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Abstract

Interatomic Coulombic Decay (ICD) is a general mechanism in which an excited atom can trans-

fer its excess energy to a neighbor which is thus ionized. ICD belongs to the family of Feshbach

resonance processes and, as such, states undergoing ICD are characterized by their energy width.

In this work we investigate the computations of ICD widths using the R-Matrix method as imple-

mented in the UKRmol package. Helium dimer is used here as a benchmark system. The results

are compared with those obtained with the well established Fano-ADC (Algebraic Diagrammatic

Construction) method. It is shown that the R-Matrix method in its present implementation pro-

vides accurate total and partial widths if the kinetic energy of the ICD electron is lower than 10

eV. Advantages and limitations of the R-Matrix method on the computations of ICD widths are

discussed.

∗ Nicolas.Sisourat@upmc.fr
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I. INTRODUCTION

Interatomic (Intermolecular) Coulombic Decay (ICD) is an efficient non-radiative elec-

tronic relaxation mechanism for excited atoms and molecules embedded in a chemical en-

vironment [1–3]. Via ICD, the excited system transfers its excess energy to a neighboring

atom or molecule which is thus ionized. ICD has been investigated theoretically and exper-

imentally in rare-gas clusters, hydrogen-bonded systems and in liquid phase (see [4–6] for

recent reviews).

Depending on the system, ICD takes place on the femtosecond to picosecond timescales

and it is generally the dominant decay pathway unless local Auger decay is operative. While

this general characteristic of ICD is well established [7], computing accurately the lifetime

of the excited species, or turning from time to energy domain, the energy width of the cor-

responding state, remains challenging. Several methods have been implemented to compute

ab initio ICD widths of ionized and/or excited atoms and molecules in small clusters. Semi-

quantitative estimates at the lowest order of perturbation theory can be obtained using the

Wigner-Weisskopf method [8]. More accurate approaches currently used can be classified

into two groups. The first one relies on the Fano-Feshbach description of a resonant state

as a ”discrete state in a continuum” [9, 10], encompassing namely Fano-CI (Configuration

Interaction) [11] and Fano-ADC (Algebraic Diagrammatic Construction) [12–14] methods.

The second group comprises techniques combining Complex Absorbing Potential (CAP) and

tools from excited-state quantum-chemistry, such as CI [15], ADC [16] or Coupled Cluster

methods [17]. Besides these ab initio methods, it should be mentioned that analytical for-

mulas for ICD widths, which are valid when the atoms and molecules are sufficiently far

apart, have been derived [18, 19].

In many systems, several ICD channels are open leading to different final states. In

order to have a complete description of ICD processes, the partial widths (corresponding to

different channels) are needed. A common feature of all the aforementioned methods is the

use of square-integrable (L2) basis sets. The lack of true continuum wave functions, however,

hinders proper characterization of the decay channels as they are only defined asymptotically

with respect to the outgoing electron. Approximate schemes have been developed to compute

partial widths using the Fano-Feshbach approaches while methods relying on CAP provide

only total ICD widths. Accurate computations of partial widths are therefore needed to test
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the approximate schemes of the former methods.

R-Matrix methods [20–22] correspond to another class of theoretical approaches to com-

pute resonance energy widths. These methods have been successfuly employed for studying

resonances in electron-atom and electron-molecule collisions. Furthermore, in contrast to

the Fano-Feshbach and CAP approaches the different decay channels are well defined in

R-Matrix methods. The latter are therefore better suited for the computations of partial

widths.

In this work, we use the R-Matrix method as implemented in the UKRmol package [23]

to compute the total and partial ICD widths in helium dimer. ICD in helium dimer has been

theoretically and experimentally investigated [24–29]. In helium dimer, ICD is triggered by

simultaneous ionization and excitation of one helium atom within the dimer. The excited

ion transfers its excess energy to the other helium atom which is ionized. In this study, we

focus on ICD after ionization and excitation into the 2p orbitals of He+:

He− He + hν → He+(2p)− He + eph → He+(1s) + He+(1s) + eICD + eph

where eph and eICD are the so-called photoelectron and ICD electron, respectively.

The computational costs of the R-Matrix method increase substantially with the number

of channels and the energy of the ICD electron. It should be noted that in the case of helium

dimer there are only two channels for each resonance, corresponding to singlet and triplet

He+(1s) + He+(1s) final states. Furthermore, the ICD electron has kinetic energy below 20

eV. Helium dimer is therefore a good candidate system for applying the R-Matrix method.

The outline of the article is the following: in section II, we briefly describe the R-Matrix

method employed to compute the total and partial ICD widths and we provide the computa-

tional details. In section III, the total and partial ICD widths computed with the R-Matrix

method are compared to the data obtained with the Fano-ADC approach. The article ends

with the conclusions of this work. Atomic units are used throughout the article, unless

stated otherwise.

II. METHODS AND COMPUTATIONAL DETAILS

Since R-Matrix methods have been recently reviewed in [21] and details of the UKRmol

package are reported in [23], here we only summarize the method and the implementation
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used in this work.

In the R-Matrix method, the configuration space is partitioned into an inner and an

outer region separated by a sphere of radius a centered at the center of mass of the system.

The inner-region contains the multielectron description of the so-called (N -electron) target

states and of a free scattered electron. All N + 1 electrons are considered explicitly in this

region. In the outer-region only the single scattered electron is treated and the interaction

of this particle with the target is described in terms of a multipole expansion. The R-matrix

links the two regions. In the case of ICD, the target states included in the calculations are

the final states of the ICD process. In helium dimer, they correspond to singlet and triplet

He+(1s) + He+(1s) states. The scattered particle considered in the outer-region is the ICD

electron.

The first step of the calculations is to obtain the eigenvalues and eigenvectors of (H −L)

where H is the electronic Hamiltonian and L the Bloch operator [22, 30]. For a system

having N + 1 electrons, the eigenfunctions are written as

Ψk(x1,x2, ...,xN+1) = A
∑
ij

αijkφi(x1,x2, ...,xN)uij(xN+1) +
∑
i

βikχi(x1,x2, ...,xN+1)

(1)

where the operator A ensures that the wavefunctions are antisymmetric with respect to

interchange of two electrons, φi(x1,x2, ...,xN) are the target states, uij are the continuum-

like orbitals which describe the scattered electron within the inner region and χi are the

so called L2 configurations. The latter account for the correlation between the N target

electrons, and the scattered one and are crucial for the description of Feshbach resonances.

The spatial and spin coordinates of electron i are denoted as xi. The coefficients αijk and βik

and the associated eigenvalues Ek are obtained by diagonalizing (H−L) in the corresponding

basis sets.

The energy dependent R-matrix at the boundary a between the inner and outer region

is obtained from these eigenvalues and eigenvectors in the following way

Rij(E, a) =
1

2a

∑
k

wik(a)wjk(a)

Ek − E
(2)

where E is the energy of the scattered particle and the sum runs over all eigenstates defined

in Eq. 1. The boundary amplitudes wik for channel i are defined by

wik(a) =
∑
j

αijkuij(a). (3)
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Note that spin integration has been performed in Eq. 3 and thus the boundary amplitudes

depend only on the spatial coordinates of the scattered particle.

The R-matrix is then propagated from distance a to a larger distance from the center

of mass of the molecule where it is matched with asymptotic solutions of known form.

From this, the K-matrices which contain all informations on the scattering process are

obtained [20, 21]. The total resonance width may be obtained in several ways [21]. Here

we use the program RESON [31] which fits the eigenphase sums δ(E) with a Breit-Wigner

profile. The eigenphase sum is obtained by

δ(E) =
∑
i

arctan(ki) (4)

where ki are the eigenvalues of the corresponding K-matrix. A Breit-Wigner profile is defined

as

δ(E) = δ0(E) + arctan
Γ

2(Er − E)
(5)

where Er and Γ are the resonance energy position and width, respectively. The background

contribution δ0(E) is usually a smooth function of the energy. The partial widths are

obtained using the program TIMEDEL [32] which uses the S-matrices built from the K-

matrices to calculate the time-delay matrix [33].

In the case of ICD, the target states correspond to the ICD final states while the decaying

states are described by the L2 configurations. The CI expansions used to describe the target

states as well as the L2 configurations included in the calculations are detailed hereafter.

The configurations included in the description of the target states and in the scattering

calculations are denoted relative to a reference electronic configuration which is here the

Hartree-Fock determinant for neutral He2: |Φ0〉 = |σgσ̄gσuσ̄u|. In the following, we compare

the results of two different schemes:

• in the first scheme, the target states are obtained by diagonalizing the Hamiltonian

matrix constructed in the basis of all spin-adapted 2 hole (2h) configurations (e.g.

cσgcσ̄g |Φ0〉 where ci denotes the annihilation operator). Similarly, the L2 configurations

comprise all possible spin-adapted 2 hole - 1 particle (2h1p) configurations (where 1p

is the virtual orbital occupied by the excited electron). Such a level of description is

equivalent to the ADC scheme used in the Fano-ADC calculations [26].
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• in the second scheme higher-order configurations are employed: spin-adapted 2h and

3h1p configurations are used to describe the target states whereas the scattering states

are described with 2h1p and 3h2p configurations. This scheme is employed to investi-

gate the convergence of the ICD widths with respect to the CI expansions.

We used Restricted Hartree Fock (RHF) molecular orbitals for neutral He2 optimized

with the MOLPRO package [34, 35]. In order to check the convergence with respect to the

Gaussian type orbital basis sets, we performed the calculations with the aug-cc-pv5z and

the aug-cc-pv6z basis sets [36]. All virtual orbitals were included in the active space. The

same continuum-like orbitals uij were used in both schemes: 151 continuum-like orbitals

centered in between the two helium atoms. The continuum-like orbitals are described as

linear combinations of Gaussian functions (11s 10p 10d 8f 6g) and are chosen to be orthogonal

to the RHF molecular orbitals. The Gaussian functions were optimized for a = 6.88 Å [37].

For the outer region calculations, the R-matrix is propagated from a = 6.88 Å to 42 Å

which is sufficient for obtaining converged K-matrices (i.e. the same results are obtained with

propagation to larger distances). The maximum multipole to be retained in the expansion

of the long range potential is set to 2. The ukrmol-in-1.0 and ukrmol-out-0.0 release versions

of the UKRmol package were used.

III. RESULTS

A. Total ICD widths

There are four states corresponding to He+(2p)−He, denoted 2Σ+
g , 2Σ+

u , 2Πg and 2Πu. As

shown below, the widths for each of these states depend strongly on the interatomic distance

(R). We first discuss the results for R = 2 Å which is around the equilibrium distance

of the ionized-excited helium dimer [26]. Furthermore, we compare the results obtained

with the Fano-ADC and the R-Matrix (using scheme 1) methods. Effects of higher-order

configurations (scheme 2) are discussed in section III.C.

The eigenphase sums (Eq. 4) obtained with the aug-cc-pv5z and aug-cc-pv6z basis sets

for the Πg symmetry are shown in Fig. 1. For both basis sets, the eigenphase sums clearly

exhibit two Breit-Wigner profiles indicating the presence of resonances. Only one of these

resonances corresponds to a state prepared by ionizing and exciting one helium atom within
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the dimer. The He+(2p) − He Πg state as well as the ICD final states are expected to

be well described within the two basis sets and the resonance position should not vary

substantially. The resonance located around 7 eV is thus attributed to the He+(2p) − He

Πg state. The other resonance has an energy width which is too large to correspond to ICD

and, furthermore, its position changes significantly with the basis set. This resonance is

related to the scattering of an incoming electron on two singly-charged helium ions and is

not relevant for the present study.

The eigenphase sums around the relevant resonance are shown in the inset of Fig. 1 for

the aug-cc-pv5z basis set. A fit with Eq. 5 for which δ0(E) is taken as a linear function of

E gives the resonance position at 7.25 eV and an energy width of 8 meV.
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Figure 1. Eigenphase sums for Πg symmetry obtained with the aug-cc-pv5z and aug-cc-pv6z basis

sets (scheme 1) at R = 2 Å. The energy E is given with respect to the energy of the lowest target

state. The eigenphase sums exhibit two Breit-Wigner profiles indicating resonances. The resonance

located at 7.25 eV corresponds to ICD from the He+(2p)−He state. The inset shows the eigenphase

sums (black square) around the relevant resonance for the aug-cc-pv5z basis set. The full blue line

in the inset shows the fit with Eq. 5 for which δ0(E) is taken as a linear function of E.

The same procedure is applied to the three other states (2Σ+
g , 2Σ+

u , 2Πu). The total
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Γ (meV)

2Σ+
g

2Σ+
u

2Πg
2Πu

Fano-ADC [26] 24 16 9 24

Scheme 1 (aug-cc-pv5z) 23 12 8 24

Scheme 1 (aug-cc-pv6z) 25 12 8 23

Table I. Total widths (in meV) of He+(2p)−He states for R = 2 Å. Scheme 1 corresponds to 2h and

2h1p configurations for the target states and L2 configurations, respectively (2h1p configurations

are used in the Fano-ADC calculations).

widths for the two basis sets are summarized and compared to the Fano-ADC calculations

(see [26]) in Table I. The comparison shows that the results are converged with respect to

the Gaussian basis sets. Furthermore, the results from the Fano-ADC calculations agree

with the first scheme used in the R-Matrix calculations: the widths from R-Matrix differ by

less than 25% compared to the Fano-ADC results. It should be noted that the R-Matrix

calculations with the first scheme and the Fano-ADC calculations include both only 2h1p

configurations for describing the scattering states. This comparison shows that at a similar

level of the CI expansion the Fano-ADC and the R-Matrix methods provide comparable

total widths.

In order to compare further the Fano-ADC and the R-Matrix approaches, we have com-

puted the total ICD widths for several interatomic distances. For the R-Matrix calculations

we have used the aug-cc-pv5z basis set. The total ICD widths for all He+(2p)−He states are

shown in Fig. 2. There is a quantitative agreement between the two approaches for inter-

atomic distances below 4 Å, particularly for the Πg and Πu states. However, above R = 4 Å

the widths calculated using R-Matrix decrease faster compared to the Fano-ADC results.

The slightly worse agreement between the two approaches for the Σ states is probably due

to the presence of energetically nearly degenerate states of the same symmetry correspond-

ing to the initial excitation into the 2s orbital, because the mixing between the 2p-like and

2s-like Σ resonances is not described exactly equivalently in the two methods.

At large interatomic distances, the ICD process can be described as two separate dipole

transitions, where the initially excited species relaxes by emitting a virtual photon, which

is then absorbed by the neighbor and the neighbor is ionized. Within this virtual photon
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Figure 2. Total ICD widths (in meV) of He+(2p) − He states as functions of the interatomic

distance. The scheme 1 and the aug-cc-pv5z basis set were used for the R-Matrix calculations.

Asymptotically, the ICD widths are expected to decrease like 1/R6 which is shown by the dashed

blue line.
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distance obtained with the Fano-ADC method. Results with the same basis set as in the R-Matrix

calculations (red dashed line) are compared to that obtained with a converged basis set (CB, black

line) at all distances.

approximation, the ICD widths are expected to decrease like 1/R6 [18, 19] which is well

reproduced only by the Fano-ADC calculations. The failure of the R-Matrix method to

reproduce the long-range behavior of the decay widths is to be attributed to the insufficient

number of continuum-like orbitals included in the inner-region calculations. The kinetic

energy of the ICD electron increases at large distances which cannot be described accurately

with the present set of continuum-like orbitals. To show this, we have computed the ICD

widths with the Fano-ADC method but with the same basis set as in the R-Matrix calcu-

lations. The results for the Πu state are compared with those obtained with a much larger

Gaussian basis set (see [26] for details) in Fig. 3. The ICD widths obtained with the two

basis sets are nearly equal below 4 Å and start to differ above this distance. Same trends

are observed for the three other states. This comparison allows to determine an upper limit

to the kinetic energy of the ICD electron that can be considered with the UKRmol imple-

mentation of the method. The limit is about 10 eV, corresponding to the resonance position

relative to the target states at R = 3.5 Å.
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2Σ+
g

2Σ+
u

2Πg
2Πu

Fano-ADC [26] 0.34/0.66 0.40/0.60 0.33/0.67 0.61/0.39

Scheme 1 (aug-cc-pv5z) 0.38/0.62 0.45/0.55 0.28/0.72 0.58/0.42

Scheme 1 (aug-cc-pv6z) 0.39/0.61 0.47/0.53 0.28/0.72 0.59/0.41

Table II. Singlet/Triplet branching ratios of the He+(2p)− He states at interatomic distance R =

2 Å. The R-Matrix ratios are obtained using the program TIMEDEL [32].

B. Partial ICD widths

A more thorough comparison between the Fano-ADC and the R-Matrix approaches is

provided by the partial widths. The branching ratios for the singlet and triplet He+(1s) +

He+(1s) final states are shown in Table II at R = 2 Å. The results confirm that the partial

widths obtained with the R-Matrix method are converged with respect to the basis set.

Furthermore, there is a quantitative agreement with the branching ratios computed using

the Fano-ADC method. These results indicate that the approximate scheme used in the

Fano-ADC method is reliable at this level of description (see [12] and [26] for more details

on the computations of partial widths with the Fano-ADC method).

We now discuss the singlet/triplet branching ratios in the interatomic distance range

for which the R-Matrix calculations are valid (R ≤ 3.5Å). The singlet branching ratios as

functions of the interatomic distances are shown in Fig. 4. For the R-Matrix calculations, the

aug-cc-pv5z basis set was used. For 2Σ+
u , 2Πg and 2Πu states, both methods predict similar

trends: at short interatomic distances the singlet final state corresponds to the stronger

or even dominant decay channel. It should be mentioned that this is generally the case

for Auger decay in molecules [38, 39]. On the contrary, at large interatomic distances the

triplet final state is more populated after ICD than the singlet one, as expected in the

virtual photon approximation [18, 19]. For the 2Σ+
g state, the R-Matrix method predicts

an increase in the singlet branching ratio for interatomic distances around 2.5-3 Å while the

branching ratios computed with the Fano-ADC method are nearly constant. There is no

obvious explanation for such a disagreement and no conclusions on whether one or the other

method provide more accurate partial decay widths for the 2Σ+
g state can be drawn here.
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Γ (meV)

R (Å) 2Σ+
g

2Σ+
u

2Πg
2Πu

1.5 36 (44) 136 (165) 82 (86) 84 (120)

2 17 (23) 28 (12) 5 (8) 18 (24)

Table III. Total ICD widths (in meV) of the He+(2p) − He states obtained with the R-Matrix

method and scheme 2. For comparison the total ICD widths obtained with scheme 1 are reported

in parentheses. For both schemes, the aug-cc-pv5z basis set was used.

R (Å) 2Σ+
g

2Σ+
u

2Πg
2Πu

1.5 0.95 (0.55) 0.65 (0.88) 0.81 (0.77) 0.74 (0.55)

2 0.58 (0.38) 0.14 (0.45) 0.43 (0.28) 0.82 (0.58)

Table IV. Singlet branching ratios of the He+(2p)−He states obtained with R-Matrix method and

scheme 2. For comparison the results obtained with scheme 1 are reported in parentheses. For

both schemes, the aug-cc-pv5z basis set was used.

C. Higher-order configurations

In contrast to the Fano-ADC method, including higher-order configurations is straigth-

forward in R-Matrix calculations. However, when these configurations are added to the

description of the target and scattering states (scheme 2) the resonance energy position

(at all interatomic distances) is shifted by about +2.5 eV compared to that obtained with

scheme 1. This blue shift limits the interatomic distance range that can be investigated with

the set of continuum-like orbitals employed here. In scheme 2, the ICD electron energy is

higher than 10 eV already for distances above 2 Å. Therefore, the total ICD widths and the

branching ratios are shown only for the shortest distances in Tables III and IV, respectively.

The comparison between scheme 1 and 2 in Table III shows that the widths obtained

differ significantly when higher-order configurations are included. Except for the 2Σ+
u state

at R = 2 Å the widths obtained with scheme 2 are smaller. The effects of higher-order

configurations are also seen in the partial ICD widths. As seen in Table IV, while the

predicted dominant decay channel is the same for both schemes, the branching ratios differ

quantitatively, showing a rather strong effect of the higher-order configurations.

It should be mentioned that the corrections due to these configurations go beyond a
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simple shift of the resonance energy position. To illustrate this, we artificially applied an

energy shift to the resonance position in the Fano-ADC calculations which results in minor

changes in total and partial ICD widths: the total ICD widths change by less than 12% and

the branching ratio are nearly unaffected for all states.

We recall that in scheme 1, 2h and 2h1p configurations are used in the description of the

target and scattering states, respectively. In scheme 2, the target and scattering states are

described with 2h-3h1p and 2h1p-3h2p configurations, respectively. It should be mentioned

that if 3h1p configurations are used in the description of the target states without adding

3h2p configurations in the scattering states (or vice versa) no Breit-Wigner profiles are seen

in the eigenphase sums. This is probably due to a strong unbalanced description of the

target and the scattering states, as discussed in [21].

IV. CONCLUSIONS

In conclusion, we have employed the R-Matrix method as implemented in the UKRmol

package to compute the total and partial ICD widths of the He+(2p) − He states. The

results were compared to the well-established Fano-ADC approach. Using the same class

of configurations, both approaches provide similar widths. However, the R-Matrix method

allows to include straigthforwardly higher-order configurations. We have demonstrated that

the latter have rather strong effect on both total and partial widths. Finally, we have shown

that the R-Matrix method in its present implementation is significantly limited concerning

the kinetic energy of the ICD electron. In particular, the continuum-like basis set used

in the present work is insufficient if the kinetic energy of the ICD electron exceeds 10 eV.

However, a new implementation of the method, the UKRmol+ suite, enables the accurate

description of the continuum for significantly higher energies [40] (either by the inclusion of

B-splines or the use of quadruple precision in the integral calculation) and should overcome

this limitation.

The R-Matrix method has some advantages compared to the Fano-ADC approach: first

the R-Matrix method relies on the use of true continuum states while the Fano-ADC ap-

proach uses L2 states and must employ Stieltjes imaging procedure to extract continuum

quantities. Second, the R-Matrix approach provides a rigorous framework to compute the

partial widths while only approximate schemes have been derived for Fano-ADC. Third,
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as shown in the present study, higher-order configurations can be included while keeping

a balanced description between resonance and target states. Finally, the UKRmol package

has been used to compute the angular distribution of photoelectrons [41]. The R-Matrix

method could therefore provide the angular distribution of the ICD electron.
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