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Abstract. 

Studies designed to determine the effects of mass administration of azithromycin on trachoma have suggested that 

mass azithromycin distributions may also reduce the prevalence of malaria. These studies have typically examined 

the impact of a small number of treatments over short durations. In this prespecified substudy of a cluster-

randomized trial for trachoma, we compared malaria parasitemia prevalence in 24 communities in Niger randomized 

to receive either annual or biannual mass azithromycin distributions over 3 years. The 12 communities randomized 

to annual azithromycin received three treatments during the high-transmission season, and the 12 communities 

randomized to biannual azithromycin received a total of six treatments: three during the high-transmission season 

and three during the low-transmission season. Blood samples were taken to assess malariometric indices among 

children in all study communities at a single time point during the high-transmission season after 3 years of the 

intervention. No significant differences were identified in malaria parasitemia, parasite density, or hemoglobin 

concentration between the annual and biannual treatment arms. When compared with annual mass azithromycin 

alone, additional mass azithromycin distributions given during the low-transmission season did not significantly 

reduce the subsequent prevalence of malaria parasitemia or parasite density after 3 years, as measured during the 

high-transmission season. 

INTRODUCTION 

Azithromycin has been proposed as a potential alternative or adjunctive option for use in the 

prevention and treatment of uncomplicated malaria.
1–6

 Though azithromycin does have 

antimalarial properties, evidence suggests that its activity against malaria is weak and inferior to 

first-line agents as monotherapy, and support for its use in combination with other antimalarial 

drugs remains equivocal.
7,8

 Azithromycin is well tolerated, however, and is considered to have 

minimal risk associated with use in young children and pregnant women.
8–10
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Mass distributions of oral azithromycin are currently used to control ocular strains of 

Chlamydia in trachoma-endemic areas. Studies have also identified potential secondary benefits 

of mass azithromycin given for trachoma among children, including reductions in the prevalence 

of malaria and its sequelae.
11–14

 These prior trachoma studies examined the short-term effects of 

a small number of mass distributions of azithromycin on malaria. Trachoma programs typically 

give multiple rounds of azithromycin over the course of several years, however, and the longer 

term effects of these mass distributions on malaria are unclear. 

A previously published substudy of a large, cluster-randomized trial for trachoma conducted 

in Niger found that malaria parasitemia among children was significantly lower in communities 

that received two mass distributions of azithromycin compared with communities that received 

one distribution.
11,15

 This study suggested that an additional mass distribution during the low-

transmission season contributed to the lower prevalence found after 1 year of treatment.
11

 

Herein, we assess malaria parasitemia among children in Niger after 3 years of treatment in a 

different set of communities randomized to annual or biannual mass distributions of oral 

azithromycin. This time frame enabled us to examine longer term effects of multiple 

distributions of azithromycin on malaria when given during both the low- and high-transmission 

seasons. 

MATERIALS AND METHODS 

Study setting and participants. 

The Partnership for the Rapid Elimination of Trachoma was a group of cluster-randomized 

trials conducted in The Gambia, Niger, and Tanzania (clinicaltrials.gov, NCT00792922).
15

 

Eligibility criteria for study communities have been described in depth previously.
16

 Niger 

communities were eligible for inclusion if the total population was between 250 and 600 people 

at the time of the last government census and the prevalence of active trachoma among children 

under 72 months of age was  10%. In Niger, participants from 48 grappes (smallest government 

health unit, termed “community” in this report) in six Centers de Santé Intégrées (CSIs) in the 

Matameye District of the Zinder region were included in the trial. 

Trial design and randomization. 

A 2  2 factorial design was used to evaluate both varying treatment frequencies and targeted 

treatment coverage levels. Communities were randomized into four arms with 12 communities 

each: 1) annual treatment at standard (80%) coverage, 2) annual treatment at enhanced (90%) 

coverage, 3) biannual treatment at standard (80%) coverage, and 4) biannual treatment at 

enhanced (90%) coverage. In this report, the two enhanced coverage arms comparing annual to 

biannual treatment at a target coverage of 90% are examined (2 and 4 in the preceding list). 

Within each CSI, stratified blocked randomization of communities was performed based on 

clinical trachoma prevalence in children as described previously.
16

 An annual census was 

conducted before each annual treatment in all study communities over 3 years. Participants were 

monitored for trachoma biannually. Malaria assessments were conducted in 24 communities 

from the two enhanced coverage arms after 3 years of treatment. 

The statistical package R (version 2.12; R Foundation for Statistical Computing, Vienna, 

Austria; www.r-project.org) was used to generate the random allocation sequence of clusters 
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(TCP).
16

 Study staff used MS Access (version 2007; Microsoft Corp., Redmond, WA) to 

randomly select individuals for trachoma and malaria assessments. 

Intervention. 

Among the 24 enhanced coverage communities discussed herein, 12 were randomized to 

receive annual mass distribution of oral azithromycin in all persons  6 months of age, and 12 

were randomized to receive biannual mass distribution of oral azithromycin in children 6 months 

to 12 years of age during the 3-year study period. Annual distributions were provided during the 

high-transmission season for malaria in Niger, and the additional biannual distributions were 

provided during the low-transmission season. In both arms, treatment entailed directly observed 

doses of oral azithromycin (20 mg/kg up to a maximum dose of 1 g in adults).
17,18

 Children under 

6 months of age and those allergic to macrolides were given topical tetracycline ointment (1%) 

to be applied to both eyes twice a day for 6 weeks. In the annual treatment arm, pregnant women 

were also offered topical tetracycline. Treatment coverage was determined based on the census 

directly preceding treatment. 

Community residents were advised to alert village health workers within 2 weeks after mass 

treatment if they and/or their children experienced an adverse event, defined as diarrhea, nausea, 

and vomiting for more than 2 days, hospitalization for any cause, or death. Residents were 

referred to the nearest health-care center as needed. 

Clinical and laboratory assessments. 

Blood samples were collected from children in both the annual and biannual treatment arms 

at 36 months after study initiation. The study aimed to collect thick blood smears and 

hemoglobin concentration from 50 children in each study community. Sixty-two children 6–60 

months of age from each community were randomly selected from the most recent census prior 

to field data collection. If a community had fewer than 50 children, blood specimens were taken 

from all children. After obtaining verbal consent from a parent or guardian for each study 

participant, thick blood smears and hemoglobin concentration were collected at a centralized 

exam station in each community according to methods previously described.
11

 

Thick blood smears were collected on glass slides, air-dried, and stored at room temperature. 

Two experienced microscopists at the Zinder Regional Hospital in Niger stained the thick blood 

smears with 3% Giemsa and used a light microscope to determine the presence or absence of 

Plasmodium parasites on the slides. The microscopists were masked to treatment arm. If both 

microscopists observed parasites, then the smear was considered positive. Discordant slides were 

considered negative. To assess parasite density, the microscopists counted the number of asexual 

parasites per 200 white blood cells (assuming white blood cell count = 8,000/L).
19

 The average 

of the two parasite density readings was used in analyses. Gametocytes were considered present 

if observed by either microscopist, given the low prevalence. Hemoglobin concentration was 

determined for all randomly selected children (HemoCue AB, Ängelholm, Sweden). 

Sample size and statistical analysis. 

We estimated that 24 communities (12 communities per arm) would provide greater than 

80% power to detect a 3% absolute difference in malaria parasitemia. The sample size 

calculation assumed a baseline prevalence of 10% and an intraclass correlation coefficient (ICC) 

of 0.075.
20
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The primary analysis accounted for clustering at the level of the randomization unit 

(community) by comparing the community prevalence of malaria parasitemia in the annual and 

biannual treatments at 36 months after study initiation arms using a paired t test. To ensure 

results were not dependent on assumptions, sensitivity analyses were conducted with 

nonparametric tests (Wilcoxon signed rank) at the community level. A mixed-effects logistic 

regression model was used to examine effects at the individual level while clustering for 

community. Secondary outcomes, parasite density, gametocytemia, and hemoglobin 

concentration, were assessed similarly. All analyses were performed as intent-to-treat using Stata 

13 (Statacorp LP, College Station, TX). 

Ethics statement. 

Ethical approval was obtained from the University of California, San Francisco Committee 

for Human Research and the Comité d’Ethique du Niger (the Ethical Committee of Niger). This 

study is registered at clinicaltrials.gov (NCT00792922) and was implemented in accordance with 

the Declaration of Helsinki. Given the high rates of illiteracy in the study area, the institutional 

review boards approved verbal informed consent, both from the local chiefs of each community 

before randomization and each child participant’s parent or guardian before data collection. 

RESULTS 

Participants and treatment coverage. 

From May 2010 to September 2013, 24 communities in the enhanced (90%) coverage arm of 

the main Niger trial were followed. At baseline, the 12 communities randomized to annual mass 

azithromycin had a mean of 138 children (range, 75–222) and the 12 biannually treated 

communities had a mean of 125 children (range, 61–267) 6–60 months of age (Figure 1). As 

shown in Table 1tab1, baseline characteristics of eligible children were comparable between 

treatment arms. 

All communities received three mass antibiotic distributions during the high-transmission 

season (June/July 2010, June/July 2011, and June/July 2012). The 12 communities randomized 

to biannual mass azithromycin were treated an additional three times during the low-transmission 

season (December 2010/January 2011, December 2011/January 2012, and December 

2012/January 2013). Treatment coverage is shown in Table 2tab2. The mean antibiotic coverage 

of children 6–60 months of age was greater than 90% across all treatment periods in both arms. 

All study communities were treated per protocol and no communities were lost to follow-up. No 

serious adverse events were reported during the study period. 

Assessments of malaria parasitemia and hemoglobin levels. 

Children from each study community were randomly selected for this substudy from the 

most recent census in May 2013. Thick blood smears were collected from a total of 1,032 

children in 24 communities (485 in the annual treatment arm; 547 in the biannual treatment arm) 

3 years after enrollment (September 2013, high-transmission season). Hemoglobin concentration 

was collected from 1,033 children (486 in the annual treatment arm; 547 in the biannual 

treatment arm). Specimen collection occurred more than 1 year after the last treatment in the 

annually treated communities and approximately 8 months after the last treatment in the 

biannually treated communities. 
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Grades for the presence or absence of malaria parasites were concordant between the two 

microscopists in 99.4% of samples with an ICC of 0.994 (95% confidence interval [CI] = 0.993–

0.995). Comparing the two assessments of parasite density resulted in an ICC of 0.957 (95% CI 

= 0.951–0.962). Table 3tab3 shows the results for all assessments. At the single time point after 

3 years of mass azithromycin distribution, the community-level prevalence of parasitemia was 

similar in the biannually treated communities and the annually treated communities (mean 

difference = 0.00, 95% CI = 0.15 to 0.15, P = 0.995). A mixed-effects logistic regression model 

with treatment arm as a fixed effect and community as a random effect showed similar results 

(odds ratio = 1.00, 95% CI = 0.58–1.73, P = 0.997). No significant differences were seen in 

community-level parasite density, gametocytemia, or hemoglobin concentration when comparing 

annually treated communities to biannually treated communities. Analyses conducted with 

Wilcoxon signed rank tests and mixed-effects regression models for each of these three 

assessments showed similar results 

DISCUSSION 

In this cluster-randomized trial, we were unable to demonstrate a difference in malaria 

parasitemia, parasite density, or hemoglobin concentration between children who received 

annual or biannual treatment with azithromycin after 3 years of the intervention. A previous 

study in Niger found a significant reduction in malaria parasitemia and parasite density in 

communities with an additional treatment during the low-transmission season compared with 

communities with a single mass treatment after 1 year.
11

 In this study, we assessed the effect of 

mass distributions of azithromycin on malaria in a different set of communities over a longer 

time period during the high-transmission season. 

There are several possible explanations for the discrepancy in results between annual and 

biannual azithromycin after 1 year compared with 3 years. Azithromycin may lose effectiveness 

after multiple mass treatments due to increasing resistance. A previous study suggested that 

azithromcyin–artesunate treatment failure may have resulted from Plasmodium species 

resistance after mass azithromycin for trachoma in the area.
21

 Another study, however, failed to 

identify markers of resistance to azithromycin on a gene suspected to be involved in 

azithromycin resistance in vitro, though this study examined resistance after a single mass 

treatment.
13

 In general, little is known about parasite resistance to macrolides. 

Another explanation for the difference in study results could be that the previous study 

assessed malaria outcomes in the low-transmission season and the present study assessed 

outcomes in the high-transmission season. Single mass treatments with azithromycin have shown 

reductions in malaria prevalence immediately after treatment, but these reductions are not 

maintained over time without additional treatment.
14

 An effect of azithromycin might be 

expected during the low-transmission season when reinfection is uncommon, but the lack of an 

effect during the high-transmission season may be due to the high malaria risk that remains even 

after azithromycin’s protective effects decline. Alternatively, the significant reduction in malaria 

parasitemia seen in the biannual treatment arm after 1 year may have been due to chance. 

This study has several important limitations. First, no baseline assessment of the prevalence 

of malarial parasitemia was conducted, which may have revealed whether parasitemia decreased 

in both arms. Baseline prevalence could have offered a more powerful study design, though 

randomized posttest analysis does permit valid inference,
22

 since treatment assignments are 

stochastically independent of other explanatory covariates.
23

 In addition, the treatment schedule 
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and dosage for the study was designed for trachoma control, not malaria prevention. Seasonal 

malaria chemoprevention has demonstrated efficacy when administered during the high-

transmission season in areas like Niger with seasonal malaria.
24,25

 However, a mathematical 

model of malaria transmission dynamics in Niger demonstrated that mass azithromycin 

distributions during the high-transmission season may not necessarily be the most effective in 

reducing malaria transmission.
26

 Our previous study also provides some evidence that an 

intervention with azithromycin during the low-transmission season may be beneficial.
11

 It may 

be the case that single mass treatments during the low-transmission season provide protection, 

but repeated treatments would be required to reduce malaria risk during the high-transmission 

season. This study also did not include confirmatory antibiotic resistance testing, so it was not 

possible to examine the potential relationship between antibiotic resistance after 3 years of mass 

treatment and malaria parasitemia. Finally, this study only compared the effects of mass 

azithromycin on children receiving either annual or biannual treatment. A comparison of the 

effects of multiple rounds of mass azithromycin to no treatment could provide a more complete 

examination of the impact of mass azithromycin. 

After 3 years of multiple distributions of mass azithromycin, we were unable to show a 

significant reduction in community-level prevalence of malaria parasitemia during the high-

transmission season in communities randomized to biannual versus annual treatment. In this 

setting, additional mass azithromycin distributions during the low-transmission seasons did not 

reduce community-level prevalence of malaria parasitemia or parasite density. Mass 

azithromycin may have a modest impact on malaria prevalence during the low-transmission 

season, but there may be little protection from reinfection after a single treatment during the 

high-transmission season. Additional studies could examine malaria risk over time to better 

compare the impacts of different azithromycin distributions on malaria prevalence during both 

the low- and high-transmission seasons. 
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FIGURE 1. Participant flow in the Partnership for the Rapid Elimination of Trachoma cluster-randomized trial in 

Niger. 

TABLE 1 

Baseline characteristics of children  30 months at time of enrollment in 24 communities randomized to annual or 

biannual mass azithromycin in a cluster-randomized trial in Niger 

Characteristic Mean (95% confidence interval or range) 

Annual azithromycin 

N = 12 communities 

Biannual azithromycin 

N = 12 communities 

No. of children per community 72 (range, 37–119) 66 (range, 36–124) 

Proportion female (%) 52.1% (49.3–54.8) 49.0% (45.1–52.9) 

Age (months) 18.4 (17.3–19.4) 18.7 (17.4–19.9) 

Prevalence of TF*
 

23.4% (14.9–32.0) 17.6% (12.5–22.7) 

Prevalence of TI*
 

7.1% (1.0–13.3) 5.0% (1.9–8.2) 

* Trachomatous inflammation—follicular (TF) and trachomatous inflammation—intense (TI) assessed according to 

the World Health Organization Simplified Grading System. 

TABLE 2 

Average antibiotic treatment coverage in children 6–60 months of age in 24 communities in Niger over 3 years 

Study arm Mean (95% confidence interval) 

0 months 6 months 12 months 18 months 24 months 30 months 36 months 

Annual 

95.5% 

(93.7–

97.0%) 

N/A 

92.2% 

(88.9–

94.5%) 

N/A 

92.0% 

(88.3–

94.2%) 

N/A 

90.6% 

(86.5–

93.5%) 

Biannual 

94.4% 

(92.3–

96.0%) 

92.1% 

(89.2–

94.4%) 

94.0% 

(92.3–

95.5%) 

92.6% 

(87.8–

95.5%) 

90.7% 

(89.0–

92.2%) 

91.0% 

(87.6–

93.5%) 

91.3% 

(88.3–

93.8%) 

TABLE 3 

Results from blood assessments among children 6–60 months of age in 24 communities in Niger randomized to 

annual or biannual mass azithromycin over 3 years* 

Measurement Mean or % (95% confidence interval) P 

value* Annual azithromycin 

N = 12 communities 

Biannual azithromycin 

N = 12 communities 

Malaria parasitemia 54.5% (43.0–66.1%) 54.5% (44.8–64.2%) 0.995 

Parasite density, parasites/µL
2 

7,710 (4,670–10,800) 4,930 (3,320–6,550) 0.11 

Hemoglobin, g/dL 9.4 (9.1–9.6) 9.4 (9.1–9.7) 0.87 

Gametocytemia 0.5% (0–1.3%) 0.7% (0–1.3%) 0.63 

Blood assessments were conducted 36 months after enrollment. 

* Paired t test. 

† Parasite density measures rounded to the nearest ten. 
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