grant, reference no:

MC_UU_12023/21.

Competing interests
The authors declare that they have no competing interests.

ORCID

Suzanne C. Freeman http://orcid.org/

0000-0001-8045-4405

REFERENCES
[1] Cox DR. Regression models and life-tables (with discus-

sion). Journal of the Royal Statistical Society, Series B.

1972;34:187-220.

[2] Royston P, Parmar MK. Augmenting the logrank test in the

design of clinical trials in which non-proportional hazards of the
treatment effect may be anticipated. BMC Med Res Methodol.
2016;16(1):16.

[3] Trinquart L, Jacot J, Conner SC, Porcher R. Comparison of treat-

ment effects measured by the hazard ratio and by the ratio of
restricted mean survival times in oncology randomized controlled

trials. J Clin Oncol. 2016;34(15):1813-1819.

[4] Stewart LA, Tierney JF. To IPD or not to IPD? Advantages and

disadvantages of systematic reviews using individual patient data.
Evaluation & The Health Professions. 2002;25(1):76-97.

[5] Jansen JP. Network meta-analysis of individual and aggregate level

data. Res Synth Methods. 2012;3(2):177-190.

[6] Simmonds MC, Higgins JPT, Stewart LA, Tierney JF, Clarke MJ,

Thompson SG. Meta-analysis of individual patient data from ran-
domized trials: a review of methods used in practice. Clinical
Trials. 2005;2(3):209-17.

[7] Sobieraj DM, Cappelleri JC, Baker WL, Phung OJ, White CM,

Coleman CI. Methods used to conduct and report Bayesian mixed
treatment comparisons published in the medical literature: a sys-

tematic review. BMJ Open. 2013;3:e003111.

[8] Crowther MJ, Look MP, Riley RD. Multilevel mixed effects para-

metric survival models using adaptive gauss-hermite quadrature
with application to recurrent events and individual participant data

meta-analysis. Stat Med. 2014;33:3844-3858.

[9] Ades AE, Sculpher M, Sutton A, Abrams K, Cooper N,

Welton N, Lu G. Bayesian methods for evidence synthe-
sis in cost-effectiveness analysis. Pharmacoeconomics.

2006;24(1):1-19.

[10] Dominici F, Parmigiani G, Wolpert RL, Hasselblad V.

Meta-analysis of migraine headache treatments: combining
information from heterogeneous designs. J Am Stat Assoc.

1999;94(445):16-28.

http://orcid.org/0000-0001-8045-4405
http://orcid.org/0000-0001-8045-4405
http://orcid.org/0000-0001-8045-4405


14 FREEMAN AND CARPENTER

[11] Lu G, Ades AE. Assessing evidence inconsistency in mixed treat-

ment comparisons. J Am Stat Assoc. 2006;101(474):447-459.

[12] Carpenter JR, Kenward MG. Multiple Imputation and its Applica-
tion. Chichester: Wiley; 2013.

[13] Higgins JPT, Timpson SG, Spiegelhalter DJ. A re-evaluation

of random-effects meta-analysis. J Royal Stat Soci Series A.

2009;172:137-159.

[14] Crowther MJ, Riley RD, Staessen JA, Wang J, Gueyffier F,

Lambert PC. Individual patient data meta-analysis of survival

data using poisson regression models. BMC Med Res Methodol.
2012;12:34.

[15] Royston P, Lambert PC. Flexible Parametric Survival Analysis
Using Stata: Beyond the Cox Model. College Station, Texas, USA:

Stata Press; 2011.

[16] Jansen JP. Network meta-analysis of survival data with fractional

polynomials. BMC Med Res Methodol. 2011;11:61.

[17] Jansen JP, Cope S. Meta-regression models to address hetero-

geneity and inconsistency in network meta-analysis of survival

outcomes. BMC Med Res Methodol. 2012;12:152.

[18] Royston P, Altman DG. Regression using fractional polynomi-

als of continuous covariates: Parsimonious parametric modelling

(with discussion). Appl Stat. 1994;43:429-467.

[19] Ouwens MJNM, Philips Z, Jansen JP. Network meta-analysis

of parametric survival curves. Res Synth Methods.

2010;1(3-4):258-271.

[20] Royston P, Parmar MK. Flexible parametric proportional-hazards

and proportional-odds models for censored survival data, with

application to prognostic modelling and estimation of treatment

effects. Stat Med. 2002;21(15):2175-97.

[21] Lunn DJ, Thomas A, Best N, Spiegelhalter D. Winbugs - a

Bayesian modelling framework: concepts, structure, and extensi-

bility. Stat Comput. 2000;10:325-337.

[22] Chemoradiotherapy for Cervical Cancer Meta-Analysis Collabo-

ration. Reducing uncertainties about the effects of chemoradiother-

apy for cervical cancer: a systematic review and meta-analysis of

individual patient data from 18 randomized trials. J Clin Oncol.
2008;26(35):5802-12.

[23] Neoadjuvant Chemotherapy for Cervical Cancer Meta-analysis

Collaboration. Neoadjuvant chemotherapy for locally advanced

cervical cancer. Eur J Cancer. 2003;39(17):2470-2486.

[24] Lambert PC, Royston P. Further development of flexible paramet-

ric models for survival analysis. The Stata J. 2009;9(2):265-290.

[25] Grambsch PM, Therneau TM. Proportional hazards tests

and diagnostics based on weighted residuals. Biometrika.

1994;81:515-526.

[26] Rutherford MJ, Crowther MJ, Lambert PC. The use of restricted

cubic splines to approximate complex hazard functions in the anal-

ysis of time-to-event data: a simulation study. J Stat Comput Simul.
2015;85(4):777-793.

[27] Thompson J, Palmer T, Moreno S. Bayesian analysis in Stata with

WinBUGS. The Stata J. 2006;6(4):530-549.

[28] StataCorp. Stata Statistical Software: Release 14. College Station,

TX: StataCorp LP; 2015.

[29] Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The
Bugs Book. A Practical Introduction to Bayesian Analysis, Texts

in Statistical Science. Boca Raton, FL, USA: CRC Press; 2013.

[30] Spiegelhalter DJ, Best NG, van der Linde A. Bayesian measures

of model complexity and fit. J R Statist Soc B. 2002;64:583-639.

[31] Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring

inconsistency in meta-analyses. BMJ. 2003;327(557-560):557.

[32] Higgins JPT, Whitehead A. Borrowing strength from

external trials in a meta-analysis. Stat Med. 1996;15:

2733-2749.

[33] Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of

direct and indirect treatment comparisons in meta-analysis of ran-

domised controlled trials. J Clin Epidemiol. 1997;50(6):683-691.

[34] Lumley T. Network meta-analysis for indirect treatment compar-

isons. Stat Med. 2002;21(16):2313-24.

[35] Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consis-

tency in mixed treatment comparison meta-analysis. Stat Med.

2010;29(7-8):932-44.

[36] Sardi J, Giaroli A, Sananes C. et al. Randomized trial with neoadju-

vant chemotherapy in stage IIIB squamous carcinoma cervix uteri:

an unexpected therapeutic management. Int J Gynecol Cancer.

1996;6:85-93.

[37] Royston P, Parmar MKB. The use of restricted mean survival

time to estimate the treatment effect in randomized clinical trial

when the proportional hazards assumption is in doubt. Stat Med.

2011;30:2409-2421.

[38] Wei Y, Royston P, Tierney JF, Parmar MK. Meta-analysis of

time-to-event outcomes from randomized trials using restricted

mean survival time: application to individual participant data. Stat
Med. 2015;34(21):2881-98.

[39] Jackson C. flexsurv: Flexible parametric survival and multi-state

models. https://cran.r-project.org/web/packages/flexsurv/

flexsurv.pdf.. R package version 1.0; 2016.

[40] Fisher DJ. Two-stage individual participant data meta-analysis and

generalized forest plots. The Stata J. 2015;15(2):369-396.

[41] Fisher D, Carpenter JR, Morris TP, Freeman SC, Tierney JF.

Meta-analytical methods to identify who benefits most from

treatments: daft, deluded or deft approach?. British Med J.

2017;356:j573.

[42] Donegan S, Williamson P, D'Alessandro U, Garner P, Smith

CT. Combining individual patient data and aggregate data in

mixed treatment comparison meta-analysis: individual patient

data may be beneficial if only for a subset of trials. Stat Med.

2013;32(6):914-30.

[43] Saramago P, Chaung L, Soares M. Network meta-analysis of (indi-

vidual patient) time to event data alongside (aggregate) count data.

BMC Med Res Methodol. 2014;14:105.

[44] Wei Y, Higgins JP. Bayesian multivariate meta-analysis with mul-

tiple outcomes. Stat Med. 2013;32(17):2911-34.

[45] Burke DL, Bujkiewicz S, Riley RD. Bayesian bivariate

meta-analysis of correlated effects: impact of the prior distribu-

tions on the between-study correlation, borrowing of strength,

and joint inferences. Stat Methods Med Res. 2016. https://doi.org/

10.1177/0962280216631361

[46] Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Pre-

dicting the extent of heterogeneity in meta-analysis, using empir-

ical data from the cochrane database of systematic reviews. Int J
Epidemiol. 2012;41(3):818-27.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the

supporting information tab for this article.

How to cite this article: Freeman SC, Carpenter JR.

Bayesian one-step IPD network meta-analysis of time-

to-event data using Royston-Parmar models. Res Syn
Meth. 2017;1–15. https://doi.org/10.1002/jrsm.1253

https://cran.r-project.org/web/packages/flexsurv/flexsurv.pdf.
https://cran.r-project.org/web/packages/flexsurv/flexsurv.pdf.
https://doi.org/10.1177/0962280216631361
https://doi.org/10.1177/0962280216631361
https://doi.org/10.1002/jrsm.1253
https://doi.org/10.1002/jrsm.1253

