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Abstract 

 
Soluble oligomers of the amyloid-b (Ab) protein play a key role in the pathogenesis 

of Alzheimer’s disease (AD), although the underlying molecular mechanisms are 

poorly understood. In order to search for proteins involved in the formation and/or 

toxicity of Ab oligomers, a transgenic C. elegans model of AD was used in which 

inducible expression of Ab oligomers results in a complete paralysis; in these 

worms a genetic screen following chemical mutagenesis was applied to discover 

the genes involved in the Ab-dependent paralysis (forward genetics). This analysis 

allowed identification of a mutated clone showing a complete lack of paralysis, 

despite this it not bear mutations in the Ab coding region, and accumulates Ab 

transcript and protein levels comparable to that of the non-mutated strain. This is 

the first in vivo model in which the expression of Ab oligomers do not result in any 

toxic effect. The genome of the mutated worm was then sequenced and compared 

with that of the control strain to search for altered genes. Two genes, with no 

known function, were found to bear a stop codon mutation, likely resulting in the 

translation of an inactive protein. The rest of the mutations were missense 

mutations. Among them, point mutations were observed in some genes previously 

correlated with nematode lifespan and ageing. In C. elegans these biological 

processes are coordinated by the insulin/IGF-1-like signalling (IIS) pathway, which 

also regulates the response of the organism to toxic aggregated proteins. Thus, 

the activation of the IIS pathway was investigated in control and mutated worms. 

As expected, Ab expression induced the up-regulation of two genes coding for 

small heat shock proteins (a class of chaperons known to be involved in AD) in the 
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control strain, whereas these genes were actually down-regulated in the mutated 

strain. Since heat shock proteins are known to bind Ab oligomers, these 

chaperons could directly mediate the formation of toxic amyloid species. 

Moreover, the results of the whole genome sequencing indicate that several 

proteins could act as potential novel mediators of Ab toxicity and could open up 

new insights for research on age-related, neurodegenerative diseases.  
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1. Neurodegenerative diseases and protein misfolding 

 

Proteins, which are synthetized by the genetic information encoded in the DNA, 

are involved in every biological process. The folding of proteins in complex and 

various three-dimensional structures has enabled living systems to develop 

tremendous diversity and selectivity in their chemical processes that lead to 

biological activity. Moreover, the precise folding of proteins is important for several 

biological processes, including molecular trafficking or cell growth and 

differentiation1. In addition, only functional proteins are stable in a crowded 

environment like that of a cell and are able to interact selectively with their targets. 

As a consequence, proteins which do not fold properly can give origin to severe 

pathological conditions, such as sickle cell anemia2. In this disease, a single point 

mutation in the β-globulin chain of haemoglobin (glutamic acid to valin) changes 

the protein conformation, exposing hydrophobic patches that lead to protein 

polymerization in individuals homozygous for the mutation3,4. This reduces the 

elasticity of red blood cells, causing extreme pain, extensive tissue destruction and 

anemia5. 

 

Under physiological conditions, proteins fold in structures that are the most 

thermodynamically stable6. However, the number of possible conformations of any 

polypeptide chain can adopt is so large7 (> 1030   for a protein 100 amino acids 

long), so that the folding process is inherently error-prone. This process mainly 

relies on the contact between residues that can be very distant in the amino acid 
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sequence8. Native-like interactions are generally more stable and persistent that 

non-native-ones, thus the polypeptide chain can adopt the lowest-energy structure  

by a process of trial and error. In this contest, hydrophobic interactions are 

particularly important in driving non polar amino acids into the core of the folding 

structure of soluble proteins, limiting the conformational  space that must be 

searched during folding9. However, the free-energy surface (also called 

“landscape”) toward the most thermodynamically stable structure is not plain, 

which means that the polypeptide chains need to cross several kinetic energy 

barriers and occupy various folding intermediates to reach the native conformation 

(Fig. 1.1).  

 

Misfolded or incompletely folded proteins generally expose to the solvent 

hydrophobic structures that are buried in the native state, increasing the possibility 

to aggregate or inappropriately interact with other molecules10.  Although most 

aggregates are amorphous, some proteins aggregate to form so-called amyloid 

fibrils (Fig. 1.1). Fibril formation is often preceded by the accumulation of 

oligomeric aggregates, which are thought to play a key role in several diseases.  
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Figure 1.1 A schematic energy landscape for protein folding. During folding, proteins adopt various 

conformations in search of the most thermodynamically stable structure. Folding intermediates and 

partially folded states occupy low energy wells and are prone to aggregate in different forms 

(amorphous, oligomeric and fibrillar). Molecular chaperones can prevent these aberrant molecular 

assemblies by providing folding assistance (taken from ref. 16) 

 

To prevent aberrant molecular interactions, living systems have evolved different 

strategies11,12. One of them involves the role of molecular chaperones that are 

present in all cell types and compartments. A molecular chaperone is a protein 

that interacts with, stabilizes, or helps another protein to acquire its functionally 

active conformation, without being present in its final structure13-16. Some 

chaperones interact with nascent polypeptide chains as they emerge from the 

ribosome (co-translational folding)17, while others are involved in the assistance of 

later stages of protein folding11,12. Some classes of chaperons accelerate slow  

downhill routes, towards the native structure (Fig. 1). Chain collapse 
and the progressive increase in the number of native interactions 
rapidly restrict the conformational space that needs to be searched en 
route to the native state. However, the free-energy surface that must be 
navigated is often rugged, which means that the molecules must cross 
substantial kinetic barriers during folding. As a consequence, partially 
folded states may become transiently populated as kinetically trapped 
species. Such folding intermediates are the rule for proteins larger than 
100 amino acids (~90% of all proteins in a cell), which have a strong 
tendency to undergo rapid hydrophobic collapse into compact globular 
conformations2. The collapse may lead either to disorganized globules 
lacking specific contacts and retaining large configurational entropy 
or to intermediates that may be stabilized by non-native interactions 
(misfolded states). In the former case, the search for crucial native 
contacts within the globule will limit folding speed, whereas in the 
latter, the breakage of non-native contacts may be rate-limiting1 
(Fig. 1). The propensity of proteins to populate globular intermediates 
with a high degree of flexibility may increase with larger, topologically 
more complex domain folds that are stabilized by many long-range 
interactions (such as α/β domain architectures). Such proteins are often 
highly chaperone dependent14. 

Partially folded or misfolded states are problematic because they tend 
to aggregate in a concentration-dependent manner (Fig. 1). This is due 
to the fact that these forms typically expose hydrophobic amino-acid 
residues and regions of unstructured polypeptide backbone to the solvent 
— features that become buried in the native state15. Like intramolecular 
folding, aggregation is largely driven by hydrophobic forces and primarily 
results in amorphous structures (Fig. 1). Alternatively, fibrillar aggregates 
called amyloid may form, defined by β-strands that run perpendicular 
to the long fibril axis (cross-β structure). Although many proteins can 
adopt these highly ordered, thermodynamically stable structures under 
conditions in vitro16, the formation of these aggregates in vivo is strongly 
restricted by the chaperone machinery, suggesting that they may become 
more widespread under stress or when protein quality control fails. 
Importantly, the formation of fibrillar aggregates is often accompanied by 
the formation of soluble oligomeric states, which are thought to have key 
roles in diseases of aberrant folding16 (Fig. 1). The toxicity of these less 
ordered and rather heterogeneous forms has been suggested to correlate 
with the exposure of sticky, hydrophobic surfaces and accessible peptide-
backbone structure that is not yet integrated into a stable cross-β core17. 
The soluble oligomers must undergo considerable rearrangement to 
form fibrils, the thermodynamic end state of the aggregation process, 
and may thus be comparable to the kinetically trapped intermediates in 
folding (Fig. 1). Notably, some common structural epitopes have been 
detected on the prefibrillar oligomers of different polypeptides18, but 
how these features are linked with toxicity is not yet understood. Such 
information is urgently needed to develop treatments for the numerous 
pathological states associated with protein aggregation. 

Major chaperone classes 
We define a molecular chaperone as any protein that interacts with, 
stabilizes or helps another protein to acquire its functionally active 
conformation, without being present in its final structure7,19. Several 
different classes of structurally unrelated chaperones exist in cells, 
forming cooperative pathways and networks. Members of these protein 
families are often known as stress proteins or heat-shock proteins 
(HSPs), as they are upregulated under conditions of stress in which the 
concentrations of aggregation-prone folding intermediates increase. 
Chaperones are usually classified according to their molecular weight 
(HSP40, HSP60, HSP70, HSP90, HSP100 and the small HSPs). They are 
involved in a multitude of proteome-maintenance functions, including 
de novo folding, refolding of stress-denatured proteins, oligomeric 
assembly, protein trafficking and assistance in proteolytic degradation. 
The chaperones that participate broadly in de novo protein folding and 
refolding, such as the HSP70s, HSP90s and the chaperonins (HSP60s), 
are multicomponent molecular machines that promote folding through 

ATP- and cofactor-regulated binding and release cycles. They typically 
recognize hydrophobic amino-acid side chains exposed by non-native 
proteins and may functionally cooperate with ATP-independent 
chaperones, such as the small HSPs, which function as ‘holdases’, 
buffering aggregation. 

In the ATP-dependent mechanism of chaperone action, de novo 
folding and protein refolding is promoted through kinetic partitioning 
(Fig. 2). Chaperone binding (or rebinding) to hydrophobic regions of 
a non-native protein transiently blocks aggregation; ATP-triggered 
release allows folding to proceed. Importantly, although the HSP70s 
and the chaperonins both operate by this basic mechanism, they 
differ fundamentally in that the former (like all other ATP-dependent 
chaperones) release the substrate protein for folding into bulk solution, 
whereas the cylindrical chaperonins allow the folding of single protein 
molecules enclosed in a cage. The two systems act sequentially, 
whereby HSP70 interacts upstream with nascent and newly synthesized 
polypeptides and the chaperonins function downstream in the final 
folding of those proteins that fail to reach native state by cycling on 
HSP70 alone20,21 (Figs 2 and 3). In the following sections, we will 
use the HSP70, chaperonin and HSP90 models to illustrate the basic 
mechanisms of the major cytosolic protein-folding machines. Client-
specific chaperones that function downstream of folding in mediating 
the assembly of oligomeric complexes are not discussed (see, for 
example, refs 22 and 23).

The HSP70 system
The constitutively expressed (HSC70, also known as HSPA8) and 
stress-inducible forms of HSP70 are central players in protein folding 
and proteostasis control. Increasing HSP70 levels has also proven 
effective in preventing toxic protein aggregation in disease models24. 

Unfolded

En
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Intramolecular contacts Intermolecular contacts 
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Figure 1 | Competing reactions of protein folding and aggregation. Scheme 
of the funnel-shaped free-energy surface that proteins explore as they move 
towards the native state (green) by forming intramolecular contacts (modified 
from refs 19 and 95). The ruggedness of the free-energy landscape results in 
the accumulation of kinetically trapped conformations that need to traverse 
free-energy barriers to reach a favourable downhill path. In vivo, these 
steps may be accelerated by chaperones39,41,42. When several molecules fold 
simultaneously in the same compartment, the free-energy surface of folding 
may overlap with that of intermolecular aggregation, resulting in the formation 
of amorphous aggregates, toxic oligomers or ordered amyloid fibrils (red). 
Fibrillar aggregation typically occurs by nucleation-dependent polymerization. 
It may initiate from intermediates populated during de novo folding or after 
destabilization of the native state (partially folded states) and is normally 
prevented by molecular chaperones.
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steps in the folding process, e.g. peptidylprolyl isomerase increases the rate of cis-

trans isomerization of peptide bonds involving proline residues, while disulphide 

isomerase increases the rate of formation of disulphide bonds18. However, in 

general, molecular chaperones act in protein folding by increasing the efficiency of 

the overall process and by reducing the probability of competing mechanisms, for 

example aggregation (Fig. 1.1).  

 

Several lines of evidence suggest that molecular chaperones play an important 

role in preventing misfolding. It is also known that some molecular chaperones not 

only are able to protect proteins during their folding, but also to rescue misfolded 

and aggregated proteins (Fig. 1.1). These protective mechanisms in the folding 

process require energy, and ATP is mandatory for most of the known molecular 

chaperones to function properly. 

 

Different stress factors, including high temperatures or oxidizing agents, induce 

the expression of various molecular chaperones by inducing specific 

transcriptional programs, which cooperate with protein synthesis and degradation 

to maintain proteome integrity. This complex machinery is generally called the 

proteostasis network (PN), and comprises about 1400 components in mammalian 

cells19-21. The main components of the PN are the cytosolic stress response22, and 

the unfolded protein response (UPR) pathways of the endoplasmic reticulum 

(ER)23.  ER is the destination of many newly synthetized proteins that have to be 

secreted from the cell. The ER contains a wide variety of molecular chaperones, 

and in addition, the proteins must satisfy a “quality-control” check, before their 

secretion through the Golgi apparatus24 (Fig. 1.2). This control-quality system is 
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characterized by a series  of glycosylation and deglycosylation reactions that allow 

correctly folded proteins to be distinguished from misfolded ones24. 

 

 

 

 

Figure 1.2 Regulation of protein folding in the Endoplasmic Reticulum (ER) (taken from ref. 2) 

 

Misfolded proteins are targeted to degradation, which is performed mainly by the 

ubiquitin-proteasome system (UPS, Fig. 1.2)25,26. Clearance of aggregated 

proteins by the UPS system requires disaggregation prior to degradation, which is 

operated by the Hsp70 system (Fig. 1.3). Protein aggregates that resist 

degradation may be cleared by selective autophagy and lysosomal degradation26. 
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Figure 1.3 The proteostasis network (taken from ref. 16). 

 

As outlined above, all biological processes, including protein turnover, trafficking 

and cellular localization require a correct protein folding. Improper degradation of 

misfolded proteins can thus contribute to the development of more severe 

diseases. The most known example is provided by the disease cystic fibrosis, 

which is caused by mutations in cystic fibrosis transmembrane conductance 

regulator (CFTR), a plasma membrane chloride channel. The most common 

causative mutation in cystic fibrosis is deletion of a phenylalanine residue at 

position 508 (ΔF508) in CFTR. This mutation causes the protein to be misfolded 

and targeted for degradation27.  

Because many proteins that localize to specific organelles must fold correctly in  

order to be trafficked properly, mutations that destabilize the correct fold can lead 

to wrong subcellular localization. This can result in dysfunction via both loss of 

ribosome66,67. This process avoids non-native interdomain contacts, 
thus smoothing the folding-energy landscape for large proteins66,68. 
Sequential domain folding during translation, which is highly efficient 
on eukaryotic ribosomes, probably promoted the explosive evolution 
of complex multidomain proteins in eukaryotes66,68. Co-translational 
folding is thought to be aided by the slower elongation speed of 
eukaryotic ribosomes (~4 amino acids s−1 in eukaryotes versus 
~20 amino acids s−1 in bacteria) and as a result of various adaptations 
of the folding machinery. For example, eukaryotic ribosomes bind 
specialized HSP70 chaperone complexes (Fig. 5) and the binding and 
release of the canonical HSC70 from nascent chains may be coordinated 
with translation speed so as to support domain-wise folding. The 
eukaryotic chaperonin TRiC is recruited to nascent chains by HSC70 
(ref. 69) and other upstream factors, such as prefoldin31, allowing 
co-translational folding. Moreover, fine-tuning of co-translational 
folding may be achieved by translational pausing at rare codons70. 
Overall, the eukaryotic translation and chaperone machinery has been 
highly optimized through evolution, ensuring efficient folding for the 
bulk of newly synthesized proteins71.

The chaperone pathways operating in the endoplasmic reticulum 
(ER) follow analogous organizational principles, but specialized 
machinery is used in disulphide-bond formation and the glycosylation 
of many secretory proteins72. 

Proteome maintenance and the proteostasis network
Although it is generally accepted that the chaperone machinery is 
required for initial protein folding, we are only beginning to appreciate 
the extent to which many proteins depend on macromolecular assistance 
throughout their cellular lifetime to maintain or regain their functionally 
active conformations. Compared with prokaryotes, the proteomes 
of eukaryotic cells are highly complex, comprising a much greater 
number and diversity of multidomain proteins. In the dynamic cellular 
environment, these proteins constantly face numerous challenges to 
their folded states; these result from post-translational modifications 
(phosphorylation and acetylation), changes in cell physiology and 
alterations in the composition and concentration of small-molecule 
ligands that may influence protein stability4. Moreover, 20−30% of all 
proteins in mammalian cells are intrinsically unstructured3; that is, they 
may adopt defined three-dimensional conformations only after binding 
to other macromolecules or membrane surfaces. Such proteins probably 
require assistance to avoid aberrant interactions and aggregation, 

particularly when their concentration is increased and they are not in 
complexes with partner molecules73. 

These considerations help to explain why cells must invest in an 
extensive network of factors, comprising ~800 proteins in human cells 
(~200 chaperones and co-chaperones and ~600 UPS and autophagy 
components), which cooperate to maintain the conformational 
integrity of the proteome and provide adaptation to changes in the 
environment. This proteostasis network integrates general and 
specialized chaperone components for proper protein folding and 
trafficking with the machinery for disaggregation and proteolytic 
degradation of irreversibly misfolded proteins (the UPS and the 
autophagy system) (Fig. 6). The remarkable complexity of the system 
arises from the expansion, in multicellular organisms, of the diversity 
of regulatory components for the major chaperone systems (HSP70 
and HSP90)26 and of factors functionally coupling these chaperones 
with the UPS and the autophagy system27,74,75. For example, various 
HSP70 cofactors, such as the BCL2-associated athanogene (BAG) 
family proteins and certain HSP40s, contain ubiquitin-like or 
ubiquitin-interacting domains74. The HSP70 and HSP90 cofactor 
known as carboxyl terminus of Hsp70-interacting protein (CHIP) has 
E3 ubiquitin ligase activity and channels certain mutant or damaged 
proteins towards proteasomal degradation74. Notably, CHIP is only one 
of several hundred different E3 ligases, which reflects the enormous 
importance of proteolytic pathways for proteostasis and cell regulation. 
Interestingly, whereas the clearance of misfolded protein species by the 
UPS requires that these molecules are maintained in a non-aggregated 
state by chaperones, disposal by autophagy is thought to involve active 
mechanisms to force such molecules into larger, presumably less 
toxic, aggregates76,77. These inclusions are often deposited at specific 
subcellular sites close to the microtubule-organizing centre, referred 
to as the aggresome78.

The proteostasis network is regulated by several interconnected 
signalling pathways, some of which are stress responsive and ensure 
that cellular protein folding and/or degradation is adapted to avoid the 
accumulation of misfolded and aggregation-prone species (Fig. 6). These 
pathways include the cytosolic stress response and the unfolded protein 
response of the ER and mitochondria, as well as signalling pathways that 
control ribosome biogenesis and translational capacity (Box 1). How the 
inputs from these different branches are coordinated and fine-tuned is 
only partly understood, but proteostasis capacity and responsiveness to 
stress may vary considerably in different cell types79.
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Figure 6 | Protein fates in the 
proteostasis network. The proteostasis 
network integrates chaperone pathways 
for the folding of newly synthesized 
proteins, for the remodelling of 
misfolded states and for disaggregation 
with the protein degradation mediated 
by the UPS and the autophagy 
system. Approximately 180 different 
chaperone components and their 
regulators orchestrate these processes 
in mammalian cells, whereas the UPS 
comprises ~600 and the autophagy 
system ~30 different components. 
The primary effort of the chaperone 
system is in preventing aggregation, 
but machinery for the disaggregation of 
aggregated proteins has been described 
in bacteria and fungi, involving 
oligomeric AAA+-proteins such as 
HSP104 and the E. coli molecular 
chaperone protein ClpB, which 
cooperate with HSP70 chaperones25. 
A similar activity has been detected 
in metazoans, but the components 
involved have not yet been defined83.
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function of the protein at its appropriate location as well as gain-of-function toxicity 

if it accumulates in an incorrect location. One example of this dual toxicity is  

provided by α1-antitrypsin, a secreted protease inhibitor that, when mutated, leads 

to emphysema in a recessive loss-of-function manner and liver damage in a 

dominant gain-of-function manner28. Mutant forms of this protein fail to complete 

proper folding and are retained in the ER. The misfolded protein is not degraded, 

unlike other misfolded proteins, so it accumulates in the ER of hepatocytes – the 

site of synthesis – resulting in liver damage29,30. Furthermore, because the 

mutated α1-antitrypsin is not secreted, it is unable to perform its normal cellular 

function, which is to inhibit the action of proteases, including neutrophil elastase, in 

the lung. This, in turn, causes extensive damage to the lung’s connective tissue. 

In other pathologies, however, proteins with a high propensity to misfold escape all 

the protective mechanisms cited above and may form either intracellular or 

extracellular aggregates termed amyloids. 

 

Many neurodegenerative disorders can be classified as “protein misfolding” 

diseases. This heterogeneous group of diseases includes Alzheimer’s disease 

(AD), Parkinson’s disease (PD), Huntington’s disease (HD), transmissible 

spongiform encephalopathies (TSEs; also known as ‘prion diseases’) and 

amyotrophic lateral sclerosis (ALS) (Table 1.1). Despite the differences in clinical 

symptoms and disease progression, all these disorders are characterized by the 

accumulation of amyloid aggregates in the brains of affected patients31. 
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Table 1.1 List of the main human neurodegenerative diseases and their pathological and 

biochemical features (adapted from ref. 31). 
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1.1 Protein aggregation and amyloid formation 

 

Amyloid diseases are characterized by the aggregation of a specific protein. 

Although the features of the soluble forms of the proteins associated to these 

diseases are very different (Table 1.2) – they can range from globular proteins to 

unstructured peptides – their aggregated forms show common characteristics32 

(Fig. 1.4). This suggests that the main interactions within the fibril are made 

through the common protein backbone and not by the individual amino acid side 

chain residues33.  

 

 

Table 1.2 Human diseases associated with formation of extracellular amyloid deposits or 

intracellular inclusions with amyloid-like characteristics (adapted from ref. 39). 

 

 

Disease Aggregating protein or peptide

Neurodegenerative diseases

Alzheimer’s disease (AD)
Prion diseases (TSEs)

Parkinson’s disease (PD)
Dementia with Lewy bodies
Frontotemporal dementia

Amyotrophic lateral sclerosis (ALS)
Huntington’s disease (HD)

Spinocerebellar ataxias
Spinal and bulbar muscular atrophy

Amyloid β peptide
Prion protein
α-Synuclein
α-Synuclein

Tau
Superoxide dismutase 1

Huntingtin with polyQexpansion
Ataxins with polyQ expansion

Androgen receptor with polyQ expansion

Nonneuropathic systemic amyloidoses

AL amyloidosis
AA amyloidosis

Senile systemic amyloidosis
Familial amyloidotic polyneuropathy
Hemodialysis-related amyloidosis

ApoAI amyloidosis

Immunoglobulin light chains
Fragments of serum amyloid A protein

Wild-type transthyretin
Mutants of transthyretin

β2-microglobulin
N-terminal fragments of apolipoproteinAI
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Figure 1.4 Extracellular and intracellular aggregates found in neurodegenerative diseases (adapted 

from ref. 31). 

 

Additional evidence for the intrinsic nature of amyloid formation came from the 

observation that polythreonine and polylysine sequences could form amyloid fibrils 

in vitro33. Electron microscopy analysis showed that amyloid fibrils are long, 

unbranched and often twisted structures with a diameter of 7-13 nanometers. X-

ray diffraction patterns of fibrils display a characteristic “cross-b” configuration, 

indicating that the core structure is composed of b-strands oriented perpendicular 

to the fibril axis32. This specific structural organization is recognized by the dyes 

Congo Red and thioflavin T. When bound to fibrils, these compounds display 

green birefringence and enhanced fluorescence, respectively34. Apart from these 

common features, heterogeneity in fibril structures also occurs. Variation can exist 

at the level of amino acid side-chains as in the loops connecting intramolecular b-

sheets. This variation can also be observed between fibrils of the same protein 
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that, under given conditions, adopt a different internal organization due to 

thermodynamic or kinetic determinants35. Several genetic and environmental 

factors have been associated with protein misfolding and aggregation. The 

mechanism by which mutations lead to conformational change and disease is 

probably destabilization of the normal proteinconformation, promoting misfolding 

and subsequent aggregation. Environmental factors that might favour this process 

include change in metal ions, pathological chaperone proteins, pH or oxidative 

stress, macromolecular crowding and increases in the concentration of unfolded 

and partially folded proteins36,37. Many of these alterations have been associated 

with aging, consistent with the late onset of neurodegenerative diseases38. 

The unfolded and partially folded states initially form disordered aggregates that 

can further assemble to form amyloid fibrils39. In vitro experiments indicate that 

their formation is generally characterized by a lag phase, followed by a period of 

rapid growth40,41. The critical event is the formation of protein oligomers that acts 

as a nucleus to direct further growth of aggregates. The lag phase can be 

suppressed by the addition of preformed aggregates to fresh solution, a process 

called seeding42,43. An alternative model of aggregation is the “template-assistance 

model”44-46. In this model, the native soluble form of a protein interacts with the 

misfolded form. As a consequence of this interaction, the native form alters its 

conformation; this new homodimer may then dissociate allowing the interaction of 

each misfolded polypeptides with other native proteins, thus propagating the 

misfolding reaction. 

There are striking similarities in the aggregation process of different peptides and 

proteins (Fig. 1.5)40,41. At least two intermediates have been identified in the 

pathway from the native monomeric protein to the fibrillar structure. The first are 
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soluble, low-molecular weight oligomers, and their structural and biochemical 

characterization has been so far challenging because they are transient and very 

unstable molecular assemblies. The second intermediates are short, flexible, rod-

like structures defined as protofibrils47,48. Protofibrils are unbranched polymers that 

are 3-6 nanometer in diameter and up to 100 nanometers long. In vitro, they are 

found in equilibrium with oligomers and are the direct precursor of amyloid fibrils48. 

The evidence suggests that these intermediates, along with the monomeric protein 

and the fibrils, are present simultaneously and in a dynamic equilibrium37. 

 

	  

Figure 1.5 Mechanism of amyloid formation. A protein loses its monomeric native state by 

conversion into an oligomer which can grow further into amyloidogenic fibrils and ultimately into 

insoluble amyloid aggregates (taken from ref. 31) 
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the exposure of hydrophobic segments to the solvent2,3.
This unstable intermediate is stabilized by intermolecu-
lar interactions with other molecules, forming small 
β-SHEET OLIGOMERS which, with further growth, produce
amyloid-like fibrils (FIG. 2). In this model, the conversion
of the folded protein into the pathological form is trig-
gered by structural changes, but complete misfolding
depends on oligomerization.

Studies using different solution conditions and pro-
tein sequence modifications have been useful for
understanding the structural requirements of confor-
mational changes that result in aggregation. Amyloid
formation by the Alzheimer’s Aβ protein is the most
extensively studied45. Peptides containing the 40- or
42-residue forms of Aβ, and shorter derivatives, form
amyloid-like fibrils in vitro, which are morphologically,
tinctorially, immunologically, spectroscopically 
and ultrastructurally similar to fibrillar aggregates
extracted from AD amyloid plaques46–49. Studies using
shorter Aβ fragments or mutated peptides have shown
that the internal hydrophobic region between amino
acids 17 and 21 is the most important for the early
steps of Aβmisfolding and aggregation, indicating that
Aβ assembly is partially driven by hydrophobic inter-
actions47,49,50. This idea is consistent with the higher
ability of Aβ peptides to aggregate with two or three
extra hydrophobic amino acids at the carboxyl termi-
nus48. Similar studies of PrP misfolding have identified
the hydrophobic fragment 106–126 as the most rele-
vant for protein aggregation51. Although less is known
about the process of α-synuclein fibrillogenesis, the
evidence indicates that the amino-terminal fragment
1–87 might be crucial43. This fragment contains the
hydrophobic non-amyloid component peptide that was
previously identified as a component of AD amyloid-
like plaques by Saitoh and co-workers and was shown
to be amyloidogenic52.

The finding that hydrophobic sequences are critical
for aggregation of Aβ, PrP and α-synuclein indicates
that protein aggregation is driven by the exposure of
hydrophobic residues to the surface of the misfolded
protein. However, huntingtin and other polyglutamine-
containing proteins seem to differ. In HD, SCA and
other polyglutamine diseases, both disease and protein
aggregation are associated with an inherited expansion of
CAG (the codon for glutamine) repeats53. Aggregation
of huntingtin in vitro depends on the length of the
polyglutamine repeat54. The glutamine has an amide
group that provides a polar side chain and the poten-
tial to form a hydrogen bond with water. An alternative
model to explain the aggregation of polyglutamine-
containing proteins is based on ‘polar zipper’inter-
actions between proteins55. In this model,β-sheets are
formed and stabilized by the collective strength of
cooperative hydrogen bonding involving the amide
group of the glutamine residue. The aggregation of the
yeast prions seems to follow the same principle56.
Therefore, similar fibrillar products can arise from two
different (and, in some respects, opposite) driving
forces: hydrophobic interactions or polar hydrogen
bonding among side-chain groups.

aggregated proteins have been difficult. But recent
studies using X-ray fibre diffraction and solid-state
nuclear magnetic resonance have confirmed the 
β-sheet-rich structure of protein aggregates impli-
cated in neurodegenerative diseases38,43. An exception
appears to be the structure of tau aggregates, which is
composed mainly of α-helices, as shown by studies
using circular dichroism and fourier-transformed
infrared spectroscopy44.

These studies have resulted in a molecular model of
amyloid-like fibrils composed of several protofilaments,
which consist of hydrogen-bonding β-sheet structures
with the β-strands running perpendicular to the long
fibre axis, a structure known as a cross-β conformation
(FIG.2). It is clear from these structural studies that a large
conformational rearrangement of the polypeptide chain
occurs during misfolding and aggregation.However, it is
not known whether the misfolding triggers protein
aggregation,or protein oligomerization induces the con-
formational changes3. On the basis of the available evi-
dence, it is likely that slight conformational changes
result in the formation of a misfolded intermediate,
which is unstable in an aqueous environment because of

Figure 2 | Schematic representation of the pathway leading to protein misfolding and
aggregation. The natively folded protein, normally produced in diverse cell types, adopts a
random coil or α-helical conformation. In the elderly brain, the first pathological step would be the
formation of a misfolded intermediate that exposed to the aqueous environment hydrophobic
fragments that are normally buried inside the protein. This intermediate has a high tendency to
aggregate and become stabilized, in a rate-limiting process, by the formation of an oligomeric 
β-sheet structure, which by incorporation of additional monomers gives rise to protofibrils and
finally to cross-β amyloid-like fibrils.

Native
protein

Soluble
oligomers

Protofibrils

FibrilsMisfolded
intermediate

β-SHEET OLIGOMERS 
Structures containing several
units of a protein organized in a
β-pleated sheet conformation.
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1.2 Mechanisms of neuronal death in neurodegenerative diseases 

 

Many neurodegenerative diseases share typical toxic biological features, such as 

synaptic alterations, inflammation mediated by activated microglia and  selective 

neuronal loss, and, ultimately, neuronal death and neurodegeneration49. What 

differs, among diseases, is the most affected region of the brain and the 

localization of the aggregates (extracellular vs intracellular), which determine the 

clinical symptoms of each. For instance, neuronal death in AD occurs mainly in 

regions of the brain that are implicated in memory and abstract thinking, such as 

the hippocampus, amygdala, and association areas of the neocortex. PD is 

characterized by neuronal loss in the substantia nigra and depletion of 

dopaminergic neurons in the striatum. In HD, there is severe neuronal loss initially 

in the neostriatum and later in the cerebral cortex. The cell death process in ALS is 

relatively selective for lower motor neurons in the spinal cord and brainstem, and 

for upper motor neurons in the motor cortex. One striking feature of genetic prion 

diseases is their phenotype heterogeneity50,51. PRNP mutations are associated  

with different clinical and neuropathological phenotypes: Creutzfeld-Jakob disease 

(CJD), fatal familial insomnia (FFI), Gerstmann-Straüssler-Scheinker (GSS) 

syndrome and PrP cerebral amyloid angiopathy (PrP-CAA). CJD is a subacute 

spongiform encephalopathy, mostly involving the cerebral cortex, striatum and 

cerebellum, and recognized clinically by dementia and motor abnormalities52. FFI 

is characterized clinically by sleep alterations and autonomic dysfunctions, and 

neuropathologically by severe degeneration of the anterior ventral and 

mediodorsal nuclei of the thalamus53,54. GSS is a slowly progressive ataxia with  
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prion amyloidosis mainly in the cerebellum and basal ganglia55. PrP-CAA is a 

slowly progressive dementia with PrP amyloid deposits in blood vessels of the 

central nervous system. 

Neuronal loss in neurodegenerative diseases can occur by programmed cell death 

or apoptosis56. Several hypotheses have been proposed to explain how protein 

misfolding and aggregation might be associated with neuronal apoptosis. 

One of the most widely accepted theories of brain degeneration in 

neurodegenerative diseases proposes that misfolding and aggregation result in 

the gain of a neurotoxic function by the misfolded protein. This assumption is 

based on the direct induction of neuronal apoptosis by aggregates of several 

misfolded proteins in vitro57. Further support to this theory derives from 

experiments with transgenic animals in which the incorporation  of the mutated 

gene that codes for the misfolded protein can trigger the neurodegeneration58-62.   

A crucial biological process involved in neurodegenerative diseases is autophagy, 

an intracellular degradation pathway that is responsible for the digestion and  

recycling of nutrients via autophagosomes63. These intracellular double-membrane 

structures engulf cytoplasmic proteins and organelles and deliver them to the 

lysosome for degradation, maintaining homeostasis within the cell64. Autophagy 

plays a key regulatory role of the levels of intracytoplasmic, aggregate-prone 

proteins that cause neurodegenerative diseases, including polyglutamine-

expanded huntingtin (HD)65, mutant α-synuclein (PD)66, mutant TDP-43 (ALS)67, 

and wild-type and mutant tau68,69. The clearance of such substrates is retarded 

when autophagy is compromised, and clearance is induced when autophagy is 

stimulated. In Alzheimer’s disease, altered autophagy lead to lysosome 
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 dysfunction and accumulation of autophagic vescicles in affected neurons70,71. 

Several mechanisms have been proposed for the neurotoxic activity of the 

aggregates derived by protein misfolding, and it’s likely that different pathways act 

on the basis that aggregates accumulate inside or outside the cell. The 

extracellular aggregates could activate specific signal transduction pathways that 

lead to synaptic damage and, ultimately, to apoptosis, by interacting with specific 

cellular receptors72. For example, RAGE (receptor for advanced glycation end 

products), a multi-ligand immunoglobulin superfamily cell-surface molecule, binds 

amyloid-like fibrils comprising amyloid-b peptide (Aβ), PrP, amylin and amyloid-A, 

thereby inducing cellular stress and activation of NF-κB73-76. It has also been 

demonstrated that both toxic PrP aggregates and Aβ oligomers localize at lipid 

rafts, which are cell membrane domains enriched in cholesterol and 

sphingolipids77-79. This, in turn, triggers synapse damage by altering cell 

membranes, increasing cholesterol and activating cytoplasmic phospholipase 

A280,81, a key event in many neurodegenerative diseases82,83.  

Intracellular deposits could damage the cells by sequestering in the fibrillar 

aggregates essential factors for the cell life84. Components of the proteasome, 

chaperone proteins, cytoskeletal proteins and transcription factors have been 

found in huntingtin and α-synuclein aggregates85,86. 

Another proposed mechanism for Ab neurotoxicity and prion protein is the 

disruption of the plasma membrane and its depolarization mediated by the 

formation of ionic channels, resulting in an alteration of ion homeostasis,  

eventually leading to death cell87. Finally, protein aggregates could induce 

oxidative stress by producing free radical species, leading  to protein and lipid 

oxidation, intracellular calcium increase and mitochondrial  dysfunction88,89.  
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2. Alzheimer’s disease 
 

Dementia syndrome is linked to a large number of underlying brain pathologies, 

including Alzheimer’s disease (AD), which is the most common. About 50-75% of 

patients with dementia suffer from Alzheimer’s disease and the number of patients 

could be tripled by 205090. Currently, the total cost related to the medical and 

social care are rated to exceed globally 600 billion US dollars91. The increasing 

number of patients will challenge society on social, medical and economical levels.  

Presently, there is no cure or treatment to halt or reverse disease progress. 

AD is a progressive neurodegenerative disease characterized by pathological 

neuronal cell death and corresponding loss of neuronal function and synaptic 

connections. Neuronal loss occurs gradually throughout different brain regions and 

eventually leads to severe shrinkage of the brain (Fig. 2.1). The first brain region 

affected is the hippocampus, important for the formation of new memory 

processes and recalling recent memories. Neurodegeneration then spreads to the 

cerebral cortex responsible for thought, attention, language and reasoning. In the 

last stages of the disease neurodegeneration extends to all the brain92. 
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Figure 2.1 Cross sections of the brain show atrophy, or shrinking, of brain tissue caused by 

Alzheimer's disease (Image taken from www.nia.nih.gov/alzheimers). 

 

 

The first definition of AD came in 1906, when a German physician, Dr Alois 

Alzheimer, first described an agglomeration of pathologic abnormalities in the 

autopsied brain of a woman who had been affected by memory problems, 

confusion and language dysfunction for some years. He reported the accumulation 

of extracellular deposits  (amyloid plaques) and neurofibrillary tangles within the 

brain cells93.  
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2.1 The amyloid cascade hypothesis 

 

At the molecular level, the amyloid plaques in AD were found to be composed of 

extracellular fibrils of the amyloid β-proteins (Aβ) 94,95.  

The purification and partial sequencing of the Aβ protein from meningovascular 

amyloid deposits in AD and Down’s syndrome96, a genetic disorder caused by the 

presence of a third chromosome 21, enabled the subsequent cloning of the gene  

encoding the β-amyloid precursor protein (APP), a large type 1-transmembrane  

glycoprotein located on the chromosome 21, consistent with the observation that 

middle aged patients affected by Down’s syndrome developed amyloid plaques 

and neurofibrillar tangles typical of AD97. Neurofibrillary tangles (NFTs) are the 

second major hallmark of Alzheimer’s disease in the brain. NFTs are intracellular 

aggregates, primarily composed of paired helical filaments (PHF)98. The major 

component of the NFTs is the protein tau, a microtubule associated protein 

(MAP)99, which binds to microtubulin to provide structural stability to cells. Under 

pathological conditions, dissociation of the tau protein from microtubulin leads to 

tau hyperphosphorylation and aggregation into PHF100,101.  

 

Early-onset familial AD (EOFAD), which typically develops before the age of 65 

years and accounts only for a small portion (<1%) of AD cases, is primarily caused 

by overproduction of Ab owing to mutations in either the APP gene or genes 

encoding presenelin 1 (PSEN1) or presenilin 2 (PSEN2)102-106, essential 

components of the g-secretase complexes responsible for cleavage and release of 

Ab (see below) (Table 2.1). 
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The majority of AD cases are sporadic and occur late in life (>65 years). 

Commonly are referred to as late-onset AD (LOAD). Although multiple genetic and 

environmental risk factors are involved in LOAD pathogenesis, overall impairment 

in Ab clearance is probably a major contributor to disease development107. 

Genetically, the e4 allele of the apolipoprotein E (APOE) is the strongest risk factor 

for LOAD108-110. In AD patients, the  frequency of the e4 allele is increased to 

~40%111. 

 

 

Table 2.1 List of mutations causing early onset familial Alzheimer’s disease (EOFAD) 

 

Based on these findings Hardy and Selkoe proposed the “amyloid cascade 

hypothesis” suggesting that the processing of APP to generate Ab is the key event 

in developing AD112. The subsequent aggregation of Ab and the formation of 

senile plaques then triggers a cascade of events such as the formation of 

neurofibrillary tangles leading to neuronal death and dementia. In its current form, 

the hypothesis emphasizes the importance of soluble toxic oligomers: in particular, 

these species can start a slow but fatal cascade that can leads to synaptic 

alterations, astrocytic and microglial activation and tau aggregation, and 

progressive neuronal loss associated to neurotransmitter deficiencies113 (Fig. 2.2).  

 

Locus Name Proportion of
EOFAD

Gene Symbol Chromosomal
locus

Protein name

AD 3 20-70% PSEN1 14q24.3 Presenilin 1

AD1 10-15% APP 21q21 Amyloid ß

AD4 Rare PSEN2 1q31-q42 Presenilin 2
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Figure 2.2 The sequence of major pathogenic events leading to AD proposed by the amyloid 

cascade hypothesis. 
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 2.2 APP processing and generation of Ab 

 

The Ab peptide is generated from APP by a finely regulated proteolytic cleavage. 

The proteolysis of APP can occur through two pathways114 (Fig 2.3). Both 

pathways release an extracellular soluble fragment (APPs) and a second 

membrane-spanning C-terminal fragment (CTF)115. The non-amyloidogenic 

pathway is selected when APP is first cleaved by a-secretase, a member of the 

ADAM family of membrane-anchored metalloproteases, which generates a soluble 

ectodomain region (APPsa) and CTF83. This cleavage precludes the generation 

of Ab as the a-secretase cleavage site is located within the Ab sequence.  

The amyloidogenic pathway is entered when APP is first cleaved by b-secretase 

instead of a-secretase. The b-secretase, also known as BACE (b-site APP 

cleaving enzyme), is a  transmembrane aspartic protease116 and it cleaves at the 

N-terminus of the Ab sequence, releasing APPsb and CTF99. The CTF83 and 

CTF99 fragments are subsequently cleaved by g-secretase and generate the p3 

and Ab peptides, respectively, as well as an APP intracellular domain (AICD). The 

soluble secreted APPsb is reported to have a neuroprotective function and it is 

important for neurogenesis117. In contrast, AICD impairs generation of new 

neurons118, has a signalling function and is a transcription regulator119. The p3 

peptide is generally accepted as non-amyloidogenic although it has been reported 

as highly hydrophobic, aggregating and has been found in amyloid plaques120. 

g-secretase is a large proteolytic complex in which the catalytic core is composed  

by five essential subunits: presenelin-1 and -2 (PS-1 and PS-2), nicastrin, APH-1 

and PEN-2121. The g-secretase complex cleaves different sites inside the APP 
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transmembrane domain, generating various Ab peptides of 38-43 amino acids122. 

Almost 90% of secreted Ab is represented by Ab1-40, while Ab1-42 represents 

less than 10% of the total. It was shown that Ab1-40 is the major component of 

cerebral vascular amyloid deposits, while Ab1-42 is the main component of 

neuritic plaques123,124.  In addition to these two predominant isoforms, several 

other C-terminal truncated Ab isoforms have been discovered, including Ab1-

15/16 and Ab1-37/38/39125,126. In vitro studies have identified a number of longer 

Ab variants like Ab1-43 and Ab1-48 in cell lines. Longer Ab isoforms have also 

been identified in transgenic mice models of AD127-129.  

Further heterogeneity of Ab can be obtained at the N-terminus during proteolytic 

release. Instead of aspartate that is normally found in the first position of the 

peptide, these Ab variants possess different N-termini95,130-132. In vitro experiments 

have showed that shortening of N-terminus enhances Ab aggregation133. Finally, 

various post-translational modifications of Ab have been described134, such as 

pyroglutamylation135,136, oxidation134,137,138, isomerization134,139or racemization140-

142. All these modifications have been found in AD patients, and could play a role 

in the progression of the disease143. 

 

 

 

 

 

 

 



Introduction 
  
 

		
33	

 

 

Figure 2.3 APP structure and metabolism. APP processing by secretase is divided into the non-

amyloidogenic pathway (left) and the amyloidogenic pathway (right) (taken from ref. 114). 

 

 

Almost all APP mutations causative of familial AD (FAD) are clustered at the b-

secretase and  g-secretase, releasing the Ab peptides into the luminal/extracellular 

compartments144 (Fig. 2.4). The KM670/671NL Swedish APP mutation increases 

total Ab production, as observed in Swedish APP transfected cells and skin 

fibroblasts from carriers of the mutation145-148. Other FAD mutations occur after the 

g-secretase cleavage site and most of them  enhance the production of the longer 

and more aggregating Ab1-42 peptide149-151. This strongly supported a causative 

role of the longer Ab1-42 peptide, which in animal models is essential for senile 

plaque formation152.  Finally, mutations within Ab increase the aggregation 

properties of Ab peptides153, and most of them are causative of cerebral amyloid 

angiopathy (CAA)144. At the molecular level, these mutations change the charge 

distribution and thereby likely affect the peptide structure, ultimately promoting 

fibril formation154,155. In vitro studies with the E22Q (E693Q) Dutch peptide showed 



Introduction 
  
 

		
34	

that it is more prone to oligomerize156,157 and is more neurotoxic158,159 than the wt 

peptide. Transgenic animal models expressing Dutch APP recapitulate the human 

pathology, with the amyloid deposition mainly located within the vasculature160. 

 

 

 

Figure 2.4 APP mutations. The APP transmembrane domain extends from the glycine-700 to the 

lysine-723. The Aβ42 peptide is highlighted in yellow. Depicted by arrows are the β-secretase 

(BACE1) cleavage site, the γ-secretase cleavage sites generating Aβ40 and Aβ42. Amino acid 

exchanges causative of either familial Alzheimer’s disease (FAD) or cerebral amyloid angiopathy 

(CAA) are shown below the peptide sequence (adapted from ref. 144).  
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2.3 The role of Ab oligomers in Alzheimer’s disease 

 

The central feature of the first version of the “amyloid cascade hypothesis” was 

that neuronal death was caused by the deposition of fibrillar Ab into plaques. 

However, the number and the density at different anatomical locations of Ab 

plaques in the brains of the patients affected by AD does not correlate with the 

cognitive deficits observed161,162. Further indicating a disconnection between 

plaque pathology and memory impairment, several groups reported that cognitive 

deficits in transgenic mouse models of AD appeared before Ab plaque deposition 

or detection of insoluble amyloid aggregates in their brains163-165. 

 

The apparent controversy on how Ab toxicity correlated with cognitive decline and 

memory impairment in AD began to be resolved when it was demonstrated that Ab 

spontaneously forms small, soluble oligomeric assemblies with neurotoxic 

properties, which were termed Ab-derived diffusible ligands (ADDLs)166. In 

agreement with these findings, other studies confirmed that Ab oligomers can alter 

various mechanisms associated with brain synaptic transmission, such as dendrite 

spine morphology and long term potentiation, which is believed to be essential for 

neuronal plasticity and learning phenomena167,168. It was also shown that the 

levels of several presynaptic proteins were reduced in the brains of AD patients 

and after treatment with Ab oligomers169,170. 

Further studies have demonstrated that soluble Ab oligomeric species can be 

extracted with saline buffers from the brain tissue of patients with AD and that their  
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presence correlated better with disease symptoms than the presence of amyloid 

plaques171,172. Ab oligomers are increased in AD brains173-180 and can be detected 

using oligomer-sensitive antibodies175,181-183, but are not detected by conventional 

histopathological techniques, such as staining with thioflavin S or Congo Red. 

Different type of brain-derived toxic Ab oligomers have been described in the 

literature, including dimers and trimers178,184-187, or larger assemblies such as Ab 

tetramers and dodecamers188,189. Overall, available studies generally support the 

existence of a mixture of soluble Ab assemblies that induce synaptic failure, but it 

remained to be clarified whether this toxicity can be specifically associated with 

dimers, timers or larger species190. 

Experiments with synthetic Ab peptides have demonstrated that Ab oligomers may 

be metastable intermediates on the pathway to insoluble fibrils, but some types of 

oligomers could be “off-pathway” species that have different secondary structures 

and do not further aggregate to amyloid fibrils. Therefore, different in vitro-

generated oligomers may have different toxicities191-193. However, it is not yet clear 

if these synthetic Ab oligomers occur in vivo or which species are more relevant 

for the pathogenesis of AD. 

Many experiments investigating the mechanisms of Ab oligomers toxicity have 

been based on the assumption that oligomers are stable structures that interact 

specifically with neuron receptors. For example, several studies have described 

the interaction of Ab oligomers with postsynaptic NMDA and AMPA receptors194, 

with the nicotinic acetylcholine receptor195, or with the insulin receptors196. 

Recently, the cellular prion protein was found to be a specific receptor for Ab 
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oligomers197, although the putative biological effects of this interaction have been 

questioned198-204 (Fig. 2.5). 

 

 

 

Figure 2.5 Possible mechanisms of action of Aβ oligomers leading to neuronal death according to 

the amyloid hypothesis (adapted from ref. 190). 

 

These data clearly suggest that a unique mechanism cannot explain all the 

features of Ab oligomer toxicity. Amphiphilicity, aggregation state, covalent 

modifications and the organization of hydrophobic residues within an oligomeric 

assembly can influence the toxic effects of such soluble aggregates. Recently, it 

has been suggested that the toxicity of oligomers is not due to their morphology or 

size, rather could be due to their specific conformation205,206. This conformation 

could lead to the exposure to the solvent of “toxic surfaces”, e.g. hydrophobic 

stretches that are very prone to interact with different classes of molecules206,207.  
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Accordingly, it has been suggested that Ab oligomers might exert their toxic effects 

by binding to different membrane proteins, targeting membrane lipids, changing 

membrane dielectric properties and ion permeability208,209 (Fig. 2.5). 
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3. Transgenic C. elegans as a model in Alzheimer research 

 

The nematode C. elegans provides an excellent in vivo system to evaluate the 

molecular mechanisms involved in neurobiology and in particular in 

neurodegenerative disorders. The mechanisms underlying different processes like, 

for example,  neuronal generation, synapse formation, neuronal degeneration or 

cell death have been well studied and characterized210,211. The distinct tissue and 

the cell types have been extensively characterized and behavioural assays that 

monitor their functionality are well described212,213. The transparency of these 

nematodes allows the generation of transgenic lines expressing fluorescently 

tagged aggregation-prone proteins that can be visualized in any tissue during 

development and throughout adulthood. With a relatively short lifespan of 2-3 

weeks, it is feasible to perform experiments to assess the roles of chaperones and 

cytoprotective pathways on longevity. 

The use of C. elegans also allowed research to discover new techniques, which 

were subsequently adapted and applied to other biological systems. For example, 

the whole genome of C. elegans, which contains 19000 genes, was the first to be 

completely sequenced and published in 1998214. At least 38% of the C. elegans 

protein-coding genes have predicted orthologs in the human genome215, 60-80% 

of human genes have an ortholog in the C. elegans genome216, and 40% of genes 

known to be associated with human diseases have clear orthologs in the C. 

elegans genome217. Another discovery that led to a novel technique with broad 

biological impact was gene silencing by RNA interference (RNAi)218, which allows 

researchers to silence gene expression of any gene. 
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3.1 Biology of C. elegans 

 

C. elegans is a small, free-living nematode of about 1,5 mm in length that can be 

found in soil environments feeding on different bacteria, including Escherichia coli. 

Adults are hermaphrodites composed of only 959 somatic cells, and the complete 

cell lineage, which is invariant between animals, has been established219,220. For 

example, the nervous system of the adult hermaphrodite is composed of 302 

neurons221; the majority of them are localized in ganglia in the head, in the ventral 

cord and in the tail.  

 

Worms are enclosed by a cuticle which is a tough but flexible exoskeleton-like 

structure to which the muscles are attached. Food is taken in through the mouth, 

compacted and pumped into the intestine by the pharynx. The intestinal lumen of 

the nematode runs through the entire length of the body from the pharynx to the 

anus222,223 (Fig. 3.1). 

 

 

Figure 3.1 Anatomy of an adult hermaphrodite (Image taken from Worm Atlas, 

www.wormatlas.org). A. DIC (differential interference contrast) image of an adult hermaphrodite, 

Scale bar 0.1 mm. B. Schematic drawing of anatomical structures, left lateral side.	
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3.2 Life Cycle 

 

The lifecycle of C. elegans starts with an embryonic stage, followed by four larval 

stages (named L1-4) and then adulthood224. This lifecycle is observed in 

favourable conditions, where food is not limited and the population is not at such a 

high density that overcrowding occurs. If conditions are not favourable, for 

example when bacteria (food source) are depleted and the animals are crowded, 

then the worm activate an alternative life cycle and enter into a new larval stage 

called dauer225. Worms can remain in the dauer state for up to 4 months, as they 

have high fat stores, and are highly resistant to stress. When conditions become 

favourable, dauers are able to re-enter the lifecycle at L4 stage (Fig. 3.2) and 

progress through adulthood as normal224. The developmental time from egg to 

adult takes about 2-3 days at 25°C. The lifespan of an adult worm is approximately 

12-14 days at 25°C226. 
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Figure 3.2 Life cycle of C. elegans at 22°C (Image taken from Worm Atlas, www.wormatlas.org). 

Life cycle from egg through four larval stages (L1-L4) to adulthood. 
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3.3 C. elegans as a genetic model organism 

   

C. elegans have two sexes determined by the presence or absence of a second X 

chromosome. Males have only one copy of the X chromosome (XO), whereas 

hermaphrodites possess two copies (XX)227. Hermaphrodites can either self-

fertilize or mate with males, but cannot mate with other hermaphrodites. The 

frequency of males in a colony is usually very low, approximately 0.1-0.2% of the 

progeny. However, if hermaphrodites mate with males, then progeny will be 50:50 

male: hermaphrodite, as half of the progeny will not receive a copy of the X 

chromosome from sperm. Male animals are generally smaller than 

hermaphrodites, but they can be readily be distinguished by sensory rays on their 

tail227 (Fig. 3.3). 

 

 

 

Figure 3.3 Light microscopy images showing male and hermaphrodite anatomy. A) male. Inset 

shows a magnified view of the tail. B) hermaphrodite (Image taken from Worm Atlas) 
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Self-fertilizing hermaphrodites provide several advantages for genetic analysis. 

First, self- fertilization simplifies maintaining stocks because a single animal can 

give rise to an entire population. Second, strains that are mutagenized are 

essentially isogenic because populations of hermaphrodites tend to lose 

heterozygosity. Third, self-fertilization follows the standard Mendelian rules of 

segregation, so a parent that is heterozygous for a recessive trait will produce the 

standard 1:2:1 pattern of segregation, such that 25% of the progeny will be 

homozygous for the mutant allele and display the autosomal recessive trait. 

The traditional use of genetics in C. elegans (often referred to as “forward 

genetics”) begins with a screen or selection to find mutants with a particular 

phenotype followed by inference of the wild-type role of the gene from the nature 

of the mutant phenotype228. A variety of mutagens have been used229, including 

ethyl methylsulfonate (EMS), an alkylating reagent that causes principally GC-to-

AT transition mutations and small deletions227. 

Once mutant strains have been obtained and give mutant individuals in the next 

generation, they can be mapped using classical genetic tools227. Originally, 

mapping involved linkage crosses to identify the chromosome containing the 

mutation followed by multiple three-factor crosses to refine its map position.  

Today, however, this process is much more rapid due to advances in whole-

genome sequencing230-232. Finally, recent advances in efficient genome-editing 

methods (TALEN and CRISPR/Cas9) in C. elegans now allow investigators to 

create targeted mutations in nearly any location in the genome in any genetic 

background233,234. 
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3.4 The IIS pathway in C. elegans links ageing to toxic protein aggregation 

 

A hallmark of many neurodegenerative diseases is the age-associated onset of 

phenotypes due to (amyloidogenic) protein aggregation and toxicity. These 

characteristics can be investigated in C. elegans models of protein misfolding; 

further, it has been demonstrated that genes that regulate longevity suppress 

misfolding, in part by enhancing chaperone levels235,236. C. elegans has been an 

invaluable model organism for the discovery of pathways that modulate lifespan, 

including the insulin/insulin-like growth factor-1 signalling (IIS) pathways226,237,238.  

 

Under normal conditions, the nematode IIS cascade (Fig. 3.4), that is nearly 

identical to that in humans239, is initiated when an as-yet-undefined ligand binds to 

DAF-2, the worm insulin/IGF receptor226,237. Following such binding, DAF-2 can 

recruit IST-1 and AGE-1, a phosphatidylinositol 3-kinase that mediates the 

production of phosphatidylinositol-3,4,5-triphosphate. In turn, this activates 

members of the AKT family.  

The IIS pathway has an internal negative regulator: the phosphatase DAF-18 (a 

PTEN orthologue), which act in opposition to AGE-1, reducing its activity240.  

Activated AKT phosphorylates the downstream protein DAF-16, which is the 

exclusive C. elegans FOXO forkhead transcription factor. Phosphorylated DAF-16 

is prevented from entering the nucleus and thus cannot regulate the expression of 

its target genes, such as the small heat-shock protein (small HSPs) chaperones. 

Therefore, the IIS pathway negatively regulates the activity of DAF-16 by 

modifying its intracellular localization. Another key transcription factor that is  
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required for the worm lifespan extension that is facilitated by reduced IIS is heat-

shock factor 1 (HSF-1), a highly conserved leucine-zipper-containing transcription 

factors that, once activated, enters the nucleus and regulates the expression of its 

target genes241. 

 

 

 

Figure 3.4 The IIS pathway in C. elegans (taken from ref. 238) 

 

Several studies performed in C. elegans proteotoxicity models indicate that the IIS 

pathway directly links aging to the onset of toxic protein aggregation. Examples of 

these studies come from the use of transgenic nematodes expressing 

fluorescently tagged PolyQ repeat in body-wall muscle cells236. In young worms, at 

least 40 glutamine repeats were necessary for aggregation. However, the 

threshold number of repeats needed for aggregation decreased as the worms 
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aged. Moreover, a decrease in the expression of AGE-1 protected worm embryos 

from polyQ82 aggregates and these protective effects were dependent on DAF-

16. Thus, these studies indicate that a decrease in the activity of the IIS pathway 

can reduce the toxicity associated with aggregated proteins, although the 

mechanisms of this protection are still obscure. Even in worms models of AD, that 

expresses human Ab1-42 in the body-wall, it has been demonstrated that a 

reduction of the IIS pathways is protective235. Using different techniques, it has 

been also reported that the amount of Ab aggregates with high molecular mass 

does not correlate with toxicity. In fact, a reduction of IIS resulted in reduced 

toxicity but caused an increase in the levels of high-molecular-mass Ab 

aggregates. Conversely, inhibition of DAF-16 reduced the amount of high-

molecular-mass Ab aggregates but increased the toxicity235. Furthermore, RNAi 

versus hsf-1 mRNA drastically elevated both toxicity and the amounts of high-

molecular-mass of Ab assemblies235. These findings suggest that the IIS cascade 

controls at least two anti-proteotoxic activities: disaggregation mediated by HSF-1 

and protective aggregation that is regulated by DAF-16 (Fig. 3.5). 
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Figure 3.5. Link between aging and protein aggregation in C. elegans (adapted from ref. 238). 

 

Different studies have been successively done to identify DAF-16- and HSF-1-

regulated genes. Several classes of genes were identified, however the most 

consistently discovered subset was the Heat Shock Protein (HSP) family, in 

particular the small HSPs, such as the HSP-16 family242,243. The role of HSPs in 

assisting correct protein folding and in mediating the clearance of misfolded and 

aggregated proteins244 supports that defects in protein homeostasis are key 

players in the ageing process. 
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3.5 C. elegans models for Alzheimer’s disease 

 

In the first attempts to develop a mutant strain by targeting endogenous APP 

gene, it was found that the C. elegans genome includes genes that encode 

proteins related to human APP (apl-1). Analogously to human APP, the 

invertebrate APP-family members are composed of single-pass transmembrane 

proteins with a large extracellular domain and a short intracellular domain, which 

can be cleaved to release intracellular and extracellular proteolytic fragments. 

However, APP-like genes in C. elegans do not possess the region encoding the 

neurotoxic Ab. A transgenic C. elegans model was therefore developed which that 

can express human Ab peptide intracellularly in the body wall muscle with a 

transgene-induced paralysis phenotype245. Although the C. elegans model 

obviously lacks the neuronal cognitive complexity of mammals, it turns out to be a 

valid model to replicate cellular processes that may underlie AD. 

 

The first transgenic C. elegans model of AD (named CL2006), constitutively 

expressed Ab1-42. These transgenic animals showed a progressive, irreversible 

paralysis245. Staining these transgenic worms with a human Ab specific antibody 

revealed an accumulation of Ab deposits, which reacted with Congo Red, 

thioflavin S and X-34, all markers of of Ab deposits246,247. Ultrastructural 

examination of the Ab deposits, however, showed that the aggregates were 

located in the cytoplasm of the muscle cells248 rather than as extracellular deposits 

or plaques as seen in AD brains249. This intracellular localization was not expected 

given that the human Ab1-42 construct was made with an artificial signal 
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sequence that should have led to the extracellular release of Ab1-42. The artificial 

signal  sequence is functional, although cleavage occurs after the signal sequence 

so that the Ab sequence corresponds to amino acids 3-42 rather than 1-42250. 

Collectively, these results demonstrated that after production, Ab is targeted either 

by the endoplasmic reticulum (ER) quality control system and retrotranslocated for 

degradation245 and/or sequestered into intracellular inclusions by autophagic 

vescicles251. 

In the CL2006 strain  Ab aggregates co-immunoprecipitated with some chaperone 

proteins252. From early studies it was shown that increased expression of HSP-70 

class and aB-crystallin related proteins might have effects on the formation of 

plaques in AD brain. In the C. elegans model, one of these chaperone proteins is 

HSP-16, which was closely colocalized with intracellular Ab. HSP-16 was found to 

colocalize with anti-Ab antibody 4G8 immunoreactive deposits, but not with the Ab 

aggregates stained by the amyloid-specific dye X-34. These  findings may suggest 

a possible interaction between HSP-16 and prefibrillar Ab oligomers. Intracellular  

Ab seems play a crucial role in AD pathogenesis253 and some Ab transgenic 

mouse models that display AD behavioural phenotypes also show intracellular Ab 

accumulation rather than extracellular plaque formation167,254. In another 

transgenic C. elegans model of AD, CL4176, the toxic phenotype was suggested 

to be induced by the specific production of Ab oligomers, as detected by 

immunogold staining with A11 antibody and by western blot analysis255,256. 

Although Ab expression is limited to the muscle cells, this specific strain allows the 

researchers to establish a relationship between Ab oligomers expression and their 

toxicity. 
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To investigate possible mechanisms of Ab oligomer toxicity in transgenic C. 

elegans, Link et al. employed DNA microarray technique to reveal global gene 

expression changes in the CL4176 strain257. Among the top induced genes, they 

found that the hsp-16 gene was up-regulated, corresponding with their prior 

observation that a GFP reporter transgene derived by the hsp-16-2 promoter could 

be induced by constitutive Ab expression. To verify the experimental results, 

quantitative RT-PCR experiments were performed to measure the expression of 

aB-crystallin (CRYAB), which is homologous to the HSP-16 gene, in post mortem 

AD brain. RNA of this gene increased considerably in parts of the superior frontal 

gyrus and the cerebellum of AD patients compared with the controls257. 

In a more recent  set of experiments, alterations in gene expression induced by 

human Ab peptide in C. elegans CL4176 strain were compared to those caused by 

a non-disease associated, aggregation-prone protein (GFP:degron) to identify Ab-

specific effects258. Among identified genes, many were involved in aging, 

proteasome and mitochondrial function. 

 

Recently, new transgenic C. elegans models of AD have been developed, which 

express either Ab1-40 or Ab1-42 at the neuronal level259,260. In these models the 

intraneuronal expression of Ab lead to postsynaptic deficits involving alterations of 

acetylcholine receptors, as indicated by the resistance of the worms to paralysis 

induced by aldicarb or levamisole, which are cholinergic agonists259. Notably, the 

expression of Ab1-40 carrying the mutation A2V, which causes early-onset 

dementia in humans in the homozygous state261, resulted in the formation of 
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oligomers. Nematodes  expressing the mutant peptide had a shorter lifespan than 

WT, and a worse impairment of locomotor activity and pharyngeal pumping259. 
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4. Genetic screens in transgenic C. elegans models of protein 

misfolding diseases 

 

Sydney Brenner first introduced the nematode C. elegans as a genetic model 

organism in 1974 and since then this model has been widely used in different 

research fields, from developmental biology to aging and neuroscience227. Genetic 

screens are extensively used in C. elegans to discover gene function. Such 

screens can be easily applied to discover which gene mutations are responsible 

for a specific phenotype of interest (forward genetics) or, the gene function can be 

altered to assess what is the consequence in terms of development, behaviour or 

alterations in specific biological processes (reverse genetics). The two most 

employed genetic screens are ethyl methane sulfate (EMS) screens262 and 

(genome-wide) RNAi screens263. The characteristics of both type of screens are 

summarized in Table 4.1 

 

 

Table 4.1 Features of EMS mutagenesis versus RNA interference (adapted from ref. 263). 

 

EMS	mutagenesis RNA	interference

Inactivation or	alterationof	gene	function

Requires identificationof	gene	mutation

Permanent mutation

Can	select for	non-essential genes

Reduction or	depletion of	gene	function

Candidate	gene	is known

Possible to	select developmental stage	for	
depletion. No effects on	embryos in	the	first	
generation

Can	identify roles of	essential genes in	a	post-
developmental process
Limited	penetrance to	neurons
Limited	efficiency if the	protein that is encoded
by	the	targetedgene	is very stable



Introduction 
  
 

		
54	

4.1 EMS mutagenesis 

	
The most common method to mutate the genome of C. elegans is the treatment 

with EMS, which induces mutations in the sperm and oocytes of hermaphrodites. 

EMS has relatively low toxicity and it has a good efficiency264. The fact that C. 

elegans mainly exist as hermaphrodite allows easy maintenance of a mutation as 

a homozygous worm will pass to all the progeny through self-fertilization. 

Mutations can be identified using a simple F2 screen first described by Brenner in 

1974227. Thousands of copies of any particular gene can be analyzed in a typical 

EMS screen. The frequency of a null mutation at any particular locus of the 

genome is one for every 2000 copies by using standard concentrations (50 mM) of 

the mutagen262. This means that one can expect to identify approximately 6 

mutations per particular gene in a typical experiment of 12000 genomes. The 

mutagenized worms are placed on Petri dishes and grown for two generations to 

produce homozygous mutants (Fig. 4.1). Worms from the F2 generation showing a 

specific phenotype of interest are further singled to new plates to determine 

whether the phenotype is transmitted to the next generation. 
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Figure 4.1 EMS mutagenesis scheme and F2 screen in C. elegans (adapted from ref. 228). 

 

Once a worm with a specific phenotype is isolated, the responsible mutation has to 

be identified. By using single nucleotide polymorphisms (SNPs) of the Hawaiian 

wild type strain in comparison of the Bristol strain (natural variation wild type) it is 

possible to map a mutation first to a certain chromosome265 and then to a specific 

region on that chromosome. When a mutation is mapped to a gene region, 

sequencing or the specific knockdown of every single gene in that area by RNAi 

can be used to identify the mutated gene. The development of new sequencing 

methods like deep sequencing or next generation sequencing facilitates the 

identification of mutations and can save laborious fine mapping230-232. 

In the first EMS screen ever performed, 619 mutants were identified with visible 

phenotype especially from the uncoordinated class227. This group of genes impair 

wild type movements when mutated. Many of these mutants have revealed 
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important information about molecules and mechanisms involved in human 

disease266,267. 

In addition to mutations in the uncoordinated class, Brenner also identified mutants 

with aberrant appearance like animals with small bodies, blistered cuticles, rolling 

locomotion, long bodies or bent heads227. 

EMS screens are often used to identify different mutations with the same 

phenotype to further investigate if those genes function in the same process. 

Using this approach, Sulston and Horvitz searched for mutants that presented 

defects in the differentiation of a vulva from epidermal cells268. Molecular analysis 

revealed that animals that lack a vulva had mutations in two signalling pathways: 

the epidermal growth factor (EGF)/RAS pathway and the Notch signalling 

pathway269,270. These studies in C. elegans have increased the understanding of 

these molecular pathways involved in oncogenesis in humans. 
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4.2 RNA interference 

 

RNA interference was first discovered and investigated in C. elegans and 

published in 1998218. The discovery of dsRNA-mediated gene silencing has 

revolutionized genetic studies in C. elegans, as well as in other model organisms. 

Similar to EMS screens, RNAi screens can be used to identify genes that, when 

depleted, result in a certain phenotype or enhance or suppress a mutant 

phenotype.  

RNAi in C. elegans is systemic, which, to date, is not the case for any other animal 

models. Therefore, it is sufficient to introduce dsRNA into one specific tissue to get 

RNA silencing also in distant cells because of an amplification process called 

transitive RNAi271. This systemic effect is advantageous for large-scale-genome-

wide RNAi screens in C. elegans. Different methods have been developed to 

silence gene expression in C. elegans. The dsRNA can be delivered into the worm 

by i) injection into any region218, ii) feeding with dsRNA-producing bacteria272, iii) 

soaking in dsRNA273 or iv) in vivo production of dsRNA from transgenes under the 

control of specific promotors274. 

The possibility to feed nematodes with dsRNA-producing bacteria enables to 

perform high-throughput RNAi screens in C. elegans275 (Fig. 4.2). For efficient 

induction of RNA interference, the choice of the dsRNA-coding region is essential. 

In C. elegans, long dsRNA fragments (more than 100 bp) trigger gene silencing 

via RNAi. For most genes, dsRNA is about 200-1000 nucleotides or even longer 

and covers exon-regions of the targeted gene. The fragment should only target 

one gene. Once the coding region is chosen it can be cloned into a specific vector  
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encoding the production of the specific dsRNA. The L4440 vector contains two 

bacteriophage T7 RNA polymerase promotors flanking the multiple cloning site in 

which the cDNA of a specific gene has been inserted. The construct can be 

transformed into E. coli strain HT115. This strain is deficient for the bacterial RNA 

polymerase III and its production of bacteriophage T7 polymerase from the 

construct can be induced by the addition of isopropyl b-D-1-thiogalactopyranoside 

(IPTG). The bacteria are then synthesizing two complementary RNA strands that 

form a duplex RNA which mediates RNAi218. 

 

 

Figure 4.2 RNA interference (RNAi) screening in C. elegans. Age-synchronized animals are 

transferred to microtiter plates containing different clones of HT115 E. coli bacteria. Every clone 

produces a specific dsRNA which is taken up by the nematodes and induces a knockdown of the 

corresponding gene (adapted from ref. 263). 
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RNAi libraries are commercially available which includes one library of bacteria 

clones containing cDNAs of 17,575 genes which represents about 87% of the C. 

elegans genome276. Positive scored clones subsequently can be sequenced to 

confirm that they target the predicted gene. The target of RNAi is known. This is 

the major difference to EMS mutagenesis that cannot be directed to specific 

genes. However, RNAi can silence only gene activity and that is not a full knockout  

of the gene. It is estimated that about 10-30% of candidates are scored as false 

negatives as the RNAi is not efficient enough to result in an obvious phenotype. 

Moreover, RNA interference acts at the mRNA level, only influencing the 

expression of a protein. That means that already generated, stable-proteins and 

their activities, are not affected by RNAi. 

 

One advantage of C. elegans is that it is amenable to generate “humanized” 

models of human neurodegenerative diseases. Neuropathological hallmarks found 

in the human brain can be successfully recapitulated in the nematode, such as 

protein aggregation277. Several nematode models have been generated to 

recapitulate molecular aspects of diseases, including Huntington’s disease, 

Parkinson’s disease, or Alzheimer’s disease. Although they do not exhibit the 

clinical aspects of the neurological disease, they provide the means to understand 

the molecular mechanisms in these pathologies. Genetic screens performed in 

some of these models represent quick, unbiased methods that have enabled 

insights into the underlying mechanisms of neurodegeneration278 (see below). 

Indeed, many of the disease modifiers discovered so far in C. elegans were found 

to be reproducible in human-cell based models and other animal models such as 
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mice, confirming the validity of using nematodes to study complex human 

diseases. 

 

 

4.3 Genetic screens in C. elegans models for polyglutamine diseases 

 

Polyglutamine diseases comprise a subset of neurodegenerative disorders that 

include Huntington’s disease, spinocerebellar ataxias, Machado-Joseph disease 

and spinobulbar muscular atrophy279. The common characteristic of polyglutamine 

diseases is an abnormal expansion of CAG triplets (which encode glutamine) in 

the coding region of the disease-related gene. Although the length of the CAG 

repeat may vary from individual to individual, the threshold to develop disease is 

around 40 CAG repeats, which cause a polyglutamine expansion in the protein, 

increasing the propension to aggregate. The larger the CAG repeat the earlier 

onset will occur and the more severe the disease phenotype will be280. 

Similarly to what occurs in humans, the length of the CAG repeats also determines 

the aggregation phenotype in C. elegans. At least three models have been 

generated to induce polyglutamine-associated toxicity in neurons by expressing 

expanded polyglutamine stretches in sensory neurons, touch receptors neurons or 

the entire nervous system of C. elegans281-283. Polyglutamine aggregation has 

been modelled also in the body-wall muscle cells of C. elegans236. In this model, 

expanded polyglutamine stretches are fused to a yellow fluorescent protein (YFP) 

under the unc-54 promotor, which is specific to the body-wall muscle. The 

aggregation and toxicity phenotype is dependent of the length of polyglutamine. As 

the animal ages, the accumulation of protein aggregates increases, which is 
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associated with toxicity236. This model has been widely used to perform genetic 

screens to discover enhancers or suppressors of polyglutamine-induced 

proteotoxicity. Two genome-wide RNAi screens revealed modifiers genes and  

classified them according to their biological function284,285. In the first screen, Q35 

nematodes were fed with dsRNA-producing bacteria and scored for genes whose 

downregulation accelerated polyglutamine aggregation284. The major functional 

classes for these protective genes included RNA synthesis and processing, 

protein synthesis, folding, transport and degradation and component of the 

proteasome. In the second screen, the authors selected genes whose 

downregulation suppresses polyglutamine-induced aggregation285. In this study a 

new subset of aggregation-promoting genes was described including other 

biological functions, for example cell cycle, cell structure, energy and metabolism. 

Forward genetics has also been employed to identify modifiers of proteotoxicity. 

This screen consisted in treating Q40-expressing worms with EMS. The screen 

revealed MOAG-4 (modifier of aggregation) as a general aggregation-promoting 

factor in polyglutamine, Parkinson’s and Alzheimer’s disease models277. 

Inactivating MOAG-4 rescued worms from the aggregation and toxicity induced by 

polyglutamine; moreover, this effect was functionally conserved in the human 

orthologs SERF1A and SERF2. New evidence has shown that SERF1A is a 

specific aggregation promoting factor, since it was able to interact with different 

amyloidogenic proteins, including alpha-synuclein, prion protein, amyloid-b and 

huntingtin, but not to non-amyloidogenic proteins286. 

Genetic screens have also been used to find regulators of proteotoxicity in the C. 

elegans neurons. An RNAi screen performed in a C. elegans model expressing 

128 polyQ stretches in the touch receptor neurons resulted in 662 genes that 
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either enhanced or suppressed neuron degeneration, as measured by loss of 

touch response287. Comparison of these disease-modifier genes to gene  

expression data in two mouse models of HD showed that there was an overlap of 

49 genes that were dysregulated in the striatum of either models, emphasizing the 

power of using C. elegans to find novel regulators of proteotoxicity relevant in 

human diseases287. 
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4.4 Genetic screens in C. elegans models for Parkinson’s disease 

 

Parkinson’s disease (PD) is the second most common neurodegenerative (after 

AD) that affects 1% of the population over the age of 50. Clinically, it is 

characterized by resting tremors, rigidity, bradykinesia and postural 

instability288,289. Pathologically, the disease is characterised by the accumulation of 

aggregates of alpha-synuclein in susceptible neurons in the form of Lewy 

Bodies290. 

Alpha-synuclein is a small (140 amino acids) soluble, monomeric protein that is 

predominantly expressed in the brain and is enriched in presynaptic terminals291.  

Although the precise function of this protein remains unclear, it is thought to be 

involved in the regulation of dopamine neurotransmission, vesicular trafficking and 

modulation of synaptic function and plasticity292,293. Three different mutations in 

the alpha-synuclein gene have been associated with an autosomal-dominant PD. 

Genetic screens performed with this model have discovered an important 

relationship between alpha-synuclein and vesicle transport. The C. elegans model 

of PD expresses the human alpha-synuclein fused to YFP in the body-wall 

muscle294. 

A genome-wide RNAi screen with this model showed 80 protective genes that, 

when downregulated, caused premature alpha-synuclein inclusion formation294. 

Further studies have discovered tdo-2, a gene involved in tryptophan degradation, 

as a general regulator of protein homeostasis during aging295. Moreover, 49 of the 

original 80 modifier genes had human homologs, which were enriched for genes 

related to vesicular trafficking functions.  
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A subset of candidate genes found in the initial screen was then further analyzed 

in another C. elegans model, expressing alpha-synuclein in the dopaminergic 

neurons. This study revealed five candidate genes that were able to protect form 

alpha-synuclein-induced dopaminergic neurodegeneration. Again, the most 

representative class of genes described was associated with vesicular trafficking. 

Also, a serine/threonine kinase involved in axonal elongation, UNC-51, was found 

to be homologous to the previously associated risk factor ULK-2, as revealed by a 

genome-wide association study (GWAS) performed in PD patients296.  

Genome-wide RNAi screens in a C. elegans model expressing pan-neuronal 

alpha-synuclein revealed two genes, apa-2 and aps-2, that, when downregulated, 

increase alpha-synuclein toxicity297. These two genes encode for subunits of the 

AP-2 adaptor complex, which mediates the internalization of cargo into the cell 

from the extracellular pace via clathrin-mediated endocytosis298. 
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4.5 Genetic screens in C. elegans models for Alzheimer’s disease 

 

To date, genetic screens in C. elegans models for AD have been scarce and, at 

the start of this thesis, there had been no genetic screen performed in any of the 

models expressing amyloid-b. There is only one report on genome-wide RNAi 

done in a tau-expressing model299. In that model, 60 modifier genes were 

discovered to belong to several functional classes including kinases, chaperons, 

proteases and phosphatases. Of these, 38 had homologs in humans, and, more 

importantly, 6 had already been associated with disease either in humans or other 

animal models. One of these modifiers was the nicotinic acetylcholine receptor, 

alpha-7 (nAchR), a ligand-gated ion channel expressed in the human brain and 

known to contribute to tau phosphorylation300.  

Overall, genome wide screening in C. elegans models of neurodegenerative 

diseases have revealed that a complex network of processes is involved in 

maintaining protein homeostasis. These modifiers include proteins with a 

confirmed role in modifying the toxicity of aggregation-prone proteins in human cell 

models, including chaperons, and proteins involved in proteasomal degradation 

and autophagy. 

Recent studies, however, have demonstrated that other functionally distinct 

proteins may have a role in the toxicity mediated by protein misfolding and 

aggregation, even if they act independently of the well-known molecular pathways 

related to protein homeostasis mechanisms.  

These findings suggest that other proteins, not yet identified, can be important in  

toxicity mechanisms mediated by misfolded proteins and may represent new 

pharmacological targets. 
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This project aimed to take advantage of C. elegans to identify genes involved in 

the toxicity of Ab oligomers, by performing a genome wide screening in a 

transgenic C. elegans model of AD. So far, no genome wide screening have been 

employed in transgenic C. elegans expressing toxic Ab oligomers. However, a 

systematic search for mediators of Ab oligomers toxicity, including proteins 

involved in their formation and those involved in their direct, down-hill, toxic effects 

on cells, could help elucidate the mechanisms of action of these transient species, 

in order to develop new and effective therapeutic strategies. 

 

For these studies, we have employed the CL4176 C. elegans strain, engineered to 

express human Aβ peptide in muscle cells upon induction (raise of temperature) 

245,257. These nematodes, when the temperature is raised, become rapidly 

paralyzed and it was shown that paralysis is strictly associated to the appearance 

of Aβ oligomers255. Thus, the CL4176 strain represents a very convenient tool 

where the formation and/or the action of Aβ oligomers can be detected by a clear 

read-out of toxicity. 

  

This allowed us to perform genome wide screenings for genes which, upon 

mutation, suppress paralysis, therefore identifying the proteins involved in the toxic 

effects of Aβ oligomers, which could be either those involved in the formation of 

oligomers or those mediating oligomer toxicity. 
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5.1 C. elegans studies 

	
The transgenic CL4176 strain (smg-1(cc546ts)I; dvls27[pAF29 (myo-3/Ab1-

42/letUTR) + pRF4 (rol-6(su1006)]) expressing human Aβ1-42 in the body-wall 

muscle257 and the control CL802 strain (smg-1(cc546ts)I; rol-6(su1006)) were 

obtained from the Caenorhabditis Genetic Center (CGC, USA) and propagated on 

solid Nematode Growth Medium (NGM) seeded with OP50 E. coli (CGC, USA) for 

food213. Transgenic CL4176 worms contain the expression vector pPD118.60, 

which has the myo-3 body-wall specific myosin promoter and an abnormally long 

3’untranslated region, which makes the transgenes expression dependent on smg-

1 function (mRNA surveillance system). The smg-1 in C. elegans becomes 

inactive at the non-permissive temperature of 24°C, which allows the translation of 

the stabilized transgenes mRNA for human Ab1-42. Age-synchronized worms 

were obtained by transferring nematodes to fresh NGM plates to reach maturity at 

three days of age and lay eggs overnight. For the paralysis assay, synchronized 

eggs were obtained by bleach treatment and incubated in M9 buffer for 24 hours. 

Total viable L1 worms were measured by counting the number of worms in 10 uL 

of worm suspension. Then, 100 L1 worms were placed at 16°C on fresh NGM 

plates (35 x 10 mm culture plates,) seeded with OP50 E. coli. Aβ1-42 expression 

was induced by putting worms at 24°C, 24 hours after plating. Paralysis of the 

nematodes was evaluated after 24, 48 or 72 hours (where indicated), by scoring 

worms that did not move or only moved their head when gently touched with a 

platinum loop. 
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5.2 Chemical mutagenesis of CL4176 worms and F2 screen 

	
Chemical mutagenesis of CL4176 worms was performed by treatment with ethyl 

methan sulfonate (EMS, Sigma-Aldrich, USA), using standard procedures227,228. 

Prior to mutagenesis, a parental population of CL4176 was synchronized and left 

grow at 16°C until the fourth larval state (L4). In this stage, the number of germ-

line nuclei is near its maximum, thus increasing the efficiency of mutagenesis with 

EMS, and increasing the number of nematodes that can be mutagenized. Then, 

L4 nematodes were mutagenized with 50 mM EMS for 4h at 20°C. After that, 

mutagenized worms were plated to recover, and then, 10 L4 were transferred to a 

new plate (10 nematodes for 10 plates), and incubated at 16°C overnight, and 

allowed to lay F1 progeny.  

The day after, the parental adults were removed and F1 left to grow until 

adulthood. 

After one day of egg laying, the F1 progeny was removed from F2 eggs by a 

synchronization step with bleach. F2 progeny was left to grow until larval L2 stage, 

then transferred to 24°C for paralysis screening. Paralysis was scored after 48 

hours from the increase of temperature (time at which nearly about 100% of the 

CL4176 nematodes are paralyzed. Nematodes resistant to paralysis were 

individually removed to a fresh NGM plates and inspected in the following 

generations to determine if the phenotype bred true.	
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5.3 Analysis of Aβ DNA in transgenic worms 

	
Staged populations of CL4176, EMS-treated CL4176 and CL802 worms were 

washed twice with sterile water and harvested in M9 buffer (20 mM KH2PO4, 42 

mM Na2HPO4, 86 mM NaCl, 1 mM MgSO4). Genomic DNA (gDNA) was extracted 

using Promega Maxwell 16 DNA Purification Kit (Promega Corporation, USA). 

DNA concentration and purity was determined by a Nanodrop Spectrophotometer. 

Aβ coding sequence was amplified by standard Polymerase Chain Reaction 

(PCR) analysis using 2X Biomix (Bioline Reagents Ltd, UK) and the following 

oligonucleotide primers (kindly provided by Dr. Christopher Link): Forward primer: 

5’- CTTTCTGGCACCAGCAGGTAC-3’;Reverse primer: 5’-

CTTGCAGACTTCTCGCTGCTAG-3’. PCR products were stained with Gel Red 

Nucleic Acid stain (VWR International s.r.l., Italy) and separated by electrophoresis 

on a 1,5% agarose gel. A 100 base pair (bp) DNA ladder (Promega Corporation, 

USA) was run in parallel as a size reference indicator. Aβ DNA was then purified 

from agarose gel using the Wizard SV Gel and PCR Clean-Up System kit 

(Promega Corporation, USA) and sequenced by an external company (Eurofin, 

Italy). The sequencing results were analyzed by the software Finch TV 1.4 

(Geospiza Inc, Seattle, USA). 
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5.4 Total RNA extraction 

	
Egg-synchronized CL4176 and EMS-treated CL4176 worms were placed for 24 

hours at 16°C on fresh NGM plates seeded with OP50 E. coli. The temperature 

was then raised at 24°C. After 48 hours worms were washed in M9 buffer and 

pelleted by centrifugation. The nematodes were sucrose floated and washed with 

M9 buffer according to standard techniques. The pellets were resuspended in 10% 

(m/v) Homogenization Buffer (Promega Corporation USA), vortexed for 1 min, 

subjected to three freeze-thaw cycles and then stored at -80°C until extraction. 

After thawing, RNA was extracted according to manufacturer’s instructions 

(Promega Corporation USA). The quality and concentration of extracted RNA was 

determined using a Nanodrop Spectrophotometer (A260:A280 and A260:A230 

ratio).	
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5.5 Analysis of gene expression in transgenic worms by qRT-PCR 

	
Single-stranded cDNA was prepared from the total RNA samples by reverse 

transcriptase reaction using random hexamer with the Applied Biosystem kit (Life 

Technologies, USA) Quantitative Real Time PCR was performed on the cDNAs 

using the SYBR green master mix (Life Technologies, USA) on an Applied 

Biosystem 7900HT instrument. Relative measure of target gene expression levels 

was determined by dividing expression values by the corresponding geometric 

means of three non-variable control genes (rpb-12, rps-7, ama-1)257,258, and 

analyzed using the comparative 2-DDCt method301. Where indicated, fold change 

values were calculated using the following equation: 

 

fold change = 2-DCt induced / 2-DCt not induced 

 

The oligonucleotide primers used in this thesis are listed in Table 5.1 

	

	

Table 5.1 Sequences of primers used in qRT-PCR studies. Oilgonucleotidic primers for Ab, 

Y46H3A.D, Y46H3A.E and F23B2.13 were taken from ref. 257. Primers for daf-18, ZC434.2 and 

F36A4.7 were taken from ref. 258.  

 

 

 

Gene target Forward Primer Reverse Primer

Aβ transgene
Y46H3A.D (hsp-16.2)
Y46H3A.E (hsp-16.41)
daf-18
F23B2.13 (rpb-12)
ZC434.2 (rps-7)
F36A4.7 (ama-1)

CCGACATGACTCAGGATATGAAGT
GGTGCAGTTGCTTCGAATCTT
AAACAAAATCGGAACATGGATACTT
AGCCCTGAAAACTCGAGAACA 
CGCCGAAAATGAAATCAAAC
GGCAAGCTTTTGAAGTCCGA
CCGCTGAAATCGATCAAGCA

CACCATGAGTCCAATGATTGCA
TCTTCCTTGAACCGCTTCTTTC
TGGAGCCTCAATTTGGAGTTTTC
GCTCGATTTGCACACGATGA
GGGCGTCGTACACCATCA
GGAAAGCCTTGAGTTGTGGG
TGACCAACTCCTGCAGCTTA
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5.6 Total soluble Protein Extraction 

	
Transgenic CL4176 and EMS-treated CL4176 worms, induced or not for 48 hours 

at 24°C, as described above, were collected with M9 buffer, centrifuged at 1100 

×g for 4 min and washed twice to eliminate bacteria. Pellets of worms were 

suspended in 5 volumes of lysis buffer (5.0 mM NaCl, 5.0 mM EDTA, 1.0 mM 

dithiothreitol and protease inhibitor mixture (Roche Diagnostic Gmbh, Germany) in 

25 mM Tris/HCl buffer, pH 7.5). The suspension was homogenized with an Ultra-

Turrax T10 roto-stator grinder rotating at 20000 rpm for three 30 sec bursts 

separated by 1 min rests on ice. The homogenate was centrifuged at 10,000 x g 

for 20 min at 4oC. Total protein concentration of worm lysates was determined by 

Bradford Protein Assay (BIO-RAD, CA) and the supernatants were frozen at -20oC 

until use.  	
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5.7 Immunodot-blot analysis 

	
For dot-blot analysis, equal amounts of protein (25 μg) were spotted onto 

nitrocellulose membranes (Millipore). The membranes were incubated with an 

anti-Aβ mouse monoclonal WO2 antibody (1:1000, Millipore). To minimize 

background staining due to non-specific membrane-binding of the antibody, the 

membranes were saturated for 1 h at room temperature by incubation with 10 mM 

Tris buffer S, pH 7.5 containing 150 mM NaCl 0.1% (v/v) Tween 20 (TBST), 5% 

(w/v) low-fat dry milk powder and 2% (w/v) bovine serum albumin. Peroxidase-

conjugated anti-mouse IgG (1:20.000, Sigma) was used as secondary antibody. A 

0.1% Ponceau Red solution (Sigma Aldrich) was used to stain the blotted 

membranes for total protein visualization. The mean volumes of dot-blot 

immunoreactive spots and of Ponceau-dyed spots were analyzed using Quantity 

One 1-D Analysis Software (Bio-Rad).  
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5.8 Western blot analysis 

	
Aβ species in lysates from transgenic C. elegans strains were identified by 

immunoblotting using 15% Tris-glycine gel, and by Western blotting. After heating 

samples in sample buffer containing 5% β-mercaptoethanol (1:1 vol/vol, Bio-Rad), 

50 μg of total protein lysates were loaded in each lane of the gel. The membranes 

were blocked with 10 mM Tris-HCl solution, pH 7.5, containing 150 mM NaCl and 

0.1% (vol/vol) Tween 20, 5% (w/v) low-fat dry milk powder and 2% (w/v) bovine 

serum albumin. Membranes were then incubated overnight with 6E10 antibody 

(1:1000, Covance). Peroxidase-conjugated anti-mouse IgG (1:20.000, Sigma) was 

used as the secondary antibody.  
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5.9 Surface Plasmon Resonance studies 

	
The Surface Plasmon Resonance (SPR) apparatus used for the present study 

(ProteOn XPR36 Protein Interaction Array System; Bio-Rad) has six parallel flow 

channels that can be used to uniformly immobilize strips of six ligands on the 

sensor surface. The fluidic system can automatically rotate 90° so that up to six 

different analytes can be injected, allowing simultaneous monitoring of up to 36 

individual molecular interactions in a single run on a single chip. Anti Aβ 4G8 

antibody (Covance) was immobilized in parallel flow channels of GLC sensor chips 

(Bio-Rad) using amine coupling chemistry, as previously described207. Briefly, after 

surface activation, 4G8 (30 µg/ml in 10 mM acetate buffer, pH 5.0) was injected for 

5 min at a flow rate of 30 µl/min, and the remaining activated groups were blocked 

with ethanolamine, pH 8.0. The final immobilization levels were 5000 resonance 

units (1 RU = 1 pg of protein/mm2). A “reference” surface was always prepared in 

parallel using the same immobilization procedure but without addition of the 

antibody. 

After rotation of the microfluidic system, lysates from either CL4176 or EMS-

treated CL4176 worms were injected over immobilized 4G8 for 3-5 minutes. 

Dissociation was followed for the next 11 minutes. The running buffer, also used to 

elute samples, was 10 mM phosphate buffer, pH 7.4, containing 150 mM NaCl and 

0,005% Tween-20 (PBST). All the experiments were done at 25°C. 
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5.10 Whole genome sequencing of CL4176 and EMS-treated worms 

	
Whole genome sequencing of CL4176 and EMS-treated worms was performed by 

Illumina Next Generation Sequencing (NGS) chemistry. The first step consisted  of 

DNA library preparation, which is prepared by random DNA fragmentation, 

followed by ligation of specific 5’ and 3’ adapters. For library preparation, high 

quality and high molecular weight DNA was purified from staged populations of 

CL4176 and EMS-treated CL4176 worms, or from synchronized L1 worms 

obtained after worm eggs purification, using Promega Maxwell 16 DNA Purification 

Kit (Promega Corporation, USA), as described above. DNA concentration was 

measured using the Quant-iT PicoGreen dsDNA assay kit (Invitrogen), using 

manufacturer's instructions. After checking for integrity using 1% agarose gel, 

DNA samples (380 ng DNA in 100 µL water) were fragmented using the Bioruptor 

sonicator (power setting LOW, cycle 30 sec ON / 90 sec OFF, time 6 minutes) in 

carefully degassed water, at 4°C. Optimal fragmentation (550 base pairs 

fragments) was confirmed with the Agilent High Sensitivity DNA kit on the 2100 

Bioanalyzer (Agilent).	 Then,	 DNA library preparation was performed using the 

TruSeq Nano DNA kit (Illumina), according to the manufacturer instructions. The 

library was loaded onto the Illumina flow cell and the fragments were hybridized to 

the flow cell surface. Each bound fragment was amplified allowing cluster 

generation. 	

Finally, paired end sequencing was performed on a NextSeq500 platform 

(Illumina) with NextSeq 500/550 High Output Kit (300 cycles). Paired end 

sequencing involves sequencing both ends of the DNA fragments in a sequencing 

library and aligning the forward and reverse reads as read pairs. In addition to 
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producing twice the number of reads for the same time and effort in library 

preparation, sequences aligned as read pairs enable more accurate read 

alignment and the ability to detect indels. During sequencing, fluorescently labeled 

nucleotides are added and the first base is incorporated. The flow cell is imaged 

and the emission from each cluster is recorded. The emission wavelength and 

intensity are used to identify the base. This cycle is repeated “n” times to create a 

read length of “n” bases.  

 Paired end (2x121 bp) reads were mapped to reference genome (ce10) by using 

bowtie2302 aligner. Determination of the depth of coverage and  and variant calling, 

including SNPs and insertions or deletions, was performed using the GATK 

pipeline through a multi-step procedure303. The GATK architecture is designed to 

divide complex computations in two separate modules; traversal modules, which 

divide and prepare the data, and walkers modules, which provide efficient  

analysis of the data obtained from next generation sequencing. We first 

determined mismatches between the individual C. elegans strains and the 

reference genome and then compared the two strains directly. Finally, DNA-

mutations occurring in the mutant and not in the wild-type strain were 

characterized using the variant annotation tool provided by UCSC304. To limit the 

number of false-positives and potentially biologically meaningless results we 

discarded from the analysis both mismatches occurring in non-protein-coding 

portions of the genome and synonymous mutations. Thus, we restricted the 

analysis to mutations that resulted in insertion of stop codons, frame-shifts and 

non-synonymous translation. 
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6. Chemical mutagenesis of transgenic C.elegans  AD model 

(CL4176 strain) 

 

In transgenic C. elegans strain CL4176, the inducible expression of Aβ leads to a 

rapid Ab oligomers-induced paralysis and death255,257, that is complete after 48 

hours from induction (Fig. 6.1).  

 

	

Figure 6.1 Time course of paralysis in wild-type CL4176 worms. Egg-synchronized worms were 

placed for 48 h at 16 °C, until they are in the larval stage L2, and the temperature was then raised 

to 24 °C, to induce Aβ expression (blue line) and paralysis was scored at different time points up to 

48h. Control worms remained at 16°C (Aβ not induced, red line). *p<0,05 t-test induced vs not 

induced (mean ± SD, n=100, three independent assays). 

 

To identify the genes involved in the production of this obvious phenotype, a 

genome wide screening was performed by chemical mutagenesis induced by 

EMS. For this, we followed the scheme depicted in Figure 6.2 with minor 

modifications (see Material and Methods for a detailed description of the 

experiment). 
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CL4176 worms were mutagenized and then screened for paralysis resistance. 

Analysis of 15000 mutagenized worms in the F2 progeny revealed 8 nematodes 

that did not paralyze after temperature upshift were selected. These were 

transferred to new plates and let to self-fertilize at permissive temperature. Only 

three clones were able to grow in the F3 progeny, possibly because random 

mutagenesis by EMS could cause sterility or death in some mutated worms (Fig. 

2). The surviving clones (named MN4176, MN4176-2, and MN4176-3, 

respectively) were expanded for two generations and screened again in the 

paralysis assay. Briefly, the different clones were left to grow at permissive 

temperature until larval stage L2, and then they were transferred to 24°C. 

Paralysis was scored just before the temperature upshift, after 24 hours and after 

48 hours (Fig. 6.3). 



Results 
 
 

		
83	

 

Figure 6.2 Representative picture outlining a typical F2 screen after EMS mutagenesis for the 

selection of mutated worms (adapted from ref. 228). 

 

Data shown in Figure 6.3 show that only the MN4176 mutant strain confirmed the 

lack of paralysis after 48 hours at 24°C, whereas the other clones became 

progressively paralyzed after 48 hours of temperature upshift, although with 

different paralysis kinetics. These clones, false positive at the first screening, could 

be the result of somatic mutations that arose after EMS treatment that cannot be 

transmitted to the following progeny. Another reason could be that the mutations 
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generated by EMS did not result in a complete penetrance of the phenotype, as 

suggested by the different kinetics of paralysis of the mutated clones, compared to 

that of the control CL4176 strain. 

 

 

Figure 6.3 Paralysis kinetics of CL4176 and mutated worms selected after EMS mutagenesis.  

Egg-synchronized worms were placed for 48 h at 16 °C, until they are in the larval stage L2, and 

the temperature was then raised to 24 °C, to induce Aβ expression (red line) and paralysis was 

scored after 24 and 48h. Control worms remained at 16°C (Aβ not induced, black line). *p<0,05 t-

test induced vs not induced (mean ± SD, n=100, three independent assays). 

 

To possibly increase the number of mutated clones resistant to Aβ-induced 

paralysis, another EMS mutagenesis session in CL4176 worms was performed. 

After the F2 screen, two clones (MN4176-4 and MN4176-5) were selected, which 

did not paralyze after 48 hours of temperature increase to 24°C. However, these 
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observations were not confirmed when the paralysis assay was replicated in the 

following generations of the mutated nematodes (Fig. 6.4). 

 

Figure 6.4 Time course of paralysis in the worms selected after the second mutagenesis 

experiment with EMS. Egg-synchronized MN4176-4 and MN4176-5 worms were placed for 48 h at 

16 °C, until they are in the larval stage L2, and the temperature was then raised to 24 °C, to induce 

Aβ expression (red line) and paralysis was scored after 24 and 48h. Control worms remained at 

16°C (Aβ not induced, black line). *p<0,05 t-test induced vs not induced (mean ± SD, n=100, three 

independent assays). 
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In conclusion, EMS-mediated chemical mutagenesis resulted in the generation of 

different mutated worms with different paralysis kinetics, compared to the control 

strain. The majority of clones obtained after mutagenesis showed a delayed 

paralysis, after the increase of temperature. However, we obtained only one clone 

(MN4176) which was almost completely resistant to paralysis induced by the 

increase of temperature, and this clone was chosen for further characterization. 
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6.1 Time course of paralysis in new CL4176 worms 

	
During the course of the project it was observed that the presence of the Aβ 

minigene in CL4176 wild type worms appeared to be deleterious (even under non-

induced conditions), and presumed spontaneous deletions in these transgenes 

were observed multiple times (e.g., loss of the rol-6 marker). A possible 

explanation of this effect is that the deletions occur when large worm populations 

are maintained by "chunking", presumably due to constant low-level selection 

against the transgene.   

Thus, another copy of this strain was obtained from the CGC. The new strain 

showed a slower time course of paralysis, reaching complete paralysis after 72 

hours from the temperature upshift (Fig. 6.5). We found however, that MN4176 

worms did not paralyze even after 72 hours from temperature increase, indicating 

that mutagenesis did not delay the onset of paralysis (Fig. 6.5). 

 

Figure 6.5. Time course of paralysis of new CL4176 and MN4176 worms. Egg-synchronized 

CL4176 and MN4176 worms were placed for at 16 °C on fresh NMG plates seeded with OP50 E. 

coli. After 48 h the temperature was raised from 16 to 24 °C (red lines) and paralysis was scored at 

24, 48 and 72 hours from the temperature upshift. Data are shown as percentages ± SD of worms 

not paralyzed. *p<0,05 t-test induced vs not induced (mean ± SD, n=100, three independent 

assays). 
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The variability observed in the paralysis kinetics among various CL4176 strains 

could be due to different causes, whose determination fell outside of the scope of 

this project. However, these discrepancies had already been reported in literature. 

In fact, some reports indicate a complete paralysis of induced CL4176 worms after 

48 hours255, whereas others research groups have showed faster kinetics of 

paralysis, reaching 100% of paralyzed CL4176 after 24 hours from the 

temperature upshift258. 
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7. Analysis of Aβ expression in EMS-treated worms 

 

7.1  Analysis of Ab DNA in CL4176 and MN4176  worms 

	
Once obtained a mutated clone resistant to paralysis induced by temperature 

upshift (MN4176), possible alterations in the expression of Aβ were evaluated. 

First, the DNA sequence coding for human Aβ1-42 in CL4176 and in MN4176 

worms was analyzed. The majority of mutations inside the Aβ sequence are 

known to increase the oligomerization properties, and thus the toxicity, of the 

peptide144. Recently, however, the mutation A2T has been shown to be 

protective305, and in vitro experiments showed that this mutation delays the 

aggregation properties of Aβ peptide306. Moreover, nonsense mutations could 

arise after EMS treatment, resulting in the generation of inactive truncated 

peptides. To verify these possibilities, genomic DNA (gDNA) was extracted from 

staged populations of control and mutated CL4176 strains using standard 

procedures. The DNA yield was determined by measuring its concentration by 

absorbance at 260 nm. The ratio of the readings at 260 nm and 280 nm 

(A260/A280) provided an estimate of the purity of DNA with respect to 

contaminants that absorb UV, such as proteins. Good ratio values, ranging from 

1.8 to 2.0, were obtained for each DNA extraction (data not shown). 

  

After DNA extraction, the Aβ1-42 gene was amplified by polymerase chain 

reaction (PCR) analysis. The forward primer used for this analysis targets the 3’ 

end of the signal peptide, whereas the reverse primer targets DNA sequences in 



Results 
 
 

		
90	

the 3’UTR resulting in a PCR product of about 240 base pairs (bp). After the 

amplification, DNA bands were visualized by agarose gel electrophoresis (Fig. 7.1) 

 

 

 

Figure 7.1 Analysis of Ab DNA by agarose gel electrophoresis. gDNA was extracted and Ab 

sequence was amplified by PCR with the primers listed in Material and Methods. Then, PCR 

products were stained and run on a 1,5% agarose gel. Bands were visualized by UV 

luminescence. MK: DNA molecular ladder; lane a: band amplified from DNA of CL4176 worms; 

lane b: band amplified from DNA of CL802 worms; lane c: band amplified from DNA of MN4176 

worms. 

 

Figure 7.1 shows the results of the PCR reaction. In parallel to the DNA of 

MN4176 (lane c), DNA was also extracted from CL4176 worms (lane a, positive 

control), and from CL802 worms (lane b). CL802 is a transgenic strain which carry 

the same plasmid of CL4176 worms, but without the Aβ1-42 minigene, thus 

representing the negative control255. A single DNA band was observed in  

300	bp

MK   a    b    c



Results 
 
 

		
91	

CL4176 and MN4176 worms, with a molecular size of approximately 300 base 

pairs. As expected, no amplified products in the DNA of CL802 worms were 

observed, because of the lack of the Aβ1-42 gene in that strain. To investigate the 

presence of possible mutations in the Aβ DNA sequence in EMS-treated worms, 

the DNA bands of CL4176  and MN4176 strains were purified and sequenced.  

 

Analysis of the DNA sequences obtained from both strains showed a 100% 

identity with the human DNA sequence coding for Aβ inside the APP gene (Fig. 

7.2). 

 

 

Figure 7.2 Basic Local Alignment Sequence Tool (BLAST) analysis (via NCBI) of MN4176 DNA 

amplified with primers specific for Aβ1-42. The analysis resulted in 100% identity with the 126 bp 

sequence present in the human APP gene, coding for Aβ1-42. 

 

Taken together, these data suggest that the lack of paralysis observed in MN4176 

worms after temperature upshift is not due to any mutation in the DNA sequence 

of the Ab transgene. 
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7.2 Analysis of genetic expression of Ab in CL4176   and MN4176 worms 

	
Once it was demonstrated that there was an absence of any mutation in the DNA 

of Aβ coding sequence in MN4176 worms, their Aβ expression was next 

investigated, by measuring the levels of Aβ mRNA induced by temperature upshift. 

Transgenic CL4176 and MN4176 worms were propagated at 16°C until they 

reached the larval stage L2, and then they were shifted to the non-permissive 

temperature of 24°C for 48 hours. Control not induced populations were 

maintained at 16°C until they reached the same developmental stage (L4).  At this 

time point, worms were collected and the relative levels of Ab mRNA levels were 

measured by quantitative real-time PCR (qRT-PCR). 

Results are shown in Figure 7.3. Either CL4176 and MN4176 worms showed a 

significant increase in their levels of Aβ mRNA when shifted to 24°C for 48 hours, 

compared to the control, not induced, worms. Differences in the relative levels of 

Aβ mRNA between the two strains, with higher values for the wild type strain. It is 

worth noting that the smg-1ts-dependent silencing of transgenic CL4176 worms is 

often leaky, allowing for low levels of Aβ expression at permissive temperatures. 

This effect could vary between the two strains, also taking in consideration that the 

CL4176 strain used for this analysis was not the same from which the mutated 

clone was originated. 
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Figure 7.3 Relative increase of Ab mRNA levels in CL4176 and MN4176 worms resulting from 48 

hours upshift of the worms from 16°C to 24°C, determined by qRT-PCR. *p<0,05 t-test induced vs 

not induced (mean ± SD, n=6). 

 

To better compare the increase of Aβ mRNA of the two strains, the fold change 

levels of Aβ mRNA expression were calculated (Fig. 7.4). Although relative Aβ 

mRNA levels were different between the two strains, fold change values appeared 

to be very similar. 

	  

Figure 7.4 Relative increase of Ab mRNA levels in CL4176 and MN4176 worms resulting from 48 

hours upshift of the worms from 16°C to 24°C, determined by qRT-PCR. (mean ± SD, n=6). ns=not 

significant, p>0,05 t-test MN4176 vs CL4176 
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Finally, the kinetics of induction of Aβ mRNA in CL4176  and MN4176 worms were 

compared. Nematodes were propagated at 16°C until they reached the larval 

stage L2, and then they were shifted to 24°C. After 24, 48 or 60 hours, worms 

were harvested and relative Aβ mRNA levels were measured (Fig. 7.5). 

 

 

Figure 7.5. Temporal transcript accumulation of Ab in CL4176 and MN4176 worms. (mean ± SD, 

n=3-4 for each time point taken in consideration) 

 

Data in Figure 7.5 show that the increase of temperature resulted in a time-

dependent induction of Ab mRNA, with expression kinetics almost overlapping 

between CL4176 and MN4176 strains. 
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7.3 Analysis of Ab oligomers in CL4176 and MN4176 worms 

	
It was then investigated if the induction of Ab mRNA levels in MN4176 worms was 

followed by Ab protein expression. Figure 7.6 shows that Ab levels were 

comparable in wild type and mutated worms, as assayed by immuno-dotblot 

analysis. 

 

	  

 

Figure 7.6 Ab protein expression in CL4176 and MN4176 worms, 48 h after temperature upshifting. 

A) Representative immunodot-bot in which equal amounts of protein worm lysates (25 µg) were 

spotted in triplicate. Total proteins on the blotted membranes were stained using 0.1% Ponceau 
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Red solution and were used to normalize the immuno-specific signal for protein loading. B) 

Densitometric analysis of total Ab immunoreactivity, expressed as the mean ± SD of three 

experiments. **p<0,05 t-test analysis of induced vs not induced. 

 

The presence of Aβ oligomers in induced MN4176 worms was then evaluated, in 

comparison with the control strain. Western blot analysis revealed the presence of 

a specific Aβ-immunoreactive band running between 27 and 34 KDa (Fig. 7.7), 

suggesting the formation of Aβ aggregates. 

Despite previous reports indicated the co-existence of Aβ monomers with  

oligomeric species255,256, low molecular weight Aβ species were not detected, both 

in CL4176  and MN4176 worms. A possible explanation of this observation could 

be that at longer induction times, the progressive aggregation of Aβ, eventually 

leading to worm paralysis, shifted the monomers-oligomers equilibrium versus the 

aggregated species. 

 

 

Figure 7.7 Detection of Ab oligomers in CL4176 and MN4176 worms by Western blot analysis. 

Equal amounts of each protein worm lysate (50 µg) was run on a 12% SDS-PAGE and transferred 

to a PVDF membrane. After blocking, membrane was immunoblotted with anti Ab antibody (6E10). 

This experiment was replicated twice with similar results. 

MK
(KDa)
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17

1      2     3     4 
Legend:

1= CL4176 wt not induced
2= CL4176 wt induced
3= CL4176 mut-1  not induced
4= CL4176 mut-1 induced

Legend:

1=CL4176 not induced
2=CL4176 induced
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Finally, the presence of Ab oligomers in MN4176 worms was investigated by using 

a novel immunoassay based on Surface plasmon resonance (SPR)207. SPR is a 

powerful technique used to study macromolecular interactions in real time without 

any molecule labelling. In a SPR experiment, one of the two interacting partner is 

immobilized on a sensor chip surface, and the other molecule is flowed over the 

immobilized one. Binding is measured in real time as a change of mass at the 

surface, and association and dissociation kinetics can be estimated, as well as its 

affinity. 

By using immobilized anti Ab 4G8 antibody as a detecting agent, it was found that 

the SPR-based immunoassay was able to specifically detect Ab oligomers which 

are transiently formed during the incubation of synthetic Ab peptide, discriminating 

them from monomers and higher order aggregates207. This assay also allowed the 

detection of Ab oligomers in lysates from transgenic CL4176 worms207.  

Thus, lysates from CL4176 and MN4176 worms upshifted to 24°C for 48 hours 

were flowed over immobilized 4G8 in the SPR assay. Lysates from noninduced  

worms of both strains were used as control (Fig. 7.8). Although the injection of 

lysates obtained from noninduced MN4176 worms resulted in a binding signal 

higher than the signal observed injecting lysates from noninduced CL4176, the 

binding levels of the lysates prepared from induced CL4176 and MN4176 worms  

to immobilized 4G8 were comparable. These results indicated a specific binding 

signal due to the presence of Ab oligomers in induced MN4176 worms.  
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Figure 7.8 SPR studies with native Aβ oligomers extracted from CL4176 and MN4176 worms. 

Lysates obtained from CL4176 and MN4176 strains 48 hours after the temperature rise were 

injected for three minutes (bar) onto immobilized 4G8. Dissociation was followed for the following 

11 min.  Lysates from not induced CL4176 and MN4176 nematodes were injected in parallel as 

control. The shape of the curves, in particular the slow dissociation rate, suggested that the binding 

was due to oligomeric species207. This experiment was replicated twice, with similar results.  

 

 

Notably, these data also indicate that the lack of paralysis observed in induced 

MN4176 worms is not due to differences in the production of Ab (oligomers), in 

comparison with CL4176 worms, and suggests that the mutation(s) affects 

downstream mechanisms activated by Ab oligomers. 
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8. Genome wide sequencing of CL4176 and MN4176 worms 

	
8.1 Results from the first whole genome sequencing. 

	
Total Genomic DNA (gDNA) from CL4176 and MN4176 worms was sequenced 

and compared at first with the reference genome of founder Bristol N2 worms. 

Unexpectedly, 80-90% of sequenced DNA, both from wild type and EMS-treated 

worms, did not align with the reference genome. A BLAST analysis was carried 

out to identify the source of the non-matching DNA, indicating that the exogenous 

DNA belonged to several bacteria. A more detailed analysis revealed that the 

bacterial DNA mostly was ascribable to that of Stenotrophomonas maltophilia, in 

particular the strains K279a and R551-3. Another relevant source of bacterial DNA 

came from Bacillus thuringiensis and from different strains of Pseudomonas (Fig. 

8.1) 
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Figure 8.1. Circle charts representing the proportions of the various bacterial DNA found in 

CL4176 wild type worms (top panel ) and MN4176 worms (bottom panel). 

 

 

 

To verify the bacterial contamination in the DNA of worms, PCR analysis with 

oligonucleotidic primers designed to specifically distinguish two strains of 

Stenotrophomonas maltophilia and a set of primers to recognize Bacillus 

thuringiensis was performed (Table 8.1). 
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Primers Sequence
S	Malt	Seq1_Forward TCGTGAAGGCCGTTATTCGG
S	Malt	Seq1_Reverse TGACGATCGAGTTCCTGGTG
S	Malt	Seq2_Forward GCTGGTCGATCCTTACGGTG
S	Malt	Seq2_Reverse ATCAGCGCCATGGTCTCTTC
B.Thur_Forward TGTAGTCTGAGCGAAGCAAGA
B.Thur_Reverse GACTGCATTTCAGCATCCGT  

Table 8.1 Oligonuecleotidic primer specific for S. maltophilia (S. malt Seq-1 and S. malt Seq-1) 

and for B. thuringiensis (B. thur).  

 

For each worm strain two DNA samples obtained from independent experiments, 

and DNA from CL802 worms were included in the analysis. PCR products were 

separated on a 1.5% agarose gel and specific bands were visualized by staining 

with a DNA binding dye. Results of the PCR analysis are shown in Figure 8.2.  

 

Figure 8.2.  Detection of DNA from bacteria in CL4176, MN4176 and CL802 by PCR analysis. 

genomic DNA was extracted from CL4176, MN4176 and CL802 worms and probed with primers for 

S.maltophilia (S.malt Seq-1 and -2, Table 8.1) and B.thuringiensis (B.thur, Table 8.1). Blank 

reactions were prepared with PCR mixture without any DNA. 

MK								1									2									3								4							5								6									7								8										9

MK				10				11								12						13					14			15				16				17		18				

Samples

1)	CL4176	wt DNA	1– S.	malt Seq-1
2)	CL4176	 wt DNA	1	– S.	malt Seq-2
3)	CL4176	wt DNA	1	– B.	thuir
4)	CL4176	mut-1	DNA	1	– S.	malt Seq-1
5)	CL4176	mut-1	DNA	1	– S.malt Seq-2
6)	CL4176	mut-1	DNA	1	– B.	thuir
7)	CL802	DNA	– S.	malt Seq-1
8)	CL802	DNA	– S.	malt Seq-2
9)	CL802	DNA	– B.	thuir
10)	CL4176	wt DNA	2– S.	malt Seq-1
11)	CL4176	wt DNA	2– S.	malt Seq-2
12)	CL4176	wt DNA	2	– B.	thuir
13)	CL4176	mut-1	DNA	2	– S.	malt Seq-1
14)	CL4176	mut-1	DNA	2	– S.	malt Seq-2
15)	CL4176	mut-1	DNA	2	– B.	thuir
16)	Blank– S.	malt Seq-1
17)	Blank– S.	malt Seq-2
18)	Blank– B.	thuir

Samples

MK) Molecular Marker
1) CL4176 DNA-S.malt Seq-1
2) CL4176 DNA-S.malt Seq-2
3) CL4176 DNA-B.thur
4) MN4176 DNA-S.malt Seq-1
5) MN4176 DNA-S.malt Seq-2
6) MN4176 DNA-B.thur
7) CL802 DNA-S.malt Seq-1
8) CL802 DNA-S.malt Seq-1
9) CL802 DNA-B.thur
10) CL4176 DNA 2-S.malt Seq-1
11) CL4176 DNA 2-S.malt Seq-2
12) CL4176 DNA 2-B.thur
13) MN4176 DNA 2-S.malt Seq-1
14) MN4176 DNA 2-S.malt Seq-2
15) MN4176 DNA 2-B.thur
16) Blank-S.malt Seq-1
17) Blank-S.malt Seq-2
18) Blank-B.thur
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A large bacterial contamination in the DNA of all nematode strains analyzed was 

found. This contamination extended not only to transgenic worms, but also to N2 

wild type worms maintained in our laboratories and to other nematodes strains not 

related to this project (data not shown).  

 

Stenotrophomonas maltophilia is a Gram-negative bacterium acting as 

opportunistic pathogen in immunocompromised individuals. Although some reports 

described that S. maltophilia strains can infect C. elegans, their pathogenicity has 

been debated. As previously reported307, we hypothesized that S. maltophilia 

K279a and R551-3 were avirulent, since transgenic C. elegans strains maintained 

under normal conditions did not exhibit a reduction in survival. 

Bacillus thuringiensis is a Gram-positive soil bacterium which is known to produce 

toxins which are pathogenic for C. elegans308,309. As for S. maltophilia, infection of 

B. thuringiensis did not appear to have pathogenic activity on our C. elegans 

strains. 

 

To overcome the bacteria contamination and to obtain C. elegans DNA samples 

suitable for whole genome sequencing, we purified eggs from a population of 

nematodes. Briefly, a population of gravid CL4176 wild type and mutated worms 

underwent a strong bleach treatment, which resulted in the complete elimination of 

bacteria and worms, leaving intact the eggs, due to their resistant shell. Following 

this treatment, isolated eggs were recovered and incubated 24 hour in solution, to 

obtain viable worms in the larval stage 1 (L1). Total DNA from L1 worms was 

extracted and PCR analysis was performed to verify the presence of any bacterial 

contamination (Fig. 8.3). 
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Figure 8.3. Detection of DNA of S. maltophilia and B. thurigiensis in CL4176 and MN4176 L1 

worms by PCR analysis after egg purification. 100 ng of genomic DNA were amplified with 

primer specific for S.maltophilia (S.malt Seq-1, Table 8.1), B.thurigiensis (B.thur, Table 8.1) or 

the C.elegans promoter of hsp-16 (phsp16, Forward: TCTGAGCCCGCTTTCCTTAT; Reverse: 

AGAACATTCGAGCTGCTTGT). 

 

Data shown in Figure 8.3 clearly demonstrated a very low amplification of the DNA 

of bacterial origin in both C. elegans strains, in comparison with the amplification 

of the DNA sequence of the promoter of the C. elegans gene hsp-16 (lane 3 and 

6, Fig. 8.3), here used as positive control. 

 

 

 

 

 

 

 

MK				1								2							3								4								5							6							7							8							9	

Samples:

MK:	DNA	ladder 100	bp

1:	CL4176	L1_SM1
2:	CL4176	L1_BT
3:	CL4176	L1_Phsp16
4:	CL4176	mut L1_SM1
5:	CL4176	mut L1_BT
6:	CL4176	mut L1_Phsp16
7:	Blank_SM1
8:	Blank_BT
9:	Blank_Phsp16

Samples:

MK: DNA ladder
1) CL4176 L1 DNA-S.malt Seq-1
2) CL4176 L1 DNA-B.thur
3) CL4176 L1 DNA phsp16
4) MN4176 L1 DNA-S.malt Seq-1
5) MN4176 L1 DNA-B.thur
6) MN4176 L1 DNA phsp16
7) Blank-S.malt Seq-1
8) Blank-B.thur
9) Blank-B.thur
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8.2 Results from the second whole genome sequencing. 

 

Having demonstrated the complete absence of any bacterial contamination in C. 

elegans, a second whole genome sequencing of wild type and EMS-treated 

CL4176 DNA was performed. After alignment with DNA of the N2 founder worms, 

bioinformatics algorithms were used to call newly acquired base substitution, or 

small insertion or deletions, listed in Table 8.2.  

 

For both strains, a huge amount of mutations in their DNA was discovered, 

compared to the deposited reference genome of N2 worms (Table 8.2).  

 

 

Table 8.2 Total number of mutations found in CL4176 and MN4176 worms after whole genome 

sequencing. 

 

 

 

 

 

n° % n° %
downstream	gene	variant 7199 32,445466 6892 32,1380275
frameshift	variant 111 0,50027042 101 0,47097225
intron	variant 5566 25,0856319 5182 24,1641408
missense	mutations 771 3,47485127 811 3,78176731
non	coding	transcript	exon	variant 95 0,42815937 102 0,47563535
splice	region	variant 117 0,52731206 96 0,4476568
stop	gained 12 0,05408329 22 0,10258802
stop	lost 1 0,00450694 1 0,00466309
synonymous	variant 938 4,22751037 996 4,64443926
upstream	gene	variant 7378 33,2522084 7242 33,7701096

CL4176	 MN4176
type	of	mutations
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Similar numbers of mutations were found between the two C. elegans strains, 

suggesting that most of these mutations were not due to treatment with EMS, 

because they were also present, in similar percentages, in control CL4176 (Table 

8.2). These variant could be originated by the irradiation of CL4176 worms with g-

rays, a procedure used to integrate the plasmid DNA carrying the Ab minigene in 

the chromosomal DNA257. Indeed, as shown in Table 8.3, a large proportion of 

mutations in the DNA of MN4176 worms (ranging from 40 to more than 60%) was 

found identical in the DNA of CL4176 worms. The majority of the mutations fell, for 

both worm strains, in non coding regions of DNA (downstream gene variant and 

upstream gene variant) or inside intronic regions. 

 

 

Table 8.3 Number and percentages of mutations found in MN4176 worms found  identical in 

CL4176 worms, afterwhole genome sequencing. 

 

 

 

n° %
downstream	gene	variant 4531 65,75
frameshift	variant 60 60,39
intron	variant 3334 64,35
missense	mutations 466 57,58
non	coding	transcript	exon	variant 66 65,68
splice	region	variant 50 53,12
stop	gained 9 40,9
stop	lost 1 100
synonymous	variant 532 53,41
upstream	gene	variant 4412 60,92

type	of	mutations
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Mutations that likely altered gene functions, including for example frameshift 

variants, missense mutations and stop gained mutations, represented less than 

5% of the total amount of mutations found in worms. Finally, less than 20% of the 

total mutations were found to be unique for each worm strain analyzed. 

 

To gain insight of a specific effect of EMS in mutagenized worms, we focussed on 

our attention on mutations that likely affected protein functions. In addition, only 

mutations with an allelic frequency of 1, (i.e. mutations found in homozygous 

state), were considered. In this way, only mutations that effectively could be 

generated by treatment with EMS were selected. These mutations, once 

transmitted to the following generations in homozygous state, possibly generated 

the phenotype of interest. 

Notably, in CL4176 wild type worm no mutations in the homozygous state affecting 

protein function were found. On the contrary, in EMS-treated worms several 

specific mutations leading to putative loss of protein function were identified.  Most 

of the mutations generated by EMS treatment in MN4176 worms were G to A or C 

to T transitions, as previously reported in literature227. 

 

The identified mutations were: 

1) Point mutations that led to premature stop codons, which resulted in a 

truncated and likely inactive protein (Table 8.4). The genes found were 

C18E3.5, which is predicted to code a protein involved in egg laying and 

C17E4.10. However, no data about its function is available. 
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Table 8.4. Stop codon mutations in MN4176 worms. Annotations were from Wormbase 

 

To confirm that the stop codon mutations were not due to any sequencing errors, a 

set of oligonucleotidic primers was designed in order to amplify regions of DNA 

sequence of C18E3.5 and C17E4.10 containing the mutations (Table 8.5). 

 

 

Table 8.5. Oligonucleotidic primers for stop codon mutations. 

 

 

Then, genomic DNA from CL4176 and MN4176 was extracted and amplified by 

PCR with the primers listed in Table 8.5. PCR products were separated on 

agarose gel, then DNA was purified and sequenced by Sanger analysis. 

As shown in Figure 8.4 and Figure 8.5, the expected single point substitution G to 

A was found in C18E3.5 and C17E4.10 genes of MN4176 worms, confirming the 

results of the whole genome sequencing. Moreover, the presence of a single peak, 

corresponding to a single base in that specific position, indicated the homozygosity 

of the stop codon mutation for both the interested genes, as predicted by whole 

genome sequencing analysis. 

 

Gene Consequence Amino	acid	change Codon	change Process
C18E3.5 stop_gained W/* tGg/tAg Ovipostion
C17E4.10 stop_gained W/* tgG/tgA Protein	binding

Sequence	Name Sequence
C18E3.5stop_forward GTTTTGGACGCGGAATTAAA
C18E3.5stop_reverse CATTTGAGGACCTCGACGAT
C17E4.10stop_forward CCTCGATTCTCCATCCAAAG
C17E4.10stop_reverse TGTATTTGGAGCATCTGACTGAG
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Figure 8.4. Analysis of DNA sequence of C18E3.5 gene in A) CL4176 and B) MN4176 worms. 

DNA sequences were obtained by PCR using oligonucleotidic primers listed in Table 8.4. The site 

of mutation is highlighted in blue. 

 

 

 

 

 

 

A

B
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Figure 8.5. Analysis of DNA sequence of C17E4.10 gene in A) CL4176 and B) MN4176 worms. 

DNA sequences were obtained by PCR using oligonucleotidic primers listed in Table 8.4. The site 

of mutation is highlighted in blue. 

 

2) point mutations that led to missense substitutions, which resulted in the 

change of a single amino acid (Table 8.6). 19 genes with missense 

mutations were found in MN4176 worms, encoding for proteins involved in 

different biological processes, such as reproduction, protein transport and 

lipid storage and metabolism. Most importantly, several genes found in this 

category were previously described to regulate worm longevity. For 

example, three genes (B0205.10, Y47H9C.9 and Y39F10C.1) were 

correlated with the determination of lifespan in C. elegans. While RNAi-

mediated deletion of B0205.10 and Y47H9C.9 shortened lifespan310,311,  

inactivation of Y39F10C.1 increases longevity312.  

 

A

B
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Table 8.6 Missense mutations found in MN4176 worms. Annotations were from Wormbase 

 

Overall, the second genome wide screening identified several genes with single 

point mutations that could have an impact on protein function. However, many of 

these genes have not yet fully characterized, thus it’s difficult to predict a possible 

interaction with Ab oligomers or with pathways that mediate their toxicity. 

	
	
	
	
	
 

 

 

 

Gene Consequence Amino	acid	change Codon	change Process
F53G12.9 missense_variant R/Q cGa/cAa Unknown
mbtr-1 missense_variant R/C Cgt/Tgt Regultion	of	transcription
Y51F10.3 missense_variant V/I Gtt/Att Unknown
lpd-3 missense_variant P/L cCg/cTg Lipid	storage

ZK973.1 missense_variant D/N Gac/Aac Nucleic	acid	metabolism
ubr-4 missense_variant S/T Tcg/Acg stability	of	MEC-2	complex
pnk-1 missense_variant V/M Gtg/Atg Lipid	storage
F26B1.5 missense_variant R/K aGa/aAa Protein	dephosphorylaton
hpo-11 missense_variant S/L tCa/tTa Lipid	storage
fcp-1 missense_variant A/V gCt/gTt Embryo	development
sec-8 missense_variant G/R Gga/Aga Protein	transport

B0205.10 missense_variant I/F Att/Ttt Adult	lifespan
Y47H9C.9 missense_variant F/L ttC/ttA Adult	lifespan
F41D3.9 missense_variant A/T Gca/Aca Unknown
clec-13 missense_variant A/T Gcc/Acc Innate	immunity
clec-15 missense_variant A/T Gcc/Acc Innate	immunity
acox-1 missense_variant G/E gGa/gAa Lipid	metabolism
ZK1225.1 missense_variant D/N Gat/Aat Unknown
Y39F10C.1 missense_variant P/S Cca/Tca Adult	lifespan
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9. Analysis of IIS pathway activation in CL4176 and MN4176 

worms 

 

In C. elegans, the Insulin/Insulin-like growth factor signalling (IIS) cascade 

regulates worm longevity, under DAF-16 mediated-expression of different 

genes313. It has been previously shown that the expression of Ab oligomers in 

transgenic CL4176 worms leads to the induction of specific genes involved in 

stress-mediated response, including those related to the IIS pathway257,258.  

The C. elegans IIS cascade is nearly identical in mammals, and several studies 

performed in C. elegans models of proteotoxicity indicate that this pathway links 

aging with the onset of protein aggregation and neurodegeneration235,251. 

It was investigated if, even in EMS-treated CL4176 worms, the expression of Ab 

oligomers resulted in the induction of daf-18, the sole regulator of the IIS cascade. 

To do so, qRT-PCR analysis was performed in CL4176 and MN4176 worms 

induced for 48 hours. 

After 48 hours of temperature rise, MN4176 worms increased the expression of 

daf-18 mRNA, with levels comparable to that of induced CL4176 worms (Fig. 9.1). 
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Figure 9.1 Induction of daf-18 gene expression in CL4176 and MN4176 worms. Data are 

expressed as fold change (mean ± SD, n=4) ns = not significant, p>0,05 t-test analysis of MN4176  

vs CL4176. 

 

 

Then, the expression of the target genes of DAF-16 was analyzed, in particular the 

heat small proteins (HSP) chaperons family, including hsp-16.2 and hsp-16.41. 

The upregulation of these genes due to the expression of toxic Ab oligomers had 

also been previously demonstrated257,258. 

Figure 9.2 shows the results of RT-QPCR assay for the gene expression of hsp-

16.2 and hsp-16.41 in CL4176 and in MN4176 worms. 

 

 

 

 

CL4176 MN4176
0

5

10

15

20

fo
ld

 c
ha

ng
e 
da
f-1
8

(2
-Δ

C
t i

nd
uc

ed
/2

-Δ
C

t n
ot

 in
du

ce
d )

ns



Results 
 
 

		
113	

 

Figure 9.2 Induction of hsp genes in CL4176 and MN4176 worms. A) relative hsp-16.2 mRNA and 

B) relative hsp-16.41 mRNA levels. **, *** p<0,05 t-test analysis of MN4176 vs CL4176. 

 

In CL4176 worms it was observed, as expected, that the raising of temperature 

enhanced the transcription of hsp-16.2 and hsp-16.41 (Fig. 9.2). This was not 

found in induced MN4176 worms, where the transcription was actually 

downregulated (Fig. 9.2). 

In conclusion, these data suggest that activation of the IIS pathway and 

transcription of HSP chaperons could play an important role Ab toxicity, as 

demonstrated by comparing the results in CL4176 worms (showing Ab-induced 

paralysis) with those in MN4176 worms (protected from paralysis).
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The aim of this project was to identify genetic regulators involved in the toxicity or 

in the formation of Ab oligomers, by using an unbiased genome-wide screening in 

a transgenic C. elegans model of AD. 

Numerous genome-wide screenings have been employed in C. elegans models of 

protein misfolding and aggregation diseases. These screens have identified a 

multifaceted network of mediators of protein aggregation and toxicity. These 

mediators include proteins with a known role in maintaining homeostasis, but also 

proteins involved in unrelated pathways. 

 

To the best of my knowledge, this is the first genome-wide screening ever 

performed in transgenic C. elegans expressing Ab. In this model, the inducible 

expression of the human Ab1-42 peptide in the body wall muscles leads to a rapid 

paralysis and death257. It was previously shown that the paralysis of these 

transgenic worms is strictly associated with the accumulation of Ab oligomeric 

species255. 

After chemical mutagenesis by EMS, a viable mutant clone resistant to paralysis 

was obtained. Notably, this clone showed no paralysis even at longer induction 

times, suggesting that the effects of mutagenesis did not result just a delay in 

paralysis onset.    

An extensive work was carried out to evaluate the Ab expression in this clone. 

Genetic and biochemical studies confirmed that the chemical mutagenesis did not 

alter the Ab coding sequence DNA, nor impaired Ab mRNA transcription. More 

importantly, induced mutated worms were able to produce Ab protein to similar 

levels compared to the control CL4176 strain. Finally, Ab expression resulted in 
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the formation of Ab oligomers in both strains. Thus, in MN4176 worms, resistance 

to paralysis was not due to defects in Ab oligomers formation, and this simple 

model represent a unique in vivo system where the expression of Ab oligomers do 

not cause toxicity. 

Other clones other than MN4176 were identified after EMS mutagenesis. When 

induced to express Ab oligomers, these worms showed different paralysis kinetics, 

compared to the control strain CL4176. The most striking differences were 

observed after 24 hours of temperature shift, where in most of the mutated worms 

no paralysis was observed. However, after 48 hours of temperature increase, 

these worms almost completely get paralyzed. It could possible that mutations in 

specific genes could completely abolish the toxic effect of Ab oligomers (as 

observed in MN4176 worms), while mutations in other genes modulate and/or 

delayed the Ab oligomers-induced paralysis. 

 

Then, next generation sequencing was performed to identify the genes specifically 

mutated in the paralysis-resistant strain, in comparison with the control strain. 

Unexpectedly, in the first experiment we found a huge bacterial contamination in 

all the worm strains analyzed, which severely affected the quality of the 

sequencing. Thus, the recent establishment of high throughput DNA sequencing 

analysis necessitates to pay attention in developing strategies to avoid any 

contamination. We successfully eliminated any bacterial contamination from 

CL4176 and MN4176 worms, allowing us to obtain high quality worm DNA needed 

to perform whole genomic sequencing.  
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After the sequencing, we refined the analysis in order to select only homozygous 

mutations affecting protein function specific for MN4176 worms. Most of these 

mutations were G to A single substitutions, as expected with EMS mutagenesis227. 

Following this analysis, only two genes were found with mutations associated with 

a stop codon, suggesting the expression of truncated and, likely, inactive proteins. 

However, no functional data about these genes is reported, thus limiting possible 

considerations about their possible interaction with Ab oligomers.  RNAi- mediated 

silencing of the expression of these genes in CL4176 worms will provide important 

clues about their role in Ab oligomers-mediated toxicity. 

The rest of the mutations found in MN4176 worms were missense mutations, in 

which a single base substitution led to a change in the coded amino acid. 

However, it is difficult to predict if these types of mutations actually affect the 

protein function. The mutated genes found in MN4176 worms encodes for proteins  

involved in different biological functions, for example DNA/RNA metabolism, 

protein trafficking, determination of adult lifespan or  lipid storage and metabolism. 

It has been previously demonstrated with polyglutammine proteins that 

aggregation can be regulated by a complex integration of biosynthetic events, from 

RNA synthesis to protein degradation284. Thus, it could also be possible that the 

genes mutated in MN4176 play in an orchestrated manner to mediate the 

formation or the toxicity of Ab oligomers.   

Among the candidate genes, one was mutated, named pnk-1, which in previous 

reports was correlated with nematode ageing. 

pnk-1 is the ortholog of human PNK4 gene and encodes one of the two 

pantothenate kinase in C. elegans, the rate-limiting enzymes involved in the 

biosynthesis of coenzyme A314. Deletion of pnk-1 leads to a decreased motility and 
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lifespan314,315. It has been also suggested that pnk-1 could be a direct target of 

daf-16311,316, the main downstream effector  of the Insulin/Insulin-like growth factor 

signalling (IIS) cascade238.  

In C. elegans the IIS cascade is known to regulate energy and lipid metabolism, 

lifespan and protein homeostasis in response to different stress agents such as  

heat shock, oxidative stress and aggregated misfolded proteins235,238. daf-16 is 

negatively regulated by daf-2, which encodes the worm insulin receptor; 

decreased daf-2 activity extends worm lifespan. Interestingly, in mutant worms 

with reduced expression of daf-2, pnk-1 mRNA levels  were found increased up to 

5 times316. However, the role of this gene in relation to Ab oligomers-mediated 

toxicity has never been investigated; to address this point, a possible future 

strategy will be the use of RNA interference to downregulate the expression of 

pnk-1 in CL4176 worms and then evaluate the effects on worm paralysis. A 

reduction or abrogation of paralysis, as observed in MN4176 worms, could help to 

elucidate the molecular mechanisms underlying the toxicity induced by Ab. 

Another gene found mutated in MN4176 worms was sec-8, which encode for a 

component of the exocyst complex, a multiple protein complex essential for 

targeting exocytic vesicles to specific docking sites on the plasma membrane, 

allowing the delivery of specific receptors to their location, for example NMDAR 

receptors targeted at post-synaptic densities317. Interestingly, like pnk-1, the 

promoter region of sec-8 contain the  DAF-16 binding DNA sequence 

TTGTTTAC316. It is possible that, as for many genes target of DAF-16, also the 

expression of pnk-1 and sec-8 could be regulated in response to Ab oligomers.  

Finally, another possible DAF-16 downstream gene found mutated in MN4176 

worms was Y39F10C.1, encoding for a vitellogenin membrane outer layer protein, 
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likely involved in reproduction. In  previous studies312, inactivation of this gene led 

to an increase in lifespan, suggesting that the vast amount of energy a  worm 

spend on reproduction could limit the resources needed for life maintenance.   

How suppression of the expression of Y39F10C.1 may affect Ab oligomer-

mediated toxicity remains to be clarified and will be the subject of future studies.   

 

Different lines of evidence suggest that a reduction of IIS protects from toxic 

protein aggregation. It has been shown that in worms expressing toxic aggregated 

polyQ stretches, a downregulation of components of the IIS cascade mediated by 

RNA interference led to a reduction of the toxicity236. These findings were also 

confirmed in transgenic worms expressing Ab235. These studies have also 

demonstrated the role of molecular chaperones as important players  in protection  

from proteotoxicity. Among them, the family of small heat shock proteins (hsp)-16, 

which expression is dependent of daf-16, has been found to be upregulated in 

response to Ab aggregation and to interact directly with Ab fibrils in transgenic C. 

elegans251,257,258. This chaperon family is homologous to human alphaB-crystallin, 

an intracellular ATP-independent heat shock protein which role is to prevent 

protein aggregation by binding to improperly folded proteins318,319. Notably, 

different studies have shown that alphaB-crystallin is increased in the brains of AD 

patients and is associated with senile plaques320,321. These observations also point 

to a significant role of the intracellular Ab pool in Alzheimer’s disease, thus 

confirming the validity of transgenic C. elegans expressing intracellular Ab as a 

simple model to study the mechanisms of Ab oligomers-induced toxicity. In this 

thesis, it has been demonstrated that, following Ab oligomers expression in 
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CL4176 worms, the induction of daf-18, the sole regulator of the IIS cascade, led 

to an upregulation of hsp-16 genes, as previously shown257,258. Surprisingly, in 

mutagenized MN4176 worms, where Ab oligomers did not cause paralysis, the 

expression of hsp-16 genes was downregulated, although the induction levels of 

daf-18 were comparable to those of CL4176.  This observation may indicate that in 

C. elegans, different molecular pathways, other than the IIS cascade, regulate the 

expression of specific genes important for the response to toxic aggregated 

proteins. This is, for example, the case of HSF-1, which has been demonstrated to 

have a joint activity with DAF-16 in regulating proteotoxicity in C. elegans235,238. 

Another protein, MOAG-4, not related to the IIS cascade or other aging-related 

pathways, has been recently linked to the toxicity of misfolded proteins277. Future 

studies will evaluate the upregulation of HSF-1 and MOAG-4 in MN4176 worms, 

with or without induction of the expression of Ab oligomers. 

 

The finding that in MN4176 the downregulation of hsp-16 genes is correlated with 

the absence of paralysis in the presence of Ab, may suggest that alphaB-crystallin 

promotes the formation of toxic Ab oligomers, by binding directly to the misfolded 

peptide. This hypothesis is in contrast with the general idea that the induction of 

DAF-16 target genes (including hsp-16) is a protective mechanism, either by 

mediating Ab disaggregation or by fostering the aggregation of Ab in higher 

molecular assemblies, with lower toxicity238. To find out the role of alphaB-

crystallin it could be relevant to silence the expression of hsp-16 in CL4176 worms 

and evaluate the effects of this downregulation on Ab oligomers-induced paralysis. 
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In conclusion, the data obtained in this thesis work and the evidences found in 

literature suggest that, among the mutated genes found in MN4176 worms, there 

could be novel mediators of Ab oligomers toxicity in C. elegans. How these genes 

and their related proteins act, for example by interacting directly with misfolded Ab 

or by regulating specific molecular pathways such as the IIS cascade, has still to 

be elucidated. As demonstrated by various genome-wide screenings in C. elegans 

models of protein misfolded diseases, several proteins are involved in protein 

homeostasis. Thus, it cannot be excluded that, in CL4176 strain, different proteins 

participate in the Ab oligomers-induced paralysis. 

Although more studies are needed to confirm and substantiate the data obtained 

from the genome-wide screening, the mutated CL4176 strain obtained during the 

course of this thesis represent a novel tool to investigate in C. elegans the 

mechanisms of Ab oligomer toxicity. 
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