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ABSTRACT

Clustering methods are important tool in data mining. The main challenge of
clustering is to select the suitable method to be used for a given data set and
the estimation of the number of clusters in the data set, especially in case of
the unsupervised data. In this paper, a comparison between two important
partitioning clustering methods namely the K-means and the Partition Around
Medoid (PAM) have been considered and a special index for each has been
used to estimate number of clusters. Also different indices of internal
validation and stability measures have been used to compare these two
methods to evaluate their performance by using these indices.

Internal validation and stability measures have been used to compare between
K-means and PAM for B-cells and T-cells and it has been found that for B-
cells the K-means performs better than PAM by Connectivity, Dunn,
Silhouette, APN, ADM, FOM indexes and PAM perform better than K-
means by AD index. For T-cells, PAM performs better than K-means by
Connectivity index and K-means performs better than PAM by Dunn,
Silhouette, APN, AD, ADM, FOM indices.

Keywords: B-cells, T-cells, K-means, PAM, Calinski, Silhouette,
Connectivity, Dunn, APN, AD, ADM, FOM.
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1. Introduction
K-means and Partition Around Medoid (PAM) and especial indices for each has been
presented, both methods are partitioning methods and they attempt to minimize the
distance between objects inside a cluster and these objects inside the same cluster should
be similar while dissimilar objects are placed in different clusters.
The main objective of the present study is to compare two nonhierarchical clustering
methods, K-means and Partition Around Medoid by using the Calinski index for the
former and Silhouette width for the later and carrying out internal and stability validation
for both. Acute Lymphoblastic Leukemia data with B-cells and T-cells subsets of Ritz
Laboratory (Sabina et al., 2004 [21]) have been considered for implementing the
objective.

2. Material and Methods

Acute Lymphoblastic Leukemia data set taken from Ritz Laboratory (Sabina et al., 2004
[21]) consists of micro arrays from 128 different individuals with acute lymphoblastic
leukemia (ALL). The data available in R data base have already been normalized using
Robust Multichip Average (rma) (R manual documentation, 2012 [20], Irizarry et al.,
2003 [11]).

The two nonhierarchical clustering methods have been implemented using the R
software package with Manhattan distance as the data set comprises both continuous as
well as categorical data.

2.1 Data Set: Acute Lymphoblastic Leukemia (ALL) Data

This data frame contains observations on: (i) Patient IDs, (ii) Date of diagnosis, (iii) Sex
of the patient (sex), (iv) Age of the patient in years (age), (v) type and stage of the
disease: 'B' indicates B-cell ALL while 'T" indicates T-cell ALL (BT), (vi) ‘Remission’: a



factor with two levels, either 'CR' indicates that remission was achieved or 'REF
indicating that the patient was refractory , and remission was not achieved (remission),
(vii) ‘CR’: a vector with the following values: 1: “CR”, remission; achieved; 2: “DEATH
IN CR”, patient died while in remission; 3: “DEATH IN INDUCTION”, patient died
while in induction therapy; 4: “REF”, patient was refractory to therapy (CR), (viii) the
date on which remission was achieved, (ix) a logical vector indicating whether t (4; 11)
translocation was detected (t411), (x) a logical vector indicating whether t (9; 22)
translocation was detected (t922), (xi) a vector indicating the various cytogenetic
abnormalities that were detected (cyton), (xii) the assigned molecular biology of the
cancer (molb), (xiii) Fusion protein for those with BCRVABL which of the fusion
proteins was detected, ‘p190°, 'p190Vp210', 'p210' (fusionp), (xiv) the patient’s response
to multidrug resistance, either 'NEG', or 'POS' (mdr), (xv) 'kinet' ploidy, either diploid or
hyperd (kinet), (xvi) a vector indicating whether the patient had neither continuous
complete remission nor not (ccr), (xvii) a vector indicating whether the patient had
relapse or not (relapse), (xviii) a vector indicating whether the patient receive a bone
marrow transplant or not (transplant), and (xix) follow-up data with 10 possible value 1
to 10 (f.u). The possible values of fu are:

1. “AUBMT V REL”: autologous bone marrow transplant and subsequent relapse,

2. “BMT V CCR”: allogeneic bone marrow transplant and still in continuous complete
remission,

3. “BMT V DEATH IN CR”: after allogeneic bone marrow transplant patient died
without relapsing,

4. “BMT V REL”: after allogeneic bone marrow transplant patient relapsed,

5. “CCR”: patient was in continuous complete remission,

6. “CCR V OFF”: patient was in continuous complete remission but off-protocol for
some reasons,

7. “DEATH IN CR”: died when in complete remission,

8. “MUD V DEATH IN CR”: unrelated allogeneic bone marrow transplant and death
without relapsing,

9. “REL”: relapse, and

10. “REL V SNC”: relapse occurred at central nervous system,

The last variable is (xx) a logical vector indicating whether the cytogenesis was normal
(citog).

The data have been presented in the form of an 'exprSet' object which is suitable for
implementation and comparison in many of clusters algorithms (Kumar and Sharma,
2011 [16]; Jonathan et al., 2010 [13]) because one can extract subsets from this dataset as
Acute Lymphoblastic Leukemia caused by different causes like T.cells, B.cells.



The variable BT gives information about the type (B or T) and stages of the disease (five
stages for each type). So from the ALL data set two distinct subsets with respect to two
covariates namely T cells and B cells have been extracted for independent investigation
using the clustering algorithms.

The values of all the variables in the 95" and the 128" rows of the data set are missing.
As such effectively the ALL dataset comprises observations of 126 individuals, more
over in the present work four variables namely the variables Patient IDs, date of
diagnosis, age of the patient in years and date on which remission was achieved have
been omitted before the analysis as they are not relevant for the present investigation.
Therefore, in the current work, 126 observations (rows) with only 16 out of 20 variables
have been considered for the analysis.

2.2 Distance and indices

Manhattan distance which is a non Euclidean distance between two objects x, and X, "

is the number of observations and computed as: (Kaufman and Rousseeuw, 2005 [15])

dManh(Xi’Xj) :|:Zr:‘xig _ng‘:| (1)

is the preferred distance measure when data set contain both continuous and categorical
data. It is formally known as I, norm.

The cluster validation index of Calinski and Harabasz (1974 [4]) is defined as
[traceB /K —1]
[tracew /N — K]

where B denotes the error sum of squares between different clusters (Inter cluster)

and W is the squared difference of all objects in a cluster from their respective cluster
center (intra cluster), N is the number of clustered point, K is the number of clusters. The
maximal achieved index value indicates the best clustering method for the data (Calinski
and Harabasz, 1974 [4]).

2.3 Internal validation and stability measures for clusters

The internal validation measures reflect the compactness, connectness and separation of
the cluster partitions. It's very important to know that the internal methods of cluster
validation don't provide a definite guide to the number of cluster (pp. 246, Everitt, 2011
[10D).

2.3.1 Internal validation measures

I. Connectivity:

It measures the extent to which observations are placed in the same cluster as their
nearest neighbors in the data and can be computed as:

Let nn,, as the j™ nearest neighbor of observation i.

Ch(K) = for KeN (2)




Let Xinn,, be zero if i and nn,, are in the same cluster and 1/ j otherwise.

For a particular clustering partition C ={C,,---,C,}of the N observations into k disjoint
clusters. Then the connectivity is defined as:

N L
Conn(C) =3 Xim,, ®)
where L is a parameter that determines the number of neighbors that contribute to the
connectivity measures.
Interpretation: Conn(C) has a value between 0 and « and it should be minimized.
I1. Silhouette width:
The silhouette value measures the degree of confidence in the clustering assignment of a
particular observation. It is defined as:

(i) =4 @)
max(b;, &)
where a, is the average distance between i and all other observations in the same cluster
and it can be defined as:
1 NP
% =) LS D).
b, is the average distance between i and the observations in the nearest neighboring

cluster and it can be defined as:

b= min X dist(t. J)

cy ec\c(i) jec, M(Ck)

C(i) is the cluster containing i, dist(i, j) is the distance between observations i, j. In the
current investigation the suitable distance is the Manhattan distance n(C) which is the
cardinality of cluster C. and our data set contain both continuous and categorical data.
Interpretation: Silhouette width lies in the interval [-1, 1] and should be maximized.
The average of S(i) for all objects i in a cluster, which is called the average silhouette
width of that cluster.
The average of S(i) for i=12,---,n is called the average silhouette width for the entire
data set, and can be used for the selection of the “best” value of k, by choosing that k for
which silhouette width is highest.
Silhouette Coefficient (SC) is defined as the maximum Silhouette width for entire
dataset. The values of (SC) lie between 0 and 1 and are usually interpreted as follows:
» (0.7 - 1.0) A strong structure has been found.
» (0.5-0.7) A reasonable structure has been found.



» (0.26 — 0.5) The structure is weak and could be artificial and there is a need to try
other additional methods of clustering to such datasets.

» (< 0.25) No substantial structure has been found.

(See Kaufman and Rousseeuw, 2005 [15]; Kumar and Sharma, 2009 [16]; Swami and
Jain, 2006 [24]; Anja et al., 1997 [1] for details)

I11. Dunn index:

The Dunn index is the ratio of the smallest distance between observations not in the same
cluster to the largest intra cluster distance and is given by

min [ min diS(i.j)j
D(C): CK,CLEC,CKicL - IECK,jECL ’ (5)
max diam(C,)
CpeC

where diam(C,,) is the maximum distance between observations in cluster C .
Interpretation: The Dunn index has a value between 0 and o« it should be maximized.
The above three indices have been implemented in R using the function clvalid of
clvalid library.
2.3.2 Stability measures
For a data set having M observations (rows) per variable and N variables (columns)
stability measures implemented in the clValid library compares the clustering outputs
based on the full data with the clustering based on the data with one column removed one
at a time (Datta and Datta, 2003 [7]; Yeung et al. 2001 [25]). It has been shown that these
measures provide good results if the data are highly correlated. The four measures of
stability available in clValid library are the average proportion of non-overlap (APN), the
average distance (AD), the average distance between means (ADM), and the figure of
merit (FOM).
I. Average proportion of non overlap (APN)
The APN is defined as:

APN (C):ii ) [1—Lmocoj , (6)

MN =3 n(C")

where:
M : Number of observations (rows) per variable.
N : Number of Variables (columns)
C'"': Cluster containing observation i where the clustering is based on the dataset with
column | removed.
C'"?: Cluster containing observation i using the original clustering based on full data
Interpretation: The values of the APN lies in the interval [0, 1], with values close to zero
corresponding with highly consistent clustering results.



Il. Average distance (AD)
The AD is defined as:

ADEC) = _;.Z nC’ °)n(<:' ')L%ﬁff(i’ j)}

Interpretation: AD has a value between 0 too. The smaller values are preferred.
I11. Average Distance between Means (ADM)

The ADM is defined as:

ADM (C) ——NZZdls(xC 1 Xio) (8)

i=1 i=l

(7)

where x_,, is the mean of the observations in the cluster that contains all columns, and
X is the mean of the observations in the cluster that contains the data with removed

column.

Interpretation: ADM like the AD has a value between 0 to. The smaller values are
preferred.

IVV.Figure of Merit (FOM)

The FOM is defines as:

FOM(I,C):\/(—Z > dis(x,,, X(1)) (9)

k=1 icC, (1)

Ith _

Where x;, is the value of the i observation in the 1" column. Xc (1)is the average of the

cluster C,(I).

Interpretation: FOM takes value between 0 too. The smaller values are preferred.

2.4. K-means and Partition around Medoid (PAM) algorithm

K-means is a popular algorithm because it is used for large scale clustering projects and
it accesses the original data. The algorithm seeks to minimize Error Sum of Squares
(ESS) and the procedure stops when no further reassignment reduces ESS.

K-means algorithm:

[. Inputl ={x,i=12,---,n}, K= number of clusters.

I1. Do one of the following :

e Start with initial random assignment of the items into K clusters and for cluster m
compute its current centroid as: x,,m=12,---,K.

e Pre-specify the squared K cluster centroid as x,,m=12,---,K

I1l. Compute the squared Euclidean distance of each item to its current cluster centroid
as:

ESS =3 (% — %) (% — %) (10)

m=1c(i)=m



Where X is the m™ cluster centroid and c(i) is the cluster containing X; .

IV. Reassign each item to its nearest cluster centroid so that ESS is reduced

to magnitude. After each assignment update the clusters centroid.
V. Repeat steps 3 and 4 until no further reassignment of items takes place.
Remark 1. K-means algorithm is probably the most widely applied nonhierarchical
clustering technigques (Kaufman and Rousseeuw, 2005 [15]; Brito et al., 2007 [3]). It can
be implemented easily using an update equation for the centroid coordinates, if object iis
moved from cluster vto cluster w, the new centroid are given by:

Xy (V/) = 1 (N, X; (V) = X ) (11)
n,—1
and X (w') = L (N, X¢ (W) = X ) (12)
n, -1
where:

e v/ andw’ represent the new clusters
e X (v),X, (w')are the centroid of cluster v,w respectively.

e n,n, are numbers of objects in clusters v,w respectively.

As the centroid is the point which minimizes the sum of squares of distances, the total
sum of squares will decrease by an even larger quantity. (See pp.424, lzenman, 2008
[12]; Dean and Richaed, 2002 [8]; Kumar and Sharma, 2011 [16]; Qin, 1999 [19] for
details). One of the main limitations of K-means algorithm is the effect of outliers on the
results.

Partition around Medoid (PAM) is a modified form of K-means and a more robust than
K-means, PAM depends on the sum of distances between the medoid* and the other
cluster members. This sum should be the minimum (clValid library R, R manual
documentation, 2012 [20]). The main advantages of this method the lies in its
computation - and findings which are truly representative of the observations within a
given cluster. (Cluster analysis [6])

* Clusters are typically represented by centrotypes which are objects in the cluster having
maximum within average similarity (or minimum dissimilarity). Medoid is one such centrotypes

which is characterized by having minimum absolute distance among other members of that
cluster.

Algorithm of partitioning-around-Medoids clustering (pp.426, Izenman, 2008 [12])
1. Input: Proximity matrix D = (d;;) ; K=number of clusters.

2. From an initial assignment of the items into K clusters.
3. Locate the medoid for each cluster.
4a. For K medoids clustering:



e For the m™ cluster reassign the i " to its nearest cluster medoid then the objective
function is:

K
ESS,.q =Y, > _dii, is reduced in magnitude, where c(i) is the cluster containing the ith

m=1c(i)=m
item.
e Repeat step 3 and reassignment step until no further reassignment of items takes
place.

4b. For partition around medoids clustering:
e For each cluster, swap the medoid with the non-medoid item gives the largest
reduction inESS _, .

Repeat swapping process over all clusters until no reduction in ESS

2.5. Data imputation (Kurt, 2012 [17])

Generally the nonhierarchical clustering algorithms are not recommended in the presence
of missing values. In the ALL dataset which consists of numerical as well as categorical
observations there are missing values. As such it is logical to impute the missing values
in this dataset. In the present work Expectation Maximization (EM) algorithm for
unrestricted model (Shafer J.L., 1997 [22]; Little and Rubin, 1987 [18]) available in the
mix library in R has been used for data imputation in the ALL dataset.

3. Previous studies

Siddheswar and Huri (1999 [23]) overcome the disadvantage of the K-mean algorithm
which determines the number of clusters, k, by developing a simple validity measure
based on the intra cluster and inter cluster distance measures that allows the estimation
number of clusters automatically minimizing validity measures . Kanungo et al.(2002
[14]) conducted a study to compare the efficiency of K-means algorithm with Balanced
Iterative Reducing and Clustering using Hierarchies (BIRCH) clustering scheme on real
and synthetic data from actual applications in image processing, and found that the
efficiency of K-means is better than BIRCH algorithm. Chris and He (2004 [5])
conducted a study to test the effect of dimension reduction on K-means clustering by
using principal component analysis to reduce the data from the original 1000 dimension
to 40, 20, 10, 6 and 5 dimensions respectively on 4029 of Gene expression of 96 tissue
samples on human Lymphoma. They have applied K-means on 10 random samples of
each new groups combination [40, 20, 10, 6 and 5 dimensions]. They found that the
results systematically and significantly improved. Swami and Jain (2006 [24]) conducted
a study to evaluate the accuracy of PAM clustering considering a diabetes dataset
containing 786 records with 8 attribute and 2 classes. They implemented the method of
PAM on their data and compared the results with other methods of classification which

takes place.

med



are popular for classifying diabetics data like C4.5, CBA, CHAR and found that the
accuracy of their method is near to the other popular classification methods for diabetics.
Boomijia (2008 [2]) conducted a study to compare K-means with K-Medoids algorithms
using experimental runs with hundred random data points and found that k-Medoids
method is more robust than K-means in the presence of noise and outliers and k-Medoids
algorithm performs effectively for small datasets. Devi et al. (2009 [9]) conducted a study
to evaluate K-means and Partition Around Medoids algorithm by grid environment using
design of experiments and found that K-means algorithm overcomes the problem of
clustering larger datasets and also it clusters the data faster than Partition Around
Medoid. Kumar and Sharma (2009 [16]) implemented the K-means and PAM algorithm
using a sample of Leukemia patients datasets with complexity and a high dimensionality
of gene and performed a comparative study of the two algorithms and observed that K-
means algorithm is better than PAM when less number of genes is considered for the
study. But as the number of genes is increased the average accuracy of PAM clustering
improves over K-mean clustering.

4. Results and interpretations
4.1 K-means clustering for B-cells and T-cells
Table 1 K-means results summary for B-cells and T-cells

For B-cells For T-cells
# Total within Calinski Total within Calinski
clusters (ESS) index (ESS) index

2 1452.746 47.3798 416.5442 18.40256

3 1145.591 41.9145 358.3031 12.69729

4 888.5717 44.3072 225.9753 18.4244

5 864.1490 34.4187 192.7396 16.78645
Max 47.3798 18.4244
index




4.2 Partition Around Medoids (PAM) for B-cells and T-cells



Here PAM has been implemented for k =2 to k = 5.
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Table 2 Average Silhouette width for B-cells and T-cells

For B-cells

For T-cells

# clusters 2




| Average Silhouette width | 0.28 | 0.28 | 0.28 | 029 | 0.37 [ 031 | 0.34 | 0.27 |
Table 3 Optimal internal and stability results of K-means and
PAM clustering for B-cells and T-cells

B-cells T-cells
Score Method Score Method
Connectivity | 22.3202 K-means (2) | 9.7500 PAM (2)
Dunn 00.2119 K-means (5) [ 0.2967 K-means (5)
Silhouette 00.3044 K-means (4) |0.3703 K-means (3)
APN 00.0372 K-means (4) [ 0.0134 K-means (2)
AD 09.0340 PAM (5) |6.8256 K-means (5)
ADM 00.3642 K-means (2) | 0.2016 K-means (2)
FOM 00.8503 K-means (5) | 0.7185 K-means (5)

The bold values between brackets is the optimal number of clusters
Internal validation and stability measures results after reduced dimension

We have also implemented clustering on variables to reduce dimension of the data sets
which resulted in the reduction of dimension from 16 variables (BT, sex, remiss, CR,
t411, 1922, cyton, citog,molb, fusionp, mdr, kinet, ccr, relapse, transp, f.u.) to only 8
variables (BT,remiss, CR,t922, cyton, citog, molb, fusionp).

The results of the internal validation and stability measures of the data after dimension
reduction for both data subset are presented in table (4)

Table 4 Optimal internal and stability results of K-means and
PAM clustering for B-cells and T-cells with dimension reduction

B-cells T-cells
Score Method Score | Method
Connectivity | 4.9619 [ K-means (2) 7.3702 | K-means (2)
Dunn 0.1295 | K-means (3) 0.3343 | K-means (2)
Silhouette 0.4115 | K-means (2) 0.4570 | K-means (2)
APN 0.0575 | K-means (2) 0.0467 | K-means (2)
AD 49102 |PAM  (5) 35676 | PAM  (5)
ADM 0.4670 | K-means (2) 0.2503 | K-means (2)
FOM 1.0225 [ PAM (5) 0.8802 | PAM (5)

The bold values between brackets is the optimal number of clusters
5. Concluding Remarks and Recommendations
K-means and Partition Around Medoids (PAM) are both partitioning method and attempt
to minimize the distance between objects inside cluster,
The estimated number of clusters using K-means with Calinski index (Calinski and
Harabasz 1974[4]) for B-cells data has been found to be 2, while for T-cells it is 4 (see
table 1).



Using the average Silhouette width for PAM, the estimated number of clusters for B-cells
has been found to be 5, while for T-cells it is 2 as in table 2. But here it should be kept in
mind that the cluster structures by PAM for B-cells and T-cells are artificial, because
average Silhouette width is less than 0.5 (Kaufman and Rousseeuw 2005 [15]).

Internal validation and stability measures have been used to compare between K-means
and PAM for B-cells and T-cells and the findings have been exhibited in table 3 and it
has been found that for B-cells the K-means performs better than PAM by Connectivity,
Dunn, Silhouette, APN, ADM, FOM indexes and PAM perform better than K-means by
AD index. For T-cells, PAM performs better than K-means by Connectivity index and K-
means performs better than PAM by Dunn, Silhouette, APN, AD, ADM, FOM indices.
From table (3) and table (4) we can conclude that there is some modifications respected
to internal stability (Connectivity, Dunn and Silhouette) for T-cells and (Connectivity and
Silhouette) for B-cells also there is some modifications in stability measures respected to
AD measures for both B-cells and T-ells.

Therefore the main recommendations from the current investigation are:

I. Internal and stability validation should be used to select the appropriate method for a
given data set in clustering analysis.

I1. Suitable index should be used for the appropriate method (s)
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