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Abstract 

 

Idiopathic intracranial hypertension (IIH) is a neurological disorder characterised by raised 

cerebrospinal fluid (CSF) pressure in the absence of any intracranial pathology.  IIH mainly 

affects obese women between the ages of 15 and 45.  Two possible mechanisms that 

could explain the increased CSF pressure in IIH are excessive CSF production by the 

choroid plexus epithelium or impaired CSF drainage back into the venous blood but the 

molecular mechanisms controlling these in IIH remain to be determined.  

 

In vivo ventriculo-cisternal perfusion and variable rate infusion techniques assessed 

changes in rates  of CSF secretion/resistance to CSF drainage in male and female Wistar 

rats fed either a normal control or high-fat (HF) diet, following treatment with 

inflammatory mediators already found to be elevated in the CSF of IIH patients: 

chemokine (C-C motif) ligand 2 (CCL2), interleukin (IL)-17 (IL-17), IL-6, IL-1β, tumour 

necrosis factor-α (TNF-α), as well as adipocyte-derived hormone leptin and the 

glucocorticoid hydrocortisone (HC).   

 

Female Wistar rats raised on a HF diet were shown to have the highest CSF secretion and 

lowest CSF drainage rates under untreated conditions.  Increased CSF secretion was 

observed in rats of all genders and diets following TNF-α or HC treatment, however the 

greatest increase by TNF-α and HC over basal levels was observed in female rats raised on 

a HF diet.  In addition, female rats on a HF diet, treated with CCL2 or IL-17, displayed an 

increase in resistance to CSF drainage when compared to untreated controls (indicating 

lower levels of CSF drainage).  

 

Therapies targeting HC, TNF-α, CCL2 and/or IL-17, whether separately or in combination, 

may be beneficial to modulate rates of CSF secretion and/or resistance to CSF drainage 

pathways, both factors likely contributing to the raised intracranial pressure observed in 

obese female IIH patients.  

 

Study supported by: Prof. Ignacio A. Romero, Dr. A. Jane Loughlin, Prof. Basil Sharrack,  

Dr. Jane E. Preston. 
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1 General introduction 

Idiopathic intracranial hypertension (IIH) is a neurological disorder characterized 

by raised cerebrospinal fluid (CSF) pressure in the absence of any intracranial 

pathology or secondary causes of IIH (Dhungana et al. 2009).  The first description 

of the condition was outlined by Heinrich Quincke (1893), a German physician, 

calling it “serous meningitis” (Rowe & Sarkies 1998).   When identifying the cause 

of a disease, clinical observations and a pathological link first need to be 

recognised.  Various causative factors have been postulated as to the incidence of 

IIH, however, with little strong evidence.  There may not be a single cause of the 

disease but many aetiological factors.  Identifying biomarkers within the CSF, as 

indicators of increased CSF pressure has been used to present an insight into the 

pathogenesis of IIH.  Two mechanisms that could explain the increased CSF 

pressure in IIH are excessive CSF production or impaired absorption of CSF (Pearce 

2009) (Bateman 2008).  However, the most accurate pathological theory of IIH is 

likely to be multifactorial (Raoof et al. 2011). 

 

1.1 Central nervous system fluid dynamics 

In order to understand the pathogenesis of IIH, the dynamics of the central nervous 

system (CNS) fluid movement will first be reviewed.  The blood brain barrier (BBB) 

(see Section 1.2) is one of three barrier sites between the brain and the blood 

(Figures 1.1, 1.2, 1.3 and 1.4); the other two comprising of the blood-CSF-barrier 

(BCSFB) (see Section 1.3) and the arachnoid epithelium (see Section 1.5) (Abbott 
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2004).  All of which are essential for the normal function of the central nervous 

system.   

 

The BBB is a highly selective permeability barrier that allows the passage of water 

and lipid soluble molecules, which are essential for neural function, from the blood 

and into the brain.  Overcoming the BBB is essential for the delivery of therapeutic 

agents into the brain.   

 

The interstitial fluid (ISF) and the CSF constitute the two major extracellular fluids 

(ECF) in the brain (Redzic et al. 2005).  The brain capillary endothelium of the BBB 

is the main interface between blood and ISF and regulates the production of ISF, 

which is secreted into the brain parenchyma or perivascular space (Figure 1.1).    

 

The CSF is produced by the choroid plexus epithelium which lies as the main 

barrier between the blood and ventricular CSF, therefore constituting the BCSFB.  

The BCSFB allows the flow of CSF along the ventricular system and into the 

subarachnoid space (SAS).  In addition, even though there is a bidirectional 

movement of ISF and CSF between the two compartments through the ependyma; 

there is a net movement of ISF from the brain parenchyma into the CSF (Figure 1.1). 

The BBB and the BCSFB regulate molecular exchange at the interfaces between the 

blood and the neural tissue (Abbott et al. 2010).  The third barrier is the arachnoid 

membrane, which is the main site of CSF drainage back into the venous blood 
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(Figure 1.2).  This occurs through a hydrostatic pressure gradient pushing the CSF 

through the openings of the arachnoid granulations and villi. 
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Figure 1.1: Diagram of the CSF and ISF movement between the brain barriers.  
Fluid movement is shown by the blue arrows between the BBB (brain capillary endothelium); BCSFB (choroid plexus 
epithelium) into the brain compartments and drainage through the arachnoid barrier back into the blood (based on 
information by Abbott et al. 2010). 
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Figure 1.2:  Three main barrier sites between the brain and the blood.   

(a) The BBB consists of the cerebral capillary endothelial cells joined by tight 
junctions.  (b) The BCSFB is located at the choroid plexuses consisting of epithelial 
cells joined by apical tight junctions in the lateral, third and fourth ventricles of the 
brain.  (c) The arachnoid barrier lies next to the dura which separates the arachnoid 
membrane from the superior sagittal sinus. The arachnoid epithelium is joined by 
tight junctions between cells of the inner layer.  ECF refers to extracellular fluid 
and interstitial fluid (Kandel et al. 2000). 

 
 
 
 

 

 
 

Subarachnoid space 
(SAS) 

Brain  
parenchyma 
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Figure 1.3: The fluid compartments in the brain.  
The choroid plexus (CP) or blood CSF barrier (BCSFB) secretes cerebrospinal fluid 
(CSF, blue arrows) which flows through the ventricle system into the subarachnoid 
space (SAS).  The SAS is located between the dura and the pia mater. CSF returns 
to the venous blood and into the superior sagittal sinus (SSS). The blood-brain 
barrier (BBB) limits the blood supply to the brain. The brain interstitial fluid makes 
up the final portion of CSF and drains to the SAS though the perivascular spaces 
(small blue arrows) (Damkier et al. 2013). 
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1.2 Interstitial fluid and the blood-brain barrier 

Fluid that surrounds the tissue cells of all multicellular organisms is known as the 

ISF.  Within the brain, ISF is produced by the brain capillary endothelium which 

forms the BBB.  Characteristics of the BBB endothelial cells which differ from 

endothelial cells in the rest of the body include the absence of fenestrations and a 

greater number of tight junctions.  The roles of these tight junctions include 

limiting the paracellular pathway (between cells) and this the flux of hydrophilic 

molecules across the BBB (Abbott et al. 2010) (Ballabh et al. 2004).   

 

As well as the endothelial cells, the BBB is formed of the capillary basement 

membrane, astrocytes, microglia, neurons, and pericytes; the structure better 

described as a neurovascular unit (Figure 1.4) (Ballabh et al. 2004) (Brinker et al. 

2014).  Pericytes are important for the structural integrity of the vessel and 

formation of endothelial tight junctions (Allt & Lawrenson 2001) (Balabanov & 

Dore-Duffy 1998).  The astrocytes form a barrier surrounding the cerebral 

capillaries.  Water-transporting pores, or aquaporins, located on the astrocytic end 

feet play a role in maintaining brain water homeostasis (Rash et al. 1998).   

 

In adult humans, the BBB surface area ranges from 12 to 18m2 and is the largest of 

the three barrier sites between the brain and the blood for exchange.  Each 

endothelial cell is at most approximately 25 μm from a neurone allowing for short 

solute and drug diffusion distances, making the BBB the favoured route for delivery 

of drugs to the brain (Abbott et al. 2010).  Movement of solutes across the BBB is 



8 
 

either passive, driven by a concentration gradient from plasma to brain, or 

facilitated by passive or active transporters in the endothelial cell membranes 

(Abbott et al. 2010). 

 

The role of the BBB in ISF production involves ISF flow being driven by the ionic 

gradient set up by the abluminal Na+-K+-ATPase transporter (Abbott 2004).  Water 

passes through the endothelial cell membrane, driven by a hydrostatic pressure 

gradient, before entering the perivascular space from where it flows along 

neuronal tracts and blood vessels.  However, bulk ISF flow is not permitted due to 

the narrow spaces between cells within the neuropil (a network of nerve fibres) as 

described in Figure 1.5 (Abbott 2004).   
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Figure 1.4: The BBB cellular architecture.  

Tight junctions are formed between the endothelial cells and are surrounded by pericytes.  The endothelial cells and the 

pericytes form the basement membrane and perivascular extracellular matrix (basal lamina 1, BL1).  The extracellular 

matrix binds the brain parenchyma (BL2). Astrocytes surround the capillaries.  Cerebral blood is regulated by axonal 

projections from neurons onto smooth muscle cells.  Normal immune responses are regulated by microglia (Abbott et al. 

2010). 
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Figure 1.5: Routes of ISF generation and flow.   
ISF is formed by brain capillary endothelium, generated by the abluminal Na+-K+-
ATPase ionic gradient (circle + arrow).  ISF enters through the tight junctions of the 
endothelial cells (dashed arrows) and moves into perivascular spaces with the aid of 
a hydrostatic pressure gradient,  joining between blocks of neuropil (A), and areas 
next to axon tracts (B) (Abbott 2004). 
 

The choroid plexus has a greater secretory capacity than the BBB (ml·min−1·g tissue−1 

surface area) which explains the large amount of CSF secretion by the BCSFB (Damkier 

et al. 2013), detailed further in Section 1.3. 
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1.3 Cerebrospinal fluid production  

CSF is a clear fluid that surrounds the brain and spinal cord and is produced by the 

epithelial cells of the choroid plexus.  The choroid plexuses are anatomical structures 

in the third, fourth and lateral ventricles within the brain (Figure 1.6) formed of blood 

vessels lined by the choroidal epithelium.  The capillary endothelium in the choroid 

plexus is fenestrated and surrounded by these epithelial cells, joined by tight 

junctions, all of which constitute the BCSFB and control CSF composition (Figures 1.7 

and 1.8) (Valls-Solé 2004).   

 

Each choroid plexus consists of branches protruding into the CSF.  Each protrusion 

consists of several villous processes.  The epithelium lies on the basal lamina 

(stemming from the adjacent ependyma lining the ventricle walls), which defines the 

inner stromal core consisting of connective collagen tissue, fibroblasts, macrophages, 

dendritic cells and smooth muscle cells.  Microvilli, cilia, and tight junctions are found 

on the apical surface of the epithelium, and large fenestrated capillaries are found 

within each villus of the choroid plexus (Figures 1.7, 1.8 and 1.9) (Strazielle & Ghersi-

Egea 2000).  
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Figure 1.6 The locations of the choroid plexuses and the circulation of CSF in the 
human brain.  
The stippled area indicates the distribution of CSF and the arrows indicate the 
direction of flow (Brown et al. 2004). 
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Figure 1.7: Schematic cross-section showing the main features of the choroidal 
tissue.  
Fenestrated capillaries with thin endothelial walls are located within each villus 
and are covered by a single layer of epithelial cells, held together by apical tight 
junctions. Each villi projects into the CSF and contains several microvilli and cilia 
located on the apical surface.  The cuboidal epithelium is situated on the basal 
lamina which covers an inner stromal core of connective and highly vascularized 
tissue, which stems from the adjacent ependyma lining the ventricle walls  
(Strazielle & Ghersi-Egea 2000). 

ISF 
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Figure 1.8: Schematic representation of the location of the choroid plexus (BCSFB) and BBB.  

Capillaries are covered by a single layer of epithelial cells, held together by tight junctions which permit the movement of 

ions and water across the epithelium and into the CSF compartment (Brown et al. 2004) . 
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Figure 1.9:  Electron micrographs of the rat lateral ventricles choroid plexuses.   
Fig. 1A: Cuboidal epithelial cell (Ep) of the choroid villus illustrating the tight junction (J), ventricular lumen (Lv), mitochondria (M), 
nucleus (Nu) and nucleolus (arrow).  Fig. 2A: Apical membrane of the choroid epithelial cell showing the cilium (C); golgi complex 
(G); microvilli (Mi); mitochondria (M); nucleus (Nu) and rough endoplasmic reticulum (Re).  Fig. 1C: Basal portion of the choroid 
epithelium.  Basolateral interdigitations (I) are located between the choroid epithelial cells.  Endothelium (End), basal lamina (Lb), 
mitochondria (M) and connective tissue (Tc) (Tirapelli et al. 1998). 
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The CSF, secreted from the choroid plexus epithelial cells, travels through the 

lateral and third ventricles before exiting through the fourth ventricle and into the 

SAS or spinal cord, where it is absorbed via the arachnoid villi into the dural venous 

sinuses (Figure 1.6) (Valls-Solé 2004).   

 

The total volume of CSF within adult humans is ±140 ml and the rate of secretion 

by each choroid plexus is 0.2 ml/min (Speake et al. 2001).  The pressure required 

for the circulation of CSF is maintained by a hydrostatic pressure gradient between 

the choroid plexus (where CSF is produced) and the arachnoid villi (where CSF is 

drained) (Valls-Solé 2004).  The choroid plexus epithelial cells are indispensable for 

directed transport processes from blood into the CSF, for the removal of 

substances out of the brain, and for CSF production (Haselbach et al. 2001). 
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1.4 Molecular mechanisms of fluid secretion 

In terms of the location of ion transporters and channels on epithelial cells; the 

mechanism of CSF secretion in the choroid plexus shares similarities with, but is 

slightly different to fluid secretion by other epithelia such as the renal proximal 

tubule, the gall bladder or submucosal glands. Therefore, it is important to 

understand how fluid is secreted in the other epithelia first (Figure 1.10).  Fluid 

secretion by epithelial cells depends on the transport of ions, facilitated by 

transport proteins that are found in the apical (lumen) and basolateral (blood) 

membranes of the cells, and which create an osmotic gradient that drives the 

movement of water (Hladky & Barrand 2016). 

 

The net movement of Na+ and Cl-, in the apical direction, creates the osmotic 

gradient, which is strong enough to drive water secretion across the epithelium 

through aquaporin (AQP) water channels located in the basolateral (water 

secreted into the cell) and apical membranes (water secreted out of the cell) 

(Brown et al. 2004). 

 

When comparing the choroid plexus epithelium to most other epithelia, for 

example, the basolateral membranes contain the Na+-K+-ATPase pump which 

drives Na+ efflux and K+ influx using energy from the hydrolysis of adenosine 

triphosphate (ATP) (Damkier et al. 2013).  The influx of Cl- occurs through the Na+-

K+-2Cl- (also known as NKCC1) cotransporter which is also located on the 

basolateral membrane.  This activity is helped by Na+-H+ (NHE1) and Cl--HCO3
- (AE2) 
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exchangers which are also localised on the basolateral membrane (Damkier et al. 

2013) (Brown et al. 2004).  

 

Influx of Cl- takes place against the electrochemical gradient by secondary active 

transport driven by the Na+ gradient. Cl- then exits the cell through Cl- channels in 

the apical membrane (Damkier et al. 2013).  The cell forces Na+ out by the 

basolateral Na+-K+-ATPase in other epithelia, and Na+ possibly translocates to the 

apical side via the tight junctions driven by the apical-negative voltage created by 

the transepithelial Cl− transport (Damkier et al. 2013). 

 

The K+ channels in other epithelia, such as the submucosal glands, is located on the 

basolateral membrane, which allow K+ influx through Na+-K+-ATPase pump and 

Na+-K+-2Cl- cotransporter (Hertz et al. 2013).  Cell swelling as a consequence of the 

K+ accumulation is prevented by the loss of K+ from the cell via a K+ channel located 

on the basolateral membrane (Speake et al. 2001).  

 



19 
 

 

Figure 1.10: The model of epithelial fluid secretion. 
The net transport of Na+, Cl-, and water, from basolateral (blood) to apical 
(lumen) membranes, with K+ movement in the opposite direction and with 
schematic locations of ion transporters in other epithelia such as the renal 
proximal tubule, gall bladder and submucosal glands (based on diagram by 
Speake et al., 2001 and Hladky & Barrand 2016).  
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1.4.1 Ion movement and CSF secretion in the choroid plexus 

As mentioned previously, CSF secretion takes place within the choroid plexus, with 

the choroid plexus epithelial cells transporting fluid from the basolateral (blood) to 

the apical (CSF) compartments (Figure 1.11). 

 

In choroid plexus epithelia, the Na+-K+-ATPase, NKCC1 transporters, K+ (KCC4, Kv1.1 

and 1.3, Kir7.1), HCO3
- (NBCe2) and Cl- (CIC-2) channels are all expressed on the 

apical membrane (Figure 1.11), as opposed to other epithelia as shown in Figure 

1.10. The basolateral transporters such as AE2 and NHE1, occupy the same 

membrane domain as in other epithelia.  The molecular mechanisms of fluid 

transport in choroid plexus epithelia are further described from Section 1.4.2.  
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Figure 1.11:  Mechanism of CSF secretion within choroid plexus epithelium.   
The net transport of Na+, K+, Cl-, HCO3

- and water, from basolateral (blood) to 
apical (CSF) membranes, with schematic locations of ion transporters. C.A refers 
to carbonic anhydrase. (Based on diagram by Hladky & Barrand 2016). 
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1.4.2 Regulation of Na+ transport 

As with other secretory epithelia, the main driving force for fluid movement across 

the choroid plexus is provided by the Na+, K+-ATPase or Na+-pump (Hladky & 

Barrand 2016).  However, when studying choroid plexus epithelial cells, it is evident 

that Na+-K+-ATPase is located, not in the basal (blood-facing) membrane, but in the 

apical (CSF-facing) membrane (Figure 1.11) (Speake et al. 2001); driving the efflux 

of Na+ into the CSF.  The cells build up an ion gradient across the cell monolayer 

due to the increase in transepithelial resistances and the polar distribution of Na+-

K+-ATPase at the apical side (Brown et al. 2004).  Na+ ions are then actively 

transported out of the epithelial cells into CSF thereby reducing intracellular [Na+] 

and providing a gradient for Na+ influx via other transporters. Na+ entry from the 

basolateral side occurs by the NBCn2/NCBE Na+, HCO3 − cotransporter.  Some Na+ 

leaves the cell across the apical membrane towards the CSF via NBCe2 (sodium 

bicarbonate electrogenic transporter number 2) driven outward by the coupled 

outward flux of 3 HCO3 – ions (Hladky & Barrand 2016). Regulation of the rate of 

net Na+ transport is almost equivalent to regulation of the rate of CSF fluid 

secretion. 

 

There may also be a net flux of Na+ that cross the epithelial layer via the 

paracellular route through tight junctions.  The claudins present in these tight 

junctions are expected to allow passive movement of small univalent cations and 

water (Hladky & Barrand 2016).  Thus there should be observable tracer fluxes of 

Na+ in each direction but with a net paracellular flux that is smaller than the 

transcellular movements (Daneman 2012).  
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Na+-K+-ATPase contains two subunits, α and β, with the α containing the ATP and 

cardiac glycosides binding sites (the latter being the site for Na+-K+-ATPase inhibition 

by [3H]-ouabain) (Speake et al. 2001).  Isoenzymes α1β1 and α1β2 are expressed in the 

rat lateral ventricle choroid plexuses (Zlokovic et al. 1993), whereas, in most other 

epithelia only the α1β1 isoform is expressed.  The presence of the β2 subunit may be 

important in determining the apical localisation of the Na+-K+-ATPase in choroid 

plexus epithelium (Rizzolo 1998).  

 

The Na+-K+-ATPase pump is also expressed in the apical membrane in retinal 

pigmented epithelium (Lobato-Álvarez et al. 2016).  As the location of ion channels is 

similar within the choroid plexus and retinal epithelium, then the molecular 

mechanisms of fluid secretion pathways might be expected to be analogous.  Cortisol 

is a potent anti-inflammatory and there is evidence that cortisol generation by 11β-

hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme stimulates serum and 

glucocorticoid-regulated kinase-1 (SGK1) pathways to increase the movement of Na+ 

in the ocular ciliary epithelium (Sinclair et al. 2010) (see Section 1.9 and Figure 1.12).  

A similar system has also been postulated within the choroid plexus epithelium, in 

which the up-regulation of SGK1 stimulates movement of Na+ across the apical 

membrane, into the CSF, through epithelial sodium channels (ENaC) (Sinclair et al. 

2010).  The ENaC heterotetramer consists of two α, one β and one γ subunit.  

Expression of all subunits leads to generation of a small sodium influx across the apical 

membrane across choroidal epithelium; however an efflux into the CSF could also be 

seen (Rauz et al. 2003). 
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1.4.3 Na+- K+-ATPase inhibition 

Administration of the neurotransmitter serotonin has been shown to decrease the 

secretion of CSF in porcine choroid plexus.  Serotonin binds to the 5-HT receptor on 

choroid epithelial cells (Pazos et al. 1984) in turn activating phospholipase C (Conn et 

al. 1986), which forms diacylglycerol, by the cleavage of phospholipids.  This leads to 

the activation of protein kinase C (PKC), which is an enzyme involved in controlling the 

function of other proteins through the phosphorylation of hydroxyl groups.  The Na+-

K+-ATPase pathway can be inhibited through the activation and phosphorylation of 

PKC (Fisone et al. 1995), leading to a 50% reduction in activity due to phosphorylation 

of the Na+-K+-ATPase α-subunit.  The resulting inhibition of the movement of Na+ as 

well as the consequent movement of HCO3
- and Cl- into the ventricle has the effect of 

decreasing the osmotic gradient needed for the diffusion of water across the choroid 

plexus epithelium (Conn et al. 1986). 

 

Cyclic guanosine monophosphate (cGMP) is shown to reverse the movement of ions 

in the choroidal epithelium, leading to a reduction in CSF secretion (Kolb et al. 1994).  

cGMP is a cyclic nucleotide that acts as a second messenger.  cGMP-generating agent, 

atrial natriuretic peptide (ANP) has been shown to activate the guanylate cyclase-

cGMP system which caused a decrease in CSF production that correlated with an 

increase in cGMP production within the choroid plexus (Steardo & Nathanson 1987).  

In tubular epithelial cells within the kidney, ANP modulates sodium and potassium-

activated ATP leading to cGMP-dependent protein kinase G (PKG) inhibition of Na+-K+-

ATPase (Ellis et al. 2000).  There is no evidence of whether this pathway of Na+-K+-

ATPase inhibition occurs in the choroid plexus epithelial cells.  However, the increase 
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in cGMP levels within choroid plexus epithelia could be a possible mechanism in 

decreasing CSF production through the inhibition of the Na+-K+-ATPase transporter. 

 

1.4.4 Na+-2Cl--K+ (NKCC1) transporter  

As described in Figure 1.11, the process of CSF production involves the transport of 

Na+, Cl-, K+ and HCO3
-.  As well as the Na+-K+-ATPase transporter, the NKCC1  

transporter is also located in the apical membrane of choroidal epithelia (Hladky & 

Barrand 2016) (Wu et al. 1998).  NKCC1 plays a role in regulating cell volume and 

transepithelial ion transport (Russell 2000) by mediating Na+, K+ and Cl- efflux into the 

CSF (Keep et al. 1994).  However, other studies focused on epithelial cell volume 

strongly imply that NKCC1 mediates net influx (Crum et al. 2012) (Wu et al. 1998).  The 

results may all correctly reflect the conditions in which they have been measured 

because the net driving force, derived from the concentrations of Na+, K+ and Cl−, is 

finely balanced and NKCC1 could be transporting in either direction (Damkier et al. 

2013) (Hladky & Barrand 2016). 

 

1.4.5 K+ transport 

The activity of the Na+-pump increases the concentration of K+ into the choroid plexus 

epithelial cells from the CSF. All other routes for K+ transport mediate net K+ efflux or 

in the case of NKCC1 the direction of transport is finely balanced, as mentioned in 

Section 1.1.4.  Almost all of the K+ that enters the choroid plexus epithelial cells from 

the CSF is recycled to the CSF via a combination of KCC4, K+ channels (Kv 1.1, 1.3 and 

Kir 7.1) and NKCC1, all of which are known to be present in the apical membrane 

(Hladky & Barrand 2016).  



26 
 

1.4.6 HCO3
- and Cl- transport  

HCO3 − enters the choroid plexus epithelial cells via the either the NBCn2 or NCBE 

transporter (Hladky & Barrand 2016).  If this transporter operates with stoichiometry 

of 1 Na+ and 1 HCO3 − moving inwards the name NBCn2 (sodium bicarbonate neutral 

transporter number 2) is appropriate.  Alternatively, if 1 Na+ and 1 HCO3 − move 

inwards and 1 H+ and 1 Cl− outwards the name should be NCBE (sodium driven chloride 

bicarbonate exchanger) which effectively loads the cell with 2 HCO3 − for each Na+ 

transported.  A study by Damkier and colleagues describe the sodium bicarbonate 

transporter rat gene (SLC4a10) when expressed in mouse NIH-3T3 fibroblasts behaves 

as Ncbe (Damkier et al. 2010) while studies by Parker and colleagues describe the 

human gene when expressed in Xenopus laevis oocytes behaves as NBCn2 (Parker et 

al. 2008).  Therefore, the mode of operation of the transporter is determined by the 

type of cell in which the gene is expressed or by the species of the gene. 

 

Additional Cl- uptake on the basolateral surface is increased through the exchange 

between Cl- and HCO3
- (see Figures 1.11 and 1.12).  HCO3

- and H+ are produced from 

H2O and CO2, in a reaction catalysed by carbonic anhydrase (Haselbach et al. 2001).  

This enzyme is expressed in the cytoplasm of rat choroid plexus epithelial cells 

(Masuzawa & Sato 1983).  Cl- channels play a major role in fluid secretion in epithelial 

cells.  In the choroid plexus, a ‘CIC-2’ named Cl- anion channel with a high HCO3
- 

permeability has been shown to be involved in CSF secretion (Saito & Wright 1984).  

It is located on the apical membrane and is essential for HCO3
- and Cl- efflux into the 

CSF in the lateral ventricles of the rat brain (Speake et al. 2001).  Anion channels are 

activated by cAMP and protein kinase A (PKA) (Deng & Johanson 1992), and 
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intravenous injection of forskolin, a cAMP agonist, caused a 17-33% increase in Cl- 

movement into the CSF  in adult rats (Deng & Johanson 1992). 

 

HCO3 − leaves the epithelial cell into CSF via NBCe2 as indicated in Figure 1.11 and 

possibly via anion selective channels (Hladky & Barrand 2016).  Coupling of Na+ entry 

to influx of one HCO3 − ion per Na+ ion (NCBE/NBCn2) implies that more HCO3 − enters 

the cell on the basolateral membrane than appears in CSF. The remaining HCO3 − ion 

concentration recycled across the basolateral membrane via the Cl−/HCO3
− exchanger 

AE2 (Hladky & Barrand 2016).  This is also the only known route for net entry of Cl− 

into the choroid plexus epithelial cells from the blood.  In addition, a small amount of 

Cl− returns to the blood with K+ via the KCC3 cotransporter (Hladky & Barrand 2016).   

 

Cl− efflux from the epithelial cells appears to involve both transporters and channels 

(Keep et al. 1994). On the apical membrane Cl− leaves the choroid plexus epithelial 

cells to the CSF by cotransport with K+ mediated by KCC4 and via anion channels that 

have been observed functionally but whose molecular identities are as yet unknown 

(Hladky & Barrand 2016). 

 

1.4.7 Aquaporin-1 

Aquaporins are a family of integral membrane proteins that function as water 

channels.  Aquaporins are distributed widely throughout the body including red blood 

cells, lung and secretory epithelia such as the salivary glands, but most notably in the 

kidney where they are expressed in higher levels (Speake et al. 2001).  Aquaporin 1 

(AQP1) protein is expressed in the apical membrane of rat choroid plexus epithelial 
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cells and may mediate water transport across the membrane during CSF secretion 

(Figures 1.11 and 1.12) (Wu et al. 1998).  A role for AQP1 in CSF secretion is supported 

by evidence from Oshio and co-workers, who reported reduced CSF production and 

intracranial pressure (ICP) in mice lacking AQP1 (Oshio et al. 2005).  The reduced ICP 

correlated with the reduction of CSF production in AQP1 null mice.    

 

AQP1 is co-expressed with thyroid transcription factor-1 (TTF-1) protein in rat choroid 

plexus, which enhances AQP1 gene transcription.  Intraventricular injection of 

antisense TTF-1 oligodeoxynucleotide in rats resulted in a reduction of AQP1 mRNA 

and protein in the choroid plexus (Kim et al. 2007), resulting in decreased CSF 

formation.  TTF-1 expression is also stimulated by glucocorticoids in the lung 

(Morrison et al. 2012).  In a rat model, prenatal treatment with dexamethasone (a 

glucocorticoid) increased TTF-1 mRNA expression (Losada et al. 2000).  This evidence 

could provide a further insight with regard to the effects of a specific endogenous 

glucocorticoid, cortisol (described further in Section 1.9), on CSF secretion rates but 

more specifically on the idea of glucocorticoids elevating CSF secretion levels through 

increased TTF1 and hence increased AQP1 expression; reducing CSF drainage and 

increasing ICP via glucocorticoid receptor-α (GR-α).  

 

In summary, fluid secretion by the choroid plexus epithelial cells involves Na+- K+-

ATPase, NKCC1, AQP1, ENaC and CIC-2 transporters/channels located on the apical 

membrane, driving the efflux of Na+, Cl-, K+, HCO3
- and H2O into the CSF.  Further 

transporters, AE2, NCBn1 and NCBE, located on the basolateral membrane drive the 
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accumulation of Na+, Cl- and HCO3
- into the cytoplasm of the choroid plexus epithelial 

cells, eventually resulting in CSF secretion. 
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Figure 1.12:  Schematic diagram to illustrate the different transport mechanisms that are involved in regulating ion gradients and CSF 
secretion across the choroid plexus epithelium (own diagram based on information by Brown et al. 2004 and Hladky & Barrand 2016). 
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1.5 Molecular mechanisms involved in CSF drainage 

As well as increased CSF secretion, a reduction in the absorption of CSF is another 

potential mechanism that could cause increased CSF pressure in IIH; however, the 

mode by which this might occur is unclear.  The third barrier between the brain and 

the blood, the arachnoid barrier appears to be the main site of CSF drainage from 

the human brain, and Glueck and colleagues found microthrombi impeding CSF 

drainage in the arachnoid villi as a potential cause of altered CSF absorption in 

women with IIH (Glueck et al. 2005). 

 

Each of the choroid plexuses secretes CSF into the respective brain ventricle (Figure 

1.6 and 1.13).  The ependymal epithelium, which lines the ventricles is then in 

contact with the CSF.  The CSF and the ISF of the brain parenchyma are separated 

only by the perivascular space that surrounds the large blood vessels (Szentistványi 

et al. 1984).  There is a constant directional flow of CSF from the lateral ventricles 

through the foramina of Monro into the third ventricle and through the aqueduct 

of Sylvius to the fourth ventricle.  CSF exits the ventricular system through the 

foramina of Luschka and Magendie into the SAS (Figure 1.13).  Once in the SAS, the 

CSF is now separated from the outer surface of the brain by the pia mater (the 

innermost layer of the meninges). The openings of the SAS into the dural venous 

system are the main sites of CSF drainage back into the blood.  CSF returns to 

venous blood in the brain sinuses through arachnoid granulations and villi (Figure 

1.14).  
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Figure 1.13:  Organization of the ventricular system of the brain.  
The brain parenchyma (grey), ventricles and aquaducts (yellow), and choroid 
plexuses (red) are shown.  Lateral ventricle CSF joins in the 3rd ventricle (located 
between the two lateral ventricles) through the foramen of Monro and reaches 
the 4th ventricle through the aquaductus cerebri.  The CSF leaves the 4th ventricle 
through the foramina of Magendie and Luschka to the CNS. The majority of the 
fluid is reabsorbed in the arachnoidal granulations draining to the superior 
sagittal sinus (Damkier et al. 2013). 
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The arachnoid granulations contain a central core which resembles the SAS.  

Endothelial cells from the venous layer, and connective tissue and fibroblasts from 

the dura mater form a capsule which covers the core.  An arachnoid layer covers 

the apical part of the granulation which is in direct contact with the venous lumen 

(Figure 1.14) (Kida et al. 1988).  Evagination of the arachnoid membrane into the 

lumen of the vein and therefore the dural vessel allows the communication 

between CSF in the SAS and blood in the dural sinus.  Hydrostatic pressure is 

maintained in the SAS allowing the flow of CSF into the dural sinus.  As the opening 

is valvular, the blood cannot cross in the opposite direction (Hertz et al. 2013) 

(Davson et al. 1987). 

 

Although arachnoid villi and granulations are prominent in the major venous 

sinuses associated with the brain and spinal cord in humans, arachnoid villi are very 

small in rodents and sheep (Figure 1.15a) (Johanson et al. 2008).  In rats, small 

arachnoid villi are associated with veins on the dorsal surface of the olfactory bulbs 

(Kida et al. 1993). 

 

Studies of the effects of retinol (vitamin A) on IIH has found it to cause 

morphological abnormalities of the arachnoid villi by increasing resistance in the 

pia arachnoid cells (Tabassi et al. 2005).  Unimpaired arachnoid villi support the 

flow of CSF from the arachnoid space into the bloodstream.  This research also 

reported CSF retinol levels to be significantly higher in IIH patients (median 575.91 

nM) than in 20 controls (median 63.35 nM); however, serum levels of retinol did 
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not differ between the two groups.  These data suggest the possibility of further 

studies to be carried out on the effects of retinol in IIH. 

 

Recent data suggest a second pathway of CSF drainage occurs at the lymph nodes 

(Figure 1.14 and 1.15).  At least 50% of CSF drains to lymph nodes in rodents (Figure 

1.15a) (Cserr & Knopf 1992) and the lymphatic drainage pathways are well 

developed in humans (Johanson et al. 2008).  Injection studies in rodents have 

shown that CSF passes through the SAS to the inferior aspect of the olfactory bulbs 

and then drains into nasal lymphatics by passing through the cribriform plate and 

along channels adjacent to olfactory nerves (Kida et al. 1993) (Johanson et al. 

2008).  Similar drainage pathways have been demonstrated in humans (Weller et 

al. 2009), where tracers injected into the CSF, drain from the SAS into sheaths of 

lymphatics in the nasal mucosa (Figure 1.15b) (Johanson et al. 2008).  A third route 

of fluid clearance through paravenous drainage pathways, the glymphatic 

pathway, involves the exchange of fluid between the CSF in the SAS and the ISF in 

the brain parenchyma (Iliff et al. 2012).  The arachnoid and lymphatic CSF drainage 

pathways are summarised in Figure 1.16. 
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Figure 1.14: Schematic diagram of CSF drainage.  
CSF is drained through the arachnoid villi into the venous sinuses of the brain 
and into the cervical lymphatics through the cribriform plate (Johnston & 
Papaiconomou 2002).  
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Figure 1.15:  Fluid drainage pathways from brain to cervical lymph nodes in 
rodents and humans. 
(a) Lymphatic drainage within the rodent brain.  In rodents, the arachnoid villi 
are smaller than in humans, making the cervical lymph nodes the main site of 
CSF drainage, via the cribriform plate (A), from the brain.  ISF is drained from 
the brain parenchyma along basement membranes in the walls of capillaries 
and arteries to the cervical lymph nodes (B).  (b) Lymphatic drainage within the 
human brain.  CSF drains from the SAS and into nasal lymphatics (1) via the 
cribriform plate.  CSF passes alongside branches of olfactory nerves (ON) into 
the nasal mucosa (1a).  Lymphatic vessels (2) drain CSF and cells (3) to cervical 
lymph nodes (4).  The arachnoid villi (5) are a major site of CSF drainage from 
the human brain.  Each villus is formed by an outpouching of the arachnoid 
membrane which allows the SAS to come into close contact with the blood.  
Hydrostatic pressure creates vacuoles which can elongate to become pores and 
CSF is transported transcellularly as the arachnoid cells contain tight junctions 
(6).  ISF drains from the brain parenchyma along perivascular pathways (7) by 
diffusing through extracellular spaces and walls of capillaries (8).  ISF also drains 
to the cervical lymph nodes (9) by passing first along the walls of cerebral 
arteries (7) and into the internal carotid artery in the neck (Laman & Weller 
2013). 

Internal carotid artery 
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Figure 1.16: Putative pathway of CSF drainage.  
Pathway 1: Evagination of the arachnoid membrane into the lumen of the vein and therefore the dural vessel allows the 
communication between CSF in the subarachnoid space (SAS) and blood.  Pathway 2: CSF passes through the SAS to the 
olfactory bulbs and then drains into nasal lymphatics by passing through the cribriform plate and along channels adjacent 
to olfactory nerves and into the blood (own diagram based on information by Laman & Weller 2013). 
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1.6 Clinical features of IIH 

Clinical features of IIH include headaches, occurring in 94% of IIH patients, 

intracranial noises, and dizziness.  Headache appeared to be the most common 

feature in a study comparing 50 IIH patients and 100 controls (Giuseffi et al. 

1991). 

 

Visual symptoms usually accompany headache, but may occur in isolation, as 

found in one study in 19.5% of 77 IIH patients (Galvin & Van Stavern 2004).  

Visual manifestations include transient visual obscurations in 68% of cases, and 

papilloedema (swelling of the optic disc causing severe visual loss) (Wall & 

George 1991).  The papilloedema swelling is due to raised ICP in the optic nerve 

head, or optic disc (Mackenzie & Cioffi 2008).  In the absence of papilloedema, 

further assessment should be carried out on IIH patients in order to confirm 

diagnosis as IIH can appear to be clinically indistinguishable from chronic daily 

headaches (Mackenzie & Cioffi 2008) (Dhungana et al. 2009).  

 

The main risk factor of IIH is obesity and the incidence of IIH presents a 

challenge to countries experiencing an obesity epidemic.  In addition, IIH affects 

a greater proportion of the female population compared to males. Both 

features regarding obesity and sex in IIH are described further in Section 1.8.  
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1.7 Diagnosis and treatment of IIH 

Correct diagnosis of IIH can only be made using strict criteria guidelines 

whereby all other causes of intracranial hypertension have been excluded 

(Friedman & Jacobson 2002).  The diagnostic criteria include: 

 

▪ Signs/symptoms present may highlight the presence of 

papilloedema.  

▪ ICP is elevated. 

▪ CSF composition is normal in terms of protein and ion content: Na+ 

(150 mM), K+ (2.86 mM), Cl- (113 mM), HCO3
- (23.3 mM) (Davson et 

al. 1987) 

▪ There is no evidence of hydrocephalus (abnormal accumulation of 

CSF). 

▪ No other cause of intracranial hypertension has been found. 

 

In order to diagnose and manage the symptoms of IIH effectively, combinations 

of medical, physical and surgical measures are used.  Brain imaging, such as 

magnetic resonance imaging (MRI), is helpful in excluding intracranial 

abnormalities that may not be evident in a plain computerised tomography (CT) 

scan.  A lumbar puncture is performed to document the raised CSF pressure.  

These are the two most important investigations needed to make the diagnosis 

of IIH (Dhungana et al. 2009).  The goals of IIH treatment are to reduce the 

elevated CSF pressure, preserve visual function and relieve symptoms. 
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Current treatments include, acetazolamide, a carbonic anhydrase inhibitor 

which decreases the production of CSF by reducing HCO3
-  levels in the choroid 

plexus epithelium (Dhungana et al. 2009) and thereby decreasing Cl- uptake 

through reduced activity of AE2 channels located in the basolateral membrane 

(Vogh et al. 1987).  

 

Reports of corticosteroid therapy withdrawal, in children with ulcerative colitis 

(inflammation of the colon) and various neurological disorders, showed a 

syndrome indistinguishable from IIH.  Administering glucocorticoid 

hydrocortisone (HC) (400 mg) increased blood pressure; however, following 

withdrawal, papilloedema, a feature of IIH, developed after five days (Neville & 

Wilson 1970).  Patient improvement was recorded following the re-introduction 

of a different corticosteroid, prednisolone (10 mg).  Intravenous 

methylprednisolone (synthetic corticosteroid) with acetazolamide resulted in 

an improvement in visual symptoms in 75% of patients IIH, who initially had 

symptoms of acute severe visual failure (Liu et al. 1994).  These data seem to 

contradict the theory of HC increasing ICP, and the effects of improved visual 

symptoms in Liu and colleagues’ study may have been due to acetazolamide 

treatment as opposed to the actions of HC alone.  Therefore, the mechanism of 

action of corticosteroids used to treat IIH is still unknown (Goodwin 2003).  

 

Topiramate is another carbonic anhydrase inhibitor and antiepileptic drug that 

reduces CSF production and causes weight loss.  A report on the effectiveness 

of topiramate vs. acetazolamide in 40 patients with IIH showed significant visual 

field improvements with either drug (Çelebisoy et al. 2007). 
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One of the main surgical practices for treatment of IIH is CSF diversion.  This 

involves diverting the CSF from the lumbar SAS to the peritoneal cavity (LP 

shunt) or from a lateral ventricle to the peritoneal cavity (VP shunt).  However, 

CSF diversion procedures have a high failure rate and can suffer from 

complications including over-drainage and low pressure headaches, as well as 

infections (Rosenberg et al. 1993).  A review of a total of 73 LP and 9 VP shunts, 

in 37 patients from 6 US institutions, found that only 14 patients remained 

symptom free after a single procedure (Rosenberg et al. 1993).  

 

1.8 Epidemiology of IIH 

1.8.1 Incidence of IIH 

It is possible to state that an underlying inflammatory pathology is present in 

IIH in terms of abnormal expression of inflammatory mediators.  This is because 

IIH is strongly associated with obesity, a chronic low grade pro-inflammatory 

state (Lyon et al. 2003).  The reported incidence of IIH ranges from 0.6-2.2 per 

100,000 persons (Craig et al. 2001), (Dhungana et al. 2009), (Radhakrishnan et 

al. 1993) (Table 1.1), however these figures vary from country to country, 

potentially reflecting a variation in the prevalence of obesity and efficiency of 

diagnosis of the condition (Dhungana et al. 2009).  
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Region 
Incidence  

(per 100,000 persons) 
Reference 

Belfast, Northern 

Ireland 
0.6 (Craig et al. 2001) 

Iowa, USA 0.9-1.0 (Dhungana et al. 2009) 

Louisiana, USA 1.07 (Dhungana et al. 2009) 

Benghazi, Libya 2.2 
(Radhakrishnan et al. 

1993) 

Table 1.1: Incidence of IIH per 100,000 persons in various regions of the 
world. 

 

1.8.2 Epidemiology of obesity and IIH 

The evidence linking obesity with IIH is strong, with IIH patients being classified 

as obese, defined as body mass index (BMI) above 30 kgm-2, in 71% 

(Radhakrishnan et al. 1993) and 91% (Kesler & Gadoth 2001) of cases.  Several 

studies have reported weight gain in newly diagnosed IIH patients (Rowe & 

Sarkies 1999) (Radhakrishnan et al. 1993).  The incidence of IIH in Iowa, USA 

grew to 13-14.8 per 100,000 for women aged 20-44 years of age who were 10% 

or more over ideal weight and 19.3 per 100,000 when 20% overweight 

(Dhungana et al. 2009).  These figures are alarming, especially when taking into 

account the increasing prevalence of obesity around the world. 

 

The pathophysiological mechanisms behind obesity in IIH remain elusive. One 

theory suggests that increased ICP is a result of an increase in cardiac filling 

pressure due to raised abdominal pressure as a result of obesity (Sugerman et 

al. 1997) as well as an increase in pleural pressures causing an obstruction to 

cerebral venous outflow via the jugular venous system (Bloomfield et al. 1997).  

However, this does not take into account the high prevalence of females, 
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compared to males, suffering from IIH, as females are less likely to have a 

greater distribution of body fat.  

 

In vitro and in vivo studies of serum and adipose tissue have shown obesity to 

be associated with chronic, low grade inflammation and an abnormal, pro-

inflammatory cytokine profile, including interleukin (IL)-8 (IL-8) (Straczkowski 

et al. 2002) and tumour necrosis factor-α (TNF-α) (Hotamisligil et al. 1995).  

Increased expression of other mediators, including IL-6, chemokine (CC-motif) 

ligand 2 (CCL2) and leptin, have also been linked with obesity as adipose tissue 

(fat cells) are an important source of cytokines (see section 1.10) (Lyon et al. 

2003).  Levels of serum adipokines (cytokines secreted by white adipose tissue) 

are elevated in humans and animals with excess adiposity (Lyon et al. 2003). 

 

1.8.3 Epidemiology of gender and IIH 

In addition to obesity being a factor in the incidence of IIH, sex hormones may 

influence patients with IIH as it is found to occur mostly in females.  IIH mainly 

affects obese women between the ages of 15 and 45. It can develop at any age; 

however, the links to obesity would appear to be weaker in children.  From a 

study by Durcan and co-workers, IIH is mainly found in younger adults with 59% 

of patients in the third decade of life at diagnosis (Durcan et al. 1988), with a 

female to male ratio of 8:1 (Dhungana et al. 2009).  

 

Menstrual irregularities (Durcan et al. 1988) (Giuseffi et al. 1991), the use of 

oral contraceptives (Glueck et al. 2005), and high concentrations of oestrone 

(an oestrogenic hormone) have been linked with IIH and CSF production, 
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thought to be through stimulation of the choroid plexus secretory cells 

(Donaldson & Horak 1982) (Dhungana et al. 2009).  However, a more extensive 

study needs to be carried out as the mechanism by which this occurs is 

unknown.  If oestrone does stimulate CSF production, then the resulting 

elevated ICP associated with obese female IIH patients may be treated by an 

oestrone receptor antagonist. 

 

Further studies have revealed high levels of progesterone in females are 

significant as they can stimulate cortisol production, which alone may cause an 

increase in CSF secretion, as described further in Section 1.9.  Progesterone is a 

steroid hormone involved in pregnancy and the female menstrual cycle.  

Cortisol is a glucocorticoid thought to increase Na+ movement through choroid 

plexus epithelial cells (Sinclair et al. 2010).  As shown by Lucki and co-workers, 

the initial step in the synthesis of progesterone is the conversion of cholesterol 

into pregnenolone by the action of 3β-hydroxysteroid dehydrogenase in the 

adrenal cortex.  The enzyme 17α-hydroxyprogesterone catalyzes the 

conversion of progesterone to 11-deoxycortisol, which in turn undergoes 11β-

hydroxylation to produce cortisol (Lucki & Sewer 2008).  This mechanism could 

provide further evidence as to the relationship between sex hormones’ 

influence on patients with IIH.   

 

1.9 Glucocorticoid cortisol (hydrocortisone) and IIH 

Cortisol (hydrocortisone) is a potent endogenous anti-inflammatory mediator 

that regulates hepatic gluconeogenesis and regulates adipocyte differentiation 

(Tomlinson et al. 2004).  Hydrocortisone in general refers to synthetic cortisol. 
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Cortisol is produced by the adrenal cortex and is synthesized from cholesterol 

as described in Figure 1.17.  The biosynthetic pathway does not differ between 

humans and rats, however, cortisol is the predominant glucocorticoid in 

humans, whereas corticosterone is less abundant in humans, but is the 

dominant glucocorticoid in rodents.  However, they both bind to the same 

glucocorticoid receptor.  (Raubenheimer et al. 2006).   

 

 

 

Sinclair and colleagues found links between an increase in cortisol production 

within choroid plexus epithelial cells and IIH, in obese patients (Sinclair et al. 

2010).  Elevated levels of cortisol in the choroid plexus epithelium may cause 

an increased movement of Na+ into the CSF, which would raise ICP associated 

with IIH patients.  Following brain immunolocalisation studies from New 

Zealand White Albino rabbits, 11β-hydroxysteroid dehydrogenase (11β-HSD) 

enzyme was found to be expressed in the choroid plexus epithelial cells and 

Figure 1.17: Enzymatic pathway for biosynthesis of cortisol and aldosterone, beginning 

with cholesterol.  

Italics denote enzymes (Deaton et al. 1999). 
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regulated corticosteroid hormone levels (Sinclair et al. 2007) (Odermatt et al. 

1999).  One of its two isoforms, 11β-HSD1, controls cortisol availability by 

converting cortisone into cortisol, a process dependent on the coenzyme 

NADP(H).  The other, 11β-HSD2 is a dehydrogenase that inactivates cortisol to 

cortisone (NAD-dependent) in the kidney (Sinclair et al. 2010) (Chapman et al. 

2013).  As outlined previously in Section 1.4.2, in the choroid plexus epithelium, 

CSF production is dependent on an osmotic gradient created by the Na+-K+-

ATPase pump and intracellular carbonic anhydrase activity, driving water into 

the brain ventricles (Speake et al. 2001).  Cortisol binds to glucocorticoid 

receptors in epithelial cells, which activates SGK1 pathways to increase the 

movement of Na+ across the cells via apical Na+ channels, increasing this 

osmotic gradient and driving water into the CSF (Figure 1.12) (Sinclair et al., 

2010).  In this way, cortisol could contribute to elevated ICP observed in IIH 

patients.  

 

As already mentioned, 11β-HSD1 activity can be regulated by sex steroids 

including progesterone (see Section 1.8.3).  In addition, studies by Gomez-

Sanchez and colleagues found 11β-HSD1 mRNA and protein are decreased to 

almost undetectable levels in the kidneys of animals treated with another sex 

hormone, estradiol (Gomez-Sanchez et al. 2003).  This evidence would suggest 

a possible reduction of 11β-HSD1 enzyme activity, normally seen in women, 

may be lost in IIH as a result of abnormal sex hormone metabolism (Sinclair et 

al. 2010), therefore implicating sex hormones as a cause for increased 

glucocorticoid metabolism leading to an increase in CSF secretion associated 

with IIH patients.   
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Studies by Rauz found 11β-HSD1 may affect ICP regulation in a system similar 

to the trabecular meshwork (Rauz et al. 2003).  This is an area of tissue, near 

the ciliary body, involved in the drainage of aqueous humour from the eye 

through the anterior chamber.  As mentioned previously, 11β-HSD1 catalysed 

synthesis of cortisol in the ocular ciliary epithelium, the site of aqueous humour 

drainage, stimulates aqueous humour production and increased intraocular 

pressure through induction of corticosteroid regulated target genes.  Sinclair 

and colleagues stated that a similar system could be found in the choroid plexus 

contributing to CSF production and ICP (Sinclair et al. 2008). 

 

Studies by Tomlinson et al. showed 11β-HSD1 activity is up-regulated by TNF-α 

and IL-1β through the secretion of PLA2 (Tomlinson et al. 2004), an enzyme that 

increases cytokine production involved in inflammatory responses in 

glomerular mesangial cells (GMC) (Escher et al. 1997).  

 

As well as TNF-α, IL-6 (see section 1.10.3) is associated with obesity and may 

also regulate 11β-HSD1 activity (Park et al. 2005).  Within this same study of 

obese and non-obese adults free from inflammatory disease, TNF-α levels were 

higher in obese (2.69 pg/ml) compared with non-obese patients (1.72 pg/ml).  

IL-6 levels were also elevated in obese patients (2.00 pg/ml) when compared 

with lean controls (1.58 pg/ml).  This provides a theory that 11β-HSD1 

activation may be due to the dysregulation of these cytokines. 
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1.10 Cytokines levels are increased in IIH patients 

Cytokines are small, non-structural proteins that are synthesized by most 

nucleated cells.  Cytokines include interleukins (IL), interferons (IFN) and colony 

stimulating factors.  Cytokines and chemokines (a sub-group of cytokines that 

direct chemotaxis in responsive cells) are involved in regulating inflammatory 

responses through coordination of cell movement to sites of infection in the 

immune system (Dhungana et al. 2009).  Chemokines facilitate the passage of 

leukocytes from the circulation and into the tissues (Dinarello 2000).  

 

Examples of pro-inflammatory cytokines implicated in IIH are listed in Table 1.2, 

along with an indication of the change in the levels of these factors in the CSF 

and serum (plasma where indicated) in IIH patients compared to controls.  

Changes in levels of HC are also considered.  

 

Treatment CSF Serum Reference 

Hydrocortisone -  (Sinclair et al. 2010) 

Leptin   (Ball et al. 2009)  

CCL2*  - (Dhungana et al. 2009) 

IL-6**   
(ReihaniKermani et al. 2008) 
(Singhal et al. 2002) (plasma) 

IL-17***  - (Edwards et al. 2013) 

TNF-α**   
(Hayakata et al. 2004) 
(Edwards et al. 2013)  

IL-1β**   
(Hayakata et al. 2004) 
(Dhungana et al. 2009) 

Table 1.2: A summary of the differences observed of endogenous CSF and 
blood serum (plasma indicated) cytokine and hydrocortisone levels between 
IIH patients and controls. *against tension type headache patient controls; 
**against ICP following Traumatic Brain Injury (TBI) patient controls; ***against 
multiple sclerosis (MS) patient controls; (–) indicates no change between IIH 
patients and controls (see section 1.10.4). Actual treatment concentrations can 
be found in Table 6.2 of Appendix Section 6.1, page 267. 
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Infection and immune-activated T cells initiate a pro-inflammatory response 

which is mediated by cytokines.  Cytokines IL-1 and TNF-α induce endothelial 

adhesion molecules, involved in the binding of leukocytes to the endothelial 

surface, and initiate a cascade of inflammatory mediators, through the 

activation of genes including phospholipase A2 (PLA2), cyclooxygenase (COX)-

2, and inducible nitric oxide (NO) synthase, by targeting the endothelium 

(Dinarello 2000). 

 

In response to inflammation, adipose tissue secretes pro-inflammatory 

cytokines, chemokines and various hormones.  Once activated, adipose tissue 

recruits macrophages which secrete inflammatory mediators (Weisberg et al. 

2003).  These mediators bind to specific membrane receptors, for example IL-1 

receptor (IL-1R) in the case of IL-1.  This binding results in a number of 

intracellular signalling events, such as protein phosphorylations and activation 

of phosphatases (Dinarello 2000), which cause the induction of certain genes 

that mediate the activities of cytokines (Zdanov & Wlodawer 2008).  

 

Due to its links with obesity, IIH could be associated with increased expression 

of adipokines and cytokines (see section 1.8.2).  Pro-inflammatory cytokines 

could serve as important diagnostic markers of molecular pathways that may 

serve as targets for therapeutic intervention (Dhungana et al. 2009) if they are 

found to cause elevated ICP and therefore be a cause of IIH.   

 

1.10.1 CCL2 

C-C Motif Chemokine Ligand 2 (CCL2) belongs to the CC chemokine family and 

is involved in the recruitment of monocytes and memory T cells to sites of 
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inflammation.  CCL2 is involved in the production of cytokines by these 

monocytes.   

 

CCL2 is also involved in the pathogenesis of several diseases including 

neuroinflammation (Ramesh et al. 2013) (Ransohoff 2002), ischaemic stroke 

(Wolinski et al. 2013), and Alzheimer’s disease (Azizi et al. 2014) and produces 

its biological effects through interaction with its CCR2 receptor, which belongs 

to the G-protein coupled receptor superfamily (Murphy et al. 2000). 

 

During peripheral inflammation of the choroid plexus, expression levels of CCL2 

were found to be increased (Mitchell et al. 2009).  Szymydynger-Chodobska et 

al. found that CCL2 is secreted at the apical membrane of the choroidal 

epithelium in adult male Long-Evans rats.  In addition, there is evidence of this 

chemokine secretion promoting leukocyte migration across epithelial barriers 

in patients following traumatic brain injury (TBI) (Szmydynger-Chodobska et al. 

2012). 

 

Further studies have been performed by Dhungana and colleagues on the 

detectable level of CSF and serum cytokine and chemokine profiles amongst IIH 

patients compared to controls of multiple sclerosis and tension-type headache 

patients.  The results showed significantly elevated levels of CCL2 (P≤0.01) in 

the CSF of IIH patients compared with controls (Dhungana et al. 2009).  Within 

the BBB, Gerhardt and co-workers found monocyte infiltration in endothelial 

and smooth muscle cells which also highlighted CCL2 expression (Gerhardt et 

al. 2001).  
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Other studies found that CCL2 is synthesised by a variety of epithelial cells in 

response to pro-inflammatory cytokines IL-1β and TNF-α (see section 1.10.5) 

(Paine et al. 1993) (Prodjosudjadi et al. 1995) (Szmydynger-Chodobska et al. 

2012).  Within these studies, the choroidal production of CCL2 appeared to 

reach its maximum capacity when the rat choroid plexus monolayers were 

incubated with IL-1β at a concentration of 1ng/ml.   

 

As CCL2 aids in the recruitment of monocytes, these data suggest that the 

BCSFB not only contributes to the post-traumatic invasion of monocytes, but 

possibly to the pathogenesis of IIH as the choroid plexus is the site of CSF 

production. 

 

1.10.2 Leptin 

Leptin and adiponectin are cytokines most secreted in the highest 

concentrations by the adipose tissue (see section 1.8.2) and were also found to 

be present at increased levels in the CSF of IIH patients (Ball et al. 2009).  These 

results imply that the transfer of leptin across the BCSFB in IIH may be 

increased.   

 

Leptin is an adipocyte-derived hormone (adipokine) that circulates in serum at 

levels proportionate to body fat.  Its major role is in the modulation of appetite 

and energy balance (Klok et al. 2007).  Leptin is a product of the Obese (Ob) 

gene and when absent, results in profound obesity in mice (Tartaglia et al. 

1995).  When exogenously supplied, leptin can reduce food intake and body 

weight in a variety of rodent models (Tartaglia et al. 1995).  Various studies 
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have shown that leptin could also be sourced in the brain (Wilkinson et al. 2000) 

(Morrison 2009); plays a role in obesity and starvation through its action on the 

BBB (Banks 2008); and that it is also secreted by the epithelial cells of the 

stomach (Sobhani et al. 2000) and placenta (Lepercq et al. 2001). 

 

Concentrations of serum leptin have also been shown to be higher in females 

compared to males, independent of body mass (Baumgartner et al. 1999) (Ruhl 

& Everhart 2001).  The fact that higher testosterone levels are associated with 

lower leptin levels could be a reason for this (Söderberg et al. 2001).  

 

Obese people are shown to have increased serum levels of leptin (Buyukbese 

et al. 2004).  A radioimmunoassay by Considine and colleagues found that the 

concentration of leptin in the peripheral circulation is about four-fold higher in 

obese individuals compared with lean (Considine et al. 1996).  However, the 

rate of leptin uptake into the CSF does not increase in obese individuals with 

high serum leptin levels, due to the saturation of available transport carriers 

(Caro et al. 1996).  This would explain the lower CSF/serum ratios for leptin and 

apparent leptin resistance of obese individuals.  The increased levels of serum 

leptin in obesity are due to a resistance to its appetite suppressing effects, 

mainly due to impaired transport of leptin across the BBB (Flier 2004). 

 

The effect of exogenous leptin on CSF secretion rate has not been previously 

studied.  However, increased exogenous concentrations of leptin have been 

shown to elevate sodium excretion rate, two-fold (P≤0.01), in kidneys of 

anaesthetised rats (Jackson & Li 1997), through the activation of Janus kinase 
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(JAK) pathways which phosphorylate signal transducers and activators of 

transcription (STATS).  STATS bind to promoter regions of genes, in turn altering 

their expression (Jackson & Li 1997).  Concentrations of leptin within the CSF 

may be attributed to its movement across the choroid plexus.  There is evidence 

of an increased affinity (Km 0.5nM) for net leptin uptake from the blood to the 

CSF across the choroid plexus than the levels measured at the basolateral 

membrane (Km 16nM) (Thomas et al. 2001).  The study by Thomas and 

colleagues, found that secretion of new CSF by the choroid plexuses was 

significantly decreased with leptin present and that leptin transport at the 

BCSFB is via a saturable transport mechanism (where unlabelled leptin 

competes with [125I]leptin for uptake sites) and non-saturable mechanisms and 

that the choroid plexus is involved in the regulation of leptin availability to the 

brain (Thomas et al. 2001). 

 

Leptin has also been found to increase plasma corticosterone levels as 

compared with controls in male Long-Evans rats following infusion into the 

third cerebral ventricle, suggesting that leptin activates the hypothalamo-

pituitary-adrenal (HPA) axis (van Dijk et al. 1997).  The HPA axis is a set of 

feedback interactions among the hypothalamus, pituitary and adrenal glands.  

The adrenal cortex is a key element of the HPA axis, and produces cortisol in 

humans through the stimulation of adrenocorticotropic hormone (ACTH) 

(Schwartz et al. 1996).  These results could explain the possible 

leptin:glucocorticoid levels and their effects on fluid production within the 

choroid plexus epithelium.   
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The increased levels of leptin in obese and female individuals, which coincide 

with the epidemiology of IIH; as well as its increased association within the CSF 

of IIH patients, suggest a possible role of leptin in the pathogenesis of this 

disease.  

 

1.10.3 IL-6 

IL-6 is a pro-inflammatory cytokine that stimulates the body’s own immune 

system.  It is produced in a number of cell types in response to pro-

inflammatory stimuli, including IL-1 and TNF-α (Akira et al. 1993).   

 

IL-6 roles include the regulation of immune and inflammatory responses, acute-

phase protein production, bone metabolism, and hematopoiesis (Leonard et al. 

1999).  This study by Leonard and colleagues, also showed the presence in 

primary mesangial and proximal tubular cells from human kidney tissues of 

both the P38 mitogen-activated protein kinases and mitogen-activated protein 

kinases/extracellular signal-regulated kinases (MAPK/ERK) pathways, which 

regulate the production of IL-6 from the proximal tubular (duct system of the 

kidney leading from the Bowman's capsule to the loop of Henle) and 

glomerular mesangial (network of capillaries) regions of the nephron.  

Activation was confirmed by the SB203580 (1-30 μM) and PD98059 (0.01-

10 μM) inhibitors abolishing TNF-α-stimulated IL-6 production by p38 MAPK 

activity, and phosphorylation of ERK1,2 pathway, respectively.  These data may 

suggest a similar regulatory pathway for IL-6 within the choroid plexus 

epithelium.  

 



55 
 

Studies by Reihani-Kermani and colleagues found IL-6 to be elevated in the CSF 

(23.6 pg/ml) of IIH patients when compared to healthy controls (1.8 pg/ml) 

(Reihani-Kermani et al. 2008).  In addition, as with leptin, circulating IL-6 

stimulates the HPA axis; activation of which is associated with central obesity 

and cortisol production (Yudkin et al. 2000). 

 

Protein and mRNA levels of IL-6 are increased in human peripheral blood 

mononuclear cells (PBMCs) following nitric oxide (NO) stimulation at low 

concentrations (<10 μM) (Siednienko et al. 2011).  The effects of NO on IL-6 

expression are cGMP dependent.  The cGMP-dependent pathway is initiated 

when NO binds to the heme moiety of cytosolic guanylyl cyclase (GC) and 

stimulates its enzymatic activity (Siednienko et al. 2011).  These results show 

NO may play a stimulatory role in IL-6 expression, in human PBMCs, involving 

the GC/cGMP/PKG pathway.  As already mentioned in section 1.3.2, cGMP is 

shown to reverse the movement of ions in the choroidal epithelium, leading to 

a reduction in CSF secretion (Kolb et al. 1994) through protein kinase inhibition 

of Na+-K+-ATPase.  The pathway of initial increased cGMP stimulation, increased 

IL-6 expression, and reversed ion movement across the choroid plexus, may 

suggest a link between IL-6 and a potential decrease in CSF secretion. 

 

A link between the elevated levels of leptin, CCL2 and IL-6 in the CSF of IIH 

patients; and potential increases in CSF secretion rate, could provide a theory 

as to the cause of raised ICP associated with IIH patients. 
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1.10.4 IL-17 

There is evidence of another pro-inflammatory cytokine, IL-17, with increased 

levels in the CSF of IIH patients (Edwards et al. 2013).  IL-17 is a cytokine 

secreted exclusively by activated T-cells.  The IL-17 receptor (IL-17R) is 

expressed in all tissues examined to date (Das Sarma et al. 2009).  Activation of 

Th17 cells releases IL-17, which then activates IL-17R and results in the 

induction of other pro-inflammatory cytokines and chemokines, such as IL-1β, 

TNF-α and IL-6, through activation of transcription factor nuclear factor-kappa-

light-chain-enhancer of activated B cells (NF-κB) (Hershko et al. 2002) from 

parenchymal cells and macrophages (Jovanovic et al. 1998).   

 

Other studies have found IL-17 to act synergistically with TNF-α (Griffin et al. 

2012); however, there are conflicting reports with regards to whether TNF-α is 

elevated in the CSF of IIH patients (Dhungana et al. 2009) (Ball et al. 2009) 

(Hayakata et al. 2004).  

 

Findings by Zúñiga implicate IL-17 as a negative regulator of adipogenesis and 

glucose metabolism in mice, and show that it delays the development of 

obesity (Zúñiga et al. 2010). The onset of adipogenesis is essential for the 

secretion of leptin; a cytokine found in elevated levels in the CSF of IIH patients 

(Ball et al. 2009) (see Table 2.2 and section 1.10.2).  This could suggest an 

opposing theory of reduced CSF secretion, involved in the pathogenesis of IIH, 

caused by increased IL-17 levels leading to decreased CSF leptin levels.  

Therefore, if no effect in CSF secretion rates is seen following exogenous leptin 

stimulation in vivo, it may be due to the increased levels of endogenous IL-17.  
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1.10.5 IL-1β and TNF-α 

IL-1 is a pro-inflammatory cytokine that is secreted from monocytes and 

macrophages and stimulates the activation of resting T-cells, in turn producing 

more cytokines.  IL-1 has two isoforms, IL-1α and IL-1β, both of which induce 

TNF-α expression.  There is evidence of IL-1 having effects in various 

neuroinflammatory diseases such as cerebral ischaemia (Tuttolomondo et al. 

2008), Alzheimer’s disease (Van Everbroeck et al. n.d.) and Parkinson’s disease 

(Pott Godoy et al. 2008) by acting on type 1 IL-1 receptors on target cells. 

 

Links between IL-1 and leptin have been shown, as administration of IL-1 

produces a dose-dependent increase in human serum leptin levels (Simons et 

al. 2005). 

 

TNF-α is a transmembrane protein located in the plasma membrane, from 

which a soluble form of TNF-α is released into the extracellular space through 

the actions of TNF-α converting enzyme (TACE).  During increased stress-

induced kinase signalling, various cells can produce TNF-α such as microglia, 

astrocytes, immune cells, and brain endothelial cells (McCoy & Tansey 2008).  

TNF-α produces an immune response via activation of macrophages and T 

lymphocytes (Boehm et al. 1997), similar to the effects associated with IL-17 in 

Section 1.10.4.  TNF receptors type 1 and type 2, found in brain endothelium 

(Lombardi et al. 2009), mediate the biological roles of TNF-α.  At the BBB, TNF-

α increases the passage of inflammatory cells into the CNS by upregulating 

adhesion molecules on the endothelium (Wosik et al. 2007).  
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Baniak and co-workers studied the effects of IL-1β and TNF-α on fluid secretion 

by swine airway submucosal glands (Baniak et al. 2012).  It was found that both 

IL-1β and TNF-α, simultaneously, increased fluid secretion and that this effect 

was dependent on cAMP and PKA elevation. The increased action of cAMP and 

PKA involved a conformation change of the NKCC1 transporter (Na+-K+-2Cl-) 

which drove the movement of ions into the CSF.  This mechanism was 

suggested on the basis that there was a reduction in fluid secretion following 

treatment with bumetanide, an NKCC1 inhibitor. 

As mentioned in section 1.9, 11β-HSD1 activity is up-regulated by TNF-α and IL-

1β (Tomlinson et al. 2004), and TNF-α levels were found to be higher in obese 

individuals (Park et al. 2005).  Interestingly, in obese individuals, diet-induced 

weight loss resulted in reduced TNF-α, IL-6, and leptin concentrations (Lyon et 

al. 2003).  Therefore, the roles of these cytokines in epithelial fluid secretion, 

and reduced concentrations following weight loss, is consistent with the 

association of obesity and increased ICP in IIH where these cytokines are 

present at elevated levels.  

 

1.11 Aim 

The potential roles of cytokines and HC in modulating CSF secretion in IIH are 

summarised in Figure 1.18.  The four potential mediators that have been shown 

to be elevated in the CSF of IIH patients – leptin, CCL2, IL-6 and IL-17 (Ball et al. 

2009) (Dhungana et al. 2009) (Reihani-Kermani et al. 2008) (Edwards et al. 

2013) - are highlighted.  IL-17 has been shown to trigger the release of cytokines 

IL-1β and TNF-α from macrophages (Jovanovic et al. 1998).  These three 

cytokines are involved in the production of the 11β-HSD-1 enzyme which 
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activates the conversion of cortisone to cortisol (HC), possibly driving Na+ 

secretion through the ENaC pathway across choroid plexus epithelial cells 

(Sinclair et al. 2008).  IL-1β and TNF-α also bind in a ligand-receptor complex, 

activating the NKCC1 transporter and PKA pathways (which also activates AQP1 

water channels) to drive the movement of ions (Na+, K+, 2Cl-), and water 

respectively, across the choroid plexus epithelium.  Leptin activates the 

hypothalmo-pituitary-adrenal (HPA) axis. The adrenal cortex of the axis 

produces cortisone through stimulation of adrenocorticotropic hormone 

(ACTH).   Nitric oxide (NO) stimulates an increase in IL-6 in peripheral blood 

mononuclear cells (PBMCs) which increases intracellular cGMP.  cGMP reverses 

the movement of ions across epithelia which is the opposite to cAMP.  This 

would indicate that IL-6 could possibly decrease CSF secretion rates.  IL-1β and 

TNF-α are also known to increase the expression of CCL2 which may also 

increase CSF secretion through an unknown pathway (Figure 1.18).  Studying 

CSF secretion rates in response to treatment with these cytokines may explain 

the cause of increased levels of CSF, and in turn, ICP in patients with IIH.   

 

In addition to increased CSF secretion, the resistance to CSF drainage may also 

contribute to increased ICP levels in IIH patients. However, the potential 

mechanisms of altered CSF drainage pathways involved with cytokines, found 

to be elevated in the CSF of IIH patients, and HC, is unknown.  A potential 

blockage of the CSF drainage sites; the arachnoid villi and lymph nodes, 

associated with the cytokines of interest may explain their possible role of 

increased ICP in IIH patients. 
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Therefore, the overall aim is to investigate CSF secretion and resistance to CSF 

drainage as the main cause of IIH by investigating the effects selected 

mediators and pro-inflammatory cytokines, found to be elevated within the 

CSF, have on CSF secretion and resistance to CSF drainage. 

 

1.11.1 Objectives:  

1. Measure the effects of leptin, CCL2, IL-6, IL-17, IL-1β, TNF-α and HC on CSF 

secretion rates in vivo in both normal and high-fat diet fed male and female 

rat models, using ventriculo-cisternal perfusion. 

 

2. Measure the effects of leptin, CCL2, IL-6, IL-17, IL-1β, TNF-α and HC on the 

resistance to CSF drainage in vivo in both normal and high-fat diet fed male 

and female rat models, using a variable rate infusion technique. 

 

3. Perform a transcriptome analysis to confirm the mRNA composition of 

human choroid plexus epithelial cells (hCPEPiC) following 24h incubation in 

vitro with the cytokines that affected CSF secretion rates in vivo. 

 

1.11.2 Hypothesis 

A combination of a high-fat diet and elevated cytokines IL-17, IL-6, TNF-α, IL-

1β, leptin, and the glucocorticoid hydrocortisone stimulate CSF secretion rates 

and/or increase resistance to CSF drainage in IIH patients. 
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Figure 1.18:  Putative CSF 
secretion and drainage 
pathways underlying IIH 
factors to be tested within 
this project.   

Dashed red lines indicate the 
opposite action of cAMP and 
cGMP on ion movement 
across the choroid plexus 
epithelial cells. Own diagram 
based on references cited in 
the introduction. 
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2 Materials and Methods 

2.1 Materials 

A complete table of all chemicals, solutions and reagents used, including suppliers 

and catalogue numbers, are provided in Table 6.1 of Appendix Section 6.1.  

 

2.2 Methods  

2.2.1 Preparation of artificial CSF with blue dextran  

Artificial cerebrospinal fluid (aCSF) containing 0.5% (w/v) blue dextran (Sigma-

Aldrich Ltd, Dorset, UK, Cat No. D5751) was used for the in vivo perfusion 

experiments.  The aCSF (with blue dextran) was made up using the compounds 

listed in Table 2.1.  

 

Compound MW (g/mol) g/l mM 

Sodium chloride (NaCl) 58 7.076 122 

Potassium chloride (KCl) 74 0.296 4 

Calcium chloride (CaCl2) 111 0.111 1 

Magnesium chloride 

(MgCl2) 95 0.095 1 

Sodium bicarbonate 

(NaHCO3) 84 1.26 15 

HEPES 238 3.57 15 

Disodium phosphate 

(Na2HPO4) 142 0.071 0.5 

Glucose 180 3.15 17.5 

Blue dextran 2,000,000 5 0.0025 

Table 2.1: Molecular composition of aCSF with blue dextran, including the MW 
(g/mol) and concentration in the solution, (g/l and mM).  
Ion concentrations followed those described in the rat CSF by (Davson 1967). 
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2.2.2 In vivo CSF secretion - the ventriculo-cisternal perfusion technique 

The ventriculo-cisternal perfusion technique allowed for perfusion of the aCSF 

(containing blue dextran) with the treatment of interest through the two ventricles 

in the brain in anaesthetised live rats.  The method is based on the collection of CSF 

samples from the cisterna magna and further analysis of these by 

spectrophotometry, which allows the CSF secretion rate, steady states and initial 

CSF volume to be determined.   

 

The experiment was carried out in 11 week old male and female Wistar rats, 250-

300 g, in accordance with Home Office project licence ("Cerebrovascular changes in 

the aged and disease brain", PPL number: 70/8507; ICV injections and perfusions 

under Protocol 3 "dynamics of ISF and CSF drainage").  The animals were housed in 

standard polypropylene cages (three rats/cage) and maintained under controlled 

room temperature (22 ± 2 0C) and humidity (55 ± 5%) with 12:12 h light and dark 

cycle.   

 

The animals were first anaesthetised using a 100% isofluorane (Merial Animals 

Health, Essex, UK) inhalation vapour, administered within an inhalation chamber for 

5 min.  A single intraperitoneal (i.p.) injection of ‘Domitor’ (medetonidine 

hydrochloride) at 20 μl/100 g weight and ‘Vetalar’ (ketamine) at 50 μl/100 g weight 

of animal (both supplied by the Home Office Named Veterinary Surgeon, Red Kite 

Veterinary Consultants Centaur Services, Castle Cary, UK) was then given.  After 

checking for lack of reflexes, the head was held in position using a stereotaxic frame 

and a midline cutaneous incision was made from forehead to neck to expose the top 
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of the skull.  The lateral ventricles were located 0.8 mm posterior to the bregma and 

1.5 mm laterally either side for each lateral ventricle. A 0.65 mm hand-chuck drill bit 

(Farnell Element, Leeds, UK, eclipse 121 pin vice, Cat No. 146443) bore holes in the 

skull for insertion of metal cannulae to a depth of 4 mm.  The cannulae were 

attached to a water manometer; a fall in pressure as the cannulae was inserted 

confirmed correct positioning within the ventricle.   

 

A 1 mm diameter needle was inserted into the cisterna magna for collection of 

perfusion outflow (Figure 2.1).  Entry into the cisterna magna was obtained by 

locating the base of the occipital bone, found at the back of the rat skull, before 

piercing the arachnoid membrane, below the bone, and inserting the needle into 

the subarachnoid space (SAS) of the cisterna magna.  Correct positioning of the 

needle was evident following immediate visualisation of aCSF (containing blue 

dextran) perfusion through the needle and into the 1 mm bore tubing (Altec 

Products Ltd, St Austell, UK, Cat No. 01-93-1407/30).   
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2.2.2.1 Schematic diagram of ventriculo-cisternal perfusion

Adult Rat Brain: Site of injection into each lateral ventricle 

aCSF ± Treatment  
C

in
 

   
10 min 

aCSF  
C

out
 

   

Figure 2.1: In vivo model of ventriculo-cisternal perfusion in adult Wistar rats.   
The treatment of interest was perfused with the aCSF (containing blue dextran) into each lateral ventricle of the rat brain 
(Cin). The solutions were collected every 10 min for a period of 90 min from the cisterna magna (Cout) and the absorbance was 
read on a spectrophotometer at a 625 nm wavelength.  The increase in dilution of the blue dextran within the aCSF for each 
sample indicates an increase in CSF secretion over the course of experiment. 
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Two 10 ml plastic syringes (Medicina, Bolton, UK, Cat No. FWC347) were filled with 

aCSF (containing blue dextran) (see Section 2.2.1) with or without the treatment of 

interest at the concentrations shown in Table 2.2:  

 

Treatment Supplier 
Dose 

(ng/ml) 

Reference based on reported 

levels in IIH patients 

Hydrocortisone 
Sigma-Aldrich, Dorset, 

UK, (H0135) 
500 Sinclair et al. 2010 

Leptin 
Sigma-Aldrich, Dorset, 

UK, (L4146) 
100 Dhungana et al. 2009 

CCL2 

Cambridge Bioscience, 

Cambridge, UK, 

(00220-0-100) 

50 Dhungana et al. 2009 

IL-6 

Life Technologies, 

Paisley, UK, 

(10398-H08H-5) 

0.1 Reihani-Kermani et al. 2008 

IL-17 

Miltenyi Biotech Ltd, 

Woking, UK, 

(130-093-959) 

0.1 Li et al. 2012 

TNF-α 
Sigma-Aldrich, Dorset, 

UK, (H8916) 
0.1 Hayakata et al. 2004 

IL-1β 

Miltenyi Biotech Ltd, 

Woking, UK, 

(130-093-897) 

0.1 Hayakata et al. 2004 

Table 2.2: Concentrations of the treatment of interest added to the aCSF 
(containing blue dextran) for ventriculo-cisternal perfusion. 
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In some experiments, rats were administered the same treatments via i.p injections 

90 minutes prior to the start of the experiment, at the concentrations shown in 

Table 2.3: 

 

Treatment Dose 
Reference based on reported  

levels in IIH patients 

Hydrocortisone 100 μg/ml Sinclair et al. 2010 

Leptin 25 μg/ml Dhungana et al. 2009 

CCL2 10 μg/ml Dhungana et al. 2009 

IL-6 25 ng/ml Singhal et al. 2002 

IL-17 25 ng/ml Li et al. 2012 

TNF-α 25 ng/ml Ball et al. 2009 

IL-1β 25 ng/ml Dhungana et al. 2009 

Table 2.3: Concentration of the treatment of interest in i.p injections 90 minutes 
prior to ventriculo-cisternal perfusion. 

   

The concentrations given for both aCSF (with blue dextran) and i.p administration 

were higher than those detected in the CSF and serum of IIH patients from other 

studies shown in Table 6.2 of Appendix Section 6.1. 

 

Both lateral ventricles of the brain were perfused with aCSF (containing blue 

dextran) with or without treatment using a Harvard slow-drive syringe pump 

(Harvard Apparatus UK, Cambridge, UK, Cat No. 703007INT) for a total period of 

time of 90 min (Figure 2.1).  Two 10 ml syringes with a diameter of 14.5 mm were 

used. Perfusion inflow rate of aCSF was 20 μl min-1 for each ventricle for the first 20 

min and 10 μl min-1 for the remaining 70 minutes.  The choice of perfusion rate was 

made to remove possible clots resulting from cannulae insertion and to rapidly flush 

out endogenous CSF, which was flushed out over the first 40 minutes.  The need to 
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reduce clot accumulation was an observation that was determined during the initial 

experiments.   Cisternal CSF samples were collected over 10 min time periods during 

the entire 90 min perfusion period.  For measurement of CSF secretion rate, blue 

dextran was included in the aCSF.  The levels of the blue dye in the collected 

perfusate samples was determined using spectrophotometry (FLuostar Optima, 

BMG labtech, Aylesbury, UK) at 625 nm wavelengths.  The CSF secretion rate was 

calculated by the dilution of the blue dextran as shown in Equation 2.1:         

 

Equation 2.1: 

𝐂𝐒𝐅 𝐒𝐞𝐜𝐫𝐞𝐭𝐢𝐨𝐧 𝐑𝐚𝐭𝐞 (𝛍𝐥 𝐦𝐢𝐧−𝟏) =
𝐂𝐢𝐧 − 𝐂𝐨𝐮𝐭 

𝐂𝐨𝐮𝐭
×𝐏𝐞𝐫𝐟𝐮𝐬𝐢𝐨𝐧 𝐑𝐚𝐭𝐞 (𝛍𝐥 𝐦𝐢𝐧−𝟏) 

 

Where Cin is the absorbance value of the initial aCSF (containing blue dextran) that 

was perfused into each of the lateral ventricles (concentration in) and Cout is the 

absorbance value of aCSF (containing blue dextran) that was perfused out of the 

cisterna magna (concentration out) for a particular perfusion period.  The 

perfusion rate was the result of the two syringes used, i.e 2x10 μl min-1.  

 

The average CSF secretion rate reading was calculated from each collected sample 

at steady state; i.e. from 40-90 min, once the animal’s own initial endogenous CSF 

had been removed during the first perfusion time period (0-40 min).   

 

The initial in vivo CSF volume was calculated as shown in Equation 2.2: 
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Equation 2.2: 

             𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐂𝐒𝐅 𝐕𝐨𝐥𝐮𝐦𝐞 (𝛍𝐥) =

= 𝐓𝐨𝐭𝐚𝐥 𝐯𝐨𝐥𝐮𝐦𝐞 𝐬𝐞𝐜𝐫𝐞𝐭𝐞𝐝 𝐝𝐮𝐫𝐢𝐧𝐠 𝐰𝐡𝐨𝐥𝐞 𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭(𝛍𝐥)∗ − −

−      (𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐂𝐒𝐅 𝐒𝐞𝐜𝐫𝐞𝐭𝐢𝐨𝐧 𝐑𝐚𝐭𝐞×𝟗𝟎 𝐦𝐢𝐧(𝛍𝐥/𝟗𝟎 𝐦𝐢𝐧)) 

 

*Calculated by multiplying the CSF secretion rate (μl min-1) by the number of 

minutes the animal was perfused for, at each time period (i.e. 10 min), before 

adding up the values from each time period to one another.  

 

The steady states were calculated by dividing the absorbance value of aCSF, 

containing blue dextran, that was perfused out of the cisterna magna (Cout) after 

each 10 minute interval by the absorbance value of the initial aCSF, containing blue 

dextran, that was perfused into each of the lateral ventricles (Cin) (Equation 2.3): 

 

Equation 2.3: 

𝐚𝐂𝐒𝐅 𝐒𝐚𝐦𝐩𝐥𝐞 𝐒𝐭𝐞𝐚𝐝𝐲 𝐒𝐭𝐚𝐭𝐞 =
𝐂𝐨𝐮𝐭(𝐀𝐛𝐬)

𝐂𝐢𝐧(𝐀𝐛𝐬)
 

 

Examples of all calculations are shown in Appendix Section 6.2. 

 

2.2.3 In vivo resistance to CSF drainage – variable rate infusion technique 

The variable rate infusion technique, described by Jones and co-workers, measures 

the resistance to drainage of the CSF in the rat (Jones et al. 1987).  According to this 

technique, flow infusion of aCSF into the lateral ventricle at a known flow rate would 
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cause CSF pressure to rise to a plateau level.  The resistance to drainage of the CSF, 

in mmH2O.min/μl can then be calculated from the gradient of CSF pressure at 

plateau level (recorded over four increasing rates) plotted against the infusion rate. 

 

The variable rate infusion technique is similar to the ventriculo-cisternal perfusion 

method in that it allows for perfusion of the aCSF with the treatment of interest but 

through only one lateral ventricle of the brain in live anaesthetised rats.  The other 

lateral ventricle is inserted with a cannula attached to a pressure transducer 

(PATCOSHH Ltd, Kent, UK, Cat No. 00015027), and pressure readings are taken at 10 

min intervals at increasing perfusion rates.   

 

Just as in the ventriculo-cisternal perfusion experiment, the variable rate infusion 

technique was carried out in male Wistar rats, 250-300 g, in accordance with Home 

Office project licence (PPL number: 70/8507).  The animals were anaesthetised as in 

Section 2.2.2, with a 100% isofluorane inhalation vapour for 5 min and a single i.p. 

injection of ‘Domitor’ (medetonidine hydrochloride) at 20 μl/100 g weight and 

‘Vetalar’ (ketamine) at 50 μl/100 g weight of animal, before being positioned into 

the stereotaxic frame, and the lateral ventricles located as also described in Section 

2.2.2.  

 

One 10ml plastic syringe (Medicina, Bolton, UK, Cat No. FWC347) was placed in the 

Harvard slow-drive syringe pump (Harvard Apparatus UK) (filled with aCSF with or 

without the treatment of interest) (Figure 2.2). Only treatments that had an effect 
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on either CSF secretion rates or initial CSF volumes (as determined in the ventriculo-

cisternal perfusion experiments) were selected for investigation here.  The 

concentrations of these treatments were the same as those used in ventriculo-

cisternal perfusion experiments, as described in Table 2.2 and Table 2.4. 

 

Treatment Dose Reference 

Hydrocortisone 500 ng/ml Sinclair et al., 2010 

CCL2 50 ng/ml Dhungana et al., 2009 

IL-6 0.1 ng/ml Reihani-Kermani et al., 2008 

IL-17 0.1 ng/ml Li et al., 2012 

TNF-α 0.1 ng/ml Hayakata et al., 2004 

Table 2.4: Concentrations of the treatment of interest added to the aCSF for 
variable rate infusion. 

 

For i.p injections 90 min prior to the start of the experiment (where performed), the 

concentrations of the treatments were the same as those used in the ventriculo-

cisternal perfusion experiments, as described in Table 2.3 and Table 2.5. 

 

Treatment Dose Reference 

Hydrocortisone 100 μg/ml Sinclair et al., 2010 

CCL2 10 μg/ml Dhungana et al., 2009 

IL-6 25 ng/ml Singhal et al., 2002 

IL-17 25 ng/ml Li et al., 2012 

TNF-α 25 ng/ml Ball et al., 2009 

Table 2.5: Concentrations added of the treatment of interest for i.p injections 90 
minutes prior to variable rate infusion. 

   

One lateral ventricle of the brain was perfused using a slow-drive syringe Harvard 

pump for 10 min at each increasing perfusion rate (5, 10, 16 and 20 μl min-1) using a 

10 ml plastic syringe with a diameter of 14.5 mm.  Pressure readings (mmH2O) after 
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each 10 min were recorded using a pressure transducer which was attached to a 

separate cannula inserted into the other lateral ventricle. The cannulae were glued 

in place using Loctite Liquid Super Glue (RS Components, UK, Cat No. 425927) to 

create a closed system.  Changes in pressure recordings at plateau level at each 

increasing perfusion rate over those found in control animals would indicate 

whether the treatment of interest could modulate the resistance to CSF drainage.   
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2.2.3.1 Schematic diagram of variable rate infusion 

Adult Rat Brain: Site of injection into each lateral ventricle 

Syringe 

Pump 
(+/- Treatment) 

10 min Pressure  
Transducer 

Figure 2.2: In vivo model of variable rate infusion in adult Wistar rats.   
The treatment of interest was perfused with the aCSF into one lateral ventricle of the rat brain at increasing perfusion 
rates.  A separate cannula, attached to a pressure transducer, was inserted into the other lateral ventricle and pressure 
readings were taken every 10 min at both increasing and then decreasing perfusion rates. 

 

Pressure Reading 
(mmHg) 
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2.2.4 High-fat and normal control diets 

Male Wistar rats were ordered at 4 weeks of age and maintained on either a 

normal pellet or high-fat (HF) diet. Rat weights ranged between 250-350 g at the 

onset of experiments.  The HF diet male rats were fed a ‘Rodent Maintenance 

(RM) Atwater Fuel Energy (AFE) 45% Fat, 20% Crude Protein (CP) and 35% 

Carbohydrate (CHO)’ diet which was purchased from Special Diet Services (SDS), 

Essex, UK (Table 2.6). 

45% AFE High-Fat Diet (Male Wistar Rats) 

Ingredient g% (w/w) 

Fat 22.6 

Carbohydrates 39.8 

Protein 23 

Fibre 4.6 

Minerals 4.3 

Vitamins 1.2 

Total 95.5 

Table 2.6: Ingredients contained within % (w/w) of SDS 45% AFE HF diet. 

 

The HF diet female rats were provided with a ‘Western Rodent HF Diet’ also 

purchased from SDS, Essex, UK (Table 2.7). 

Western RD High-Fat Diet (Female Wistar Rats) 

Ingredient g% (w/w) 

Fat 21.4 

Carbohydrates 50 

Protein 17.5 

Fibre 3.5 

Minerals 3.5 

Vitamins 1 

Total 96.9 

Table 2.7: Ingredients contained within % (w/w) of SDS Western RD HF diet. 
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The screening control male rats were fed a commercially available 14% Protein 

Rodent Maintenance Diet, normal pellet diet (NPD), purchased from Envigo 

Teklad Diets, Huntingdon, UK as shown in Table 2.8.   

Normal Control Diet (Male Screening Rats) 

Ingredient g% (w/w) 

Fat 4 

Carbohydrates 48 

Protein 14.3 

Fibre 4.1 

Minerals 2.8 

Vitamins 0.2 

Total 73.4 

Table 2.8: Ingredients contained within % (w/w) of Teklad 14% protein rodent 
maintenance normal control diet. 

 

The control male and female rats were provided with a ‘Rat and Mouse No. 1 

Maintenance (RM1) normal diet purchased from SDS, Essex, UK, as shown in 

Table 2.9.   

Normal Control Diet (Male and Female OU) 

Ingredient g% (w/w) 

Fat 2.7 

Carbohydrates 45 

Protein 14.3 

Fibre 4.7 

Minerals 3.3 

Vitamins 0.1 

Total 70.1 

Table 2.9: Ingredients contained within % (w/w) of SDS RM1 rodent 
maintenance normal control diet. 

 

The rats were fed ad-libitum and the diets were administered as pellets for a 

period of seven weeks.  Control rats and those receiving the high-fat diet (HF 

rats) were weighed every week from the onset of diet. 
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2.2.5 Cytology of female oestrous cycle 

Vaginal smear analysis was performed, according to methods by Cora and co-

workers,  on female Wistar rats prior to ventriculo-cisternal perfusion and 

variable rate infusion experiments to determine the stage of their oestrous cycle 

(Cora et al. 2015).  200 μl dH2O was inserted into the vaginal orifice, using a 

Pasteur pipette at a depth of 5-10 mm, and flushed into the vagina and back out 

2-3 times.  A small drop of the sample was placed evenly on a microscope slide 

(Marienfeld, Germany, Cat No. 1320102) before imaging under a Bresser LCD 

Micro light microscope (Meade Instruments, Germany).  It was only once analysis 

confirmed the female Wistar rats were on the diestrus phase of the cycle 

(quiescence between periods of sexual activity, therefore levels of estradiol are 

low), and was determined by the presence of leucocytes but few nucleated cells 

(Cora et al. 2015), that ventriculo-cisternal perfusion and variable rate perfusion 

experiments could be performed.  

 

2.2.6 Cholesterol assay 

To compare the plasma concentration of cholesterol in male and female adult 

Wistar rats on a normal and HF diet, a colorimetric Cholesterol Assay Kit (Abcam, 

Cambridge, UK, Cat No. ab65390) was used to measure total cholesterol, HDL 

and LDL/VLDL fractions from plasma samples.  All of the reagents used were 

supplied by Abcam within the assay kit unless stated otherwise.  Plasma was 

collected by intracardiac withdrawal from the left ventricle of the heart from 

each animal (11 weeks of age) immediately after the completion of the 

experiment and prior to perfusion for brain fixation (see Section 2.2.7).  3ml of 

blood was collected using a 20 gauge; 1.5 inch sized needle and was slowly 
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extracted into a 5 ml syringe so as not to exert excess pressure which could sheer 

the cell walls and cause haemolysis of the blood sample.  The blood was 

transferred into a 15 ml tube and left to clot at room temperature for 60 mins.  

The samples were then centrifuged (1300 x g for 10 mins) before the plasma was 

collected and stored at -200C until needed.   

  

2.2.6.1 Preparation of standard 

A fresh standard was prepared for each analysis to generate a standard dilution 

curve.  250 μl of 0.2 μg/μl cholesterol standard was prepared by diluting 25 μl of 

cholesterol standard (2 μg/μl) in 225 μl of Cholesterol Assay Buffer.  Using the 

0.2 μg/μl Cholesterol Standard, five standards were produced by serial dilution 

ranging from 1-5 μg cholesterol in microcentrifuge tubes before being 

transferred into a 96-well plate.  Each dilution had enough amount of standard 

to set up duplicate readings (2x50 μl).  

 

2.2.6.2 Sample preparation - quantification of total cholesterol  

The plasma samples were used directly and no preparation step was required.  A 

volume of 20 μl of each normal diet and high-fat diet plasma sample was added 

into each well and labelled as the ‘Total Cholesterol’ sample wells. 

 

2.2.6.3 Separation of HDL and LDL/VLDL 

First, 100 μl of the plasma sample was mixed with 100 μl of 2x Precipitation 

Buffer in microcentrifuge tubes.  The mixed samples were then incubated at RT 

for 10 min before being centrifuged at 2,000 x g for 10 min.  The supernatant 
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was then transferred to new microcentrifuge tubes and labelled as the ‘HDL 

fraction’.  The precipates contained the LDL/VLDL fraction, which were then 

centrifuged again at 2,000 x g for 10 min.  Any remaining trace amount of HDL 

supernatant was carefully removed before the precipitate was resuspended in 

200 μl phosphate buffered saline (PBS) and labelled as the ‘LDL/VLDL fraction’.  

20 μl of each HDL and LDL/VLDL fraction was added into separate wells of the 96-

well assay plate and labelled accordingly as ‘free cholesterol’ sample wells. 

 

2.2.6.4 Cholesterol reaction mix 

All of the reagents were equilibrated to room temperature prior to use.  The 

cholesterol probe however was warmed in a 37 0C water bath for 3 min to thaw 

the DMSO within the vial.  The Enzyme Mix and the Cholesterol Esterase were 

each reconstituted in 220 μl of Cholesterol Assay Buffer before use.  Sufficient 

volumes of these mixes were made up to allow 50 μl per assay sample.  The 50 μl 

Reaction Mix was prepared for each reaction as shown in Table 2.10. 

 

Component Total Cholesterol Reaction 
Mix (μl) 

Free Cholesterol Reaction 
Mix (μl) 

Cholesterol Assay 
Buffer 

44 46 

Cholesterol Probe 2 2 

Enzyme Mix 2 2 

Cholesterol Esterase 2 0 

Table 2.10: Volumes in μl of components added in both a Total Cholesterol 
Reaction Mix, and Free Cholesterol Reaction Mix which were used to obtain 
total cholesterol as well as HDL and LDL/VLDL concentration in the plasma 
samples, respectively. 

 

A 50 μl volume of Total Cholesterol Reaction Mix was then added into each 50 μl 

Standard well and 20 μl Total Cholesterol (whole plasma) sample wells.  50 μl of 
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Free Cholesterol Reaction Mix was added into each of the 20 μl HDL and 20 μl 

LDL/VLDL sample wells.  The samples were then protected from light and 

incubated at 37 0C for 60 min.  The absorbance was then measured on a FLuostar 

Optima microplate reader at a wavelength of 570 nm.  

 

The duplicate readings for each standard were averaged before the mean 

absorbance value of the blank (standard no. 1) was subtracted from all standard 

and sample readings.  This obtained the corrected absorbance.  The corrected 

absorbance values were then plotted. The standard curve and trendline equation 

was constructed using the points of the corrected absorbance values.  

 

The concentration of cholesterol in the test samples was then calculated as 

described in Equation 2.4. 

 

Equation 2.4: 

𝐂𝐡𝐨𝐥𝐞𝐬𝐭𝐞𝐫𝐨𝐥 𝐂𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧 =
𝐀

𝐕
 ×𝐃 

A = amount of cholesterol in the sample well calculated from the standard curve 

(μg). 

V = volume of sample added to the sample reaction well (i.e 20 μl for Total 

cholesterol; HDL and LDL/VLDL fractions). 

D = dilution factor. For total cholesterol, D = 1; for HDL and LDL/VLDL fractions, D 

= 2. 
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2.2.7 Intracardiac perfusion in adult Wistar rats 

For each animal, a 200 ml volume of 4% (w/v) p-formaldehyde (PFA) (Sigma-

Aldrich, Dorset, UK, Cat No. P6148) in 0.1 M PBS (Sigma-Aldrich, Dorset, UK, Cat 

No. P4417) was heated at 60 0C until the powder dissolved, pH adjusted to 7.4 

using NaOH, and stored at 4 0C until needed. On the day of the experiment, 0.5% 

(v/v) glutaraldehyde (Agar Scientific, Essex, UK, Cat No. R1311) was added before 

use.  

 

The anaesthetized rat [single i.p. injection of ‘Domitor’ (medetonidine 

hydrochloride) at 20 μl/100g weight and ‘Vetalar’ (ketamine) at 50 μl/100g 

weight of animal] was positioned flat on its back and secured on an oblique 

surface to enable draining of fluids.  The peristaltic pump (Harvard Apparatus UK, 

Cambridge, UK, Cat No. 702027) was switched on and a 0.1 M PBS solution was 

run through the tubing in a circular system at 5 μl/min with the addition of a 

butterfly needle (Becton Dickinson Valve Set, Belliver Industrial, UK, Cat No. 

387412) to make sure there was no air in the system.  

 

The skin underneath the rib cage was pinched and a small incision was made 

with large scissors before opening wide the thorax diaphragm to the armpits in 

order to expose the heart.  The sternum was then clamped back and held in 

place.  The lower heart was grasped (gently but firmly).  The peristaltic pump was 

briefly switched off before the cannula (butterfly needle) was inserted into the 

left ventricle and pushed up into aorta. The pump was then switched on at the 

same speed of 5 μl/min.  The right atrium was incised with fine scissors to drain 

out fluids and avoid excessive pressure.  After 2 min the 0.1 M PBS solution was 



81 
 

switched to PFA 4% + glutaraldehyde 0.5% and 100 ml was run for 5 min while 

checking stiffness of the tail, which would indicate progress of the fixation.  

 

At the end of the perfusion the cannula was withdrawn and the animal was 

decapitated using a guillotine. The skull was opened using scissors and the brain 

was dissected out.  The brain was stored in 4% (w/v) PFA + 0.5% (v/v) 

glutaraldehyde fixative at 4 0C.  The brain was then placed in a 50 ml tube of 30% 

sucrose solution at 4 0C to drain it of water.  The brain was fully drained when it 

sank to the bottom of the tube and was then stored at 4 0C until sectioning. 

 

2.2.8 Adult male Wistar rat brain vibratome sectioning  

The adult Wistar rat brains were washed 3x for 1 h in 0.2 M phosphate buffer 

(PB) (6.2g sodium dihydrogen orthophosphate (BDH Chemicals Ltd, Poole, UK, 

Cat No. 10245) and 22.6g di-sodium hydrogen orthophosphate anhydrous (Fisher 

Scientific, Loughborough, UK, Cat No. S/4520/53) in 1 litre dH2O, pH 7.5 in order 

to clean the brain of sucrose.  The cerebellum was cut off each brain and the 

cerebra allowed to air dry for 5 min.  The caudal (posterior) side of the brain was 

then glued onto the vibratome (Leica VT, Leica Microsystems Ltd, Milton Keynes, 

UK, Cat No. 10005) plate and was then placed into the water bath in a horizontal 

position.  A fresh blade was used for every brain and cleaned with acetone under 

the hood before being fixed onto the vibratome.  The water bath was filled with 

0.2 M PB until the brain was covered.  The vibratome settings were set at a 

frequency of 70 Hz and a cutting speed of 1.5 mm s-1. The blade was then 

lowered to the level of the brain surface and sections were cut to a size of 50 μm 
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thickness continuously before being collected in glass containers containing 0.2% 

(v/v) glutaraldehyde and stored at 4 0C until electron microscopy analysis. 

 

2.2.9 Electron microscopy analysis  

Following vibratome sectioning, the brain sections were placed into a petri dish 

containing 0.1 M PB (pH 7.4) before two sections were selected randomly and 

transferred to a 7 ml glass vial containing 0.1M PB.  The sections were washed 3x 

for 10 minutes in 0.1 M PB. After making sure that the sections were flat inside 

the glass vials, they were covered in 1% osmium tetroxide (Agar Scientific, Cat 

No. R1017) diluted in 0.1 M PB for 1h at RT. It was important that the sections 

remained flat as they would become brittle when osmium tetroxide was added.  

The sections were then washed again 3x in 0.1 M PB for 10 min before being 

dehydrated in a series of solutions as follows: 30% ethanol for 5 min, 50% 

ethanol for 5 min, 70% ethanol for 10 min, 90% ethanol for 10 min, 100% 

molecular sieve prepared ethanol for 10 min and 100% molecular sieve prepared 

acetone 3x for 10 min.  Molecular sieves are zeolite compounds used to adsorb 

water and have carefully controlled pore sizes.  All of the washes and 

dehydration steps were performed at room temperature.   

 

The sections were then placed in a 50:50 pre-made acetone:resin mixture for 1h 

at RT.  The resin mixture was made by mixing 22.5 ml araldite (Agar Scientific, 

Cat No. R1040), 22.5 ml Agar 100 resin (Epon) (Agar Scientific, Cat No. R1043) 

and 60 ml dodecenyl succinic anhydride (DDSA) (Agar Scientific, Cat No. R1051) 

solutions for 1h at RT.  A 0.6 ml 2,4,6-tris dimethylaminomethyl phenol (DMP-30) 

(Agar Scientific, Cat No. AGR1065) solution was then added before mixing 
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overnight at RT to produce epoxy resin.  All of the resin solutions were ordered 

from Agar Scientific Ltd, Essex, UK. Finally, 1.5 ml of epoxy resin was then mixed 

with 1.5 ml acetone and added to the sections for 1 h at RT. 

 

A drop of acetone:resin mixture for each section was placed onto a clean sheet 

of Aclarfilm (used to keep epoxy resin in contact with each section) that had 

been cleaned with acetone and removed of static using a Zerostat anti-static 

instrument (Sigma-Aldrich, Dorset, UK, Cat No. Z108812-1EA).  Each brain section 

was placed down on top of the Aclarfilm into the drop and cut into three pieces 

(two pieces contained each lateral ventricle and the middle piece contained the 

third ventricle of the rat brain) as shown in Figure 2.3.  Another drop of 

acetone:resin mixture was then added to each cut section before the excess was 

collected using filter paper.  A few drops of epoxy resin were then added on to 

each section before the second piece of Aclarfilm was placed on top.  Weights 

were then positioned on top of the second piece of Aclarfilm, and then 

everything was placed into a 60 0C oven for 48 h. 
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Figure 2.3: Diagram of sections of adult male rat brain cut for EM analysis. 
Red dashed lines indicate the areas cut to separate the two lateral ventricles and 
the 3rd ventricle of the male rat brain that was then used to analyse the choroid 
plexus ultrastructure by electron microscopy. 
 

A gelatin capsule (Agar Scientific, Essex, UK, Cat No. G29218) for each cut section 

was filled with epoxy resin before also being placed face down on the flat surface 

of the rubber mould and polymerized in the oven at 60 0C for 48 h.  The sections 

and the capsules were then removed from the oven before the top layer of 

Aclarfilm was peeled off the sections.  A drop of epoxy resin was then added on 

top of each section before each epoxy resin filled capsule was placed on top of 

each section, followed by polymerization at 60 0C for 48 h. 

 

The sections were then allowed to cool before being cut at 1 μm using a glass 

knife mounted on to a Leica EM UC7 ultramicrotome (Leica Microsystems Ltd, 

Milton Keynes, UK). The sections were then stained with 1% (w/v) toluidine blue 
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in 5% (w/v) sodium borate and imaged on a Nikon Eclipse 80i light microscope 

(Nikon UK Ltd, Surrey, UK). The sections were then cut at 0.1 μm using a Diatome 

Ultra 450 diamond knife (Leica Microsystems, Milton Keynes, UK, Cat No. 

16DIA.DU4530).  Sections were collected on copper TEM slots with carbon 

coated piolorform film, and then counterstained in 3.5% aqueous uranyl acetate 

and lead citrate (Reynolds recipe) (Reynolds 1963).  After that the sections were 

imaged on the JEOL JEM 1400 transmission electron microscope (JEOL (UK) Ltd, 

Welwyn Garden City, UK) and AMT XR60Z camera (Deben UK Ltd, London, UK).  

Magnification of x3000 and x4000 montaging method was used.  Frames were 

adjusted for brightness/contrast in ImageJ software and montages were 

combined in Adobe Photoshop.  

 

2.2.10 Culture of human choroid plexus epithelial cells (hCPEpiC) 

The human choroid plexus epithelial cell line (hCPEpiC) (Caltag Medsystems, 

Milton Keynes, UK, Cat No. SC-1310) was cultured on 2 μg/cm2 poly-l-lysine 

(Sigma-Aldrich, Dorset, UK, Cat No. P4707)-coated flasks.  Coating was achieved 

by the addition of 10 ml of sterile water (Sigma-Aldrich, Dorset, UK, Cat No. 

W3500) and 500 μl of 0.1 mg/ml poly-l-lysine solution, into a T75 flask, and 

incubation at 37 0C for 1 h. The coating solution was then removed before the 

flask surfaces were washed 3x with Hank’s Balanced Salt Solution (HBSS) with 

Ca2+ (Sigma-Aldrich, Dorset, UK, Cat No. H6648) before the cells were seeded 

straight away.  The cells were brought up from frozen stock and seeded at a 

density of 5000 cells/cm2 in complete hCPEpiC medium (Caltag Medsystems, 

Milton Keynes, UK, Cat No. SC4101) containing 2% foetal bovine serum (FBS), 1% 

(v/v) epithelial cell growth supplement (EpiCGS), and 1% (v/v) 
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penicillin/streptomycin solution (P/S).  Once seeded, the cells were not disturbed 

for at least 16 h before the medium was changed the following day to remove 

any dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Dorset, UK, D2438), from the 

initial freezing medium, and unattached cells that were present.  The medium 

was then replaced every 48 h thereafter.  The cell numbers doubled after 2-3 

days in culture (DIC) and were then either frozen down or passaged when they 

reached 90% confluency.  Cells were cultured and used for experiments from 

passage 1-5. 

 

2.2.11 RNA extraction and mRNA analysis of hCPEpiC following 24h 

incubation with HC, TNF-α and IL-6 

hCPEPiC were grown to confluence and used for this experiment from passage 2-

5 on sterile 6-well plates (Greiner Bio-One, Stonehouse, UK, Cat No. 657160) and 

treated with 1 ng/ml of TNF-α, 1 ng/ml of IL-6 and 500 ng/ml HC for 24 h.  The 

cell medium was removed and cells were washed once with pre-warmed HBSS 

without Ca2+ (Sigma-Aldrich, Dorset, UK, Cat No. H8264).  Total RNA was isolated 

using the RNeasy mini kit (Qiagen, Crawley, West Sussex, UK, Cat no. 217004) 

according to the manufacturer’s protocol.  Cell homogenization was achieved by 

adding 700 μl of QIAzol lysis reagent into each well and pipetting up and down 

several times.  The cell lysate was transferred to 1.5 ml microfuge tube (Greiner 

Bio-One, Stonehouse, UK, Cat No. 616201) and left at RT for 5 min.   

 

For the separation phase, 140 μl of chloroform (Sigma-Aldrich, Dorset, UK, Cat 

No. C2432) was added to each tube and mixed vigorously for 15 sec.  The cells 

were then incubated for 3 min at RT before centrifugation (12,000 x g, 15 min, 
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40C).  The upper aqueous phase containing RNA was transferred to a new 1.5 ml 

microfuge tube.    

 

To precipitate the RNA, 525 μl of 100% ethanol was added into each tube and 

mixed vigorously by pipetting up and down several times.  The RNA-ethanol 

sample was then added in to the RNeasy mini spin column and centrifuged at 

8,000 x g for 15 sec at RT.  The flow through was discarded before the column 

was washed twice with RWT buffer and once with RPE buffer (solutions supplied 

by Qiagen in the RNeasy mini kit). The flow through was then again discarded.  

The column was dried by centrifugation at full speed for 1 min and RNase-free 

water was added directly onto the column membrane. 

 

To elute the RNA, the column was centrifuged at 8,000 x g for 1 min at RT and 

the RNA pellet was collected in a new Eppendorf tube.  The column and 

supernatant were removed and the pellet was washed in 1 ml 75% ethanol and 

centrifuged at 8,000 x g, 5 min, 4 0C.  The supernatant was again removed and 

the pellet air-dried at RT before being dissolved in 20-50 μl DNase/RNAse-free 

water. 

 

To determine the concentration and purity of RNA, 2 μl of each sample was 

dissolved in 500 μl of 10 mM Tris/HCl solution (pH 7.5) and analysed using UV 

spectrophotometry at 260 and 280 nm using a GeneQuantpro 

spectrophotometer (Amersham Biosciences, Buckinghamshire, UK, Cat No. 80-

2114-98). 
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The RNA destined for mRNA profiling was performed by Cambridge Genomic 

Services, University of Cambridge. The RNA was assessed for concentration and 

quality using a SpectroStar (BMG Labtech, Aylesbury, UK) and a Bioanalyser 

(Agilent Technologies, Cheadle, UK) and the mRNA profile was described as 

follows from the Cambridge Genomic Service Microarray Gene Expression 

Report. Microarray experiments were performed using the HumanHT-12 v4 

Expression BeadChip (Illumina, Chesterford, UK) according to the manufacturer’s 

instructions. Briefly, 200 ng of Total RNA underwent linear amplification using 

the Illumina TotalPrep RNA Amplification Kit (Life Technologies, Paisley, UK) 

following the manufacturer’s instructions. The concentration, purity and integrity 

of the resulting cRNA were measured by SpectroStar and Bioanalyser. Finally 

cRNA was hybridised to the HumanHT-12 v4 BeadChip overnight followed by 

washing, staining and scanning using the Bead Array Reader (Illumina). 

 

After scanning, these data were loaded in Illumina proprietary software, 

GenomeStudio. No background correction or normalisation was applied at this 

stage. A final report was generated, creating a text file containing the sample 

probe profile and the control probe information. The report was then processed 

in R software (version 3.2.2) using the Lumi package (Du et al. 2008) and the 

Limma package (Ritchie et al. 2015). These data were loaded and divided into 

subsets according to the groups being compared; only the samples involved in a 

given comparison were used. Subsets were then filtered to remove any non-

expressed probes using the detection p-value from Illumina. Across all samples, 

probes for which the intensity values were not significantly different from the 

negative controls (P>0.01) were removed from the analysis. Following filtering, 
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these data were transformed using the Variance Stabilization Transformation 

(VST) (Du et al. 2008) from Lumi and then normalised to remove technical 

variation between arrays using quantile normalisation. Comparisons were 

performed using the Limma package with results corrected for multiple testing 

using False Discovery Rate (FDR) testing. Finally, the quality of these data was 

assessed and the correlation of the samples in the groups compared.  

 

2.2.11.1 Bioinformatic analysis 

ClueGO, a cytoscape plug-in, was used to create a visualization map from 

microarray analysis by integrating Gene Ontology (GO) terms, KEGG/Biocarta 

pathways and DAVID Bioinformatics.  The software was used for comparison 

analysis between the mRNA expression profiles of hCPEpiC and published 

experimental data of genes involved in specific biological processes. 

 

2.2.12 RT-qPCR analysis  

cDNA was synthesized by the High Capacity cDNA Reverse Transcription kit (Life 

Technologies, Applied Biosystems division, Paisley, UK, Cat No. 4368814) using 

random primers according to the manufacturer’s protocol.  This included adding 

1.3 ng/μl of RNA to a 2X Reverse Transcription (RT) Master Mix as described in 

Table 2.11: 
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Reagent Volume (μl)/Reaction 

10X Reverse Transcription Buffer 2.0 

25X dNTP Mix (100mM) 0.8 

10X RT Random Primers 2.0 

MultiscribeTM Reverse Transcriptase 1.0 

RNase Inhibitor 1.0 

RNase-free H2O 3.2 

Table 2.11: Volumes in μl of reagents used to prepare 10 μl of a 2X Reverse 
Transcription Master Mix. 

 

A volume of 10 μl of 2X RT Master Mix was pipetted into individual tubes before 

adding 10 μl of each RNA sample to each specific Master Mix tube, after mixing.  

The tubes were briefly centrifuged to eliminate any air bubbles that may have 

formed.  Each sample was then placed in a Bio-Rad thermal cycler (Bio-Rad 

iCycler, Bio-Rad Laboratories Ltd, Hertfordshire, UK) at 25 0C for 10 min, 37 0C for 

120 min and 85 0C for 5 min before being cooled to 4 0C. 

 

TaqMan® gene expression real-time q-PCR kit (Fischer Scientific, Loughborough, 

UK) was used to determine the relative levels of cDNAs that correspond to the 

mRNAs transcribed from the genes of interest.  Specific TaqMan® gene 

expression assay primer/probe set, also provided by Fischer Scientific, 

Loughborough, UK, were used to determine Sjogren’s Syndrome Antigen A2 

(Ssa2, also known as TROVE-2) (Hs00190252_m1), Sperm Associated Antigen 16 

(SPAG16) (Hs00226005_m1), Neurochondrin (NCDN) (Hs00379444_m1) and 

Cerebral Cavernous Malformation 2 (CCM2) (Hs01123855_m1) mRNA levels, 

whereas Eukaryotic 18s rRNA (Hs99999901_s1) was used as an internal control. 
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A PCR Reaction Mix was made as described in Table 2.12. 

Reagent Volume (μl)/Reaction 

TaqMan Gene Expression Master Mix 
(2X) 

10.0 

TaqMan Gene Expression Assay  
(Primer) (20X) 

1.0 

Table 2.12: Volumes in μl of reagents used to set up a PCR Reaction Mix. 

 

The PCR Reaction Mix was added to each well of an optical plate along with 3 ng 

cDNA replicates and RNase-free H2O to create a final volume of 20 μl per well.  3 

ng cDNA was used as it was the maximum amount of cDNA obtainable from the 

samples in order to perform replicates.  The plate was covered with a 

MicroAMPTM Optical Adhesive Film (Fischer Scientific, Loughborough, UK, Cat No. 

4311971) and centrifuged briefly to remove any air bubbles from the solution.  

The plate was run on a DNA Engine Opticon 2 Continuous Fluorescence Detector 

(MJ Research, Quebec, Canada).  The thermal cycling conditions were set as 

shown in Table 2.13. 

 

Step 

AmpliTaq Gold, UP 

Enzyme Activation 
PCR 

HOLD 
CYCLE (40 Cycles) 

Denature Anneal/Extend 

Time 10 minutes 15 seconds 1 minute 

Temperature 

(0C) 
95 95 60 

Table 2.13: Thermal cycling conditions. 

 

2.2.13 Immunocytochemistry 

Immunocytochemistry was used to view the expression of Transthyretin (TTR), 

Zonula Occludens-1 (ZO-1) and Claudin-1 tight junctional proteins; Na+-K+-
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ATPase, NKCC1, AQP1, and ENaC transporters/channels; and CCR2, IL-17Rα, TNF-

R1, and IL-6R receptors on hCPEpiC. 

 

2.2.13.1 Preparation of solutions 

A 4% (w/v) PFA (Sigma-Aldrich, Dorset, UK, Cat No. P6148)  solution was made by 

dissolving 4 g PFA powder in 100 ml PBS (Sigma-Aldrich, Dorset, UK, Cat No. 

P4417)  before adjusting the pH to 7.4 using drops of NaOH.  A 0.5% (w/v) bovine 

serum albumin (BSA) (Sigma-Aldrich, Dorset, UK, Cat No. A9085) solution was 

made by dissolving 0.5 g BSA in 100 ml PBS.  A 0.025% Tween-20 (Sigma-Aldrich, 

Dorset, UK, Cat No. P7949) solution was made by adding 2.5 μl Tween-20 into 10 

ml PBS. 

 

2.2.13.2 Incubation with primary antibodies 

The hCPEpiC were grown to confluence on Lab-Tek II Glass Chamber Slides 

(ThermoFisher Scientific, Loughborough, UK, Cat No. 154917).  All of the 

solutions were added at a volume of 300 μl/well of chamber slide and the slides 

were placed on a shaker for 5-10 min each time unless stated otherwise.  

 

The medium was removed and the cells were washed twice with pre-warmed 

HBSS (with Ca2+).  The cells were then fixed for 10 min with 4% PFA solution at 

RT.  The cells were then washed once in PBS and then once in 0.5% (w/v) BSA for 

30 min.  The cells were then incubated with the primary antibodies overnight at 

4 0C at the concentrations shown in Table 2.14.  
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Primary Antibody Supplier 
Working 

Conc. 
Volume Added 

Prealbumin (TTR) 
Sheep Polyclonal 

IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab9015 

1:100 
(196 μg/ml) 

1 μl of stock (19.6 
mg/ml) into 100 μl 

0.5% BSA 

ZO-1 Rabbit 
Polyclonal IgG 

Life Technologies, 
Paisley, UK, 

Cat No. 61-7300 
1:80 

1.25 μl of stock  
into 100 μl 0.5% BSA 

Claudin-1 Rabbit 
Polyclonal IgG 

Thermo Fisher 
Scientific, Hemel 
Hempstead, UK, 
Cat No. 51-9000; 

1:50 
2 μl of stock 

 into 100 μl 0.5% BSA 

Na+K+ATPase 
Rabbit Polyclonal 

IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab58475 
1:100 

1 μl of stock  
into 100 μl 0.5% BSA 

NKCC1 Rabbit 
Polyclonal IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab58475 
1:1000 

0.1 μl of stock  
into 100 μl 0.5% BSA 

Aquaporin-1 
Rabbit Polyclonal 

IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab15080 
1:500 

0.2 μl of stock  
into 0.5% BSA 

ENaC Rabbit 
Polyclonal IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab65710 
1:200 

0.5 μl of stock 
 into 100 μl0.5% BSA 

CCR2 Rabbit 
Polyclonal IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab21667 

1:50 
(20 μg/ml) 

2 μl of stock  
into 100 μl 0.5% BSA 

IL-17Rα Rabbit 
Polyclonal IgG 

St John’s Laboratory 
Ltd, London, UK, 
Cat No. STJ93683 

1:1000 
(1 μg/ml) 

0.1 μl of stock 
 into 100 μl 0.5% BSA 

TNF-R1 Rabbit 
Polyclonal IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab19139 

1:1000 
(1 μg/ml) 

0.1 μl of stock 
(1 mg/ml) into 100 μl 

0.5% BSA 

IL6R Rabbit 
Polyclonal IgG 

Abcam, Cambridge, 
UK, 

Cat No. ab85105 

1:500 
(1 μg/ml) 

0.2 μl of stock  
(0.5 mg/ml) into 100 μl 

0.5% BSA 

Table 2.14: Volumes in μl and working concentrations of primary antibodies 
used in ICC analysis of hCPEpiC proteins, transporters/channels and receptors.   

 

2.2.13.3 Incubation with secondary antibodies 

The cells were then washed three times in PBS and twice with 0.025% Tween-20 

for 5-10 min each time before being incubated with the corresponding 

fluoresceinisothiocynate (FITC)/Alexa secondary antibodies for 1 h at RT at the 

concentrations shown in Table 2.15. 
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Secondary Antibody Supplier Working Conc. Volume Added 

Donkey anti-sheep IgG 
(FITC conjugated)  

Abcam, Cambridge, 
UK, Cat No. ab9015 

1:200 
(10 μg/ml) 

2.5 μl of stock 
(2 mg/ml) into 500 
μl 0.5% (w/v) BSA 

Goat anti-rabbit IgG 
(Alexa 488 

conjugated) 

Life Technologies, 
Paisley, UK, 

Cat No. A11008 
1:200 

2.5 μl stock into 
500 μl 0.5% (w/v) 

BSA 

Table 2.15: Volumes in μl and working concentrations of secondary antibodies 
used in ICC analysis of hCPEpiC proteins, transporters/channels and receptors.   

 

The cells were again washed twice with 0.025% Tween-20 and three times with 

PBS for 5-10 min each time.  The slide holder was then placed in between the 

rubber gasket of the slide partitions and the chamber walls in order to peel off 

the walls leaving the slide and rubber gasket intact.  Each partition on the slide 

was stained with one drop of DAPI nuclei stain (Southern Biotech, Alabama, USA, 

Cat no. 0100-20) before the rubber gasket was peeled off and a 22x50 mm 

coverslip was placed on top.  The images were viewed using a Leica SP-5 confocal 

microscope (Leica Microsystems, Milton Keynes, UK). 

 

2.2.14 Flow cytometry analysis 

Flow cytometry was used to confirm the expression as seen with 

immunocytochemistry of TTR protein; Na+-K+-ATPase, NKCC1 Aquaporin-1, and 

ENaC transporters/channels; and CCR2, IL-17Rα, TNF-R1, IL6R receptors on 

hCPEpiC.  The concentrations of the primary and secondary antibodies used were 

the same as in Tables 2.14 and 2.15, respectively.  In addition, a separate 

experiment was performed to measure the expression levels of the hCPEpiC 

transporters/channels following a 24 h incubation with HC, TNF-α, and IL-6 

treatments at the same concentrations as seen in Table 2.2.  

 



95 
 

A 1x PBS solution and a 2% (w/v) PFA solution was made by dissolving 2 g PFA 

powder in 100 ml PBS before adjusting the pH to 7.4 using drops of NaOH. 

 

hCPEpiC were grown to confluence in 6 well tissue culture plates (total = 5x105 

cells per well).  Two wells were used for the untreated control transporter 

antibody and two were incubated with the cytokine/mediator of interest, with 

the transporter antibody, 24 h prior to the start of the experiment which would 

equate to the treated transporter reading.  The treated transporter reading 

would show if there was an increase in hCPEpiC transporter expression following 

treatment with the cytokine/mediator of interest against the untreated 

transporter antibody control.     

 

The cells were harvested by removing the medium and washing them once with 

HBSS (without Ca2+) before incubation at 37 0C for 2-3 min.  The solution was 

then aspirated before 1 ml of Trypsin + EDTA solution (Sigma-Aldrich, Dorset, UK, 

Cat No. T3924) was added before incubation again at 37 0C for 1-2 min.  The cells 

were checked under the microscope to determine if they had detached from the 

wells before 2 ml of 10% FBS was added to block the action of the trypsin 

solution.   

 

All of the following stages were carried out on ice.  The cells from each well were 

transferred into separately labelled 15 ml tubes and were then centrifuged (1000 

x g for 5 min) and the supernatant removed before washing the pellet in 10 ml 

HBSS (with Ca2+) and then again in 10 ml PBS.  The cells were then fixed in 1 ml of 

2% PFA solution for 30 min at RT.  After fixing, two further washes in PBS were 
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carried out before the cells from each corresponding well were re-suspended in 

antibody diluent (0.5% (w/v) BSA) at a volume of 500,000 cells per 1.5 ml 

Eppendorf tube.  The primary antibodies were then added at the concentrations 

shown in Table 2.14.  The samples were then placed at 4 0C on a shaker 

overnight. 

 

After incubation with the primary antibody, the cells were washed twice with 

PBS microfuged (Hettich Zentrifugen EBA IZR) at 1000 x g for 5 min before being 

re-suspended in 100 μl 0.5% (w/v) BSA containing their corresponding FITC/Alexa 

secondary antibodies (as shown in Table 2.15) for 2 h at 4 0C on a shaker. 

 

After incubation, the cells were again washed twice in 1 ml PBS/tube and 

microfuged at 1000 x g for 5 min.  Following the final wash, each cell pellet was 

re-suspended in 300 μl HBSS (with Ca2+) and transferred to separate BD Falcon 5 

ml polystyrene round bottom fluorescence activated cell sorting (FACS) tubes 

(Becton Dickinson, Cat No. 352052) before being analysed using a FACS Calibur 

flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) with Cell Quest 

software (Pro BD Biosciences). The results were expressed as a median 

fluorescence for each 10,000 cell sample in arbitrary units. 

 

2.2.15 Statistical analysis 

All data are presented as mean ± standard error of the mean and are the result 

of a number of independent experiments (n) with replicates specified in each 

figure or legend.  Calculations were performed using GraphPad Prism 7 software 

(GraphPad Software, La Jolla, USA).  A one-way ANOVA was used for comparison 
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of initial control in vivo CSF secretion and resistance to CSF drainage experiments 

against treatment groups.  A two-way ANOVA was used for comparison of in vivo 

control CSF secretion rates and resistance to drainage experiments for both 

diets, respectively. A three-way ANOVA tested in vivo CSF secretion rates and 

resistance to drainage experiment values of each treatment against control for 

both diets, respectively. In all cases, ANOVAs were followed by an unpaired t test 

with Welch-correction (one-way ANOVA) or Sidak’s multiple comparison post 

hoc test (two- and three-way ANOVA) to determine a significant difference 

among groups. The significant multiple comparison results following the post-

hoc test is shown in each graph. Positive/negative results refers to an 

increase/decrease in CSF secretion rates over controls, respectively.   Correlation 

r2 analysis was performed for all in vivo control experiment values against weight 

gain; total cholesterol; and LDL/VLDL cholesterol readings.  Statistically 

significant differences are presented as probability levels of P < 0.05 (*), P < 0.01 

(**), P < 0.001 (***).   
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3.0 Results 

3.1 CSF secretion rate 

A ventriculo-cisternal perfusion method, adapted from studies by Oreskovic et al. 

2003, was used to investigate the in vivo effects of exogenous 

cytokines/treatments, that have been reported to be elevated in the CSF of IIH 

patients, on CSF secretion rates, as a possible mechanism contributing to raised 

intracranial pressure. Male Wistar rats, 250-300g were perfused with aCSF, (with 

or without the treatment of interest) through both lateral ventricles for 90 min.  

The concentration of blue dextran in the perfusate collected from the cisterna 

magna relative to that in the aCSF (Cout/Cin) versus time, which was used to 

calculate CSF secretion rate, is shown in Fig. 3.1.  Following initiation of the 

perfusion of aCSF, there was a sharp increase in the relative concentration of blue 

dextran in the perfusate, which reached steady state after 20-40 min, depending 

on the treatment.  Control, IL-6, CCL2 and HC treatments reached steady state 

after 20 min aCSF perusion. TNF-α, leptin and IL-1β reached steady state after 30 

min and IL-17 after 40 min perfusion. 

 

3.1.1 Cytokine administration in perfused aCSF 

The values obtained from the mean steady state results (Fig. 3.1) were used to 

calculate the CSF secretion rates for each treatment from the ventriculo-cisternal 

perfusion experiments. 



99 
 

 

Figure 3.1: Mean steady state values (Cout/Cin) of the perfused aCSF ventriculo-
cisternal perfusion experiments.  
Mean steady states were calculated from the concentration of blue dextran in 

the perfusate collected from the cisterna magna relative to that in the aCSF 

Cout/Cin.  Concentrations of treatments in aCSF, perfused for 90 min: HC (0.5 

μg/ml, n=4), TNF-α (0.0001 μg/ml, n=3), IL-17 (0.0001 μg/ml, n=4), IL-6 (0.0001 

μg/ml, n=3), CCL2 (0.05 μg/ml, n=4), leptin (0.1 μg/ml, n=4), IL-1β (0.0001 μg/ml, 

n=3). Samples were averaged (±SEM) and compared to controls (n=5). Cout/Cin 

values from each treatment were averaged from 40-94 mins and extrapolated 

to the y-axis. Individual treatment results are shown in Appendix Section 6.3, 

page 270. 

 

Steady state Cout/Cin values differed between treatments.  Control steady state 

Cout/Cin values (0.93 ±0.03) were similar to those obtained previously in the adult 

rat (Harnish & Samuel 1988).  Treatment with HC or TNF-α showed the lowest 

average steady state Cout/Cin values (0.88 ±0.02 and 0.87 ±0.03, respectively), 

suggesting an increase in CSF secretion rate compared to controls.  By contrast, IL-

6 showed the highest average steady state Cout/Cin values (0.97 ±0.07), suggesting 

a lower CSF secretion rate compared to controls.  No significant changes in steady 

state Cout/Cin were observed following treatment with CCL2, leptin and IL-1β 
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compared to controls. The Cout/Cin values at steady state were then used to 

calculate the CSF secretion rates for each treatment, according to the formula 

described in the Methods Section 2.2.2 (Equation 2.1), as shown in Fig. 3.2. 

 

 

Figure 3.2: CSF secretion rates for each treatment using ventriculo-cisternal 
perfusion.  
Each experiment was carried out by perfusing aCSF with each treatment through 
both lateral ventricles of the rat brain. CSF secretion rates were obtained once 
at steady state (40-90 min) and averaged ±SEM and compared to controls (n=5). 
Concentrations of treatments in aCSF, perfused for 90 min: HC (0.5 μg/ml, n=4), 
TNF-α (0.0001 μg/ml, n=3), IL-17 (0.0001 μg/ml, n=4), IL-6 (0.0001 μg/ml, n=3), 
CCL2 (0.05 μg/ml, n=4), leptin (0.1 μg/ml, n=4), IL-1β (0.0001 μg/ml, n=3).  A 
one-way ANOVA was used to analyse the statistical significance.  The significant 
results are shown following an unpaired t test with Welch-correction and was 
made against the control in expectation of positive (increased CSF 
secretion)/negative (decreased CSF secretion) results *P = ≤0.05.   

 

The in vivo measurements of CSF secretion rates where treatments were added to 

perfused aCSF, displayed in Fig. 3.2, show that HC (2.65 ±0.19 μl/min) and TNF-α 
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(2.58 ±0.20 μl/min) significantly increased CSF secretion rates (P≤0.05), and IL-6 

(0.91 ±0.11 μl/min) showed a significant decrease in CSF secretion rate when 

compared to controls (1.84 ±0.25 μl/min, P≤0.05). Treatment with CCL2 (1.64 

±0.12 μl/min), leptin (1.33 ±0.21 μl/min) and IL-1β (1.48 ±0.56 μl/min) showed a 

slight decrease in CSF secretion, although these were not statistically significant.  

IL-17 treatment (2.28 ±0.35 μl/min) increased the CSF secretion rate compared to 

controls but this effect was also not statistically significant. 

 

3.1.2 Cytokine peripheral administration 

The effect of peripheral (i.p) administration of the different treatments on CSF 

secretion was also assessed as some of the cytokines are reported to be increased 

in the plasma of IIH patients as well as in the CSF.  The i.p. administered dose of 

each treatment was in addition to the perfused aCSF dose as performed earlier in 

Fig. 3.2. The Cout/Cin values obtained from the mean steady state results (Fig. 3.3) 

were used to calculate the CSF secretion rates for each treatment from the i.p. 

ventriculo-cisternal perfusion experiments shown in Fig. 3.4.  CSF secretion rates 

from all treatments reached steady state after 20 mins perfusion.   
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Figure 3.3: Mean steady state values (Cout/Cin) of the perfused aCSF following 
i.p. injection of treatment for the ventriculo-cisternal perfusion experiments.  
Complete mean steady states were calculated from the concentration of blue 
dextran in the perfusate collected from the cisterna magna relative to that in 
the aCSF Cout/Cin.  Concentrations of treatments in aCSF, perfused for 90 min: 
HC (aCSF 0.5 μg/ml, i.p. 100 μg/ml, n=3), TNF-α (aCSF 0.0001 μg/ml, i.p. 0.025 
μg/ml, n=3),  IL-17 (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3), IL-6 (aCSF 0.0001 
μg/ml, i.p. 0.025 μg/ml, n=3), CCL2 (aCSF 0.05 μg/ml, i.p. 10 μg/ml, n=5), leptin 
(aCSF 0.1 μg/ml, i.p. 25 μg/ml, n=3), IL-1β (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, 
n=4). Samples were averaged (±SEM) and compared to controls (n=4). Cout/Cin 
values from each treatment were averaged from 40-90 mins and extrapolated 
to the y-axis. Individual treatment results against the control are shown in 
Appendix Section 6.4, page 274. 

 

IL-17 treatment showed the lowest average steady state value (0.88 ±0.04) 

indicating an increase in CSF secretion rate, although it was not statistically 

significant when compared with control (0.92 ±0.04).  Treatment with HC (0.92 

±0.02), TNF-α (0.92 ±0.05), IL-6 (0.92 ±0.06), CCL2 (0.92 ±0.03), leptin (0.94 ±0.06) 

and IL-1β (0.92 ±0.03) showed no change in steady state values when compared 

with control. These results correspond to the calculated CSF secretion rates 

following i.p injection plus treatments in perfused aCSF results in Fig. 3.4. 
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Figure 3.4: CSF secretion rates using ventriculo-cisternal perfusion following 
intraperitoneal injection of each treatment 90 min prior to perfusion.  
Each experiment was carried out by perfusing aCSF with a treatment through 
both lateral ventricles of the rat brain following i.p. injection of the same 
treatment 90 min prior to perfusion. CSF secretion rates were obtained from each 
animal once at steady state (40-90 min) and averaged ±SEM before comparing to 
controls (n=4). Concentrations of treatments in aCSF, perfused for 90 min: HC 
(aCSF 0.5 μg/ml, i.p. 100 μg/ml, n=3), TNF-α (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, 
n=3),  IL-17 (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3), IL-6 (aCSF 0.0001 μg/ml, 
i.p. 0.025 μg/ml, n=3), CCL2 (aCSF 0.05 μg/ml, i.p. 10 μg/ml, n=5), leptin (aCSF 0.1 
μg/ml, i.p. 25 μg/ml, n=3), IL-1β (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=4).  A 
one-way ANOVA was used to analyse the statistical significance. No significant 
results were shown following an unpaired t test with Welch-correction which was 
made against the control in expectation of positive (increased CSF 
secretion)/negative (decreased CSF secretion) results.  

 

The in vivo measurements of CSF secretion where treatments were injected 

intraperitoneally into male adult Wistar rats 90 min prior to perfusion of the same 

treatment into the lateral ventricles are displayed in Fig. 3.4.  There were no 

significant changes in CSF secretion rates for any treatments compared to control 

(1.37 ±0.27 μl/min) values; HC (1.82 ±0.24 μl/min), TNF-α (1.84 ±0.28 μl/min), IL-
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6 (0.98 ±0.31 μl/min), IL-17 (3.02 ±1.00 μl/min), CCL2 (1.89 ±0.13 μl/min), leptin 

(1.31 ±0.12 μl/min), IL-1β (2.06 ±0.55 μl/min). 

 

No effect on CSF secretion rates was observed following the addition of an i.p. pre-

injection with any mediator.  This may be due to the effect of each mediator 

becoming transient over time. As the i.p. dose was injected 90 min prior to 

perfusion, this may have been too long for an effect to be seen. 

 

3.2 Initial CSF volume 

IIH is characterised by an increase in intracranial pressure, thought to be due to an 

increase in CSF secretion rates, altered CSF drainage pathways leading to an 

increase in resistance to CSF drainage, or a combination of both of these.  Having 

tested the CSF secretion rate effects of each mediator, it was important to test 

their effects on initial CSF volume following an i.p. pre-injection 90 mins prior to 

ventriculo-cisternal perfusion.   The initial CSF volume was calculated as in method 

section 2.2.2 Equation 2.3, where the sum of the average CSF secretion rate over 

90 min perfusion (μl/90min) was subtracted from the total volume of CSF secreted 

throughout the whole experiment (μl), and displayed in Fig. 3.5. 
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Figure 3.5: Initial CSF volumes (μl). 
Each experiment was carried out by an i.p. injection of each treatment 90 min 
prior to perfusion. The mean volume of CSF obtained within that window (±SEM) 
for each treatment is indicated and was compared to controls (n=4). 
Concentrations of treatments in aCSF, perfused for 90 min: HC (aCSF 0.5 μg/ml, 
i.p. 100 μg/ml, n=3), TNF-α (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3),  IL-17 
(aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3), IL-6 (aCSF 0.0001 μg/ml, i.p. 0.025 
μg/ml, n=3), CCL2 (aCSF 0.05 μg/ml, i.p. 10 μg/ml, n=5), leptin (aCSF 0.1 μg/ml, 
i.p. 25 μg/ml, n=3), IL-1β (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=4).  A one-way 
ANOVA was used to analyse the statistical significance.  The significant results 
are shown following an unpaired t test with Welch-correction and was made 
against the control in expectation of positive (increased CSF secretion)/negative 
(decreased CSF secretion) results. * P = ≤0.05.   

 

Treatment with CCL2 (325.2 ±78.41 μl) and IL-17 (341.17 ±109.10 μl) showed a 

significantly increased initial CSF volume following i.p injection and 90 min aCSF 

perfusion (Fig. 3.5) when compared with controls (168.63 ±28.40 μl) (P≤0.05).  Due 

to the significant increase in initial CSF volume but no significant change in overall 

CSF secretion for CCL2 and IL-17, this could indicate impairment within CSF 

drainage associated with these cytokines.  
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3.3 Resistance to CSF drainage 

The variable rate infusion method was used to determine the resistance to CSF 

drainage of the three treatments that significantly increased CSF secretion rates 

from Fig. 3.2 (HC, TNF-a and IL-6), as well as IL-17 and CCL2, which caused a 

significant increase in initial CSF volumes (Fig. 3.5), which were administered over 

four increasing infusion rates (5, 10, 16, 20 μl/min) as described in Fig. 3.6a and b. 
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Figure 3.6: Resistance to CSF drainage values (mmH2O.min/μl) following variable 
rate infusion.  
Each experiment was carried out by perfusing aCSF with each treatment through 
one lateral ventricle plus the addition of a single dose i.p treatment injection 
minutes prior to perfusion.  Concentrations of treatments in i.p injection and aCSF 
perfused for 90 min: HC (i.p. 100 μg + aCSF 0.5 μg/ml, n=3) CCL2 (i.p 10 μg + aCSF 
0.005 μg/ml, n=3), IL-6 (i.p 0.025 μg + aCSF 0.0001 μg/ml, n=4), IL-17 (i.p 0.025 μg + 
aCSF 0.0001 μg/ml, n=3), TNF-α (i.p 0.025 μg + aCSF 0.0001 μg/ml, n=3). Samples 
from each group were averaged (±SEM). The graphs show the linear pressure 
readings (mmH2O) at each infusion rate (a); averaged resistance to CSF drainage 
readings (mmH2O.min/μl) (b).  A one-way ANOVA was used to analyse the statistical 
significance. The significant results are shown following an unpaired t test with 
Welch-correction and was made against the control in expectation of positive 
(increased resistance to CSF drainage) / negative (decreased resistance to CSF 
drainange) results *P = ≤0.05; ** P = ≤0.01, *** P = ≤0.001. 

 

CCL2 (14.61 ±1.17 mmH2O.min/μl), IL-17 (10.34 ±0.56 mmH2O.min/μl) and IL-6 

(9.87 ±1.06 mmH2O.min/μl) administration caused a significantly higher resistance 

to CSF drainage (n=3-5; P≤0.05) when compared with controls (5.91 ±0.87 

mmH2O.min/μl, n=3), suggesting an impairment to the absorption of CSF in the 

presence of these cytokines.  HC (3.77 ±0.59 mmH2O.min/μl, n=3) caused a 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

Control CCL2 IL-17 IL-6 TNF-α HC

R
e
s
is

ta
n

c
e
 t

o
 C

S
F

 D
ra

in
a
g

e
 (

m
m

H
2
O

/μ
l/
m

in
)

Treatment

(b) 

* ** 

*** 

* 



108 
 

significant decrease when compared with controls, however TNF-α (4.51 ±0.84 

mmH2O.min/μl, n=3) showed no change in resistance to CSF drainage.  

 

3.4 Summary of initial investigation on CSF secretion rates and 

resistance to CSF drainage 

Mediator Initial CSF Volume CSF Secretion Rate 
Resistance to CSF 

Drainage 

IL-17  n/s  

CCL2  n/s  

IL-6 n/s   

HC n/s   

TNF-α n/s  n/s 

IL-1β n/s n/s n/d 

Leptin n/s n/s n/d 

Table 3.1: Summary of in vivo results. 
A summary of the results from initial CSF volumes, CSF secretion rates and 

resistance to CSF drainage, following mediator treatment, from ventriculo-

cisternal perfusion and variable rate infusion experiments. Red arrow = significant 

increase, blue arrow = significant decrease, n/s = not significant, n/d = not 

determined.  

 

Table 3.1 summarises results obtained in sections 3.1 through to 3.3.  Out of the 

seven mediators tested, five appear to regulate CSF dynamics but in different 

directions.  HC and TNF-α treatment appeared to increase CSF secretion rates but 

also to decrease resistance to CSF drainage (although in the case of TNF-α this was 

not significant for the resistance to CSF drainage results).  Hence the initial CSF 

volume appeared unchanged following administration of HC and TNF-α.  Similarly, 

IL-6 showed no effect on initial CSF volume but, in this case the effect on CSF 

secretion and resistance to CSF drainage appeared to be in the opposite direction 

to that observed with HC, that is, IL-6 induced a decrease in CSF secretion rate and 

an increase in resistance to CSF drainage.  The opposing effects of HC compared 

to IL-6 on CSF secretion rate and resistance to CSF drainage suggest a possible 
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compensatory mechanism taking effect so that no change in CSF volume was 

observed. 

 

By contrast, CCL2 and IL-17 results showed no effect upon CSF secretion rates, for 

both in vivo perfused aCSF and i.p injection in conjunction with perfused aCSF; but 

statistically significant increases in initial CSF volume within the rat brain and in 

resistance to CSF drainage.  This could indicate a link between increased levels of 

CCL2 and IL-17 and increased resistance to CSF drainage leading to an increase in 

intracranial pressure observed in patients with IIH.  

 

The changes observed in CSF dynamics with these five treatments provided a 

rationale to test their effects in conjunction with diet and sex, in further 

experiments on CSF secretion rates (Section 3.6) and on resistance to CSF drainage 

(Section 3.7) in male and female Wistar rats.  

 

3.5 Sex and diet effects on CSF dynamics: Physiological and 

biochemical parameters 

Due to the incidence of IIH increasing in the obese population (Radhakrishnan et 

al. 1993) (Kesler & Gadoth 2001) (Dhungana et al. 2009) and several studies 

reporting weight gain in newly diagnosed IIH patients (Rowe & Sarkies 1999) 

(Radhakrishnan et al. 1993), it was important to test the effects of the treatments 

of interest on CSF secretion rates and resistance to CSF drainage in high-fat (HF) 

diet animal models compared to those raised on a normal diet.  Male and female 

Wistar rats were ordered at four weeks of age and raised on either a normal pellet 

or HF diet for seven weeks.  Separate diets were provided for both the normal and 



110 
 

HF diet animal groups as shown in Methods Section 2.2.4; Tables 2.6, 2.7 and 2.8.  

Rat weights ranged between 250-350 g at the onset of experiments.  Male rats on 

both diets were slightly heavier when compared to the female rats at the onset of 

experiments with an average difference of 78.7g in the normal diet groups, and 

49.1g in the HF diet groups (results not shown).    

 

Characterisation of food and water intake, average percentage weight gain, and 

cholesterol levels were initially recorded in the normal diet and HF diet groups 

(Sections 3.5.2-3.5.4).  Further ventriculo-cisternal perfusion and variable rate 

infusion experiments were performed in order to determine the effects diet, in 

conjunction with the treatments of interest, have on CSF secretion rates (Section 

3.6) and resistance to CSF drainage (Sections 3.7) in male Wistar rats.     

 

As the incidence of IIH is greater in the female population and mainly affects obese 

women between the ages of 15-45, with a female to male ratio of 8:1 (Dhungana 

et al. 2009), we examined the effects of the treatments of interest and diet have 

on CSF secretion rates and resistance to CSF drainage in female Wistar rats. This 

would allow us to compare and contrast any differences seen with the male 

models.  

 

As with the male Wistar rats, characterisation of diet and water intake, average 

percentage weight gain, and cholesterol levels were initially recorded between the 

normal diet and HF diet female Wistar rat groups (Sections 3.5.2-3.5.4).  

Ventriculo-cisternal perfusion and variable rate infusion experiments were again 

performed in order to determine the effects diet, in conjunction with the 
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treatment of interest, has on CSF secretion rates (Section 3.6) and resistance to 

CSF drainage (Section 3.7) in female Wistar rats.  

 

3.5.1 Determination of female Wistar rat oestrous cycle phase 

It was important to determine first at what stage of the oestrous cycle the female 

rats were on at during the experiment in order to eliminate variables introduced 

by hormonal cycling.  Vaginal smears from female rats were taken prior to 

ventriculo-cisternal perfusion and variable rate infusion and viewed under a light 

microscope in order to select the same stage in the oestrous cycle for further 

experiments. The results shown in Fig. 3.7 describe the four main stages of the 

female rat cycle; proestrus, oestrous, metestrus and diestrus.   

 

Round and nucleated cells are the epithelial cells (E); smaller rounded cells depict 

the leukocytes (L); irregular needle shaped are the cornified cells (C).  A proestrus 

smear consists of an abundance of nucleated cells with cornified cells starting to 

appear, but few leucocytes are described in Fig. 3.7a and 3.7b.  In the oestrous 

phase there are many cornified cells that take on the appearance of needle-shapes 

(Fig. 3.7c and 3.7d). Some nucleated cells may remain, but they have lost their 

swollen appearance as seen in proestrus.  As oestrous progresses, leucocytes 

begin to infiltrate the smear as metestrus begins (Fig. 3.7e, 3.7f). In diestrus, you 

see parts of every cell type mentioned, with leucocytes being the most abundant. 

It is the stage where the smallest number of cells is seen, and there is often some 

mucous present, which can clump some cells (usually leucocytes) together (Fig. 

3.7g, 3.7h).  All ventriculo-cisternal perfusion and variable rate infusion 

experiments on female Wistar rats were performed during the female rat diestrus 

stage.  
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 Figure 3.7: Photomicrographs of unstained vaginal smear from female Wistar rats. 
(a,b) Proestrus, (c,d) Oestrous, (e,f) Metestrus, (g,h) Diestrus, (E) Epithelial Cells, (L) 
Leukocytes, (C) Cornified Cells, (M) Mucus.  Images were observed and taken on a 
light microscope. Scale bar represents 90 μm. 
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3.5.2 Food and water intake  

Food and water intake was monitored daily in order to determine the amount of 

nutrients the rats on each diet were obtaining, and whether food intake would 

affect the rat’s water intake. Food and water intake are shown in Fig. 3.8 (a) and 

(b), respectively.  
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Figure 3.8: Normal and high-fat (HF) diet food (g/day) and water (ml/day) 
intake of male and female Wistar rats. 
Graphs for food (a) and water (b) intake of male and female Wistar rats raised 

on either a normal or high fat diet are displayed.  Normal diet rats in both sexes 

were fed the Teklad Global 14% Protein Rodent Maintenance Diet (n=3, 

respectively). HF males were raised on the Western RD High Fat Diet (n=4). HF 

females (n=3) were fed the 45% AFE High Fat Diet. Food and water intake were 

recorded as cage averages (±SEM) as the rats were not housed singly.  A two-

way ANOVA was used to analyse the statistical significance.  The significant 

results are shown following Sidak’s multiple comparison test against each diet 

and treatment variables. *** P ≤ 0.001. 

 

Food intake was slightly higher in the male (20.5 ±1.14 g/day) and female (14.9 

±0.42 g/day) rats on a normal diet compared to the HF diet (18.0 ±0.78 g/day and 

(13.7 ±0.63 g/day, respectively) (Fig. 3.8a).  The slightly lower average food intake 

for the HF diet rats could be due to their initial diet intake being lower for the first 

week as they did not take to eating it as readily as the normal pellet diet.  Water 

intake in males fed on the male normal diet and those on the HF diet was similar 

(30.0 ±2.66 ml/day and 29.8 ±1.66 ml/day, respectively) (Fig. 3.8b).  However, the 

HF diet females displayed a higher water intake (27.7 ±4.02 ml/day) compared 
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with the normal diet females (25.5 ±2.09 ml/day), although this was not 

significant.  Female Wistar rats displayed an overall lower water intake, but 

significantly lower food intake for both the normal and HF diets (P=≤0.001), when 
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compared with the male Wistar rats.  Note however that HF diets of males and 

females were different as described in Methods Section 2.2.4.  

 

3.5.3 Average percentage weight gain 

The average percentage weight gain between normal diet and HF diet was 

monitored to confirm that the HF diet induced weight gain in both male (Fig. 3.9) 

and female (Fig. 3.10) Wistar rats. 
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Figure 3.9: Average percentage weight gain of male Wistar rats on a normal and 
HF diet over a seven week period.  
Readings were recorded weekly over a seven week period (from 4 weeks of age) 
for both ND and HF diet male Wistar rats. Average percentage weight gain was 
monitored prior to ventriculo-cisternal perfusion and variable rate infusion 
experiments which were performed at 11 weeks of age. Normal diet (dashed 
line), HF diet (solid line). 
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Figure 3.10: Average percentage weight gain of female Wistar rats on a normal 
and HF diet over a seven week period.  
Readings were recorded weekly over a seven week period (from 4 weeks of age) 
for HF diet rats and four week period (from 7 weeks of age) for normal diet rats 
(extrapolated over literature female rat weights at week 0 (red line)). Average 
percentage weight gain was monitored prior to ventriculo-cisternal perfusion and 
variable rate infusion experiments which were performed at 11 weeks of age. 
Normal diet (dashed line), HF diet (solid line). 
 

 
The average percentage weight gain was much higher for the male HF diet rats 

(447.14%) when compared to the normal diet (277.68%), as shown in Fig. 3.9. The 

same correlation was seen, although at lower levels, with the HF diet females 

(347.57%) when compared with normal diet female rats (265.65%) (Fig. 3.10). 

 

3.5.4 Plasma cholesterol levels  

A cholesterol assay was used to characterise the effect of a normal and HF diet on 

total cholesterol,  high-density lipoprotein (HDL) and low-density lipoprotein/very-
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low density lipoprotein (LDL/VLDL) cholesterol levels in both male (Fig. 3.11a) and 

female (Fig. 3.11b) Wistar rats.   
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Females 

 

Figure 3.11: Total cholesterol, HDL, and LDL/VLDL from plasma samples.  
Analysis was performed using a cholesterol assay kit in plasma samples from male 
(a) and female (b) Wistar rats on normal or HF diets.  A two-way ANOVA was used 
to analyse the statistical significance.  The significant results are shown following 
Sidak’s multiple comparison test between normal (n=6) and HF (n=6) diet values 
(±SEM). ***P = ≤0.001.  

 

Total cholesterol concentrations were significantly higher in the HF diet groups in 

both male (0.68 ±0.06 μg/μl, P≤0.001) and female (0.64 ±0.11 μg/μl, P≤0.001) 

Wistar rats when compared to normal diet controls (0.34 ±0.06 μg/μl and 0.38 

±0.04 μg/μl, Fig. 3.11a. and b., respectively).  The LDL/VLDL levels in the HF diet 

groups of both males (0.43 ±0.03 μg/μl, P≤0.001) and females (0.40 ±0.04 μg/μl, 

P≤0.001) is significant when compared to the normal diet rats (0.23 ±0.03 μg/μl 

and 0.22 ±0.07 μg/μl, respectively) and high levels of VLDL cholesterol have been 

associated with the development of plaque deposits on artery walls, which narrow 

the passage and restrict blood flow.  There were no significant differences 

between the two groups within the HDL cholesterol measurement.  From the 
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results of the average percentage weight gain (Fig. 3.9 and 3.10) and cholesterol 

levels (Fig. 3.11), it is possible to show a difference between rats on a HF diet when 

compared with a normal pellet diet, confirming the validity of the HF-fed animals 

as a model of obesity. 

 

3.6 Sex and diet effects on CSF dynamics: CSF secretion rates 

The values obtained from the control mean steady state Cout/Cin (Fig. 3.12) were 

used to calculate the CSF secretion rates for each treatment from the ventriculo-

cisternal perfusion experiments (Fig. 3.13).   

 

Figure 3.12: Mean control steady state values (Cout/Cin) following ventriculo-
cisternal perfusion experiments in both male and female Wistar rats fed a 
normal or HF diet. 
Complete mean steady states were calculated from the concentration of blue 
dextran in the perfusate collected from the cisterna magna relative to that in the 
aCSF Cout/Cin.  Samples from control male ND (n=3), male HF (n=4, female ND 
(n=3), female HF (n=3) rats were averaged (±SEM) and compared to one another.  
Cout/Cin values from each group were averaged from 40-94 mins and extrapolated 
to the y-axis.   
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Figure 3.13: CSF secretion rates in normal diet and HF diet male and female 
Wistar rats determined using ventriculo-cisternal perfusion.  
Each experiment was carried out by perfusing aCSF through both lateral 

ventricles of the rat brain. CSF secretion rates were obtained once at steady 

state (40-90 min) and averaged ±SEM. Samples from male ND (n=3), male HF 

(n=4), female ND (n=3), female HF (n=3) rats were averaged (±SEM) and 

compared to one another. A two-way ANOVA was used to analyse the statistical 

significance.  The significant results are shown following Sidak’s multiple 

comparison test A two-tailed equal variance t-test comparison each diet and sex 

variable. * P = ≤0.05, ** P = ≤0.01, ***P = ≤0.001. 

 

The control mean steady state values (Fig. 3.12) reflect the CSF secretion rates of 

male and female Wistar rats raised on a normal or HF diet.  CSF secretion rates of 

female rats raised on a HF diet (2.66 ±0.10 μl/min) were significantly higher than 

in males fed on normal (1.57 ±0.13 μl/min, P≤0.01) and HF diets (2.06 ±0.21 

μl/min, P≤0.05), as well as females fed a normal diet (2.21 ±0.08 μl/min, P≤0.001) 

rates.  The male ‘HF diet’ rats also showed higher CSF secretion rates when 

compared with the female rats raised on a normal diet (P≤0.05).  There was no 
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difference between the sexes when comparing CSF secretion rates in animals fed 

the normal diet; or between males on different diets, which suggests that HF diet 

could play a more prominent role in increasing CSF secretion than just gender 

alone. 

 

3.6.1 Association between in vivo CSF secretion rates and physiological 

parameters 

In order to investigate the association of the physiological diet-induced effects 

(percentage weight gain, total cholesterol and LDL/VLDL levels) with CSF secretion 

rate, correlations were performed for both males and females as shown in Fig. 

3.14-3.16. 
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Figure 3.14: Association between control percentage weight gain and CSF 
secretion rates in male and female Wistar rats. 
Normal diet rats in both groups were fed the Teklad Global 14% Protein Rodent 

Maintenance Diet (n=3). HF males were raised on the Western RD High Fat Diet 

(n=4). HF females (n=3) were fed the 45% AFE High Fat Diet.  R2 analysis confirmed 

the strength of correlation and a Pearson correlation coefficient test was 

performed to determine significance. 

 

The results show that a significant association between percentage weight gain of 

female Wistar rats and increased CSF secretion rates may exist (R2 = 0.94, P≤0.01). 

This association was also noticeable with the male Wistar rats, however at a 

slightly weaker level (R2 = 0.63, P≤0.05) (Fig. 3.14).  

 

Similar results are observed when comparing the total cholesterol level effects 

upon CSF secretion rates as shown in (Fig. 3.15).  Female Wistar rats again show a 

strong association (R2 = 0.86, P≤0.01) between the two variables, with males again 
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displaying a weaker relationship with increased CSF secretion rates (R2 = 0.57, 

P≤0.05). 

 

Figure 3.15: Association between control total cholesterol level and CSF 

secretion rates in male and female Wistar rats. 

Normal diet rats in both groups were fed the Teklad Global 14% Protein Rodent 

Maintenance Diet (n=3). HF males were raised on the Western RD High Fat Diet 

(n=4). HF females (n=3) were fed the 45% AFE High Fat Diet. 

 

 

An association between LDL/VLDL cholesterol level and CSF secretion was 

noticeable in female Wistar rats (R2 = 0.78, P≤0.05), which was not observed with 

the males (R2 = 0.49), as shown in (Fig. 3.16).  
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Figure 3.16: Association between control LDL/VLDL cholesterol level and CSF 

secretion rates in male and female Wistar rats. 

Normal diet rats in both groups were fed the Teklad Global 14% Protein Rodent 

Maintenance Diet (n=3). HF males were raised on the Western RD High Fat Diet 

(n=4). HF females (n=3) were fed the 45% AFE High Fat Diet. 

 

 

When summarising the values of percentage weight gain, total, and LDL/VLDL 

cholesterol effects on CSF secretion rate; there appears to be an association 

between the different physiological parameters of a HF diet in female Wistar rats 

and CSF secretion.  This could imply that not only treatment alone but sex 

hormones along with percentage weight gain could play a significant role in 

increased CSF secretion.  This is even more evident as the male Wistar rats showed 

a weak association between CSF secretion rate and the three physiological 

parameters. 
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However, even though this analysis grouped both normal and HF diet rats, it is 

important to note the HF diet differences between the male and female rats.  As 

stated in Methods Section 2.2.4, the HF male rats were fed on the Western RD 

High Fat diet and the females on the 45% AFE High Fat Diet, which differ slightly in 

protein and carbohydrate content. Therefore, the differences in the three 

different diets make it difficult to interpret the differences observed with the 

associations in the different sexes. 

 

 

3.6.2 Sex and diet effects on hydrocortisone and TNF-α-modulated in 

vivo CSF secretion rates 

The HC and TNF-α mean steady state values (Cout/Cin) (Fig. 3.17a. and b., 

respectively) were used to calculate the CSF secretion rates for each treatment 

from the ventriculo-cisternal perfusion experiments (Fig. 3.18).   
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Figure 3.17: Mean HC and TNF-α steady state values (Cout/Cin) following 
ventriculo-cisternal perfusion experiments in both male and female Wistar rats 
fed a normal or HF diet. Complete mean steady states were calculated from the 
concentration of blue dextran in the perfusate collected from the cisterna magna 
relative to that in the aCSF; Cout/Cin.  Concentrations of treatments in aCSF, 
perfused for 90 min: HC (0.5 μg/ml, n=3-4), TNF-α (0.0001 μg/ml, n=3). Samples 
were averaged (±SEM) and compared to one another. Cout/Cin values from each 
treatment were averaged from 40-94 mins and extrapolated to the y-axis. 
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Figure 3.18: HC and TNF-α CSF secretion rates on normal diet and HF diet male and 
female Wistar rats using ventriculo-cisternal perfusion.  
Each experiment was carried out by perfusing aCSF with each treatment through 
both lateral ventricles of the rat brain. CSF secretion rates were obtained once at 
steady state (40-90 min) and averaged (±SEM) before being compared to controls 
(n=3-4). Concentrations of treatments in aCSF, perfused for 90 min: HC (0.5 μg/ml, 
n=3-4), TNF-α (0.0001 μg/ml, n=3). A three-way ANOVA was used to analyse the 
statistical significance.  The significant results are shown following Sidak’s multiple 
comparison test and was performed for each diet, sex and treatment variable. * P 
= ≤0.05, ** P = ≤0.01. 

 

The mean steady state values of HC and TNF-α (Fig. 3.17) correspond to the CSF 

secretion rates with each treatment of male and female Wistar rats raised on a 

normal or HF diet (Fig. 3.18). A two sample t-test comparison showed that HC and 

TNF-α significantly increased CSF secretion rates compared to the appropriate 

untreated controls in male and female Wistar rats raised on both types of diet. HC 

(2.45 ±0.29 μl/min, n=3) and TNF-α (2.48 ±0.21 μl/min, n=3) treated male ‘ND rats' 

showed significantly increased CSF secretion rates compared to the corresponding 
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control (1.57 ±0.13 μl/min, n=3, P≤0.05). The same effect was seen with the male 

‘HF diet’ group where treatment with HC (2.78 ±0.25 μl/min, n=4) and TNF-α (2.91 

±0.15 μl/min, n=3) displayed increasing CSF secretion over the control (2.06 ±0.21 

μl/min, n=4, P≤0.05).  Female ‘ND rats’ treated with HC (2.21 ±0.16 μl/min, n=3) 

and TNF-α (2.34 ±0.10 μl/min, n=3) also showed higher CSF secretion rates over 

controls (1.49 ±0.08 μl/min, n=3) (P≤0.01).  The same pattern was seen with the 

female ‘HF diet’ rats where HC (3.16 ±0.09 μl/min, n=3) and TNF-α (3.11 ±0.08 

μl/min, n=3) treatment increased CSF secretion rates against the female ‘HF diet’ 

control (2.66 ±0.10 μl/min, n=3, P≤0.05).  

 

Both HC and TNF-α female HF diet treatments displayed higher CSF secretion rates 

over their corresponding treatments in the both male (P≤0.05) and female 

(P≤0.01) normal diet animals.  In addition, male HF diet TNF-α CSF secretion rates 

were higher than the TNF-α female normal diet treatment (P≤0.05).   

 

These results show that females on a HF diet have the highest basal CSF secretion 

rate and (like all diet/sex groups) still showed a significant increase in CSF secretion 

with HC or TNF-α treatment.  
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3.6.3 Sex and diet effects on IL-6-modulated in vivo CSF secretion rates 

The values obtained from the IL-6 mean steady state analysis (Fig. 3.19) were used 

to calculate the CSF secretion rates for each treatment from the ventriculo-

cisternal perfusion experiments (Fig. 3.20).  

 

 
Figure 3.19: Mean IL-6 steady state values (Cout/Cin) following ventriculo-cisternal 
perfusion experiments in both male and female Wistar rats fed a normal or HF diet.  
Complete mean steady states were calculated from the concentration of blue dextran 
in the perfusate collected from the cisterna magna relative to that in the aCSF Cout/Cin.   
Concentrations of treatments in aCSF, perfused for 90 min: IL-6 (0.0001 μg/ml, n=3-
4). Samples were averaged (±SEM) and compared to one another.  Cout/Cin values from 
each treatment were averaged from 40-94 mins and extrapolated to the y-axis. 
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Figure 3.20: IL-6 CSF secretion rates on normal diet and HF diet male and female 

Wistar rats using ventriculo-cisternal perfusion.  

Each experiment was carried out by perfusing aCSF with each treatment through 

both lateral ventricles of the rat brain. CSF secretion rates were obtained once at 

steady state (40-90 min) and averaged (±SEM) before being compared to controls 

(n=3-4). Concentrations of treatments in aCSF, perfused for 90 min: IL-6 (0.0001 

μg/ml, n=3-4). A three-way ANOVA was used to analyse the statistical 

significance.  The significant results are shown following Sidak’s multiple 

comparison test and was performed for each diet, sex and treatment variable. * 

P = ≤0.05. 

 

A two-tailed t-test comparison showed IL-6 treated male ‘ND rats’ (0.92 ±0.18 

μl/min, n=3) showed decreased CSF secretion rates and was the only treatment 

that showed a significant change against its corresponding control (1.57 ±0.13 

μl/min, n=3, P≤0.05).  This treatment also caused a significant decrease in CSF 

secretion against ‘HF diet’ male (2.12 ±0.13 μl/min, n=4, P≤0.05) and female rats 

(2.53 ±0.07 μl/min, n=3, P≤0.01).  IL-6-treated females on the HF diet also showed 

a higher rate of CSF secretion compared to all other IL-6-treated groups: male 
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normal diet (0.92 ±0.18 μl/min, n=3, P≤0.001), male HF diet (2.12 ±0.13 μl/min, 

n=4, P≤0.05) and female normal diet rats (1.24 ±0.10 μl/min, n=3, P≤0.001).  These 

results suggest IL-6 may only significantly reduce CSF secretion rates in male 

Wistar rats raised on a normal diet.  Female rats do not appear to show this IL-6 

effect whereas and HF diets in both sexes seem to abolish any effect IL-6 may have 

on decreasing CSF secretion rates.   

 

IL-6 caused no change in CSF secretion over controls following a three-way ANOVA 

analysis, however sex (P≤0.05), and diet (P≤0.001) alone did show a significant 

increase in CSF secretion rate over controls, mostly evident with the female rats 

raised on a HF diet over males fed a normal diet. 

 

3.6.4 Sex and diet effects on IL-17 and CCL2-modulated in vivo CSF 

secretion rates 

The Cout/Cin values obtained from the IL-17 and CCL2 mean steady state analysis 

(Fig. 3.21a and b, respectively) were used to calculate the CSF secretion rates for 

each treatment from the ventriculo-cisternal perfusion experiments (Fig. 3.22).   
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Figure 3.21: Mean IL-17 and CCL2 steady state values (Cout/Cin) following 
ventriculo-cisternal perfusion experiments in both male and female Wistar fed a 
normal or HF diet.  
Complete mean steady states were calculated from the concentration of blue 
dextran in the perfusate collected from the cisterna magna relative to that in the 
aCSF Cout/Cin.  Concentrations of treatments in aCSF, perfused for 90 min: IL-17 
(0.0001 μg/ml, n=3-4), CCL2 (0.05 μg/ml, n=3-4). Samples were averaged (±SEM) 
and compared to one another. Cout/Cin values from each treatment were averaged 
from 40-94 mins and extrapolated to the y-axis. 
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Using a two-tailed t-test, treatment with IL-17 and CCL2 caused no significant 

changes in CSF secretion rates in either male or female Wistar rats raised on both 

normal and HF diets compared to their respective untreated controls.  However 

CCL2-treated females on the HF diet (2.48 ±0.05 μl/min, n=3) showed higher CSF 

secretion rates than both CCL2-treated males (1.51 ±0.30 μl/min, n=3) and females 

fed a normal diet (1.45 ±0.23 μl/min, n=3) (P≤0.01).  In addition, IL-17-treated 

groups in both male (2.45 ±0.29 μl/min, n=4, P≤0.05) and female (2.37 ±0.11 

μl/min, n=3, P≤0.01) rats fed a HF diet displayed a significant increase in CSF 
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Figure 3.22: IL-17 and CCL2 CSF secretion rates on normal diet and HF diet male 
and female Wistar rats using ventriculo-cisternal perfusion.  
Each experiment was carried out by perfusing aCSF with each treatment through 
both lateral ventricles of the rat brain. CSF secretion rates were obtained once at 
steady state (40-90 min) and averaged (±SEM). Concentrations of treatments in 
aCSF, perfused for 90 min: IL-17 (0.0001 μg/ml, n=3-4), CCL2 (0.05 μg/ml, n=3-4).  A 
three-way ANOVA was used to analyse the statistical significance.  No significant 
results are shown following Sidak’s multiple comparison test which tested against 
each diet, sex and treatment variable. 
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secretion rates over IL-17 treated females on a normal diet (1.34 ±0.10 μl/min, 

n=3).  These results could show a trend of a HF diet in females increasing CSF 

secretion rates over both sexes on normal diets.  Sex differences in response to IL-

17 treatment are not as clear which may suggest that in animals on any diet, IL-17 

may not play a role in increasing CSF secretion rates.   

 

3.6.5 Summary of sex and diet effects on CSF secretion rates  

When comparing controls it was evident that female Wistar rats raised on a HF 

diet had a significantly increased CSF secretion rates over female rats on a normal 

diet and male rats on both diets.  This would indicate that a combination of a HF 

diet and female sex hormones could be an important factor in elevated 

intracranial pressures associated with IIH patients through increased CSF 

secretion. 

 

As with the initial studies on male Wistar rats (Section 3.1.1); HC and TNF-α were 

found to increase CSF secretion rates in both diets and sexes over controls. This 

would indicate that these two treatments may be a factor in elevated intracranial 

pressures, associated with IIH patients, regardless of diet and sex. 

 

IL-6 treatment in male normal diet rats decreased CSF secretion rates, as with the 

initial results in Section 3.1.1.  However, this effect was not seen in females and 

HF diet rats.   
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IL-17 and CCL2 caused no significant change upon CSF secretion when compared 

with controls; however a HF diet in females had a significant effect on secretion 

rate, increasing it when compared to normal diets on both treatments.  These 

results would again suggest that a HF diet could be an important factor increasing 

CSF secretion rates.   
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3.7 Sex and diet effects on CSF dynamics: resistance to CSF 

drainage  

The variable rate infusion method was used to test the in vivo effects each 

treatment had on the resistance to CSF drainage over four increasing infusion 

rates (5, 10, 16, 20 μl/min).  Fig. 3.23 shows the resistance to CSF drainage values 

of untreated animals (male and female) on normal and HF diets.  An increase in 

resistance to CSF drainage was observed when male Wistar rats were perfused 

with CCL2, IL-17, and IL-6, suggesting an impairment of the absorption of CSF in 

the presence of these cytokines (Fig. 3.28 and 3.29).  However, a decrease in 

resistance to CSF drainage was seen following HC and TNF-α treatment in certain 

groups (Fig. 3.27), which could indicate a compensatory mechanism taking effect 

against the increased CSF secretion rate associated with these two treatments.  

The same observation, with regards to a compensatory mechanism, could be 

made of IL-6 due to its effect on decreasing CSF secretion rates (as shown in Fig. 

3.2) and increasing resistance to CSF drainage (Fig. 3.28).   
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Figure 3.23: Control resistance to CSF drainage values in male and female 
Wistar rats on a normal and high-fat diet. 
Each experiment was carried out by perfusing aCSF with each treatment through 

one lateral ventricle plus the addition of a single dose i.p injection of PBS 90 

minutes prior to perfusion.  Samples from each group were averaged (±SEM); 

male ND (n=3), male HF (n=3), female ND (n=3), female HF (n=3) and compared 

to one another. The graphs show the linear pressure readings (mmH2O) at each 

infusion rate (a); averaged resistance to CSF drainage readings (mmH2O.min/μl) 

(b). A two-way ANOVA was used to analyse the statistical significance.  The 

significant results are shown following Sidak’s multiple comparison test and was 

performed against each diet and sex variable. * P = <0.05; ** P = <0.01. 

 

 

The resistance to CSF drainage was compared in untreated animals (male and 

female) on normal and HF diets (Fig. 3.23).  The results show female Wistar rats 

raised on a HF diet (7.09 ±0.26 mmH2O.min/μl) had significantly higher resistance 

values when compared with males on the HF diet (5.42 ±0.34 mmH2O.min/μl, 

P≤0.01), as well as males (5.64 ±0.51 mmH2O.min/μl, P≤0.05) and females fed a 

normal diet (6.13 ±0.44 mmH2O.min/μl, P≤0.05).  These results could imply that 
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females on a HF diet could be most at risk in developing the raised intracranial 

pressures, due to the increased resistance to CSF drainage, associated in patients 

with IIH. 

 

3.7.1 Correlation between in vivo resistance to CSF drainage and 

physiological parameters  

As with CSF secretion, the association between diet and resistance to CSF drainage 

was analysed using graphs of percentage weight gain, total cholesterol and 

LDL/VLDL cholesterol levels, against resistance to CSF drainage, for each individual 

animal in grouped normal and HF diets as shown in Fig. 3.24-3.26. 
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Figure 3.24: Association between control percentage weight gain and 
resistance to CSF drainage in male and female Wistar rats. 
Normal diet rats in both groups were fed the Teklad Global 14% Protein Rodent 
Maintenance Diet (n=3). HF diet rats were fed the 45% AFE High Fat Diet (n=3).  
R2 values were calculated as a measure of the level of correlation between weight 
gain and resistance to CSF drainage. 

 

 

The results in Fig. 3.24 show that there is a weak relationship between percentage 

weight gain and resistance to CSF drainage in female (R2 = 0.62) Wistar rats, 

although not significant. However, there was no association observed in the male 

group (R2 = 0.01).  In addition, there was no association between total cholesterol 

levels and resistance to CSF drainage in both male (R2 = 0.08) and female (R2 = 

0.45) Wistar rats (Fig. 3.25).  
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Figure 3.25: Association between total cholesterol level correlation and 
resistance to CSF drainage in male and female Wistar rats. 
Normal diet rats in both groups were fed the Teklad Global 14% Protein Rodent 
Maintenance Diet (n=3). HF diet rats were fed the 45% AFE High Fat Diet (n=3). 
R2 values were used to calculate the level of correlation between weight gain 
and resistance to CSF drainage. 

 

 

Similar results were observed with LDL/VLDL cholesterol levels (Fig. 3.26) as with 

percentage weight gain where female Wistar rats showed a significant association 

between LDL/VLDL cholesterol levels and increased resistance to CSF drainage (R2 

= 0.66, P≤0.05), which was not evident in the male group (R2 = 0.14). 

 

R² = 0.0766

R² = 0.4517

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
s
is

ta
n

c
e
 t

o
 C

S
F

 D
ra

in
a
g

e
 

(m
m

H
2
O

/μ
l/
m

in
)

Total Cholesterol  in Serum (μg/ml)

Male Female



143 
 

 

Figure 3.26: Association between LDL/VLDL cholesterol level correlation and 
resistance to CSF drainage in male and female Wistar rats. 
Normal diet rats in both groups were fed the Teklad Global 14% Protein Rodent 
Maintenance Diet (n=3). HF diet rats were fed the 45% AFE High Fat Diet (n=3). R2 
values were used to calculate the level of correlation between weight gain and 
resistance to CSF drainage.  

 

 

In summary, there appears to be an association between one of the physiological 

parameters of a HF diet (LDL/VLDL cholesterol levels) and resistance to CSF 

drainage, but only with female Wistar rats.  There was no evident association with 

percentage weight gain, total cholesterol levels and resistance to CSF drainage in 

either male or female Wistar rats.  

 

 

 

R² = 0.1432

R² = 0.6609

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
s
is

ta
n

c
e
 t

o
 C

S
F

 D
ra

in
a
g

e
 

(m
m

H
2
O

/μ
l/
m

in
)

LDL/VLDL Cholesterol  in Serum (μg/ml)

Male Female



144 
 

3.7.2 Sex and diet effects on hydrocortisone and TNF-α-modulated 

resistance to CSF drainage 

The variable rate infusion method was used to test the in vivo effects HC and TNF-

α modulation (in male and female Wistar rats raised on either a normal or HF diet) 

had on the resistance to CSF drainage over four increasing infusion rates (5, 10, 

16, 20 μl/min).  The linear pressure readings (mmH2O) at each infusion rate 

following HC and TNF-α treatment are shown in Fig. 3.27a and b, respectively.  The 

averaged resistance to CSF drainage readings (mmH2O/μl/min) are described in 

Fig. 3.27c. 
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Figure 3.27: HC and TNF-α resistance to CSF drainage values in male and 
female Wistar rats on a normal and high-fat diet. 
Each experiment was carried out by perfusing aCSF with each treatment through 

one lateral ventricle plus the addition of a single dose i.p injection of either HC or 

TNF-α 90 minutes prior to perfusion.  Samples from each group were averaged 

(±SEM); male ND (n=3), male HF (n=3), female ND (n=3), female HF (n=3) and 

compared to one another. The graphs show the linear pressure readings 

(mmH2O) at each infusion rate of HC (a); TNF-α (b); averaged resistance to CSF 

drainage readings (mmH2O.min/μl) (c). A three-way ANOVA was used to analyse 

the statistical significance.  The significant results are shown following Sidak’s 

multiple comparison test and was performed for each diet, sex and treatment 

variable. * P = ≤0.05; ** P = ≤0.01, *** P = ≤0.001. 

 

A two-tailed equal variance t-test described significant decreases in resistance to 

CSF drainage in male and female normal diet variables.  TNF-α-treated males on a 

normal diet (3.63 ±0.42 mmH2O.min/μl) showed a significant decrease in 

resistance to CSF drainage when compared with controls (5.64 ±0.51 

mmH2O.min/μl, P≤0.01).  Female Wistar rats raised on a normal diet showed a 

significant decrease in resistance to CSF drainage following treatment with TNF-α 
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(3.90 ±0.32 mmH2O.min/μl, P≤0.01) and HC (4.56 ±0.35 mmH2O.min/μl, P≤0.01) 

when compared with controls (6.13 ±0.44 mmH2O.min/μl). 

 

Following a three-way ANOVA analysis, the results of HC and TNF-α treatment 

effects show that there is a significant difference between the treatments (HC 

P≤0.01; TNF-α P≤0.0001) in decreasing the resistance to CSF drainage over 

controls.  This decrease is mostly evident with HC in female normal diet rats 

(P≤0.01) and TNF-α in both male (P≤0.01) and female (P≤0.001) normal diet fed 

rats when compared with controls. 

 

There was a significant difference between males and females, following both 

treatments, upon resistance to CSF drainage (HC P≤0.01; TNF-α P≤0.0001), which 

is mostly evident by the increase in pressure of the HC treated HF diet females 

when compared to the HF diet males.  A significant effect is also seen between the 

diets (HC P≤0.05; TNF-α P≤0.001) as the decrease in resistance to CSF drainage 

associated with normal diet rats is not evident in the HF diet animals. 
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3.7.3 Sex and diet effects on IL-6-modulated resistance to CSF drainage  

The variable rate infusion method tested the in vivo effects IL-6 had on the 

resistance to CSF drainage over four increasing infusion rates (5, 10, 16, 20 μl/min).  

The graphs show the linear pressure readings (mmH2O) at each infusion rate (Fig. 

3.28a) and averaged resistance to CSF drainage readings (mmH2O.min/μl) (Fig. 

3.28b). 
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Figure 3.28: IL-6 resistance to CSF drainage values in male and female Wistar rats 
on a normal and high fat diet. 
Each experiment was carried out by perfusing aCSF with each treatment through 
one lateral ventricle plus the addition of a single dose i.p injection of IL-6 90 minutes 
prior to perfusion.  Samples from each group were averaged (±SEM); male ND (n=3), 
male HF (n=3), female ND (n=3), female HF (n=3) and compared to one another. The 
graphs show the linear pressure readings (mmH2O) at each infusion rate (a); 
averaged resistance to CSF drainage readings (mmH2O.min/μl) (b).  A three-way 
ANOVA was used to analyse the statistical significance.  The significant results are 
shown following Sidak’s multiple comparison test and was performed against each 
diet, sex and treatment variable. * P = ≤0.05. 

 

The only increased change in resistance to CSF drainage significant with IL-6, was 

with the male rats raised on a HF diet (7.08 ±0.71 mmH2O.min/μl) when compared 

with controls (5.42 ±0.34 mmH2O.min/μl, P≤0.05).   

 

A three way ANOVA showed a significant difference between the normal and HF 

diets (P=<0.05).  However, this could just be due to the difference in increased 

resistance to CSF drainage between males raised on a HF diet and normal diet.  
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There were no difference between any of the other variables, which also lead to a 

significant difference between treatment, sex and diet (P≤0.05), due to the one 

significant result in increasing resistance to CSF drainage, associated with IL-6, 

being observed only in the male HF diet group.  

 

3.7.4 Sex and diet effects on CCL2 and IL-17-modulated resistance to CSF 

drainage 

The variable rate infusion method was used to test the in vivo effects CCL2  and IL-

17 modulation had on the resistance to CSF drainage over four increasing infusion 

rates (5, 10, 16, 20 μl/min).  The graphs show the linear pressure readings 

(mmH2O) at each infusion rate of CCL2 (Fig. 3.29a); IL-17 (Fig. 3.29b) and averaged 

resistance to CSF drainage readings (mmH2O.min/μl) (Fig. 3.29c). 
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Figure 3.29: CCL2 and IL-17 resistance to CSF drainage values in male and 
female Wistar rats on a normal and high fat diet. 
Each experiment was carried out by perfusing aCSF with each treatment through 
one lateral ventricle plus the addition of a single dose i.p injection of either CCL2 
or IL-17 90 minutes prior to perfusion.  Samples from each group were averaged 
(±SEM); male ND (n=3), male HF (n=3), female ND (n=3), female HF (n=3) and 
compared to one another. The graphs show the linear pressure readings 
(mmH2O) at each infusion rate (CCL2) (a); IL-17 (b); averaged resistance to CSF 
drainage readings (mmH2O/μl/min) (b). A three-way ANOVA was used to analyse 
the statistical significance.  The significant results are shown following Sidak’s 
multiple comparison test and was performed against each diet, sex and 
treatment variable. * P = ≤0.05; ** P = ≤0.01, *** P = ≤0.001. 

 

CCL2 treatment in male rats on a normal diet (3.75 ±0.61 mmH2O.min/μl, n=3) 

decreased resistance to CSF drainage when compared with controls (5.42 ±0.51 

mmH2O.min/μl, P≤0.01).  However, interestingly, the opposite effect was seen in 

the female groups where CCL2 showed a significant increase in females fed a 

normal diet (10.28 ±0.60 mmH2O.min/μl) when compared with controls (6.13 

±0.44 mmH2O.min/μl, P≤0.001).  The ‘HF diet’ females displayed a significant 

increase in resistance to CSF drainage following both CCL2 (11.61 ±0.46 
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mmH2O.min/μl, P≤0.001) and IL-17 (8.52 mmH2O.min/μl, P≤0.01) treatment when 

compared with controls (7.09 ±0.26 mmH2O.min/μl). 

 

A three-way ANOVA analysis showed only CCL2, and not IL-17 treatment, resulted 

in a significant increase in resistance to CSF drainage over controls (P≤0.0001).  

This is seen with the normal diet and HF diet female rats.  

 

However, there was a significant difference between the two sexes (IL-17 

P≤0.0001; CCL2 P≤0.0001), which is shown by the increase in resistance to CSF 

drainage of the HF diet females when compared to the HF diet males, as well as in 

the normal diet equivalents.  Only IL-17 caused a significant increase in resistance 

to CSF drainage between the diets (P≤0.05) as evident between the HF female and 

normal diet female rats. 
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3.7.5 In vivo sex and diet differences on initial pressure readings  

Initial pressure readings following a 5 μl/min infusion rate were recorded to 

measure the effect of the i.p pre-injection effect of each treatment.  Graphs of 

initial pressure differences for male (a) and female (b) Wistar rats raised on either 

a normal diet or HF diet are displayed in Fig. 3.30. 
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Figure 3.30: Initial pressure comparison of female Wistar rats on a normal and 
high-fat diet.  
Normal diet readings are shown in dark grey; high-fat diet readings shown in light 
grey for each separate treatment in both male (a) and female (b) Wistar rats. 
Readings were taken following the first 5 μl/min variable rate infusion.  Samples 
from diet and sex group were averaged (±SEM); HC (n=3), TNF-α (n=3), IL-6 (n=3), 
IL-17 (n=3), CCL2 (n=3) in both male and female ND and HF diets and compared 
accordingly. A two-way ANOVA was used to analyse the statistical significance.  
The significant results are shown following Sidak’s multiple comparison test was 
used to test the significance of the initial pressure for each treatment and diet 
variables. * P = ≤0.05; ** P = ≤0.01, *** P = ≤0.001. 

 

 

Each treatment in the HF diet groups in both sexes (excluding IL-6 in both sexes 

and HC in females) showed significant increases in initial pressures when 

compared to the corresponding treatment in the normal diet group (Fig. 3.30). In 

addition, a two-way ANOVA analysis described, that across all the treatments, the 

initial intracranial pressure readings of rats raised on a HF diet, in both sexes, 

increased when compared to rats fed on a normal diet (P≤0.001).  These results 

highlight that as well as treatments with CCL2, IL-17 and TNF-α, even control 

animals raised on a HF diet show increasing initial CSF pressures, regardless of sex. 
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This correlates with the findings of CSF secretion and resistance to CSF drainage 

that a HF diet may be the biggest risk factor in raising intracranial pressures 

associated with IIH patients. 

 

3.7.6 Summary of sex and diet effects on CSF dynamics (resistance to 

CSF drainage) 

The slope pressures for each separate VRI experiment on both normal diet and HF 

diet rats show the effects each treatment has on the resistance to CSF drainage. 

The results of the initial experiments in which male Wistar rats were used, show 

that CCL2, IL-17 and IL-6 all significantly increase resistance to CSF drainage, whilst 

HC causes a significant decrease in resistance to CSF drainage (Fig. 3.6). 

 

When comparing the male rats in both normal and HF diets it is evident that there 

is a lack of significance between the two groups and the pattern of results does 

not match the initial screening significances.  The reason for this could be due to 

a change of cannula that was attached to the syringe that perfused the aCSF into 

the one lateral ventricle of the rat brain.  Whilst a metal cannula had been used in 

the initial experiments, a plastic cannula was used in later experiments where the 

effects of diet and sex were investigated.  The plastic cannula was chosen for these 

experiments to reduce the risk of a tear in the tubing, which if it occurred, would 

cause a decrease in pressure readings.  However, over time the plastic cannula 

may have expanded, therefore decreasing the pressure readings, which would not 

be seen with a metal cannula that was used during the initial experiments.  
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A metal cannula was again fitted for the female VRI experiments and the 

resistance to CSF drainage pressures showed similar results towards the initial 

screening results in male Wistar rats. It is evident that in the ‘normal diet’ females, 

resistance to CSF drainage was increased by CCL2 and decreased by HC and TNF-α 

treatments.  No effect was observed in these animals on treatment with IL-17 or 

IL-6.  When comparing these results to the female Wistar rats on the HF diet, it is 

evident that the control resistance to CSF drainage values are significantly higher 

than in the normal diet females. CCL2 and IL-17 both increased the resistance to 

CSF drainage (Fig. 3.29), which matched the initial preliminary results (Fig 3.6). 

However, IL-6, HC and TNF-α showed no change when compared with controls. 

These results suggest that females on a HF diet have an overall increase in 

resistance to CSF drainage when compared with females on a normal diet. In 

addition, the effect HC and TNF-α have on decreasing the resistance to CSF 

drainage in normal diet females is abolished in the HF diet females (Fig 3.27).  This 

would lead to a conclusion that in female animals on a HF diet, where basal CSF 

secretion (Fig. 3.18) and resistance to CSF drainage (Fig. 3.27) are elevated, the 

compensatory mechanism associated with HC and TNF-α treatments in animals 

fed a normal diet are absent or ineffective.  

 

Graphs for each individual treatment’s resistance to CSF drainage results, 

following variable rate infusion, of normal diet against a HF diet are shown in 

Appendix Section 6.9, page 290.   In addition, the findings of CSF secretion and 

resistance to CSF drainage of animals raised on a HF diet correlate with the results 

of initial pressure readings (Fig. 3.30) and indicates that a HF diet may be the 



157 
 

biggest risk factor in raising intracranial pressures, which are synonymous with 

patients suffering from IIH. 
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3.8 Diet effects on rat choroid plexus ultrastructure by electron 

microscopy 

The choroid plexuses are located in the inferior horn (temporal horn) of the lateral 

ventricles and the cuboidal epithelium lines the ventricular cavities (Fig. 3.31-3.44).  

The ependymal cells present microvilli and cilia on the apical surface and a basal 

lamina separates these cells from the collagen fibre connective tissue and blood 

vessels.  The cuboidal epithelial cells are joined by tight junctions at the apical 

surfaces.  

 

Cilia numbers, which are known to play an increased role in CSF secretion (Albee & 

Dutcher 2012), appeared to be similar in both normal and HF diet rats.  The images 

show all of the characteristics associated with choroid plexus brain tissue including 

the cuboidal epithelial cells; tight junctions at the apical membranes; and microvilli 

and cilia on the surface of the epithelial cells, in the ventricular lumen, into which 

the CSF is secreted from the choroid plexus epithelium. 

 

Due to no quantitative analysis being performed, it was not possible to ascertain 

whether an increase in cilia numbers in the HF diet rats may have presented an 

added explanation of the increased CSF secretion associated within this group.  It is 

known that motile cilia in choroid plexus epithelial cells are involved in direct CSF 

movement.  Studies by Albee and Ducher found cilia can be motile as on the 

epithelial surface of respiratory tract, the oviduct, and the fourth ventricle of the 

brain, where each cell has multiple cilia (Albee & Dutcher 2012).  However, only 
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confirmation of the typical characteristics associated with lateral ventricle choroid 

plexus ultrastructure was possible due to no quantitative analysis being performed 

between male rats on a normal diet and those on a HF diet. 
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(a) (b) 

Figure 3.1: 1 μm thick sections of ultrastructure images on normal diet male Wistar rat lateral ventricle choroid plexus.  
Images obtained on a Leica DMI 6000B Microscope. Scale bar represents 40 μm (a) and 125 μm (b). 
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(d) 

(c) 

Figure 3.2: Electron micrographs of 0.1 μm thick sections from male Wistar 
rat lateral ventricle choroid plexus raised on a normal diet.  Animals were 
perfusion fixed with 4% (w/v) PFA + 0.5% (v/v) glutaraldehyde at 11 weeks 
of age.  (c) (d) Cuboidal epithelial cell (Ep); Cilia (C); ventricular lumen (Lv); 
basal lamina (Bl) Scale bar represents 800nm (c) and 600nm (d).  
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(e) Figure 3.3: Electron micrographs of 0.1 
μm thick sections from male Wistar rat 
lateral ventricle choroid plexus raised on 
a normal diet.   
(e) Cilia (C); Tight junction (TJ); Nucleus 
(Nu). Scale bar represents 600nm.  
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(f) 

(g) 

Figure 3.4: Electron micrographs of 0.1 μm thick sections from male 

Wistar rat lateral ventricle choroid plexus raised on a normal diet.   

(f), (g) Cuboidal epithelial cell (Ep); Cilia (C); ventricular lumen (Lv); Tight 

junction (TJ); Nucleus (Nu); Mitochondria (M). Scale bar represents 600nm. 
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(h) (i) 

Figure 3.5: Electron micrographs of 0.1 μm thick sections from male Wistar rat lateral 
ventricle choroid plexus raised on a normal diet.   
(h), (i) Cilia (C); tight junction (TJ); mitochondria (M). Scale bar represents 600nm. 
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(j) (k) 

Figure 3.6: Electron micrographs of 0.1 μm thick sections from 

male Wistar rat lateral ventricle choroid plexus raised on a 

normal diet.   

(j), (k) Cuboidal epithelial cell (Ep); Cilia (C); tight junction (TJ); 

mitochondria (M). Scale bar represents 600nm. 
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(l) (m) 

Figure 3.7: Electron micrographs of 0.1 μm thick sections from 

male Wistar rat lateral ventricle choroid plexus raised on a 

normal diet.   

(l), (m) Choroid plexus epithelia. Scale bar represents 600nm. 
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(n) (o) 

Figure 3.8: Electron micrographs of 0.1 μm thick sections from male 

Wistar rat lateral ventricle choroid plexus raised on a normal diet.   

(n), (o) Cuboidal epithelial cell (Ep); Cilia (C); Tight junction (TJ); 

Mitochondria (M). Scale bar represents 600nm. 
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(a) 

Lv 

Figure 3.9: Electron micrographs of 1 μm thick sections from 

male Wistar rat lateral ventricle choroid plexus raised on a 

high-fat diet.   

Animals were killed by perfusion with 4% (w/v) PFA + 0.5% 

(v/v) glutaraldehyde at 11 weeks of age.  Images obtained on a 

Leica DMI 6000B Microscope. (a) Choroid plexus (Cp); 

ventricular lumen (Lv). Scale bar represents 125 μm. 
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(c) 

(d) 

Figure 3.10:  Electron micrographs of 0.1 μm thick 

sections from male Wistar rat lateral ventricle choroid 

plexus raised on a high-fat diet.   

(c), (d) Cuboidal epithelial cell (Ep); cilia (C); ventricular 

lumen (Lv); tight junction (TJ); mitochondria (M); basal 

lamina (Bl). Scale bar represents 800nm. 
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(e) (f) 

Figure 3.11: Electron micrographs of 0.1 μm thick sections from male Wistar rat lateral ventricle choroid 

plexus raised on a high-fat diet.   

(e), (f) Cuboidal epithelial cell (Ep); cilia (C); ventricular lumen (Lv); tight junction (TJ); mitochondria (M); basal 

lamina (Bl). Scale bar represents 600nm. 
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(g) Figure 3.12: Electron micrographs of 0.1 μm 

thick sections from male Wistar rat lateral 

ventricle choroid plexus raised on a high-fat 

diet.   

(g) Cuboidal epithelial cell (Ep); cilia (C); 

ventricular lumen (Lv); tight junction (TJ); 

mitochondria (M). Scale bar represents 600nm. 
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Figure 3.13: Electron micrographs of 0.1 μm thick sections from male Wistar rat lateral ventricle choroid plexus raised on a high-fat diet.   

(h) Cuboidal epithelial cell (Ep); cilia (C); ventricular lumen (Lv); tight junction (TJ); mitochondria (M); nucleus (N); microvilli (Mv); basal lamina (Bl). 

Scale bar represents 1000nm. 
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Figure 3.14: Electron micrographs of 0.1 μm thick 

sections from male Wistar rat lateral ventricle 

choroid plexus raised on a high-fat diet.   

(i) Cuboidal epithelial cell (Ep); ventricular lumen 

(Lv); tight junction (TJ); mitochondria (M); microvilli 

(Mv); connective tissue (collagen fibres) (Ct); basal 

lamina (Bl). Scale bar represents 1000nm. 
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3.9 Characterisation of human choroid plexus epithelial cells (hCPEpiC) 

Having established that HC, TNF-α and IL-6 modulated CSF secretion rates; and IL-17 and CCL2 modulated resistance to CSF 

drainage in vivo, in vitro experiments were performed to investigate the molecular mechanisms through which these 

treatments may influence CSF secretion and thereby intracranial pressure.  To this end immunocytochemistry and flow 

cytometry were used to test the expression of hCPEpiC transporters/channels and cytokine receptors. 

3.9.1 hCPEpiC morphology 

Primary hCPEpiC displayed spindle shaped cells before growing towards confluence after 8 days in culture (DIC), where they 

formed polygonal shaped confluent monolayers with some degree of cell-cell overlap. 

Seeded Growing Towards Confluence Fully Confluent 

Figure 3.15: Morphology of hCPEpiC viewed by phase contrast microscopy (P1).  
The cells were seeded at a density of 5000 cells/cm2 in complete hCPEpiC medium. Freshly isolated primary hCPEpiC formed confluent monolayers with 
polygonal shaped colonies of cells after 8 DIC.  All further experiments were performed at passages 1-5. Images were taken with a Nikon Eclipse TS100 
camera. Scale bar represents 20 μm.   

(a) (b) (c) 
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3.9.2 Expression of choroid plexus epithelial markers by hCPEpiC by 

immunocytochemistry 

Characterisation of hCPEPiC proteins, known to be expressed in choroid plexus 

epithelial cells (Abbott et al. 2010) (Ballabh et al. 2004) (Allt & Lawrenson 2001) 

(Redzic & Segal 2004) was performed initially by immunocytochemistry.  It was 

important to confirm whether the hCPEpiC would be effective in testing the effect of 

the modulators of interest on the possible in vitro molecular mechanisms of CSF 

secretion.  Transthyretin (TTR) protein was distributed uniformly at the cell surface 

of hCPEpiC. ZO-1 and Claudin-1 tight junctional proteins were not found to be 

expressed at the apical tight junction sites associated with choroid plexus epithelial 

cells (Fig. 3.46).  Reviews by Redzic also found this to be the case in many studies 

using primary hCPEpiC (Redzic 2013).  These data suggest that the hCPEpiC cells are 

not a suitable blood-CSF barrier (BCSFB) in vitro model to study CSF secretion assays 

but are a good model to study the increase/decrease in expression of 

transporters/channels involved in CSF secretion across the choroid plexus 

epithelium.  The characterisation of the transporters involved in CSF secretion is 

described in Sections 3.10.3 and 3.11.  
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Figure 3.16: Expression of pre-albumin Transthyretin (TTR), Claudin-1 and ZO-1 proteins on hCPEpiC as viewed by confocal microscope.  
hCPEpiC cells were grown on poly-l-lysine coated Ibidi chambers until confluent. The cells were fixed in 4% PFA and stained for (a) control (no 
primary Ab), (b) anti-prealbumin (TTR) (sheep polyclonal IgG), (c) claudin-1 (rabbit polyclonal IgG), or (d) ZO-1 (rabbit polyclonal IgG) primary 
antibodies. The secondary antibodies used included (a) polyclonal sheep anti-mouse IgG FITC conjugated, (b) donkey anti-sheep IgG FITC 
conjugated, (c,d) goat anti-rabbit IgG Alexa 488.  The cells were counterstained with DAPI and viewed via a confocal microscope.  Images are a 
representation of hCPEpiC cells at P2 (n=3).  Scale bar represents 125 μm.   

Control no primary Ab (a) TTR (b) 

Claudin-1 (c) ZO-1 (d) 
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3.9.3 Expression of transporters and channels by hCPEpiC by 

immunocytochemistry 

In order to analyse the effect of HC, TNF-α, IL-6 and IL-17 on the expression of 

hCPEpiC transporters (Na+-K+-ATPase, NKCC1, AQP1 and ENaC), identifying whether 

the hCPEpiC express the transporters/channels that mediate the molecular 

mechanisms of CSF secretion across the BCSFB was performed first.  

Immunocytochemistry (Fig. 3.47) and flow cytometry analysis (Fig. 3.50) show Na+-

K+-ATPase, NKCC1, AQP1 and ENaC transporters/channels, and CCR2, IL17α, TNFR1 

and IL-6R receptors are expressed on hCPEpiC.  From the results in Fig. 3.47, it is 

evident that Aquaporin-1 and Na+-K+-ATPase are expressed on the cell membrane, 

whereas NKCC1 and ENaC were detected in the cytosol.     
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Aquaporin-1 

(e) ENaC 

Na
+
, K

+
-ATPase 

(d) NKCC1 

Control no primary Ab (a) 

(b) (c) 

Figure 3.17: Expression of Aquaporin-1 water channel, Na+-K+-ATPase, NKCC1 and ENaC transporters on hCPEpiC as viewed by confocal microscope.  
hCPEpiC cells were grown on poly-l-lysine coated Ibidi chambers until confluent. The cells were fixed in 4% PFA and stained for (a) control (no primary 
Ab), (b) aquaporin-1 rabbit polyclonal IgG, (c) Na+-K+-ATPase rabbit polyclonal IgG, (d) NKCC1 rabbit polyclonal IgG, or (e) ENaC rabbit polyclonal IgG 
primary antibodies. The secondary antibodies used included (a) polyclonal sheep anti-mouse IgG FITC conjugated, (b,c,d,e) goat anti-rabbit IgG alexa 
488.  The cells were counterstained with DAPI and viewed via a confocal microscope.  Images are a representation of hCPEpiC cells at P2 (n=3). Scale 
bar represents 80 μm. 
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3.9.4 Expression of cytokine receptors by hCPEpiC by immunocytochemistry 

The receptors of cytokines CCL2, IL-17, TNF-α and IL-6 that could be involved in 

mediating the biological functions of CSF secretion across the BCSFB were identified.  

To determine the subcellular distribution of cytokine receptors, hCPEpiC were fixed 

and the expression of CCR2, IL17Rα, TNFR1 and IL-6R was analysed by 

immunocytochemistry (Fig. 3.48-3.49) using confocal microscopy and also flow 

cytometry (Fig. 3.51).  Under normal conditions, CCR2 (Fig. 3.48b), IL-17Rα (Fig. 

3.48c) and TNFR1 (Fig. 3.49b) were distributed uniformly at the cell surface of 

hCPEpiC.  By contrast, IL-6R staining appeared as a punctate pattern on the plasma 

membrane of the hCPEpiC, suggesting that IL-6R is located in clusters (Fig. 3.49c).  
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(b) (c) (a) Control no primary Ab CCR2  IL-17Rα 

Figure 3.18: Expression of CCR2 and IL-17Rα receptors on hCPEpiC as viewed by confocal microscope.  hCPEpiC cells were grown on poly-l-lysine 
coated Ibidi chambers until confluent. The cells were fixed in 4% PFA and stained for (a) control (no primary Ab), (b) CCR2 rabbit polyclonal IgG, (c) 
IL-17Rα rabbit polyclonal IgG primary antibodies. The secondary antibodies used included (a) polyclonal sheep anti-mouse IgG FITC conjugated, 
(b,c) goat anti-rabbit IgG alexa 488.  The cells were counterstained with DAPI and viewed via a confocal microscope.  Images are a representation 
of hCPEpiC cells at P4 (n=3). Scale bar represents 80 μm. 
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(b) TNF Receptor 1 (a) Control no primary Ab (c) IL6R 

Figure 3.19: Expression of TNF Receptor 1 and IL6R receptors on hCPEpiC as viewed by confocal microscope.  hCPEpiC cells were grown on poly-l-
lysine coated Ibidi chambers until confluent. The cells were fixed in 4% PFA and stained for (a) control (no primary Ab), (b) TNF receptor 1 rabbit 
polyclonal IgG, (c) IL6R rabbit polyclonal IgG primary antibodies. The secondary antibodies used included (a) polyclonal sheep anti-mouse IgG FITC 
conjugated, (b,c) goat anti-rabbit IgG alexa 488.  The cells were counterstained with DAPI and viewed via a confocal microscope.  Images are a 
representation of hCPEpiC cells at P4 (n=3). Scale bar represents 125 μm (control and IL-6R) and 80 μm (TNF receptor 1). 
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3.10 Expression of transporters/channels and cytokine receptors by 

hCPEpiC by flow cytometry 

The expression of hCPEpiC transporter/channels and cytokine receptors by 

immunocytochemistry was confirmed with flow cytometry analysis as shown in 

Figures 3.50-3.51.   

(a) Na+-K+-ATPase                                           (b) NKCC1 

 

 

 

 

 

 

 

 

(c) Aquaporin-1              (d) ENaC  

 

 

 

 

 

 

 

 

 

 

(

a

)

Figure 3.20: The expression of Na+-K+-ATPase, NKCC1, Aquaporin-1, and ENaC 
transporters on hCPEpiC by flow cytometry.  Fully confluent hCPEpiC (P3) were fixed 
in 2% PAF and stained with antibodies for (a) Na+-K+-ATPase rabbit polyclonal IgG, (b) 
NKCC1 rabbit polyclonal IgG, (c) Aquaporin-1 rabbit polyclonal IgG, or (d) ENaC rabbit 
polyclonal IgG (red) against the control (no primary Ab) (black) and analysed via flow 
cytometry. Data represents the mean ±SEM, n = 12-13 with duplicate samples. 
**P<0.01 using Paired t test. 
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 CCR2                              (b) IL-17Rα 

 

 

 

 

 

 

 

 

(c) TNFR1     (d) IL-6R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: The expression of TNF-R1, IL-6R, IL-17Rα and CCR2 receptors on 
hCPEpiC by flow cytometry.  Fully confluent hCPEpiC (P3) were fixed in 2% PAF 
and stained with antibodies for (a) TNF-R1 rabbit polyclonal IgG, (b) IL-6R rabbit 
polyclonal IgG, (c) IL-17Rα rabbit polyclonal IgG, or (d) CCR2 rabbit polyclonal IgG 
(red) against the control (no primary Ab) (black) and analysed via flow cytometry. 
Data represents the mean ±SEM, n = 12-13 with duplicate samples. **P<0.01 
using Paired t test. 
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3.11 Modulation of transporters/channels by cytokines in hCPEpiC 

Further FACS analysis on increases/decreases in transporter/channel expression 

following 24h incubation with either HC, TNF-α, IL-6 or IL-17 on hCPEpiC is shown 

in Fig. 3.52-3.55.  The results show evidence that the three main cytokines that 

were found to either modulate CSF secretion rates in both male and female rats 

in vivo (TNF-α, HC, IL-6, Fig. 3.2, 3.18, 3.20), as well as IL-17 which was initially 

found to increase the resistance to CSF drainage (Fig. 3.5, 3.29), have no effect in 

vitro on the expression of the transporters and channels, involved in the 

movement of ions into the CSF (Fig. 1.10 and 1.11 of Introduction Section 1.4).  

3.11.1   Na+-K+-ATPase 

(a) Na+-K+-ATPase with TNF-α     (b)  Na+-K+-ATPase with IL-17 

 

 

 

 

 

 

 

 

(c) Na+-K+-ATPase with IL-6     (d) Na+-K+-ATPase with HC 
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Figure 3.22: The expression of Na+-K+-ATPase with TNF-α, IL-17, IL-6 cytokines 
and glucocorticoid HC on hCPEpiC by flow cytometry.  Fully confluent hCPEpiC 
(P3) were treated with the (a) TNF-α (0.1 ng/ml), (b) IL-17 (0.1 ng/ml), (c) IL-6 
(0.1 ng/ml) and (d) HC (500 ng/ml) 24h prior to fixing in 2% PAF and stained with 
antibodies for Na+-K+-ATPase rabbit polyclonal IgG (red) (treated) against the 
control (no primary Ab) (black) and transporter control Na+-K+-ATPase rabbit 
polyclonal IgG alone (green) (untreated), including table of median fluorescence, 
before being analysed via flow cytometry. (e) Bar chart to show the median 
fluorescence intensity of the Na+-K+-ATPase transporter with the compound of 
interest (treated) against untreated control. Data represents the mean ±SEM, 
n=3 with duplicate samples. A two-way ANOVA was used to analyse the 
statistical significance.  No significant results were shown following Sidak’s 
multiple comparison test between treatments against their corresponding 
control. 

 

Compound % Difference Median Fluorescence 
against Transporter Control 

SEM Median Fluorescence 
of Treated cells 

TNF- α -5.7 3.70 

IL-17 -6.4 124.43 

IL-6 -2.1 43.56 
HC +5.1 50.52 
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3.11.2   NKCC1 

(a) NKCC1 with TNF-α      (b) NKCC1 with IL-17 

 

 

 

 

 

 

 

 

(c) NKCC1 with IL-6      (d) NKCC1 with HC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound % Difference Median Fluorescence 
against Transporter Control 

SEM Median Fluorescence 
of Treated cells 

TNF- α +9.0 109.51 

IL-17 -7.7 98.81 

IL-6 +12.7 68.44 

HC -13.5 38.30 
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Figure 3.23: The expression of NKCC1 with TNF-α, IL-17, IL-6 cytokines and 
glucocorticoid HC on hCPEpiC by flow cytometry.  Fully confluent hCPEpiC (P3-4) 
were treated with the (a) TNF-α (0.1 ng/ml), (b) IL-17 (0.1 ng/ml), (c) IL-6 (0.1 
ng/ml) and HC (500 ng/ml) 24h prior to fixing in 2% PAF and stained with 
antibodies for NKCC1 rabbit polyclonal IgG (red) (treated) against the control (no 
primary Ab) (black) and transporter control NKCC1 rabbit polyclonal IgG alone 
(green) (untreated), including table of median fluorescence, before being 
analysed via flow cytometry. (e) Bar chart to show the median fluorescence 
intensity of the NKCC1 transporter with the compound of interest (treated) 
against untreated control. Data represents the mean ±SEM, n=3 with duplicate 
samples. A two-way ANOVA was used to analyse the statistical significance.  No 
significant results were shown following Sidak’s multiple comparison test 
between treatments against their corresponding control. 
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3.11.3    Aquaporin-1 

(a) Aquaporin-1 with TNF-α   (b) Aquaporin-1 with IL-17 

 

 

 

 

 

 

 

 

(c) Aquaporin-1 with IL-6     (d) Aquaporin-1 with HC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound % Difference Median Fluorescence 
against Transporter Control 

SEM Median Fluorescence 
of Treated cells 

TNF- α +33.0 29.06 

IL-17 -29.0 38.60 

IL-6 +7.8 2.03 

HC -29.0 20.56 
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Figure 3.24: The expression of Aquaporin-1 with TNF-α, IL-17, IL-6 cytokines 
and glucocorticoid HC on hCPEpiC by flow cytometry.  Fully confluent hCPEpiC 
(P4) were treated with the (a) TNF-α (0.1 ng/ml), (b) IL-17 (0.1 ng/ml), (c) IL-6 
(0.1 ng/ml) and HC (500 ng/ml) 24h prior to fixing in 2% PAF and stained with 
antibodies for Aquaporin-1 rabbit polyclonal IgG (red) (treated) against the 
control (no primary Ab) (black) and transporter control Aquaporin-1 rabbit 
polyclonal IgG alone (green) (untreated), including table of median fluorescence, 
before being analysed via flow cytometry. (e) Bar chart to show the median 
fluorescence intensity of the aquaporin-1 water channel with the compound of 
interest (treated) against untreated control. Data represents the mean ±SEM, 
n=3-4 with duplicate samples. A two-way ANOVA was used to analyse the 
statistical significance.  No significant results were shown following Sidak’s 
multiple comparison test between treatments against their corresponding 
control. 
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3.11.4    ENaC 

(a) ENaC with TNF-α     (b) ENaC with IL-17 

 

 

 

  

 

 

 

 

(c) ENaC with IL-6       (d) ENaC with HC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound % Difference Median Fluorescence 
against Transporter Control 

SEM Median Fluorescence 
of Treated cells 

TNF- α -2.3 97.14 

IL-17 -0.2 111.26 

IL-6 -18.1 83.60 

HC -0.4 105.55 
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Figure 3.25: The expression of ENaC with TNF-α, IL-17, IL-6 cytokines and 
glucocorticoid HC on hCPEpiC by flow cytometry.  Fully confluent hCPEpiC (P3-5) 
were treated with the (a) TNF-α (0.1 ng/ml), (b) IL-17 (0.1 ng/ml), (c) IL-6 (0.1 
ng/ml) and HC (500 ng/ml) 24h prior to fixing in 2% PAF and stained with 
antibodies for ENaC rabbit polyclonal IgG (red) (treated) against the control (no 
primary Ab) (black) and transporter control Aquaporin-1 rabbit polyclonal IgG 
alone (green) (untreated), including table of median fluorescence, before being 
analysed via flow cytometry. (e) Bar chart to show the median fluorescence 
intensity of the aquaporin-1 water channel with the compound of interest 
(treated) against untreated control. Data represents the mean ±SEM, n=3-4 with 
duplicate samples. A two-way ANOVA was used to analyse the statistical 
significance.  No significant results were shown following Sidak’s multiple 
comparison test between treatments against their corresponding control. 

 

The lack of an effect in all transporter expression (Na+-K+-ATPase, NKCC1, 

Aquaporin-1, ENaC) may be a consequence of the in vitro time-frame of 24h for 

the treatment being too short for an effect to occur.  However, the time-frame 

may also have been too long as, in vivo, the rats were exposed to the cytokines 

for a 90 min period and an effect in both CSF secretion rates and resistance to 
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CSF drainage had occurred. Allowing for a 24h exposure, in vitro, may have been 

too long and resulted in the increased expression of transporters peaking at an 

earlier time-point.   

 

In addition, the pathways used by these cytokines in affecting the CSF 

secretion/drainage rates may not occur through increased transporter 

expression but through a different molecular pathway.  It is also important to 

note the species differences, between the in vitro human choroid plexus cells 

and the Wistar rats used in vivo, may have also caused the difference in the 

significance of the experimental results.  

 

3.12 Blood cerebrospinal fluid barrier (BCSFB) enriched transcripts 

in hCPEpiC 

It is important to identify barrier-specific gene expression within the BCSFB in 

order to understand the physiological properties that are involved in CSF 

secretion.  Recently, Marques and co-workers performed a transcriptome gene 

analysis of choroid plexus (CP) tissue from normal adult mice (Marques et al. 

2011).  They compared their CP (BCSFB-enriched) transcripts with the control 

group transcripts of CP expression (obtained from the GEO database) in B10.pl 

WT mice (GSE11443) and the gene expression profile of the mouse 4th ventricle 

CP (GSE3594) (Marques et al. 2011).   

 

In order to identify the genes expressed by the BCSFB in hCPEpiC, a human 

mRNA microarray analysis using HumanHT-12 v4 Expression BeadChip array 

which included 19,355 probe set sequences for 14,413 coding transcripts was 
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performed by Cambridge Genomic Services.  Under normal conditions, it was 

found that 32% (4,613) of genes analysed were expressed in hCPEpiC.  To 

confirm the BCSFB-gene transcripts expressed by hCPEpiC, I compared them with 

the mouse CP transcripts identified by Marques as BCSFB-enriched, and then 

identified their biological functions using bioinformatic analysis.  Of the positively 

associated hCPEpiC transcripts, 42% (1,982) were found to be in common with 

the mouse CP-enriched transcripts.  Of the 59 most expressed genes from the 

mouse CP, 54% (32) were found to be in common with the positively associated 

hCPEpiC transcripts and are listed in Table 6.4 in Appendix Section 6.10, page 

293.   

 

Statistical significance of biological pathways associated with the BCSFB-enriched 

transcripts expressed by hCPEpiC was confirmed using KEGG/GO for biological 

processes including: positive regulation of biological process (P≤0.01), transport 

(P≤0.01), response to organic substance (P≤0.05) (visualised using ClueGo 

software) (Fig. 3.56).  Other minor pathways shown include structure (protein 

localization, cellular component assembly) and signalling (cellular response to 

chemical stimulus, regulation of signal transduction, and response to nitrogen 

compound).  The structure of the BCSFB is important for CSF secretion in terms 

of the organisation and localisation of the tight junctions.  However, membrane 

organization was not found to be as significant as other pathways, consistent 

with the observations from immunocytochemistry that ZO-1 and Claudin-1 were 

detectable in the cytosol but not at the tight junctions between the hCPEpiC. 
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Figure 3.26: BCSFB-enriched transcripts expressed by hCPEpiC.  

Transcriptome analysis in hCPEpiC was performed and ClueGo, a cytoscape plug-

in was used to create a visualisation map using KEGG and GO molecular function 

terms (n=3). 

 

In addition, expression of the characterised proteins, transporters/channels and 

cytokine receptors that was observed by immunocytochemistry and flow 

cytometry was confirmed (with the exception of aquaporin-1) by transcriptome 

analysis in hCPEpiC as shown in Table 3.2. 

 Name Symbol Accession No. 

Proteins 

Prealbumin (TTR) RBP1 NM_002899.2 

ZO-1 TJP1 NM_003257.3 

Claudin-1 CLDN1 NM_021101.3 

Transporters 
and Channels 

Na+K+ATPase ATP1A1 NM_000701.6 

NKCC1 SLC12A2 NM_001046.2 

ENaC SCNN1A NM_001038.4 

Cytokine 
Receptors 

TNF-R1 TNFRSF1A NM_001065.2 

IL6R IL6R NM_000565.2 

IL-17Rα IL17RA NM_014339.4 

CCR2 CCR2 NM_000647.4 

Table 3.1: Choroid plexus epithelial proteins, transporters/channels and 
cytokine receptor genes expressed in hCPEpiC.  
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Identifying BCSFB-enriched genes expressed by hCPEpiC following mRNA 

regulation by cytokines in cultured hCPEpiC was also performed. Table 6.5 and 

6.6 in the Appendix (page 298, 299) list the genes with, respectively, the greatest 

increase and greatest decrease in modulation following 24h hCPEpiC treatment 

with HC. Tables 6.7 and 6.8 (page 300, 301) show the same for TNF-α modulation 

and Tables 6.9 and 6.10 (page 305) for IL-6 modulation.  Fifteen genes transcripts 

with the greatest modulated expression (although not statistically significant) 

between all three treatment groups are shown in Tables 3.3 and 3.4 and 

depicted by a Venn diagram in Fig. 3.57. 

 

 

 

 

 

Table 3.2: Genes with the greatest increase in expression between HC, TNF-α 
and IL-6 following transcriptome analysis on hCPEpiC. 

 

 

 

 

 

 

 

 

 

Table 3.3: Genes with the greatest decrease in expression between HC, TNF-α 
and IL-6 following transcriptome analysis on hCPEpiC. 

 

 

Greatest increase in expression between HC, TNF-α and IL-6 

Symbol Accession no. LogFC adj.P.Val 

TROVE2 NM_001042369.1 1.739270885 0.940691294 

LOC650132 XM_939218.1 1.253837704 0.940691294 

NCDN NM_014284.2 1.22796179 0.940691294 

UPLP NM_001114403.1 1.145920732 0.940691294 

Greatest decrease in expression between HC, TNF-α and IL-6 

Symbol Accession no. LogFC adj.P.Val 

LOC201229 XM_942296.1 -1.618517107 0.940691294 

ZNF146 NM_001099639.1 -1.406134901 0.940691294 

THRA NM_003250.4 -1.31102174 0.940691294 

TEAD4 NM_201443.1 -1.278201128 0.940691294 

VPS37C NM_017966.4 -1.277421609 0.940691294 

ZC3H5 XM_940903.2 -1.260756522 0.940691294 

INF2 NM_001031714.3 -1.249494292 0.940691294 

FLAD1 NM_025207.3 -1.151772743 0.940691294 

SPAG16 NM_001025436.1 -1.11450463 0.940691294 

ALDH1B1 NM_000692.3 -1.078883914 0.940691294 

CCM2 NM_001029835.1 -1.050637438 0.940691294 
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3.13  Validation of mRNA transcripts by RT-qPCR  

The effect of 24h treatment incubation on the expression of genes on hCPEpiC; 

initially found to be up-regulated or down-regulated following transcriptome 

analysis, were not confirmed with real-time quantitative PCR (RT-qPCR) as shown 

in Fig. 3.58.  

 

Four genes were selected for RT-qPCR analysis based on their 

upregulation/downregulation following transcriptome analysis, and further 

effects in possible cilia function, associated with increased CSF secretion.  These 

included TROVE2 (a TROVE module found in telomerase and Ro and Vault 

proteins) and neurochondrin (NCDN), a negative regulator of Ca/calmodulin-

26 

75 205 
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IL-6 

TNF-α 

13 24 

30 

15 

Figure 3.27: Venn diagram showing the numbers of genes up-regulated and 
down-regulated between each treatment group of HC, TNF-α and IL-6 following 
transcriptome analysis of hCPEpiC. 
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dependent protein kinase II phosphorylation, which showed an up-regulation; 

and SPAG16 (a sperm associated antigen) and cerebral cavernous malformation 

2 (CCM2) a scaffold protein that functions in the stress-activated p38 Mitogen-

activated protein kinase (MAPK) signalling cascade, which displayed a down-

regulation in gene expression on hCPEpiC, respectively (Tables 3.3 and 3.4).   
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Figure 3.28: The effects of HC, TNF-α, and IL-6 on the mRNA levels of TROVE2, 
SPAG16, NCDN, and CCM2 following 24h incubation in hCPEpiC.   
Fully confluent hCPEpiC were incubated with HC (500 ng/ml), TNF-α (0.1 ng/ml) 
and IL-6 (0.1 ng/ml) for 24h and the mRNA levels of (a) TROVE2, (b) SPAG16, (c) 
NCDN, and (d) CCM2 were calculated using RT-qPCR. Data represents mean ± 
SEM. n=3 experiments with duplicate samples. A one-way ANOVA was used to 
analyse the statistical significance.  The significant results are shown following an 
unpaired t test with Welch-correction comparing comparative expression levels 
(2-ΔΔCT) values. *P=<0.05. 
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The increase in TROVE2 expression following 24h incubation with HC and TNF-α 

may possibly highlight a role of the TROVE2 gene in increasing the number of 

cilia in choroid plexus cells.  Studies have shown TROVE2 may play a role in cilia 

formation and/or maintenance following TROVE2 knockdown in both murine 3T3 

fibroblast cell line and intermedullary collecting duct (IMCD3) cells (Lai et al. 

2011).  Increasing cilia numbers may be a potential mechanism by which CSF 

secretion might be increased in patients with IIH. 

 

However, the RT-qPCR results indicated no significant changes of gene 

expression with most treatments. Nevertheless, there was a downregulation of 

SPAG16 following IL-6 treatment (0.58 ±0.10 relative cDNA expression) over 

controls (1.00 ±0.04 relative cDNA expression), which did also match the results 

found in the transcriptome data.  
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4 Discussion 

Idiopathic intracranial hypertension (IIH) is a neurological disorder characterized 

by raised cerebrospinal fluid (CSF) and intracranial pressure (ICP) with the greatest 

rate of incidence affecting obese women between the ages of 15 and 45.  During 

this study, female Wistar rats on a HF diet were shown to have the highest CSF 

secretion and lowest CSF drainage levels under control conditions.  In addition, 

cytokines whose expression has been found to be elevated in the CSF of IIH 

patients have also been found to modulate both CSF secretion and CSF drainage, 

which therefore may also contribute to the raised ICP observed in IIH patients, as 

summarised in Table 4.1, 4.2. 

 

CSF Secretion Rates 

 
Male Female 

ND HF ND HF 

HC     

TNF-α     

IL-6  n/s n/s n/s 

CCL2 n/s n/s n/s n/s 

IL-17 n/s n/s n/s n/s 

Table 4.1: A summary of the differences observed in CSF secretion rates between male 
and female rats on either a normal (ND) or high-fat (HF) diet following treatment with 
either HC, TNF-α, IL-6, CCL2 or IL-17 against their corresponding untreated control 
animals of the same sex and diet. 
Increase in CSF secretion rate (red arrow); decrease in CSF secretion rate (blue arrow); not 

significant (n/s). Significant increase in CSF secretion rate indicated by a single red arrow 

(P≤0.05); double red arrow (P≤0.01); decrease indicated by single blue arrow (P≤0.05), over 

corresponding controls.  
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Resistance to CSF Drainage 

 
Male Female 

ND HF ND HF 

HC 
n/s 

n/s 
 

n/s 

TNF-α  
n/s 

 
n/s 

IL-6 n/s  n/s n/s 

CCL2 n/s 
 

  

IL-17 n/s n/s n/s  

Table 4.2: A summary of the differences observed in resistance to CSF drainage between 
male and female rats on either a normal (ND) or high-fat (HF) diet following treatment 
with either HC, TNF-α, IL-6, CCL2 or IL-17. 
Increase in resistance CSF drainage (red arrow); decrease in resistance CSF drainage (blue 

arrow); not significant (n/s).  Significant increase in resistance to CSF drainage  indicated 

by single red arrow (P≤0.05); double red arrow (P≤0.01); triple red arrow (P≤0.001); 

decrease indicated by double blue arrow (P≤0.01); triple blue arrow (P≤0.001) over 

corresponding controls. 
 

 

Increased CSF secretion was observed in rats of both sexes and diets following 

TNF-α or glucocorticoid hydrocortisone (HC) treatment, however the greatest 

increase was seen with female rats raised on a HF diet (Table 4.1).  In addition, 

female rats on a HF diet, treated with CCL2 or IL-17, displayed an increase in 

resistance to CSF drainage when compared to untreated controls (indicating lower 

levels of CSF drainage) (Table 4.2).  Both CSF secretion and resistance to CSF 

drainage pathways, whether separately or in combination, may contribute to the 

raised ICP observed in IIH patients as described in Figure 4.1.  
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CSF Secretion 

CSF Compartment 

CSF Drainage 

Normal ICP 

CSF Secretion 

CSF Compartment 

CSF Drainage 

Raised ICP 

   Cortisol,      TNF-α,  
HF Diet in Females 

CCL2,       IL-17, 
HF Diet in Females 

Figure 4.1: Possible mechanisms contributing to increased intracranial pressure in IIH.  
(a) (a) In healthy individuals a balance between CSF secretion and drainage results in normal 

intracranial pressure. (b) In IIH, factors that increase CSF secretion and/or decrease CSF 

drainage may lead to increased intracranial pressure.  Factors identified in this study are 

shown in (b). ICP, intracranial pressure. 

(a) 

(b) 
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4.1 Role of cytokines in CSF secretion 

IIH is a result of raised ICP, possibly due to increased CSF secretion, decreased 

drainage, or a combination of both.  During an initial investigation, TNF-α, a 

cytokine found to be elevated in the CSF of IIH patients, as well as HC were found 

to stimulate CSF secretion rates in vivo.  In contrast, IL-6, which was also elevated 

in the CSF of IIH patients, caused a decrease in CSF secretion rates.  There was no 

modulation of CSF secretion seen with leptin, IL-1β, CCL2 or IL-17 (cytokines also 

found to be elevated in the CSF of IIH patients) (see Introduction Section 1.10, 

Table 1.2).  However, CCL2 and IL-17, cytokines which did not cause an increase in 

CSF secretion rates, were the only cytokines found to increase initial CSF volumes 

in vivo as discussed further in Section 4.2.  Figure 4.2 shows a summary of the 

putative pathways induced by these cytokines mediating CSF secretion rates.  
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Figure 4.2:  Putative CSF secretion pathways underlying IIH factors to be tested within this project.   
IL-17 triggers the release TNF-α and IL-1β from macrophages and produces 11β-HSD1 enzyme, which activates the intracellular conversion of cortisone into cortisol.  
Cortisol binds to glucocorticoid receptors which activates serum glucocorticoid kinase (sgk-1) pathways, increasing Na+ movement across the choroid plexus (CP) 
epithelium.  Leptin activates the hypothalmo-pituitary-adrenal (HPA) axis. The adrenal cortex of the axis produces cortisone through stimulation of 

adrenocorticotropic hormone (ACTH).  TNF-α and IL-1β activate protein kinase A (PKA) pathways and increase intracellular cAMP, which causes a conformational 
change in the NKCC1 transporter driving the movement of ions into the CSF.  Nitric oxide (NO) stimulates an increase in IL-6 in peripheral blood mononuclear cells 
(PBMCs) which increases intracellular cGMP.  cGMP reverses the movement of ions across epithelia which is the opposite to cAMP.  This would indicate that IL-6 

could decrease CSF secretion.  TNF-α and IL-1β increase the expression of CCL2 which could also play a role in increasing CSF secretion. Dashed red arrows indicate 

opposite action of cAMP and cGMP on ion movement across the CP cells. Based on references cited in the Introduction. 
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For the in vivo ventriculo-cisternal perfusion experiments, it was important to 

determine that CSF secretion reached a steady-state before any CSF secretion rate 

readings were taken.  Male rats that had been administered HC and TNF-α showed 

a lower Cout vs. Cin ratio than controls, indicating an increased CSF secretion rate, 

whereas rats administered IL-6 showed a greater Cout vs. Cin ratio and therefore a 

decrease in CSF secretion rates compared to controls.  By contrast, leptin, CCL2 

and IL-17 did not induce changes in Cout vs. Cin ratio compared to controls 

indicating no change in CSF secretion rates.  

 

The increased CSF secretion rates associated with HC are consistent with the 

hypothesis that an increased activity of the 11β-HSD1 enzyme in choroid plexus 

epithelial cells leads to increased Na+ transport through the ENaC channel (Sinclair 

et al. 2010).  Indeed, HC increases the activity of the ENaC channel in retinal 

pigmented epithelium of New Zealand White Albino rabbits (Sinclair et al. 2010) 

and it is possible that a similar mechanism operates in choroid plexus epithelium.  

In this putative pathway, corticosterone would be converted to cortisol through 

NADP(H) activation of the 11β-HSD1 enzyme in choroid plexus epithelial cells.  

Cortisol would then bind to intracellular glucocorticoid receptors thereby 

activating serum glucocorticoid kinase 1 (SGK1) pathways to increase the 

movement of Na+ across the cells via ENaC route, creating an osmotic gradient in 

order to drive water into the CSF.  

  

The increased CSF secretion rate observed with HC is also supported by studies 

performed by Rauz and colleagues, who demonstrated 11β-HSD1-mediated 

synthesis of cortisol in the ocular ciliary epithelium in humans, the site of aqueous 
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humour drainage (Rauz et al. 2003) (Rauz et al. 2001).  Immunohistochemical and 

RT-PCR studies showed the presence of 11β-HSD1 in human ocular tissues and a 

ciliary non-pigmented epithelial (NPE) cell-line.  Intraocular pressure was 

measured in eight male volunteers before and after oral ingestion of 

carbenoxolone (CBX), a known inhibitor of 11β-HSD1. CBX-treated patients 

displayed the greatest decrease in intraocular pressure.  The results by Rauz and 

colleagues suggest that the 11β-HSD1 isozyme may modulate steroid-regulated 

sodium transport across the NPE, thereby influencing intraocular pressure.  It is 

thus possible that these are common mechanisms regulating fluid secretion by 

epithelia and this system may play a similar role in increasing ICP as regulated by 

CSF secretion by the choroid plexus.  

 

In order to confirm the role of 11β-HSD1 on CSF secretion, studies should be 

performed in vivo to further establish the effects of the 11β-HSD1 enzyme on Na+ 

movement.  First, expression of 11β-HSD1 by choroid plexus epithelial cells could 

be investigated by immunohistochemistry and, second, in vivo knock-out of 11β-

HSD1, whether general or tissue- and time-specific, could demonstrate a link 

between cortisol and CSF secretion rate.  These experiments would allow 

comparison of the effects seen with HC during ventriculo-cisternal perfusion when 

the 11β-HSD1 enzyme is present or inhibited. 

 

The 11β-HSD1 pathway, which may modulate CSF secretion rate, may also be 

induced by TNF-α. TNF-α up-regulates 11β-HSD1 enzyme through the secretion of 

phospholipase A2 (PLA2) in rat glomerular mesangial cells (Tomlinson et al. 2004). 

The joint perfusion of TNF-α and HC in the aCSF for example could be useful to 
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investigate whether an additive effect of these treatments could be seen on CSF 

secretion rates.  

 

In addition, TNF-α may induce additional pathways to modulate CSF secretion 

rate, different to those induced by HC, by affecting different 

transporters/channels.  Indeed, it has been shown that TNF-α increases swine 

airway submucosal gland secretion, through cyclic adenosine monophosphate 

(cAMP) and protein kinase A (PKA) elevation causing a conformational change on 

the NKCC1 transporter (Baniak et al. 2012) and increased activity of aquaporin 1 

(AQP1) water channel.  This could explain the increased CSF secretion effects seen 

with TNF-α in lean male rats.  

 

The only other cytokine to cause a significant change in in vivo CSF secretion rates 

within our study was IL-6.  The decreased CSF secretion rate observed with IL-6 

treatment is consistent with reports by Siednienko and co-workers, of nitric oxide 

(NO) and cyclic guanosine monophosphate (cGMP) activation causing an increase 

in IL-6 expression, which reverses the movement of ions in the choroidal 

epithelium in human peripheral blood mononuclear cells (PBMCs), leading to a 

reduction in CSF secretion.  The cGMP-dependent pathway is initiated when NO 

binds to the heme moiety of cytosolic guanylyl cyclase (GC) and stimulates its 

enzymatic activity (Siednienko et al. 2011).  cGMP’s role in increasing IL-6 

expression in human PBMCs involving the GC/cGMP/protein kinase G (PKG) 

pathway (see Introduction Section 1.10.3) (Siednienko et al. 2011), highlights the 

possibility of a similar pathway of decreased CSF secretion across choroidal 

epithelium through protein kinase inhibition of Na+-K+-ATPase (Kolb et al. 1994).  
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As mentioned above, sodium transport across the choroid plexus epithelium, 

through the ENaC pathway, is essential for CSF secretion.  However, IL-1β has been 

shown to significantly reduce sodium transport across rat alveolar epithelial type 

II (ATII) cell monolayers, by decreasing ENaC α-subunit mRNA levels (Roux et al. 

2005).  This may explain the absence of increased CSF secretion rates in our study 

following IL-1β treatment, which may be due to a similar mechanism as seen in 

the ATII cells.  The reduced sodium transport and decreased α-ENaC expression is 

thought to be through p38 MAPK-dependent inhibition of α-ENaC promoter 

activity and an alteration in ENaC trafficking to the apical membrane of ATII cells 

(Roux et al. 2005).  In addition, IL-1β was also found to reduce ENaC function in a 

dose- and time-dependent manner after 72h in human bronchial epithelial cells 

without reducing ENaC expression (Gray et al. 2004).   

 

IL-1β has also been shown to antagonise the production of prostaglandin E2 

(PGE2) which stimulates chloride transport in canine tracheal epithelium and in 

Calu-3 human bronchial epithelial cells (Clayton et al. 2005). The decrease in PGE2 

production leads to a down regulation of EP4 prostanoid receptors and 

subsequently to a reduction of PGE2 induced cAMP production (Clayton et al. 

2005).  As mentioned previously, cAMP elevation has been shown to increase 

AQP1 activity, leading to an increased movement of water across swine airway 

submucosal epithelium (Baniak et al. 2012).  Therefore, the decreased cAMP 

activity by IL-1β in Calu-3 human bronchial epithelial cells may explain the reason 

for the lack of CSF secretion effect associated with this cytokine in our study. 
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Nevertheless further studies by Eisenhut and colleagues found IL-1β incubation 

caused an increase in airway surface liquid volume which altered ion transport, 

including an upregulation of Cl- secretory currents, but did inhibit ENaC-mediated 

absorptive Na+ currents (Eisenhut et al. 2006).  Even though the results in the 

present study showed an absence of effect on CSF secretion by acute IL-1β 

administration to the CSF, whether possible effects of increased CSF secretion 

rates following IL-1β treatment under other conditions are observed through 

increased expression of NKCC1 transporters, leading to increased Cl- movement 

across CP epithelia, as opposed to AQP1 and ENaC transporter expression, remain 

to be determined.  Yet, all these studies and our results highlight the possibility 

that IL-1β may elicit responses on epithelial ion transport that are specific to the 

tissue under investigation.  

 

As with all of the cytokines tested within this study, high levels of leptin have also 

been reported in the CSF of IIH patients (Ball et al. 2009).  High leptin levels in the 

CSF would reduce satiety and consequently weight in IIH; yet, these patients 

remain obese, therefore a central leptin resistance in IIH has been suggested.  It is 

not clear how dysregulation of leptin in IIH influences ICP balance (Markey et al. 

2016).  Studies have found acute dosing of leptin in animal models led to 

decreased Na+-K+-ATPase transporter activity in the kidney (Beltowski 2010).   

However, long-term administration of leptin within this same study by Beltowski, 

led to increased Na+-K+-ATPase activity in proximal tubule cells within the renal 

system.  As the choroid plexus is very similar to the renal proximal tubules in terms 

of function and epithelial ultrastructure (Damkier et al. 2013), an increase in leptin 

could possibly increase Na+-K+-ATPase activity in epithelial choroid plexus cells 
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resulting in increased CSF secretion and hence raised ICP.  However, these results 

were not seen following in vivo CSF secretion experiments within our study further 

supporting the notion of tissue-specific modulation of epithelial ion transport by 

inflammatory mediators and hormones.   

 

Indeed, previous studies (van Dijk et al. 1997) (Zúñiga et al. 2010) may provide a 

rationale for the observed absence of effect in CSF secretion rates following leptin 

treatment in our study.  Leptin could potentially affect CSF secretion rate via an 

indirect route through the release of corticosteroid hormones through 

hypothalamic-pituitary-adrenal (HPA) axis activation (van Dijk et al. 1997).  In van 

Dijk’s study, 3.5 μg of human leptin was infused directly into the third cerebral 

ventricle of lean male Long-Evans rats, 90 min prior to blood analysis, where leptin 

caused an increase in plasma corticosterone.  However, the locations of leptin 

perfusion differ between van Dijk’s and our study.  In van Dijk’s study, leptin was 

infused into the third ventricle of the rat brain, as opposed to the lateral ventricles 

in our study.  This may mean that in our system leptin may not enter the systemic 

circulation in sufficient amounts to activate the HPA axis.  Therefore, the lack of 

increased CSF secretion rates following leptin treatment in our study may be due 

to corticosterone not being converted into cortisol intracellularly, which would be 

needed to increase the movement of Na+ across the cells via apical Na+ channels, 

increasing this osmotic gradient and driving water into the CSF (Sinclair et al., 

2010).  

 

Leptin has also been shown to increase Na+ efflux through Janus kinase (JAK) 

phosphorylation of signal transducers and activators of transcription STATS (see 
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Introduction Section 1.10.2), as seen in the glomerular epithelium of kidneys in 

anaesthetised rats (Jackson & Li 1997).  The onset of adipogenesis is essential for 

the secretion of leptin (Ball et al. 2009).  IL-17 is a known negative regulator of 

adipogenesis and glucose metabolism in mice, and results show that it delays the 

development of obesity (Zúñiga et al. 2010).  This raises the possibility of reduced 

CSF secretion in IIH, caused by an IL-17-induced reduction in CSF leptin levels.  

However, even though the lack of effect in CSF secretion rates associated with 

leptin could be due to the increased levels of endogenous IL-17 following 

exogenous leptin administration in vivo, our results would not support this 

hypothesis as IL-17 did not modulate CSF secretion rate either.  

 

There is no sufficient evidence to provide a rationale for the absence of effect of 

CCL2 on CSF secretion rates. It is however known that IL-1β, which also caused no 

change in CSF secretion rates in our study, increases the expression of CCL2 in rat 

choroid plexus monolayers, following IL-1β incubation (Paine et al. 1993) 

(Prodjosudjadi et al. 1995).  As already mentioned, IL-1β also causes a decrease in 

expression of ENaC mRNA levels in rat ATII cells through p38 MAPK-dependent 

inhibition of α-ENaC promoter activity; however CCL2 also inhibits p38 MAPK 

phosphorylation in human breast cancer cells through the activation of its 

receptor, CCR2.   Inhibition of p38 is also known to decrease AQP1 expression in 

mouse pulmonary microvascular endothelial cells (PMVECs) (Zhang et al. 2016).  

Therefore, a possible link may exist between IL-1β and CCL2 in decreasing ENaC 

expression, reducing sodium transport, decreasing AQP1 expression and hence 

decreasing water movement which would indicate that these two cytokines would 

cause a decrease in CSF secretion rates.  This decrease was not seen within our 
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study as CCL2 and IL1β caused no change upon CSF secretion rates in vivo.  

Therefore, it may be possible that factors such as the upregulation of Cl- secretory 

currents (Eisenhut et al. 2006), that may lead to an increase in CSF secretion rates, 

following IL-1β and therefore associated CCL2 treatment, may have acted as a 

compensatory mechanism to the initial decreases in sodium transport associated 

with IL-1β and CCL2 in previous studies.   

 

Within this study, there are promising initial results associated with HC and TNF-α 

in increasing CSF secretion rates and IL-6 in decreasing CSF secretion rates in adult 

male Wistar rats.  Further validation of these results could be carried out using 

specific neutralising antibodies against TNF-α and IL-6 stimulation in an animal 

model to test whether a reduction/increase, respectively, in CSF secretion is 

shown following cytokine/glucocorticoid inhibition. 

 

4.1.1 Intraperitoneal administration of each treatment did not alter CSF 

secretion rates  

There were no effects seen in CSF secretion rates following an intraperitoneal (i.p) 

injection of each treatment 90 minutes prior to perfusion with the same treatment 

within the aCSF.  These results did not confirm our previous results with HC, TNF-

α, and IL-6 when directly administered in aCSF.  The lack of effect on CSF secretion 

was possibly due to the time frame of 90 minutes being too short for an effect to 

be seen, however this does not explain the lack of effect following perfusion of 

each treatment within the aCSF during this same experiment.  A possible 

explanation could be the overload of treatment concentration causing a 

compensatory mechanism to take effect and reducing the amount of CSF secretion 
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that was established following the initial 90 minute pre-injection administration.  

In addition, the initial i.p. dose of each treatment may have been sufficient for the 

effect to take place and pass within the 90 minute window, so when further doses 

through direct aCSF administration occurred, they may have had a less profound 

effect on CSF secretion within the following 90 minutes.  

 

The in vivo CSF secretion results following CCL2 and IL-17 treatment were 

interesting as they showed no effect upon CSF secretion, for both in vivo perfused 

aCSF and i.p injection in conjunction with perfused aCSF; but were the only two 

treatments to show a statistically significant increase in initial CSF volume within 

the rat brain.  There is little evidence of as to the reasons of increased CSF volume 

or poor CSF clearance associated with IL-17 and CCL2.  However, various studies 

have found that increased expression of CCL2 (Wang et al. 2016) and IL-17 (Hot et 

al. 2013) induce pro-thrombotic genes such as Tissue factor (TF), which encodes 

coagulation factor III, in mouse brains, which plays an essential role in impairing 

CSF drainage with microthrombi in the arachnoid villi in patients suffering from IIH 

(Kesler et al. 2006) (Glueck et al. 2005) (highlighted further in Section 4.1.2).  

Therefore, this may indicate a link between increased levels of CCL2 and IL-17 and 

increased resistance to CSF drainage creating a rise in ICP associated with IIH 

patients.   

 

4.2 Model of obesity 

Following on from the initial cytokine/mediator studies on lean male rats, it was 

important to test both mediator and diet effects on CSF secretion rates in rats fed 
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either normal or high-fat (HF) diet.  This was essential due to the increasing 

incidence of IIH in obese individuals and several studies reporting weight gain in 

newly diagnosed IIH patients (Rowe & Sarkies 1999) (Radhakrishnan et al. 1993).   

Our model for obesity, as described further in this section, allowed us to compare 

the effects of diet intake on CSF secretion rates (Section 4.3) and resistance to CSF 

drainage (Section 4.6).   

 

Following the completion of each diet over a 7 week period, average percentage 

weight gain, total cholesterol, and LDL/VLDL cholesterol levels over time were 

increased in the male and female HF diet groups compared to animals fed a 

standard diet, as expected.  Percentage weight gain observed in HF diet groups in 

our study was comparable to the HF diet induced effects reported previously 

(Naderali et al. 2001) (Guerra et al. 2007).  Guerra studied differences in weight 

gain between adult male rats fed a normal cholesterol chow diet or cholesterol-

rich diet.  The study found food intake to be 25% higher within the cholesterol-

rich diet group (25.0g/day) compared to the normal cholesterol chow diet 

(19.8g/day) (Guerra et al. 2007).  Within our study, however, a normal diet 

(20.5g/day) was consumed more than the HF diet (18.0g/day) by the male rats.  In 

studies by Naderali, adult male and female rats fed either a standard pelleted 

laboratory chow or a highly palatable/high-energy diet, were studied for 16 and 

12 weeks, respectively, compared to the 7 weeks within our study.  Rats of either 

sex given the highly palatable diet gained progressively more weight than chow-

fed controls, being significantly heavier after 4 weeks, and diet-induced weight 

gain was significantly greater in males than in females, differences also noticeable 

in our results.  The final body weights of high-energy diet-fed rats were 32% 
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(males) and 9% (females) greater than those of their respective chowfed controls 

(Naderali et al. 2001).  By contrast, in our study, final body weights did not differ 

between groups whereas percentage weight gain difference after 11 weeks in 

Naderali and colleagues’ study was a more reliable parameter (161% males, 130% 

females) to differentiate between rats on a HF diet and those on a normal diet.  

Naderali and colleagues showed plasma cholesterol level increases on high-energy 

diet rats were comparable to those in the HF-diet rats within our study.  However, 

this study reported an almost 100% greater total cholesterol plasma concentration 

in male rats in both controls and high-cholesterol fed diets compared to male rats 

in our study (Naderali et al. 2001).  Nevertheless, LDL cholesterol plasma 

concentration in our model was similar to that reported in previous studies 

(Naderali et al. 2001) (Guerra et al. 2007), suggesting that LDL plasma levels may 

be a more reliable indicator of obesity induced physiological changes.  The results 

from previous studies show that our model of obesity was comparable and 

allowed for appropriate comparisons to be made between the two diet groups. 

 

4.3 Effects of diet on CSF secretion 

A HF diet affected CSF secretion rates regardless of treatments and sex.  When 

comparing controls it was evident that rats raised on a HF diet had significantly 

increased CSF secretion rates over rats fed a normal diet.  This increase in CSF 

secretion rates was especially evident with the control groups of female rats on a 

HF diet having a greater CSF secretion rate over all other variables.  The association 

between total cholesterol and LDL/VLDL cholesterol levels (but not HDL 

cholesterol levels) and increased CSF secretion rates was also observed.  However, 

in terms of IIH, there are no studies in which the incidence of the condition has 
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been considered in relation to the variation in cholesterol levels, and this 

association may indeed just reflect the previous association between obesity and 

cholesterol levels (Naderali et al. 2001) (Guerra et al. 2007).  In addition, there 

have been no studies that measured the effects of obesity or a HF diet on CSF 

secretion rates.  

 

Increased cortisol levels resulting from HC administration were found to increase 

CSF secretion rates in animals on both diets.  Cortisol plasma levels are found to 

be increased in humans on a HF diet (Venkatraman et al. 2001).  In addition, high 

protein diets have been associated with elevated plasma cortisol levels in humans 

(Anderson et al. 1987).  It is possible that, in our model, the HF diet led to elevated 

cortisol levels thereby contributing to higher CSF secretion rates. 

 

Another factor contributing to increased CSF secretion rates in our model was TNF-

α. Reports on the effect of HF diets on circulating TNF-α levels have been 

inconsistent.  Bedoui et al. (2005), did not find a significant increase in circulating 

TNF-α plasma concentrations in obese rats. However, Cano et al. (2009) did 

observe increased TNF-a plasma levels in rats raised on a HF diet.  In addition, 

Sharman & Volek (2004), found that switching to a low-fat diet decreases the 

plasma levels of TNF-α in overweight men. In spite of these apparently 

contradictory studies, there is growing evidence that TNF-α constitutes an 

adipokine secreted by adipose tissue.  Obesity and HF diets have been shown to 

elevate the release of TNF-α by human adipose tissue (Fain 2006) and various 

studies have found TNF-α to be overexpressed in adipose tissue of rodents 

(Hotamisligil et al. 1995) (Hotamisligil et al. 1993) (Hamann et al. 1995) and 
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humans (Hotamisligil et al. 1995) (Kern et al. 1995) (Saghizadeh et al. 1996) 

(Hotamisligil et al. 1997) compared to other tissues.    

 

In other studies, a HF diet in male Wistar rats caused increased cholesterol in the 

blood and elevated TNF-α levels in bone marrow mesenchymal stem cells (Cortez 

et al. 2013), as well as up-regulation in mouse liver (Mikula et al. 2014).   

 

In addition, the soluble form TNF-α receptor, TNFR1, has also been found to be 

elevated in the serum of obese individuals. Studies by Ronnemaa and colleagues 

found serum TNFR1 levels were significantly greater in human obese individuals 

when compared to lean controls. The levels of the TNF-α receptor correlated 

positively with body mass index, percent body fat, and abdominal fat (Rönnemaa 

et al. 2000).  Further studies demonstrated, under a HF diet, TNFR1 KO mice gain 

significantly less body mass in spite of increased caloric intake (Romanatto et al. 

2009).  Liang and colleagues fed Wistar rats a high-fat/high-sucrose diet for 16 

weeks until obesity developed. In comparison with increased body weight and fat 

weight, enlarged adipocytes, and hypertriglyceridemia in the obese state, their 

subsequent 4 week treatment with TNFR1 blocking peptide-Fc fusion protein 

(TNFR1BP-Fc) resulted in significant weight loss characterised by decreased weight 

and adipocyte size and reduced plasma triglycerides (Liang et al. 2008).  However, 

although TNFR1 has been shown to be expressed by choroid plexus epithelium 

within this study (see Section 4.7), no studies on the effect of a HF diet on TNFR1 

have been published.  Nevertheless, the results of these studies suggest a pivotal 

role for TNFR1-mediated TNF-α signalling in the pathogenesis of obesity, all of 
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which may contribute to the increased ICP pressure associated with obese IIH 

patients.   

 

The markedly increased levels of cortisol and TNF-α in the HF diet groups of other 

studies (Venkatraman et al. 2001) (Cano et al. 2009) (Sharman & Volek 2004) may 

provide an explanation, at least partly, for the increase in CSF secretion rates in 

rats fed a HF diet within our study over rats raised on normal diets.  Studies by 

Park have shown TNF-α to be associated with obesity, when comparing the levels 

in obese and non-obese adults free from inflammatory disease, and also to 

regulate 11β-HSD1 activity (Park et al. 2005), aspects which have already been 

highlighted in Section 4.2.2.  Obesity-induced TNF-α may thus have a direct effect 

on CSF secretion rates, through increased activity of the 11β-HSD1 enzyme, much 

in the same way as HC, which is further supported by the observed increased CSF 

secretion rates, in rats on both diets, seen mainly with these two treatments.  As 

11B-HSD1 activity is up-regulated in obese human adipose tissue (Engeli et al. 

2004), choroid plexus and arachnoid granulations (Sinclair, Walker, et al. 2010), 

specific inhibitors to reduce 11B-HSD1 activity could be developed as novel 

therapies for IIH.  Inhibitors including curcumin have been shown to be a 

competitive inhibitor of human and rat 11β-HSD1 enzyme (Hu et al. 2013).  This 

same study by Hu and co-workers found curcumin to reduce serum glucose, total 

cholesterol, triglyceride, and LDL cholesterol levels in HF diet induced obese rats.  

By contrast with HC and TNF-α, there was a decrease in CSF secretion rates 

following IL-6 treatment in male rats on a normal diet which was not observed in 

the HF diet rats.  A HF diet may inhibit cGMP activation and IL-6 expression leading 

to a reduction in CSF secretion by reversing the movement of ions in the choroid 
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plexus epithelium (Siednienko et al. 2011), as initially shown in the initial study on 

male rats fed a normal diet.  However, higher circulating concentrations of IL-6 

have also been associated with obesity in humans (Vozarova et al. 2001) (Shoelson 

et al. 2007) (Rexrode et al. 2003), mice (Cortez et al. 2013) and rats (Cano et al. 

2009).  Studies by Stemmer et al. (2012) found a HF diet-induced obesity caused 

an increase in renal IL-6 expression in the rat kidney.  IL-6 mRNA levels were also 

significantly higher in human peripheral fat tissue compared to that in leukocytes, 

vein and muscle tissues (Sonnenberg et al. 2008).  Studies by Sindhu and 

colleagues showed higher IL-6, IL-6R and IL-6 mRNA expression in the adipose 

tissue of obese human subjects when compared with lean controls (Sindhu et al. 

2015).  The elevated IL-6 and IL-6R expression correlated positively with BMI and 

percentage body fat, results of which were confirmed in further studies by 

Wolford and colleagues.  Results from these studies suggest that IL-6 may form 

part of the link between obesity and increasing CSF secretion rates over normal 

diet subjects.  However, although IL-6 may be increased in HF/obesity, it does not 

seem to regulate CSF secretion when compared to HF diet controls (Wolford et al. 

2003).  

 

Finally, IL-17 and CCL2 showed no effect upon CSF secretion when compared with 

controls in either diet; however a HF diet in females showed increased effect on 

CSF secretion rates over normal diets, following treatment with both cytokines.  

Rodents raised on a HF diet have displayed elevated levels of CCL2 in rat plasma 

(Cano et al. 2009), rat kidneys (Sonnenberg et al. 2008) and mouse liver (Mikula et 

al. 2014).  CCL2 mRNA has also been shown to be increased in obese mouse 

adipose tissue (Chen et al. 2005).  This effect was also noticeable within plasma 
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after four weeks on a HF diet.  In addition, CCL2 and its receptor, CCR2, is also 

increased in the adipose tissue of obese human subjects when compared to lean 

controls (Huber et al. 2008).  Studies by Pandzic-Jaksic and colleagues also found 

the proportion of CCR2 was elevated in the serum of obese women when 

compared to lean controls and correlated with body weight, body mass index and 

fat mass (Pandzic Jaksic et al. 2013).  IL-17 serum levels are known to be elevated 

in humans on a HF diet (Peluso et al. 2012) but there is no evidence of elevated 

levels of IL-17 receptor, IL17Rα, in plasma or adipose tissue of obese animals or 

human subjects.  However, an IL-17 deficiency has been shown to enhance diet-

induced obesity (Zúñiga et al. 2010).  The same study also found that IL-17 delayed 

the development of obesity, acting as a negative regulator of adipogenesis and 

glucose metabolism by inhibiting preadipogenic transcription factors, adipokines 

and molecules involved with lipid and glucose metabolism.  This observation 

emphasises the complex role of IL-17 in obesity although, in the context of CSF 

dynamics, it appears that IL-17 and CCL2 do not influence CSF secretion rate.  

 

Further experiments using different diets within the present study attempted to 

differentiate the ultrastructure of male rat choroid plexus raised on either a 

normal or HF diet using electron microscopy (EM).  A possible difference in cell 

ultrastructure which would help explain the changes in CSF secretion rates 

between the two diets would be defects in cilia function or formation. As 

described further in Section 4.8, defects in cilia have been related to 

hydrocephalus and neurological disorders that results in increased ICP (Badano et 

al. 2006) (Albee & Dutcher 2012) but also increases in cilia numbers are known to 

play an increased role in CSF secretion (Albee & Dutcher 2012).  However, choroid 
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plexus ultrastructure and cilia numbers appeared to be similar in male rats raised 

on both normal and HF diets.  However, as no quantitative analysis was performed 

due to the low number of tissues used it was not possible to categorically ascertain 

whether an increase in cilia numbers in the HF diet rats may have presented an 

added explanation of the increased CSF secretion associated within this group.  

Nevertheless, the EM images did show all of the characteristics associated with 

choroid plexus brain tissue including the cuboidal epithelial cells; tight junctions at 

the apical membranes; and microvilli and cilia on the surface of the epithelial cells, 

in the ventricular lumen, into which the CSF is secreted from the choroid plexus 

epithelium. 

 

Therefore based on all of the results, the increased levels of cortisol and TNF-α in 

HF diet groups may provide part of an explanation for the increase in CSF secretion 

rates in rats fed a HF diet over rats raised on normal diets within this study.  

However this hypothesis does not explain the lack of increased CSF secretion 

associated with IL-6, IL-17 and CCL2 which suggests that other factors induced by 

a HF diet, rather than these cytokines, is the most important factor in increasing 

CSF secretion rates and ICP in obese IIH patients.   

 

4.4 Effects of sex on CSF secretion 

As IIH is found to mainly affect the female population, it was therefore important 

to test not only diet, but also sex effects on CSF secretion rates, as a combination 

of a HF diet and female sex hormones could be an important factor in elevated ICP 

associated with IIH patients. 
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In this study, there were strong associations observed between increased weight 

gain and CSF secretion rates in female Wistar rats.  When comparing controls it 

was evident that female Wistar rats had a significantly increased CSF secretion rate 

over male rats but only in the HF diet group.  These results may highlight the 

increasing prevalence of IIH occurring in the obese female population with a 

female to male IIH incidence ratio of 8:1, as reported by Dhungana et al. (2009). 

 

Both pregnancy and exogenous oestrogens are thought to promote symptoms of 

IIH (Bagga et al. 2005).  Endocrinological dysfunction within females of child-

bearing age have been postulated as causes of increased ICP in female IIH patients 

(Farb et al. 2003).  Increased amounts of adipose tissue, also associated with 

obesity, acts as an endocrine organ, releasing hormones such as leptin, and 

produces increased levels of oestrogen via the conversion of androstenedione.  

This can lead to physiologically abnormal amounts of these hormones in a person’s 

body which may contribute to the development of IIH (Farb et al. 2003) (Higgins 

et al. 2004).  Studies by Binder and colleagues found that the concentration of 

oestrogen in the CSF from young obese women with IIH was much greater than 

that found in normal subjects (Binder et al. 2004).   

 

As with the initial studies in males, HC and TNF-α were the only treatments found 

to increase CSF secretion rates, but this time in both sexes over controls.  

Therefore, these two treatments may be a factor in elevated ICP, associated with 

IIH patients, regardless of sex.  Female rats have a more intense corticosterone 

response to stress effect, which is partially mediated by oestrogen as the stress 

response was partially normalised by ovariectomy (Young 1996) In other studies, 
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orally administered oestrogen has been shown to increase cortisol plasma levels 

in men (Marks et al. 1961).  Increase in cortisol plasma levels in female rats could 

offer a potential mechanism by which an increase in CSF secretion is associated 

with female rats over males. 

 

TNF-α is also elevated in healthy control subjects of human females over males 

(Pfeiffer et al. 1997).  Women generate high serum levels of anterior pituitary 

hormone prolactin, in response to stressful stimuli (Zhu et al. 1997).  Prolactin is 

known to stimulate the immune system, enhancing proliferation and function of 

lymphocytes and macrophages; cells from which cytokines are secreted.  Studies 

by Zhu have shown TNF-α plasma level increases following subcutaneous injection 

of prolactin in male mice (Zhu et al. 1997).  This process in females could also be a 

cause of the elevated CSF secretion rates associated with TNF-α in female lean and 

obese rats. 

 

IL-6 treatment in male rats decreased CSF secretion rates, as with the initial studies 

in Section 4.2.2.  However, this effect was not observed in the female rats.  These 

results may suggest that female sex hormones could possibly inhibit the actions of 

cGMP activation upon IL-6 expression, following NO stimulation, in reversing the 

movement of ions in the choroid plexus epithelium, leading to a reduction in CSF 

secretion (Siednienko et al. 2011), as initially shown with the male Wistar rats and 

initial screening results.  NO levels are elevated in the urine of healthy 

premenopausal women (Forte et al. 1998).  However, the levels of NO are 

decreased in HF diet associated hyperglycaemia when compared with normal 

diets (Giugliano et al. 1997). This may provide a rationale as to the lack of reduced 
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CSF secretion rates associated with IL-6 in HF diet female rats, as initially seen in 

normal diet male subjects.  However, studies by Pakmon and colleagues found 

increases in basal cGMP in female rabbits over male controls following long-term 

17-β-estradiol treatment (Palmon et al. 1998).  This increase was mainly localised 

within the cerebellum. Whether increases in basal cGMP is noticeable in the 

choroid plexus epithelial cells following the same treatment is unknown.  

Nevertheless, other studies have described the addition of 17-β-estradiol in 

murine bone marrow-derived stromal cell lines, human bone-derived cells, and 

osteoblast cell lines from mice and rats exerted a dose-dependent inhibition of IL-

6 as well as decreasing IL-6 mRNA levels.  Testosterone and progesterone also 

inhibited IL-6, but their effective concentrations were two orders of magnitude 

higher than 17-β-estradiol (Girasole et al. 1992) (Jilka et al. 1992).  

 

Human oestrogen receptor (hER) has also been implicated in impairing the 

induction of IL-6 in HeLa cells (derived from a human cervix carcinoma) by 

preventing protein binding to the NF-kappaB site of the IL-6 promoter (Galien & 

Garcia 1997) (Rays et al. 1994).  Based on current evidence it is unknown whether 

female sex hormones such as oestrogen actively inhibit the IL-6 synthesis in 

choroid plexus epithelial cells, as they do HeLa cells for example.  Therefore, the 

effects of decreased CSF secretion rates associated with IL-6 treatment in male 

rats may be due to lower levels of oestrogen in circulation.  In addition, this may 

explain the abolished decreases in CSF secretion in IL-6 treated female rats due to 

the natural increased levels of oestrogen in females and subsequent inhibition of 

IL-6 promoter regions.  Further experiments in measuring plasma sex hormone 
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levels, as well as determining the inhibitory effects of estrogen on IL-6 in choroid 

plexus epithelial cells would be beneficial.  

 

However, there are no studies on the direct role of IL-17 and CCL2 on sex hormone 

levels and effects on CSF secretion but it is possible that increased resistance to 

CSF drainage may be due to increased expression of thrombotic genes by IL-17 

and CCL2 and exogenous oestrogens in the arachnoid villi in female IIH patients, 

highlighted further in Section 4.6.3 (Glueck et al. 2005). 

 

A study by Klein assessed the hormone profile of female IIH patients (Klein et al. 

2013).  There were no differences in the levels of estradiol, follicular-stimulating 

hormone, luteinizing hormone, or prolactin, however the study did show raised 

levels of testosterone and androstenedione, in young onset (<25 years of age) 

female patients with IIH. 

 

Park and colleagues have reported an occurrence of IIH secondary to testosterone 

therapy in a transgender patient (Park et al. 2014).  A 22-year-old male with a 

normal body mass used intramuscular injections of testosterone propionate 

(250mg) to maintain his male status.  Based on the diagnosis of bilateral optic disc 

swelling, increased CSF pressure, normal estradiol plasma sex hormone levels; a 

diagnosis of IIH secondary to raised free testosterone was made.  Following the 

substitution of testosterone propionate with a longer-acting testosterone 

undecanoate (1000 mg), to stabilise the raised free testosterone level; optic disc 

swelling, CSF pressure and testosterone levels were reduced after 3 months.  The 

exact mechanism of how raised testosterone causes IH is not known, but it is not 
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thought to be due to raised oestrogen levels from peripheral aromatisation of 

testosterone stimulating CSF production and increasing ICP, due to the fact that in 

this report the oestrogen level was normal.  Nevertheless, this study by Park and 

colleagues is the first to demonstrate a direct association with raised levels of free 

testosterone and IH. 

 

It is not categorically clear how sex hormones could alter ICP, but interestingly, 

studies in rabbits have demonstrated that oestrogen and progesterone are able to 

reduce CSF secretion by the choroid plexus, on their own and in combination 

(Lindvall-Axelsson et al. 1989).  Isolated choroid plexuses from rabbits were used 

to determine uptake and accumulation of 10-5 M radiolabelled choline following 

pre-treatment of the animals with 17-β-estradiol, alone or in combination with 

progesterone. The combined treatment reduced the choline uptake by 35% and 

also lowered the activity of Na+-K+-ATPase by 31% (Lindvall-Axelssson et al. 1989).  

These results do not correlate with our findings, which may suggest that the 

effects of female sex hormones and increased CSF secretion rates, with female 

rats in our study, may not be due to their effect on Na+-K+-ATPase but by increasing 

the expression of other choroid plexus transporters such as NKCC1, ENaC or AQP1, 

or due to increased plasma testosterone levels. 

 

4.5 Summary (CSF secretion rate) 

A HF diet seems to be the most important factor in increasing CSF secretion rates, 

as was evident in all HF diets over normal diets regardless of treatment used.  TNF-

α treated female Wistar rats on a HF diet showed the highest CSF secretion rate 
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of all the treatment groups.  The role of obesity and gender on CSF secretion is 

highlighted further in Figure 4.3.   

 

Studies by Newborg were the first to document diet as a treatment for IIH in 

humans.  Weight loss occurred in 38% of IIH patients following a low calorie and 

low sodium diet, and resulted with improvement in IIH symptoms and papilledema 

(Newborg 1974).  Other studies found a weight loss of just 6% in obese women 

resulted in improved papilledema symptoms associated with IIH patients in 74% 

of cases (Kupersmith et al. 1998) and re-evaluation after three months, following 

maintenance of a low energy diet with no evidence in weight gain, showed that 

reduced ICP and papilledema were maintained (Sinclair, Burdon, et al. 2010).  This 

may suggest a collective treatment against TNF-α elevation, possibly through 

inhibition of 11B-HSD1 activity, and a low-fat diet could be the main course of 

therapy for reducing raised ICP associated with obese female IIH patients.    

 

In addition, the elevated levels of sex hormones (namely oestrogen) in the CSF of 

IIH patients when compared with healthy controls have been shown (Donaldson 

& Horak 1982) and documented to promote symptoms of IIH (Bagga et al. 2005).  

However there are contradicting arguments in other studies (Lindvall-Axelssson et 

al. 1989).  There has been evidence of increased oestrogen and prolactin hormone 

levels giving rise to cortisol and TNF-α, respectively, in females.  This may help 

explain the role of these sex hormones in increasing CSF secretion and subsequent 

ICP in female IIH patients.  Elevated levels of oestrogen have also been associated 

with IL-6 inhibition which may explain the lack of reduced CSF secretion associated 

with this cytokine in female rats.   



228 
 

Case reports have also shown a link with the use of oral contraceptive pills (Walsh 

et al. 1965), as well as polycystic ovarian disease (Glueck et al. 2003) (highlighted 

further in Section 4.1.3), a condition which is associated with imbalance of the sex 

hormones.  However, surprisingly, testosterone levels have also been shown to be 

raised in females (Klein et al. 2013) and transgender patients (Park et al. 2014) 

with IIH.  The exact mechanism of how raised testosterone levels may lead to IIH 

in females is not known and would also not explain the slightly less elevated CSF 

secretion rates seen with the male rats as well as the greater incidence of IIH 

occurring in females. What is known is androgen receptor (AR) mRNA and protein 

are expressed in male and female rat CP epithelial cells (Alves et al. 2009), 

therefore highlighting, a possible mechanism of increased NKCC1, ENaC or AQP1 

CP epithelial cell transporters expression be due to increased oestrogen or 

testosterone levels. 

 

As mentioned in Introduction Sections 1.4.3, 1.4.7 and 1.7, treating elevated CSF 

secretion in IIH patients may be achieved through  either serotonin to inhibit Na+-

K+-ATPase pathway through the activation and phosphorylation of PKC (Fisone et 

al. 1995); antisense TTF-1 oligodeoxynucleotide to reduce AQP1 mRNA and 

protein expression in the choroid plexus (Kim et al. 2007); or acetazolamide and 

topiramate treatment to decrease intracellular HCO3
-  levels in the choroid plexus 

epithelium (Dhungana et al. 2009).  However, based on the results within this 

study, reducing weight loss and inhibiting the actions of reproductive hormones 

as well as HC and TNF-α may result in decreased CSF formation and ICP in IIH 

patients.   
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Figure 4.3: Schematic diagram of the possible pathophysiological mechanisms in 

increased CSF secretion associated with idiopathic intracranial hypertension (IIH).  
Obesity and female gender are thought to play important roles in increased ICP.  The choroid 
plexus epithelial cells secrete most CSF, with a small amount being secreted by ependymal 
cells that line the ventricular system (Mollan et al. n.d.).  
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4.6 Resistance to CSF drainage pathways 

Reduced CSF drainage may also contribute to increased ICP.  Drainage of the CSF 

from the subarachnoid space (SAS) through arachnoid granulations into the 

superior sagittal sinus was the initial perceived pathway regarding CSF absorption 

(Kida et al. 1988).  In recent history, evidence of CSF drainage involving the nasal 

lymphatics has been shown in humans (Johnston et al. 2004) and mice (Louveau 

et al. 2015).  An additional glymphatic pathway, involving the exchange of fluid 

between the CSF in the SAS and the interstitial fluid (ISF) in the brain parenchyma, 

described another route of fluid clearance through paravenous drainage pathways 

(Iliff et al. 2012).  Therefore, three routes are involved in CSF drainage from the 

brain, all of which are highlighted in Figure 4.5. 

 

4.6.1 Role of cytokines in resistance to CSF drainage 

As with CSF secretion rate; initial screening resistance to CSF drainage results were 

obtained from normal diet male rats.  CCL2, IL-17 and IL-6 cause a significantly 

increased resistance to CSF drainage, and HC treatment a significantly decreased 

resistance to CSF drainage when compared to controls.  This could indicate a link 

between increased levels of CCL2 and IL-17 and increased resistance to CSF 

drainage creating an increase in pressure associated in patients with IIH.  HC 

effects on resistance to CSF drainage may be the result of a possible compensatory 

mechanism whereby an initial increase in CSF secretion is counteracted by 

increased CSF drainage.  The same observation, with regards to a compensatory 

mechanism, could be made of IL-6 which decreases CSF secretion whilst increasing 

resistance to CSF drainage.  Further details regarding the effects of cytokines in 
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combination with differences in diet and sex are described in Sections 4.6.2 and 

4.6.3, respectively.   

 

Strahle stated that hydrocephalus, following intraventricular haemorrhage, is a 

result of the blockage of the arachnoid villi by microthrombi and lymphatics by 

blood cells or fibrosis (thickening of tissue following injury) causing CSF outflow 

obstruction (Strahle et al. 2012).   Pro-inflammatory cytokines have been shown 

to mediate thrombosis in mice (Yoshida et al. 2009).  As the pathophysiology of 

hydrocephalus appears to be strongly related to IIH, a similar mechanism of 

increased resistance to CSF efflux at the arachnoid villi and lymphatics may be the 

cause of elevated ICP associated with IIH patients. 

 

AQP4 water channels are involved in CSF absorption through the glymphatic 

pathway and are localised in the basolateral membrane of the ependymal cells 

(Venero et al. 1999) (Zelenina 2010).  Studies have shown that AQP4 plays an 

integral role in parenchymal CSF absorption, dependent on osmotic gradients 

(Bloch et al. 2006).  Tourdias and colleagues found an up-regulation of 

periventricular AQP4 in hydrocephalic rats that was strongly correlated with CSF 

volume (Tourdias et al. 2009).  However, there have been no studies on AQP4 

expression at the arachnoid villi or cervical lymph nodes, the other two main sites 

of CSF drainage.  Therefore, further studies may be performed to ascertain if AQP4 

is expressed at these CSF drainage sites, and more importantly at decreased levels 

following CCL2 and IL-17 treatment, which may explain the reasons for the 

increased resistance to CSF drainage associated with these cytokines within this 

study. 
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4.6.2 Effects of diet on resistance to CSF drainage 

As with the control CSF secretion rates, female rats raised on a HF diet showed a 

significant increase in resistance to CSF drainage over female normal diet rats and 

male rats on both diets.  These results again implicate a HF diet in not only 

increasing CSF secretion rates but also resistance to CSF drainage more so than 

treatments and sex alone.  This is also further suggested by the associations found 

between increased percentage weight gain; total cholesterol and LDL/VLDL 

cholesterol levels, and resistance to CSF drainage in female rats.  

 

However, no association was found between increased percentage weight gain 

and resistance to CSF drainage in male rats.  It is important to note however that 

when comparing the male rats in normal and HF diets it is evident that there is a 

lack of significance between the two groups and the pattern of results does not 

match the initial observations, perhaps as a consequence of the differences in the 

experimental set up used for experiments on the male and female rats, i.e 

different types of cannula were attached to the syringe that perfused the aCSF 

into the one lateral ventricle of the rat brain.  Specifically for the experiments with 

the male rats, a plastic cannula was used whereas a metal cannula was used for 

experiments with the females as well as the initial screening experiments on lean 

male rats as described in Section 4.6.1.  Over time, the plastic cannula may have 

expanded, therefore decreasing the pressure readings due to the increase in 

volume.  This would not be seen with a metal cannula.  The resistance to CSF 

drainage measurements in females were similar to those made in the initial 

screening experiments. Consequently, only the differences in resistance to CSF 

drainage between diets in female rats will be discussed here.    
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A study by Orefice found reduced CSF absorption in obese women suffering IIH.  

Isotope methods evaluated CSF circulation and absorption, and cisternographic 

findings showed an increased arachnoid resistance to CSF efflux might be present 

(Orefice et al. 1992).  The impact a HF diet in females has on increasing resistance 

to CSF drainage in our study is supported by these findings by Orefice and co-

workers.  It therefore appears that a HF diet, regardless of cytokine treatment, has 

the biggest impact on resistance to CSF drainage in vivo, possibly through 

increased arachnoid resistance to CSF outflow. 

 

The effects of a deficiency of vitamin A in diets has also been shown to increase 

ICP through increased resistance to CSF drainage (Mollan et al. n.d.).  Following 

vitamin A deficiency in female rabbits, Millen and colleagues showed 

morphological changes of the arachnoid villi leading to increased ICP.  The 

thickening of the dura mater around the arachnoid granulations following 

mucopolysaccharide infiltration lead to a decrease in CSF absorption (Millen & 

Woollam 1956). Other studies have reported in Holstein-Friesian calves with toxic 

levels of vitamin A (hypervitaminotic A) to have a thinner and smaller arachnoid 

villi morphology when compared to controls (Gorgacz et al. 1975).  This would 

imply a healthy diet is important for normal function of CSF clearance from the 

brain. 

 

A HF diet alone has significant effects in increasing resistance to CSF drainage.  A 

HF diet female group not only increases CSF secretion rates, but the initial effect 

of HC and TNF-α in decreasing resistance to CSF drainage, is abolished in HF 

animals.  When taking into account TNF-α treatment, between both diets, there is 
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a significant increase in resistance to CSF drainage in HF female rats over both 

normal diet female rats.  Again, the reason possibly being the elevated plasma 

TNF-α levels in human HF diet subjects (Fain 2006) as well as increased pro-

thrombotic effects leading to an inflammation of the arachnoid villi in mice 

following treatment with TNF-α (Edwards et al. 2013). 

 

However, in rat models of traumatic brain injury (TBI), there is a sustained 

elevation of aquaporin-4 (AQP4) levels due to transcriptional up-regulation caused 

by neuroinflammation and the release of inflammatory cytokines such as TNF-α 

into the CSF (Stover et al. 2000).  Studies have shown that AQP4  plays an integral 

role in parenchymal CSF absorption through the glymphatic pathway, which is 

dependent on osmotic gradients (Bloch et al. 2006).  An increase in the expression 

of AQP4, due to the release of TNF-α, may explain the decreased resistance to CSF 

drainage associated with TNF-α in rats raised on a normal diet.  Whether this 

mechanism is altered in rats fed a HF diet remains a matter for further 

investigation.   

 

There was no effect in resistance to CSF drainage with the female rats raised on 

either a HF or normal diet following IL-6 treatment.  Previous studies have 

reported increased levels of IL-6 in HF diets (Fain 2006) (Giugliano et al. 1997); 

possibly overriding the NO pathway of IL-6 expression associated with healthy 

individuals.  However, the mechanism behind decreased CSF drainage in HF diet 

females, associated with IL-6 treatment, is unknown and would need to be 

investigated further.   
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In female rats fed the HF diet, IL-17 and CCL2 treatments caused an increase in 

resistance to CSF drainage, in a similar fashion to the effect observed in lean male 

rats during the initial studies (see Section 4.6.1).  By contrast, only CCL2, but not 

IL-17, increased resistance to CSF drainage in the normal diet female rats. The fact 

that CCL2 significantly increases resistance to CSF drainage in both normal and HF 

diet female rats, would imply that sex, diet and treatment do not correlate with 

the resistance to CSF drainage results associated with CCL2.   

 

Further studies describe increases in the levels of CCL2 in the CSF of cryptococcal 

meningitis infected rats has been associated with altered CSF drainage pathways.  

A study by Fries found a greater polysaccharide accumulation in the CSF and brains 

of cryptococcus neoformans mucoid (MC) variant-infected rats   (Fries et al. 2005).  

Cryptococcal antigen from CSF is thought to be the best test for diagnosis of 

cryptococcal meningitis in humans (Antinori et al. 2005).  The finding that MC 

variant-infected rats accumulated more polysaccharide in the CSF and brain 

tissues mimics the findings in humans, in whom elevated ICP is associated with 

high cryptococcal antigen titers in the CSF (Graybill et al. 2000).  The accumulation 

of MC variant glucorunoxylomannan (GXM) was associated with elevated levels of 

CCL2 in CSF (Fries et al. 2001).  GXM appears to promote polysaccharide clumping 

in the CSF, which may contribute to the obstruction of the natural passage of CSF 

across the arachnoid villi and may be involved in the response to CCL2 observed 

in our study. 

 

As mentioned previously in Section 4.4, CCL2 and its receptor, CCR2, are elevated 

in adipose tissue (Huber et al. 2008) and plasma (Pandzic Jaksic et al. 2013) of 
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obese human subjects when compared to lean controls.  It is also known that  IL-

17 serum levels, are elevated in obese women (Sumarac-Dumanovic et al. 2009) 

(Peluso et al. 2012).  However there is no evidence of increased levels of IL17R in 

obesity.  Obesity is a pro-thrombotic state and it is known that IIH patients who 

are obese have a higher prevalence of circulating pro-thrombotic factors than non-

obese IIH patients (Redzic 2013a) (Csuka et al. 1999).  As already mentioned a key 

factor in impaired CSF drainage are microthrombi in the arachnoid villi in female 

patients suffering from IIH (Kesler et al. 2006) (Glueck et al. 2005).  As already 

mentioned in Section 4.6.1, pro-inflammatory cytokines have been shown to 

mediate thrombosis in mice (Yoshida et al. 2009).  IL-17 in particular induces pro-

thrombotic genes such as TF in human umbilical vein endothelial cells (Hot et al. 

2013).  TF gene is the primary initiator of the extrinsic coagulation cascade, and 

plays an essential role in contributing to thrombosis in humans (Mackman 2012) 

(Mackman 2008).  Exposure of perivascular TF associated with increased vascular 

permeability could be one of the mechanisms that triggers microvascular 

thrombosis in the ischemic tissue in organs expressing high levels of TF, such as 

the brain.  Whether elevated levels of TF cause microvascular thrombosis in the 

arachnoid villi is unknown.  However, Wang et al (2016) performed an ELISA 

cytokine array analysis in brain tissue of low-TF mice and revealed decreased 

expression of CCL2 compared with the brains of WT mice (Wang et al. 2016).  This 

would indicate that higher levels of TF within the brain, leading to thrombosis, 

would correlate with increased levels of CCL2 and IL-17.  If TF is found to be 

present at elevated levels within the arachnoid granulations, facilitating the 

formation of microthrombi leading to inflammation of the arachnoid villi; then this 

pathway may explain the role of increased levels of CCL2 and IL-17, in female rats 
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raised on a HF diet, and increased resistance to CSF drainage leading to raised ICP 

associated with IIH patients, as highlighted in Figure 4.3  (Edwards et al. 2013).   

 

 

 

 

 

 

 

 

Therefore, a HF diet may lead to increased resistance to CSF drainage, as it may 

also result in increasing CSF secretion rates associated with HF diet female rats 

over their normal diet counterparts.  Without any other treatment the increased 

resistance to CSF drainage associated with a HF diet in females may be due to an 

increased pro-thrombotic state leading to an inflammation of the arachnoid villi 

and subsequent raised ICP. However, activity of this pathway may be further 

increased with the addition of increased levels of circulating pro-inflammatory 

cytokines such as CCL2 and IL-17. 

 

 

Obesity 
Increased circulating  

CCL2, IL-17 

Thrombosis / inflammation  
of arachnoid villi 

Reduced CSF drainage  
through arachnoid villi 

Raised ICP 

Figure 4.4: Flow diagram showing the possible mechanism through which obesity and 
its associated pro-inflammatory and pro-thrombotic profile contribute to increased 
resistance to CSF drainage and subsequent raised intracranial pressure (ICP) in IIH 
patents.  Adapted from (Edwards et al. 2013). 
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4.6.3 Effects of sex on resistance to CSF drainage 

IIH is predominantly seen in obese females of childbearing age; therefore, it is 

possible that female steroid hormones have a pathogenic role in altering CSF 

drainage pathways. However, a distinctive hormonal profile has not yet been 

described in IIH (Markey et al. 2016).  

 

Following HC and TNF-α treatment a decrease in resistance to CSF drainage over 

controls is reported within our study.  This decrease is evident with HC and TNF-α 

treated female rats raised on a normal diet when compared with controls.  As 

already mentioned in Section 4.2.1 there is evidence of elevated plasma TNF-α 

levels in females (Zhu et al. 1997).  Thus, it is possible that increased levels of HC 

and TNF-α may not only increase CSF secretion rates but also decrease resistance 

to CSF drainage in females, possibly through a compensatory mechanism taking 

effect. 

 

IL-6 did cause a significant increase in resistance to CSF drainage in the male rats 

(raised on a normal diet in our previous results) as opposed to females.  IL-6 serum 

levels were statistically higher in males relative to females following traumatic 

injury (Sperry et al. 2008).  It is possible that the higher levels of IL-6 found in 

males, as opposed to females, following injury leading to a cranial inflammation 

may be responsible for the increase in resistance to CSF drainage.  However there 

is no evidence of sex differences and IL-6 levels in IIH patients.  

 

CCL2 and IL-17 treatment caused an increase in resistance to CSF drainage in 

female rats.  However, premenopausal women have been shown to have lower 
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levels of CCL2 than men (Jilma & Jilma-Stohlawetz 2002).  This therefore would 

not explain the reason for the increase in resistance to CSF drainage associated 

with females.   

 

Nevertheless, studies by Glueck and colleagues, described further in Section 4.6.2 

and Figure 4.3, highlight thrombosis, possibly associated with increased levels of 

CCL2 and IL-17 contributing to increased thrombotic gene expression, and further  

association with increased resistance to CSF drainage through inflammation of the 

arachnoid villi in female IIH patients, is often aggravated by thrombophilic 

exogenous oestrogens (Glueck et al. 2005).  Glueck and colleagues found that of 

65 women with IIH, 38% were homozygous for the thrombophilic C677T 

methylenetetrahydrofolate reductase (MTHFR) mutation, compared with 14% of 

controls, highlighting the pathway involved.  The risk factor of pro-thrombotic 

effects may be a cause of the increased resistance to CSF drainage and consequent 

raised ICP associated with female IIH patients.   

 

Further studies have revealed that the thrombophilia and hypofibrinolysis are not 

only exacerbated by thrombophilic exogenous oestrogens but also pregnancy, or 

the paradoxical hyperoestrogenemia of polycystic ovarian disease (PCOS) in 

females (Glueck et al. 2005).   In addition, it has also been speculated that PCOS 

can promote IIH and this same study Glueck and colleagues found that between 

39% and 57% of IIH patients also suffer from PCOS. PCOS is also known to be 

characterised by androgen dysregulation (O’Reilly et al. 2014).   

Hyperandrogenism, or androgen excess, is one of the primary symptoms of PCOS, 

and as previously mentioned in Section 4.5 AR mRNA and protein have been 
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expressed in male and female rat CP epithelial cells (Alves et al. 2009).  It may 

therefore be possible that these receptors are also expressed on the arachnoid 

villi, however that is unconfirmed.  Characterising inflammation of the arachnoid 

villi, hyperandrogenism and PCOS, in female IIH patients may highlight a possible 

role of androgens resistance to CSF drainage and subsequent IIH aetiology. 

 

4.6.4 Summary (resistance to CSF drainage) 

As with CSF secretion rates, a HF diet was the most important factor in increasing 

resistance to CSF drainage in all HF diet treatments over normal diets, excluding 

CCL2.  CCL2 caused increased resistance in the both female groups and the initial 

results in lean male rats.  Therefore overall, a combination of CCL2 and IL-17 in 

female rats raised on a HF diet had the biggest impact on resistance to CSF 

drainage in vivo, possibly through this increased arachnoid resistance to CSF 

outflow.  Obesity is an inflammatory condition where increased circulating or CSF 

cytokines may result in fibrotic changes or lead to a hypercoagulable state causing 

blockage of the arachnoid villi and, therefore reducing drainage of CSF (Markey et 

al. 2016).  This pathway is also often aggravated by thrombophilic exogenous 

oestrogens.  In addition, further studies on the associations between CCL2 and IL-

17 on inflammation of the arachnoid villi, hyperandrogenism and PCOS, may 

highlight a possible role of cause of increased resistance to CSF drainage and 

elevated ICP in obese female IIH patients.   

 

Decreases in resistance to CSF drainage were seen in the female rats fed a normal 

diet following HC and TNF-α treatment, which was abolished in the HF diet female 

group.  Studies have shown an increase in the expression of AQP4 in the 
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glymphatic pathway, due to the release of TNF-α, during parenchymal CSF 

absorption (Bloch et al. 2006).  This may explain the decrease in resistance to CSF 

drainage associated with TNF-α in rats raised on a normal diet due to the increased 

flow.  Whether this mechanism is altered in rats fed a HF diet remains to be 

determined.   

 

Overall, pro-inflammatory cytokines, especially CCL2, could be used as diagnostic 

markers and may serve as targets for therapeutic intervention.  This being if they 

are found to alter CSF drainage pathways; cause elevated ICP through increased 

resistance to CSF drainage; and therefore contribute to IIH.  Developing an 

inhibitory treatment against CCL2 elevation in patients with IIH could be 

advantageous in reducing this resistance of CSF drainage, possibly around the 

arachnoid granulations, and therefore lowering ICP.   
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Figure 4.5: Schematic diagram of the possible 

pathophysiological mechanisms of decreased CSF drainage 
associated with idiopathic intracranial hypertension (IIH).  
Obesity and female gender are thought to play important roles in 
increased ICP.  CSF drainage occurs through the SAS through 
arachnoid granulations; nasal lymphatics (yellow) and also along 
perivascular routes (glymphatic pathway) which is cleared from 
the brain into the subarachnoid CSF, bloodstream or cervical lymph 
nodes (Mollan et al. n.d.).  
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4.7 In vitro expression of transporters/channels involved in CSF 

secretion by choroid plexus epithelium  

Characterisation of hCPEpiC protein transtyretin (TTR); and ZO-1 and Claudin-1 

tight junctional proteins by immunocytochemistry showed that TTR protein was 

distributed uniformly at the cell surface of hCPEpiC. However, ZO-1 and Claudin-1 

were not found to be expressed at the apical tight junction sites associated with 

choroid plexus epithelial cells. Reviews by (Redzic 2013) also confirmed this to be 

true of the primary hCPEpiC.  Immunocytochemistry and flow cytometry analysis 

showed Na+-K+-ATPase, NKCC1, AQP1 and ENaC transporters/channels, and CCR2, 

IL17α, TNFR1 and IL-6R receptors were also expressed on hCPEpiC.  These data 

suggested that, although the hCPEpiC cells may not be a suitable BCSFB in vitro 

model to study CSF secretion assays because of the absence of tight junctions, 

they constitute a good model to study the increase/decrease in expression of 

transporters/channels involved in CSF secretion across the choroid plexus 

epithelium. 

 

4.7.1 Treatments do not modulate transporter/channel expression on 

hCPEpiC 

The flow cytometry analysis of transporter/channel expression on hCPEpiC 

following a 24h incubation with either HC, TNF-α, IL-6 results show evidence that 

the three main cytokines that were found to either increase or decrease CSF 

secretion rates in both male and female rats in vivo, as well as IL-17 which was 

initially found to increase the resistance to CSF drainage, have no effect on the 

expression of transporters and channels in vitro, that are involved in the 

movement of ions into the CSF.  The reasons for the lack of increase in transporter 
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expression could be due to the in vitro time-frame of 24h for the incubation of the 

cytokines onto the hCPEpiC being too short for an effect to occur.  However, the 

time-frame may also have been too long as, in vivo, the rats were exposed to the 

cytokines for a 90 min period and an effect in both CSF secretion rates and 

resistance to CSF drainage had occurred. A 24h exposure, in vitro, may have been 

too long, made the expression transient, and resulted in the increased expression 

of transporters occurring at a shorter incubation time.   

 

The pathways used by these cytokines in affecting the CSF secretion/drainage 

rates may not occur through increased transporter expression but through a 

different molecular pathway.  However in previous studies, TNF-α, a cytokine that 

increased in vivo CSF secretion, has been shown to decrease the activity of Na+-K+-

ATPase channels in Sprague–Dawley  rat liver hepatocellular carcinoma (HepG2) 

cells (Kreydiyyeh et al. 2007), but had no impact on α1 and β1 Na+-K+-ATPase mRNA 

expression in alveolar epithelial cells in the same species (Dagenais et al. 2004).  

The original decrease in Na+-K+-ATPase activity is through PGE2 production which 

in turn reduces the activity and protein expression of the Na+-K+-ATPase by 

activating prostaglandin EP2 receptors (Kreydiyyeh et al. 2007).  Further studies 

found TNF-α to downregulate AQP1 protein expression in mouse retinal 

pigmented epithelial cells (Motulsky et al. 2010) and primary rat lung microvessel 

endothelial cells (Xie et al. 2005).   Dagenais and co-workers did however find TNF-

α to decrease the expression of α-, β-, and γ-subunits of ENaC mRNA after 24h 

treatment and reduced the amount of α-ENaC protein by 50% in alveolar epithelial 

cells from male Sprague-Dawley rats (Dagenais et al. 2004).  However the decrease 

in ENaC protein and mRNA expression associated with TNF-α was reversed 
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following dexamethasone treatment in human colon (Bergann et al. 2009) and 

alveolar epithelial cells (Dagenais et al. 2006).  In addition, studies by Topper and 

colleagues describe TNF-α to significantly upregulate the mRNA and protein 

expression of one of the two major isoforms of NKCC1 cotransporter, bumetanide-

sensitive cotransporter BSC2, in human umbilical vein endothelial cells (Topper et 

al. 1997).  Based on these previous studies, increases in CSF secretion, associated 

with TNF-α, may be through increased NKCC1 transporter expression and not 

ENaC, AQP1 or Na+-K+- ATPase channels.  However, no in vitro modulation effects 

were seen with any of the transporters/channels analysed following TNF-α 

incubation on hCPEpiC within our study. Neverthless, TNF-α has been shown to 

stimulate the single K+ channel activity in the rat thick ascending limb through 

activation of tyrosine phosphatase.  In addition, the same study reported that IL-

1β suppressed the activity and gene expression of the K+ channel in cultured 

human proximal tubule cells (Nakamura et al. 2012).  Whether in vivo increases in 

CSF secretion rate are associated with TNF-α through single K+ channel stimulation 

as opposed to increased NKCC1 transporter expression (also involved in K+ 

transport) is undetermined, therefore a case for further research on the TNF-α 

stimulation of single K+ channels causing increased CSF secretion rates may be 

beneficial.  

 

HC was the only other mediator found to increase in vivo CSF secretion, but also 

showed no effect on hCPEpiC transporter/channel expression in vitro.  In terms of 

transporter/channel expression following cortisol treatment in previous studies, 

Janer and colleagues (2011) obtained blood, saliva, and cells from the nasal 

epithelium of 69 human infants in order to measure correlations between cortisol 
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concentration and ENaC expression.   The results showed expression of α-ENaC 

correlated with plasma and salivary cortisol concentrations and therefore 

supported a role in humans for endogenous glucocorticoids in the regulation of 

airway epithelial cell ion transport (Janer et al. 2011).  Further studies by Jesse and 

colleagues describe an increase in cortisol coinciding with elevated α-ENaC mRNA 

expression, but not AQP1 mRNA in ovine lungs (Jesse et al. 2009).  However, 

cortisol infusion was also found to significantly increase AQP1 mRNA levels in 

sheep foetal lungs (Liu et al. 2003) and rat peritoneum (Stoenoiu et al. 2003).   

 

Studies by Ding and co-workers revealed aldosterone to regulate NKCC1 protein 

expression in human colorectal adenocarcinoma (HT-29) cell lines (Ding et al. 

2014).  Aldosterone is a corticosteroid hormone, similar to HC, which stimulates 

absorption of sodium by the kidneys and so regulates water and salt balance.  In 

addition, aldosterone was found to increase water permeability through the 

choroid plexus following determination of drainage of tritiated water injected into 

the lateral ventricle in anaesthetised dogs (Perekhval’skaia et al. 1987).  Further 

studies by Killerich and colleagues found cortisol to increase NKCC1 and Na+-K+-

ATPase mRNA levels in gill cells of tilapia fish (Kiilerich et al. 2011).  If taking into 

account the results on transporter/channel expression following cortisol 

treatment in previous studies, this would suggest that increases in CSF secretion 

associated with HC could be due to increased expression of Na+-K+-ATPase, NKCC1, 

AQP1 and ENaC, however these results were not seen with the hCPEpiC within our 

study.  Therefore further studies testing the effects of cortisol on 

transporter/channel expression in a time and dose dependent manner may 
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present a more accurate insight into the effects of HC on possible increases in in 

vitro CSF secretion, as was seen with our in vivo studies.  

 

IL-6 was the only cytokine to show a decrease in CSF secretion rates both in the 

initial studies and with male rats raised on a normal diet.  IL-6 has been shown to 

decrease Na+-K+-ATPase activity in rat hepatocytes (Green et al. 1994) but 

increased NKCC1 protein expression in mouse dorsal root ganglion nerve cells and 

α-ENaC protein and mRNA expression in cortical collecting duct cells of the mouse 

kidney (Li et al. 2010).  Based on previous studies, the decreases in CSF secretion 

associated with IL-6, following in vivo studies on male rats raised on a normal diet 

within our study may be due to decreases in Na+-K+-ATPase activity.  However, this 

effect was not seen in any transporter expression within the hCPEpiC.  Therefore 

as mentioned previously in Section 4.1, further experimental studies on the effects 

of cGMP increases (Siednienko et al. 2011) in the choroid plexus may provide a 

theory as to the possible cause of decreased CSF secretion associated with IL-6.  

 

4.8 Blood cerebrospinal fluid barrier (BCSFB) enriched transcripts 

in hCPEpiC following 24h incubation with treatment 

Following a human microarray analysis on hCPEpiC we found that 32% of genes 

analysed were expressed in hCPEpiC.  These genes were compared with mouse CP 

transcripts.  Of the 32% positively associated hCPEpiC transcripts, 42% were found 

to be in common with the mouse CP-enriched transcripts.  Of the 59 most highly 

expressed genes from the mouse CP, 54% were found to be in common with the 

positively associated hCPEpiC transcripts and these 32 genes are listed in Table 6.4 

in Appendix Section 6.10, page 293.  In addition, expression of the characterised 
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proteins, transporters/channels and cytokine receptors that was observed by 

immunocytochemistry and flow cytometry was confirmed (with the exception of 

AQP1) by transcriptome analysis in hCPEpiC.  These results confirmed that the 

hCPEpiC genes were somewhat similar to that of the choroid plexus transcriptome 

expressed in the mouse, as well as highlighting the gene expression of choroid 

plexus markers, transporters/channels and cytokine receptors originally 

confirmed following immunocytochemistry and flow cytometry analysis.  Further 

analysis of the effect of 24h treatment incubation on gene expression in hCPEpiC 

was performed. 

 

Following a 24h incubation with HC, TNF-α or IL-6, on gene expression in hCPEpiC; 

15 genes were found to be up-regulated or down-regulated by all three 

treatments following transcriptome analysis, although none of them statistically 

significant.  Of these, four genes were selected for further real-time quantitative 

PCR (RT-qPCR) analysis, including TROVE2 and NCDN, which showed an up-

regulation, and SPAG16 and CCM2 which displayed a down-regulation in gene 

expression on hCPEpiC, respectively, with all of the three treatments.  In addition, 

two of these genes, TROVE2 and SPAG16, are involved in cilia function and 

maintenance (Lai et al. 2011) (Zhang et al. 2006). 

 

Defects in cilia have been related to various human diseases including 

hydrocephalus and neurological disorders that results in increased ICP (Badano et 

al. 2006).  It is known that motile cilia in choroid plexus epithelial cells are involved 

in direct CSF movement and increases in cilia numbers plays a role in CSF secretion 

(Albee & Dutcher 2012).  These studies found cilia can be motile on the CP 
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epithelium as on the epithelial surface of respiratory tract, the oviduct, and the 

fourth ventricle of the brain, where each cell has multiple cilia (Albee & Dutcher 

2012).  Cilia growth is regulated by intraflagellar transport (IFT).  IFT is the 

bidirectional transport of multi-subunit protein complexes, called IFT particles, 

along axonemal microtubules beneath the ciliary membrane (Hao & Scholey 

2009).  IFT is essential for the formation of cilia and is required to build all cilia 

located within a membrane projection from the cell surface.  Mutations in IFT 

subunits have been shown to disrupt cilia formation and function (Eggenschwiler 

& Anderson 2007). 

 

Sjögren’s syndrome antigen A2 (SSA2) (also known as TROVE2 or RO60) is a 

component of the Ro ribonucleoprotein (Millard et al. 2002) with a von Willebrand 

factor A (VWA) domain and a so-called TROVE module (found in Telomerase and 

Ro and Vault proteins) (Bateman & Kickhoefer 2003).  Studies by (Lai et al. 2011) 

have suggested TROVE2 may play a role in cilia formation and/or maintenance. 

Changes in cilia structure and function were measured by proteomics analysis and 

a decrease in total cilia numbers and numbers of long cilia (≥1.5 μm in length) on 

SSA2 knockdown was observed in both the murine 3T3 fibroblast cell line and in 

intermedullary collecting duct (IMCD3) cells when compared to controls (Lai et al. 

2011). 

 

Studies have also shown SPAG16 to play a role in cilia function in mice (Zhang et 

al. 2006).  SPAG16 encodes Spag16L protein which is found in all murine cells with 

motile cilia.  SPAG16L mRNA is expressed in testis, brain, lung, and oviduct, but 
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not in heart tissue, which does not contain cells with motile cilia (Nagarkatti-Gude 

et al. 2011), and has been shown to regulate ciliary motility. 

 

The increase in expression of TROVE2 as seen with the transcriptome analysis of 

the hCPEpiC following 24h incubation with HC and TNF-α may possibly reflect a 

role of the TROVE2 gene in increasing the number of cilia in choroid plexus 

epithelial cells, possibly leading to an increase in CSF secretion associated with 

patients with IIH.   However, the RT-qPCR results showed no significant changes of 

gene expression with most treatments. Nevertheless, the down-regulation of 

SPAG16 following IL-6 treatment did match the results found in the transcriptome 

data.  Studies by (Nagarkatti-Gude et al. 2011) have shown mice containing a 

mutation deleting the SPAG16L transcript to cause a defect in spermatogenesis, 

but could also cause decreased ciliary motility.   This decrease in ciliary motility 

and the down-regulation of SPAG16 after treatment with IL-6 may reflect the 

expression of this gene leading to a decrease in CSF secretion, due to a defect in 

ciliary function, associated with the CSF secretion results with IL-6 within our 

study.  

 

4.9 In vitro summary 

Even though all transporters/channels and cytokine receptors were found to be 

expressed in hCPEpiC, there was no change in the expression of each of the four 

transporters, Na+-K+-ATPase, NKCC1, AQP1 and ENaC, following a 24h incubation 

with either HC, TNF-α, IL-6 or IL-17.  The lack of transporter/channel modulation 

changes may be due to a time- or dose-dependent manner or that CSF 

secretion/drainage rates may not occur through increased transporter expression 
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but through a different molecular pathway such as increased single K+ channel 

activity associated with an increased stimulation by TNF-α (Nakamura et al. 2012).  

In addition, although the genes encoding the four transporters and cytokine 

receptors CCR2, IL17α, TNFR1 and IL-6R were found to be expressed, their 

expression was not increased significantly in a transcriptome analysis of the 

hCPEpiC following a 24h incubation with either HC, TNF-α or IL-6.  Following 

transcriptome analysis, expression of two genes, TROVE2 and NCDN was increased 

by cytokines whereas SPAG16 and CCM2 expression decreased (although none of 

these changes were statistically significant).  However, the cytokine-induced 

expression patterns of all four genes was not confirmed following a RT-qPCR 

analysis apart from the down-regulation of SPAG16 following IL-6 treatment.  As 

indicated above, SPAG16 has been shown to increase ciliary motility (Zhang et al. 

2006), which is associated with increased CSF movement, and may highlight a 

possible cause of the decrease in CSF secretion associated with IL-6.  

 

4.10 Future work 

In addition to earlier suggestions, measuring the levels of sex hormones 

(oestrogen, progesterone and testosterone) in the serum of female rats raised on 

both a normal and HF diet, and in conjunction, performing a sex hormone in vivo 

experiment between HF female rats and ovariectomised HF females would 

determine the sex hormone effects on CSF secretion and resistance to CSF 

drainage as opposed to diet alone. 
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In addition, measuring the cytokine plasma levels in all Wistar rats to ascertain the 

amount of each treatment present within the blood circulation during the time of 

the experiment would be valuable as added evidence when comparing the CSF 

secretion rates and resistance to CSF drainage values in all experiments. Further 

validation of these results could be carried out using specific neutralising 

antibodies against TNF-α and IL-6 stimulation in an animal model to test whether 

a decrease/increase, respectively, in CSF secretion is shown following 

cytokine/glucocorticoid inhibition. 

 

In addition, further studies should be performed in vivo to establish the effects of 

the 11β-HSD1 enzyme on Na+ movement and CSF secretion.  First by investigating 

the expression of 11β-HSD1 by choroid plexus epithelial cells using 

immunohistochemistry and then by in vivo knock-out of 11β-HSD1.  Performing 

tests, whether general or tissue- and time-specific, could demonstrate a link 

between cortisol and CSF secretion rate and allow for comparison of the effects 

seen with hydrocortisone during ventriculo-cisternal perfusion when the 11β-

HSD1 enzyme is present or inhibited. 

 

As studies have shown that AQP4 to play an integral role in parenchymal CSF 

absorption through the glymphatic pathway, which is dependent on osmotic 

gradients (Bloch et al. 2006); an increase in the expression of AQP4, due to the 

release of TNF-α, and whether this mechanism is altered in rats fed a HF diet may 

be beneficial in explaining the decreased resistance to CSF drainage associated 

with TNF-α in rats raised on a normal diet. 
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6 Appendix 

6.1 Materials 

Chemical or Solution Supplier Catalogue # 

Sodium Chloride (NaCl) Sigma-Aldrich, Dorset, UK S7653 

Potassium Chloride (KCl) Sigma-Aldrich, Dorset, UK P4504 

Calcium Chloride (CaCl2) 

BDH Laboratory Supplies, Dorset, 

UK 

26224 

Magnesium Chloride (MgCl2) Sigma-Aldrich, Dorset, UK M-8266 

Sodium Bicarbonate 
(NaHCO3) 

BDH Laboratory Supplies, Dorset, 

UK 

10247 

HEPES Sigma-Aldrich, Dorset, UK H-7006 

Disodium Phosphate 
(Na2HPO4) 

Sigma-Aldrich, Dorset, UK S7907 

Glucose Sigma-Aldrich, Dorset, UK G8270 

Blue Dextran Sigma-Aldrich, Dorset, UK D5751 

Hydrocortisone Sigma-Aldrich, Dorset, UK H0135 

Leptin Sigma-Aldrich, Dorset, UK L4146 

CCL2 Cambridge Bioscience, Cambridge, 

UK 

00220-0-100 

IL-6 Life Technologies, Paisley, UK  10398-H08H-

5 

IL-17 Miltenyi Biotech Ltd,  

Woking, UK 

130-093-959 

TNF-α Sigma-Aldrich, Dorset, UK H8916 

IL-1 β Miltenyi Biotech Ltd,  

Woking, UK 

130-093-897 

Domitor  

(Medetonidine Hydrochloride) 

Red Kite Veterinary Consultants, 

Centaur services, Castle Cary, UK 

 

Vetalar 

 (Ketamine) 

Red Kite Veterinary  

Consultants Centaur Services, 

Castle Cary, UK 

 

Hand Chuck Drill Farnell Element, Leeds, UK 146443 

PBS Phosphate Buffered 

Saline 

Sigma-Aldrich, Dorset, UK P4417 

p-formaldehyde Sigma-Aldrich, Dorset, UK P6148 

Glutaraldehyde Agar Scientific, Essex, UK R1311 

Osmium tetroxide Agar Scientific, Essex, UK R1017 

Araldite Agar Scientific, Essex, UK R1040 

Agar 100 resin (Epon) Agar Scientific, Essex, UK R1043 

dodecenyl succinic anhydride 

(DDSA) 

Agar Scientific, Essex, UK R1051 
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2,4,6-tris 

diemthylaminomethyl phenol 

(DMP-30) 

Agar Scientific, Essex, UK AGR1065 

Human Choroid Plexus 

Epithelial Cells (hCPEpiC) 

Caltag Medsystems, Milton 

Keynes, UK 

SC-1310 

hCPEpiC Complete Medium Caltag Medsystems, Milton 

Keynes, UK 

SC4101 

Chloroform Solution Sigma-Aldrich, Dorset, UK C2432 

Anti-Prealbumin (TTR) Sheep 
Polyclonal IgG Primary Ab 

Abcam, Cambridge, UK 
 

ab9015 

ZO-1 Rabbit Polyclonal IgG 
Primary Ab 

Life Technologies, Paisley, UK 61-7300 

Claudin-1 Rabbit Polyclonal 
IgG Primary Ab 

Thermo Fisher Scientific, Hemel 
Hempstead, UK 

51-9000 

Na+K+ATPase Rabbit 
Polyclonal IgG Primary Ab 

Abcam, Cambridge, UK 
 

ab58475 

NKCC1 Rabbit Polyclonal IgG 
Primary Ab 

Abcam, Cambridge, UK 
 

ab58475 

Aquaporin-1 Rabbit Polyclonal 
IgG Primary Ab 

Abcam, Cambridge, UK 
 

ab15080 

ENaC Rabbit Polyclonal IgG 
Primary Ab 

Abcam, Cambridge, UK 
 

ab65710 

CCR2 Rabbit Polyclonal IgG 
Primary Ab 

Abcam, Cambridge, UK 
 

ab21667 

IL-17Rα Rabbit Polyclonal IgG 
Primary Ab 

St John’s Laboratory 
 

STJ93683 

TNF-R1 Rabbit Polyclonal IgG 
Primary Ab 

Abcam, Cambridge, UK 
 

ab19139 

IL6R Rabbit Polyclonal IgG 
Primary Ab 

Abcam, Cambridge, UK 
 

ab85105 

FITC Conjugated Donkey Anti-
Sheep IgG 

Secondary Ab 

Abcam, Cambridge, UK ab9015 

Alexa 488 Goat Anti-rabbit IgG 
Secondary Ab 

Life Technologies, Paisley, UK A11008 

BSA Albumin from Bovine 
Serum 

Sigma-Aldrich, Dorset, UK A9085 

DAPI-fluoromount-GTM 4’,6-
diamidino-2-phenylindole 

Southern Biotech, Birmingham, 
USA 

C9791 

DMSO Dimethyl Sulfoxide Sigma-Aldrich, Dorset, UK D2438 

HBSS Hank’s Balanced Salt 
Solution with Sodium 

Bicarbonate, Calcium and 
Magnesium Free, No Phenol 

Red 

Sigma-Aldrich, Dorset, UK H8264 

HBSS Hank’s Balanced Salt 
Solution with Sodium 

Bicarbonate, Calcium and 

Sigma-Aldrich, Dorset, UK H6648 



270 
 

Magnesium, No Phenol Red 

Trypsin-EDTA Solution Sigma-Aldrich, Dorset, UK T5941 

Tween-20 
Polyoxyethylenesorbitan 

Monolaureate 

Sigma-Aldrich, Dorset, UK P7949 

Table 6.1:  Complete list of all experimental chemicals, solutions, and reagents used in 
this project including suppliers and catalogue numbers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment 
CSF IIH 
(ng/ml) 

CSF Normal 
(ng/ml) 

Plasma IIH 
(ng/ml) 

Plasma 
Normal 
(ng/ml) 

Hydrocortisone* 
(Sinclair et al., 

2010) 

 
3.4 

 

3.6 
(Holub et al., 

2007) 

 
85.37 

 

72.5 
(Oppert et al., 

2000) 

Leptin 
(Dhungana et 

al., 2009) 

 
0.72 

 
0.63 

 
135.8 

 
64.8 

CCL2 
(Dhungana et 

al., 2009) 

 
0.99 

 
0.71 0.28 0.25 

IL-6 
(Orshal, J.M., 

2004) 

0.000024 
(Reihani-

Kermani et 
al., 2008) 

0.000018 
(Reihani-

Kermani et 
al., 2008) 

0.25** 
(Singhal et al, 

2002) 

0.002 
(Brambilla et 

al., 2001) 

IL-17 
(Edwards, L., 

2010) 

0.024*** 
(Li et al., 

2012) 

0.018 
(Li et al., 

2012) 

0.017*** 
(Li et al., 

2012) 

0.013 
(Li et al., 2012) 

TNF-α 
(Straczkowski et 

al., 2002) 

0.03** 
(Hayakata et 

al., 2004) 

0.004 
(Lopez-

Cortez et al., 
2000) 

0.002 
(Ball et al., 

2009) 

1.6 
(Nakai et al., 

2000) 

IL-1β 
(Dhungana et 

al., 2009) 

0.02** 
(Hayakata et 

al., 2004) 

0.001 
(Lopez-

Cortez et al., 
2000) 

0.02 
(Dhungana et 

al., 2009) 

0.006 
(Brambilla et 

al., 2001) 

Table 6.2: Levels of treatments in the CSF and blood plasma of IIH patients compared to 
concentrations in the CSF and blood plasma of normal healthy individuals. *in tension 
type headache patients controls; **in ICP following Traumatic Brain Injury (TBI); ***in 
Guillan-Barre Syndrome (GBS); (–) indicates no change between IIH patients and healthy 
individuals. 
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6.2 Description of ventriculo-cisternal perfusion calculations

Blank 
Reading 

(ABS) 
35 

           

        
  

Avg Cin ABS Tube Time (min) 
Cout 
ABS 

Cout 
ABS 

-blank 
i-o/o 

Total 
Perfusion 
flow rate 

(μl/min) 

CSF 
secretion 

rate (μl/min) 

Time 
(min) 

Total CSF 
secreted (μl) Steady state 

0 

392 1 0-9.9 210 175 1.083 40 43.31 5 216.57 0.480 

396 2 10-19.9 302 267 0.365 40 14.61 10 146.07 0.733 

401 3 20-29.9 339 304 0.199 20 3.98 10 39.80 0.834 

409 4 30-39.9 349 314 0.161 20 3.22 10 32.17 0.861 

Avg = 399.5 5 40-49.9 340 305 0.195 20 3.90 10 39.02 0.837 

-blank = 
364.5 

6 50-59.9 371 336 0.085 20 1.70 10 16.96 0.922 

 7 60-69.9 375 340 0.072 20 1.44 10 14.41 0.933 

 8 70-79.9 360 325 0.122 20 2.43 10 24.31 0.892 

 9 80-89.9 362 327 0.115 20 2.29 10 22.94 0.897 

 
10 90-92 +tube 360 325 0.122 20 2.43 6.9 16.77 0.892 

            

      
Secretion rate (μl/min) 

 Total secreted (μl) 
569.02 

  

      
2.49 

   

      
Secretion in 90 min (μl) 

223.85 
 

Initial CSF volume 
- 90 min new secretion 

(μl) 
345.16 

 
 

       
 

 

             

Table 6.3: Example of a spreadsheet document used to 

calculate CSF secretion rate (red), initial CSF volume (blue) 

and sample steady states (green) for an individual ventriculo-

cisternal perfusion experiment.  Average initial CSF 

absorbances (Cin) (grey). Sample used to explain calculations in 

equations 6.1, 6.2 and 6.3 (orange).  
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Example calculations for CSF secretion rate (equation 6.1), initial CSF volume (equation 

6.2) and sample steady state (equation 6.3), shown below, were used from sample 

tube 5 (Time: 4-50 min) as highlighted in orange in Table 6.3.  

Equation 6.1: 

 

𝐂𝐒𝐅 𝐒𝐞𝐜𝐫𝐞𝐭𝐢𝐨𝐧 𝐑𝐚𝐭𝐞 (𝛍𝐥 𝐦𝐢𝐧−𝟏) =
𝐂𝐢𝐧 −  𝐂𝐨𝐮𝐭 

𝐂𝐨𝐮𝐭
×𝐏𝐞𝐫𝐟𝐮𝐬𝐢𝐨𝐧 𝐑𝐚𝐭𝐞 (𝛍𝐥 𝐦𝐢𝐧−𝟏) 

 

𝐂𝐒𝐅 𝐒𝐞𝐜𝐫𝐞𝐭𝐢𝐨𝐧 𝐑𝐚𝐭𝐞 (𝛍𝐥 𝐦𝐢𝐧−𝟏) =
𝟑𝟔𝟒. 𝟓 𝐀𝐛𝐬 −  𝟑𝟎𝟓 𝐀𝐛𝐬 

𝟑𝟎𝟓 𝐀𝐛𝐬
×𝟐𝟎 (𝛍𝐥 𝐦𝐢𝐧−𝟏) 

                                                                            = 𝟑. 𝟗 𝛍𝐥 𝐦𝐢𝐧−𝟏
                                 

 

 

Equation 6.2: 

             𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐂𝐒𝐅 𝐕𝐨𝐥𝐮𝐦𝐞 (𝛍𝐥) =

= 𝐓𝐨𝐭𝐚𝐥 𝐯𝐨𝐥𝐮𝐦𝐞 𝐬𝐞𝐜𝐫𝐞𝐭𝐞𝐝 𝐝𝐮𝐫𝐢𝐧𝐠 𝐰𝐡𝐨𝐥𝐞 𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭(𝛍𝐥)∗ − −

−      (𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐂𝐒𝐅 𝐒𝐞𝐜𝐫𝐞𝐭𝐢𝐨𝐧 𝐑𝐚𝐭𝐞×𝟗𝟎 𝐦𝐢𝐧(𝛍𝐥/𝟗𝟎 𝐦𝐢𝐧)) 

 

             𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐂𝐒𝐅 𝐕𝐨𝐥𝐮𝐦𝐞 (𝛍𝐥) = 𝟓𝟔𝟗. 𝟎𝟐 𝛍𝐥 − (𝟐. 𝟒𝟗 𝛍𝐥 𝐦𝐢𝐧−𝟏 ×𝟗𝟎 𝐦𝐢𝐧) 

= 𝟑𝟒𝟓. 𝟏𝟔 𝛍𝐥 

 

Equation 6.3: 

𝐚𝐂𝐒𝐅 𝐒𝐚𝐦𝐩𝐥𝐞 𝐒𝐭𝐞𝐚𝐝𝐲 𝐒𝐭𝐚𝐭𝐞 =
𝐂𝐨𝐮𝐭(𝐀𝐛𝐬)

𝐂𝐢𝐧(𝐀𝐛𝐬)
 

 

𝐚𝐂𝐒𝐅 𝐒𝐚𝐦𝐩𝐥𝐞 𝐒𝐭𝐞𝐚𝐝𝐲 𝐒𝐭𝐚𝐭𝐞 =
𝟑𝟎𝟓 𝐀𝐛𝐬

𝟑𝟔𝟒. 𝟓 𝐀𝐛𝐬
 

                                                                                                 = 𝟎. 𝟖𝟑𝟕 𝐀𝐛𝐬 
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6.3 In vivo steady state values of treatments in perfused aCSF 

Steady state values following treatment with each mediator during the initial 

CSF secretion experiments on normal diet male Wistar rats are shown in 

Figures 6.1-6.7. 

 

Figure 6.1: The mean hydrocortisone (aCSF 0.5 μg/ml, n=4) steady state 
values of the perfused aCSF ventriculo-cisternal perfusion experiments 
compared to control (n=5). 
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Figure 6.2: The mean TNF-α (aCSF 0.0001 μg/ml, n=3) steady state values of 
the perfused aCSF ventriculo-cisternal perfusion experiments compared to 
control (n=5). 
 

 
Figure 6.3: The mean IL-17 (aCSF 0.0001 μg/ml, n=3) steady state values of 
the perfused aCSF ventriculo-cisternal perfusion experiments compared to 
control (n=5). 
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Figure 6.4: The mean IL-6 (aCSF 0.0001 μg/ml, n=3) steady state values of 
the perfused aCSF ventriculo-cisternal perfusion experiments compared to 
control (n=5). 

 

 

 

 
Figure 6.5: The mean CCL2 (aCSF 0.05 μg/ml, n=4) steady state values of the 
perfused aCSF ventriculo-cisternal perfusion experiments compared to 
control (n=5). 
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Figure 6.6: The mean Leptin (aCSF 0.1 μg/ml, n=4) steady state values of the 
perfused aCSF ventriculo-cisternal perfusion experiments compared to 
control (n=5). 

 

 

 

 

 
Figure 6.7: The mean IL-1β (aCSF 0.0001 μg/ml, n=3) steady state values of 
the perfused aCSF ventriculo-cisternal perfusion experiments compared to 
control (n=5). 
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6.4 In vivo steady state values of treatments in perfused aCSF 

following i.p injection of treatment 

Steady state values following treatment with each mediator in perfused aCSF 

and following i.p injection of each treatment during the initial CSF secretion 

experiments on normal diet male Wistar rats are shown in Figures 6.8-6.14. 

 
Figure 6.8:  The mean hydrocortisone (aCSF 0.5 μg/ml, i.p. 100 μg/ml, n=3) 
steady state values of the i.p.  ventriculo-cisternal perfusion experiments 
compared to control (n=4). 

 

 
Figure 6.9: The mean TNF-α (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3) 
steady state values of the i.p.  ventriculo-cisternal perfusion experiments 
compared to control (n=4). 
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Figure 6.10: The mean IL-17 (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3) 
steady state values of the i.p.  ventriculo-cisternal perfusion experiments 
compared to control (n=4). 

 

 

 
Figure 6.11: The mean IL-6 (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3) steady 
state values of the i.p.  ventriculo-cisternal perfusion experiments compared 
to control (n=4). 
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Figure 6.12: The mean CCL2 (aCSF 0.05 μg/ml, i.p. 10 μg/ml, n=4) steady 
state values of the i.p.  ventriculo-cisternal perfusion experiments compared 
to control (n=4). 

 

 

 
Figure 6.13: The mean Leptin (aCSF 0.1 μg/ml, i.p. 25 μg/ml, n=3) steady 
state values of the i.p.  ventriculo-cisternal perfusion experiments compared 
to control (n=4). 
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Figure 6.14: The mean IL-1β (aCSF 0.0001 μg/ml, i.p. 0.025 μg/ml, n=3) 
steady state values of the i.p.  ventriculo-cisternal perfusion experiments 
compared to control (n=4). 
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6.5 In vivo steady state values of treatments in perfused aCSF on 

male Wistar rats fed on a normal pellet diet 

Steady state values following treatment with each mediator during the next 

CSF secretion experiments on normal diet male Wistar rats are shown in 

Figures 6.15-6.19. 

 

 
Figure 6.15: The mean normal diet hydrocortisone (aCSF 0.5 μg/ml, n=3) 
against control (n=3) steady state values of the ventriculo-cisternal 
perfusion experiments.   
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Figure 6.16: The mean normal diet TNF-α (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments 

 

 

 

 
Figure 6.17: The mean normal diet IL-17 (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments. 
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Figure 6.18: The mean normal diet IL-6 (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments.   

 

 

 

 
Figure 6.19: The mean normal diet CCL2 (aCSF 0.05 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments.   
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6.6 In vivo steady state values of treatments in perfused aCSF on 

male Wistar rats fed on a high fat diet 

Steady state values following treatment with each mediator during the next 

CSF secretion experiments on male Wistar rats fed a HF diet are shown in 

Figures 6.20-6.24. 

 

 
Figure 6.20: The mean high fat diet hydrocortisone (aCSF 0.5 μg/ml, n=4) 
against control (n=4) steady state values of the ventriculo-cisternal 
perfusion experiments. 
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Figure 6.21: The mean high fat diet TNF-α (aCSF 0.0001 μg/ml, n=3) against 
control (n=4) steady state values of the ventriculo-cisternal perfusion 
experiments. 

 

 

 
Figure 6.22: The mean high fat diet IL-17 (aCSF 0.0001 μg/ml, n=4) against 
control (n=4) steady state values of the ventriculo-cisternal perfusion 
experiments.   
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Figure 6.23: The mean high fat diet IL-6 (aCSF 0.0001 μg/ml, n=4) against 
control (n=4) steady state values of the ventriculo-cisternal perfusion 
experiments.   

 

 

 

 

 
Figure 6.24: The mean high fat diet CCL2 (aCSF 0.05 μg/ml, n=4) against 
control (n=4) steady state values of the ventriculo-cisternal perfusion 
experiments.   
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6.7 In vivo steady state values of treatments in perfused aCSF on 

female Wistar rats fed on a normal pellet diet 

Steady state values following treatment with each mediator during the next 

CSF secretion experiments on female Wistar rats fed a normal diet are shown 

in Figures 6.25-6.29. 

 

 
Figure 6.25: The mean normal diet hydrocortisone (aCSF 0.5 μg/ml, n=3) 
against control (n=3) steady state values of the ventriculo-cisternal 
perfusion experiments.   
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Figure 6.26: The mean normal diet TNF-α (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments. 

 

 

 

 
Figure 6.27: The mean normal diet IL-17 (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments. 
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Figure 6.28: The mean normal diet IL-6 (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments.   

 

 

 

 
Figure 6.29: The mean normal diet CCL2 (aCSF 0.05 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments.   
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6.8 In vivo steady state values of treatments in perfused aCSF on 

female Wistar rats fed on a high fat diet 

Steady state values following treatment with each mediator during the next 

CSF secretion experiments on female Wistar rats fed a HF diet are shown in 

Figures 6.30-6.34. 

 

 

 
Figure 6.30: The mean female HF diet hydrocortisone (aCSF 0.5 μg/ml, n=3) 
against control (n=3) steady state values of the ventriculo-cisternal 
perfusion experiments. 
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Figure 6.31: The mean female HF diet TNF-α (aCSF 0.0001 μg/ml, n=3) 
against control (n=3) steady state values of the ventriculo-cisternal 
perfusion experiments. 
 

 

 
Figure 6.32: The mean female HF diet IL-17 (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments.   
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Figure 6.33: The mean female HF diet IL-6 (aCSF 0.0001 μg/ml, n=3) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments.   

 

 

 
Figure 6.34: The mean female HF diet CCL2 (aCSF 0.05 μg/ml, n=4) against 
control (n=3) steady state values of the ventriculo-cisternal perfusion 
experiments.   
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6.9 Comparison of normal and HF diet male Wistar rats on resistance 

to CSF drainage following mediator treatment 

Male Wistar rat resistance to CSF drainage comparisons between each 

mediator in both normal and HF diets are shown in Figures 6.35-6.40.  

 

 
Figure 6.35: Line graph to show the control variable rate infusion pressures 
(mm H2O.min/μl) of male Wistar rats raised on a normal diet (dashed line) 
and high fat diet (solid line).  

 

 

 
Figure 6.36: Line graph to show the IL-17 variable rate infusion pressures (mm 
H2O.min/μl) of male Wistar rats raised on a normal diet (dashed line) and high 
fat diet (solid line). 
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Figure 6.37: Line graph to show the IL-6 variable rate infusion pressures (mm 
H2O.min/μl) of male Wistar rats raised on a normal diet (dashed line) and high 
fat diet (solid line). 

 

 

 
Figure 6.38: Line graph to show the TNF-α variable rate infusion pressures 
(mm H2O.min/μl) of male Wistar rats raised on a normal diet (dashed line) 
and high fat diet (solid line). 
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Figure 6.39: Line graph to show the HC variable rate infusion pressures (mm 
H2O.min/μl) of male Wistar rats raised on a normal diet (dashed line) and high 
fat diet (solid line). 

 

 

 
Figure 6.40: Line graph to show the CCL2 variable rate infusion pressures 
(mm H2O.min/μl) of male Wistar rats raised on a normal diet (dashed line) 
and high fat diet (solid line). 
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6.10 hCPEpiC gene transcripts most in common with mouse CP transcriptome. 

    

ACCESSION SYMBOL DEFINITION logFC 

NM_213720.1 Chchd10 coiled-coil-helix-coiled-coil-helix domain containing 10 0.6513637 

NM_001042576.1 Rbp1 retinol binding protein 1. cellular 0.3445119 

NM_002032.2 Fth1 ferritin heavy chain 1 0.2898001 

NM_001001787.1 Atp1b1 ATPase. Na+/K+ transporting, beta 1 polypeptide 0.282886 

NM_003374.1 Vdac1 voltage-dependent anion channel 1 0.1554399 

NM_001033930.1 Uba52 ubiquitin A-52 residue ribosomal protein fusion product 1 0.0899128 

NM_001035267.1 Rpl41 ribosomal protein L41 0.0893397 

NM_004544.2 Ndufa1 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex. 1 0.0837867 

NM_001686.3 Atp5b ATP synthase, H+ transporting mitochondrial F1 complex. beta subunit 0.0427921 

NM_007209.3 Rpl35 ribosomal protein L35 0.0088475 

NM_000099.2 Cst3 cystatin C -0.012587 

NM_004356.3 Cd81 Cd81 antigen -0.019841 

NM_001642.1 Aplp2 amyloid beta (A4) precursor-like protein 2 -0.022418 

NM_001867.2 Cox7c cytochrome c oxidase. subunit VIIc -0.028557 

NM_001040034.1 Cd63 Cd63 antigen -0.065696 

NM_000701.6 Atp1a1 ATPase, Na+/K+ transporting. alpha 1 polypeptide -0.096175 

NM_000999.2 Rpl3 ribosomal protein L3 -0.11448 

NM_001032.3 Rps29 ribosomal protein S29 -0.130226 

NM_002489.2 Ndufa4 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 -0.134598 

NM_001023.2 Rps20 ribosomal protein S20 -0.149265 

NM_001861.2 Cox4i1 cytochrome c oxidase subunit IV isoform 1 -0.237825 

NM_015161.1 Arl6ip1 ADP-ribosylation factor-like 6 interacting protein 1 -0.249884 

NM_018955.2 Ubb ubiquitin B -0.260371 
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NM_002954.3 Rps27a ribosomal protein S27a -0.262877 

NM_001003785.1 Atp5h ATP synthase. H+ transporting, mitochondrial F0 complex. subunit d -0.272161 

NM_001003714.1 Atp5j2 ATP synthase, H+ transporting. mitochondrial F0 complex, subunit f. isoform 2 -0.349432 

NM_213725.1 Rplp1 ribosomal protein. large, P1 -0.480786 

NM_006004.2 Uqcrh ubiquinol-cytochrome c reductase hinge protein -0.499744 

NM_004074.2 Cox8a cytochrome c oxidase, subunit VIIIa -0.601493 

NM_004373.2 Cox6a1 cytochrome c oxidase. subunit VI a, polypeptide 1 -0.654124 

NM_001025070.1 Rps14 ribosomal protein S14 -0.68929 

NM_020548.4 Dbi diazepam binding inhibitor -0.878132 

Table 6.4: 32 genes from the positively associated hCPEpiC transcripts are found to be in common with the 59 most expressed genes in the 
mouse CP. 
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6.11: Increases/decreases in gene modulation following cytokine treatments  

Highest increase in modulation following 24h HC treatment 

ACCESSION SYMBOL LogFC adj.P.Val Regulation 

NM_006606.2 RBBP9 1.978712321 0.940691294 + 

NM_001042369.1 TROVE2 1.739270885 0.940691294 + 

NM_023010.2 UPF3B 1.676106453 0.940691294 + 

NM_001710.4 CFB 1.674518271 0.940691294 + 

NM_006556.3 PMVK 1.611790572 0.940691294 + 

NM_003335.2 UBA7 1.489689258 0.940691294 + 

NM_022744.1 C16orf58 1.426152843 0.940691294 + 

NM_003459.4 SLC30A3 1.417037158 0.940691294 + 

NR_002977.1 SNORA45 1.400264969 0.940691294 + 

NM_001077628.1 APH1A 1.352402797 0.940691294 + 

NM_001005373.1 LRSAM1 1.352038988 0.940691294 + 

XM_944302.1 EXOSC1 1.34093607 0.940691294 + 

NM_019067.4 GNL3L 1.323718913 0.940691294 + 

NM_006493.1 CLN5 1.315609789 0.940691294 + 

NM_005382.1 NEFM 1.291550639 0.940691294 + 

NM_004126.3 GNG11 1.291230137 0.940691294 + 

NM_004707.2 ATG12 1.286095607 0.940691294 + 

NR_002918.1 SNORA48 1.279619497 0.940691294 + 

NM_032448.1 FAM120B 1.264297392 0.940691294 + 

XM_939218.1 LOC650132 1.253837704 0.940691294 + 

NM_152330.2 FRMD6 1.243695841 0.940691294 + 

NM_014284.2 NCDN 1.22796179 0.940691294 + 

NM_032970.2 SEC22C 1.226124554 0.940691294 + 

NR_000028.1 SNORD83B 1.221898687 0.940691294 + 

NM_016050.2 MRPL11 1.219555513 0.940691294 + 

NM_032778.4 MINA 1.209983835 0.940691294 + 

NM_013398.1 ZNF224 1.209426594 0.940691294 + 

NM_004738.3 VAPB 1.201505542 0.940691294 + 

NM_005346.3 HSPA1B 1.200324944 0.940691294 + 

NM_014165.1 C6orf66 1.190904184 0.940691294 + 

NM_001013.3 RPS9 1.186941114 0.940691294 + 

NM_001039619.1 PRMT5 1.169161804 0.940691294 + 

NM_052897.3 MBD6 1.151192683 0.940691294 + 

NM_001013.3 RPS9 1.14890683 0.940691294 + 

NM_001085471.1 FOXN3 1.148522972 0.940691294 + 

NM_001114403.1 UPLP 1.145920732 0.940691294 + 

NM_006861.4 RAB35 1.14444147 0.940691294 + 

XM_942536.1 LOC651143 1.142885422 0.940691294 + 

NM_002958.3 RYK 1.142675107 0.940691294 + 

AK124143 
 

1.138776649 0.940691294 + 

NM_001011516.1 PDLIM5 1.134515908 0.940691294 + 

XM_001713657.1 LOC100130707 1.134389375 0.940691294 + 

NM_002575.1 SERPINB2 1.130243511 0.940691294 + 

NM_021961.4 TEAD1 1.125966975 0.940691294 + 

NM_138389.1 FAM114A1 1.121464216 0.940691294 + 

NM_013342.2 TFPT 1.118858275 0.940691294 + 

NR_002319.1 PIPSL 1.117418663 0.940691294 + 

XM_001713608.1 LOC100133836 1.105457629 0.940691294 + 

NM_012094.3 PRDX5 1.103757919 0.940691294 + 

XR_017973.1 C12orf47 1.102997314 0.940691294 + 

NR_003265.3 SDHAP2 1.097570946 0.940691294 + 

NM_000368.3 TSC1 1.094600559 0.940691294 + 

XM_939987.1 LOC650898 1.092937042 0.940691294 + 

NM_001251.1 CD68 1.088143794 0.940691294 + 

NM_005008.2 NHP2L1 1.076722124 0.940691294 + 

NR_003051.2 RMRP 1.073074774 0.940691294 + 

NM_006666.1 RUVBL2 1.069029782 0.940691294 + 

NR_000037.1 TRQ1 1.068888083 0.940691294 + 

NM_019592.5 RNF20 1.064470047 0.940691294 + 

NM_017757.2 ZNF407 1.063876374 0.940691294 + 

NM_002504.3 NFX1 1.060653156 0.940691294 + 

NM_020310.2 MNT 1.059614249 0.940691294 + 

NM_153717.2 EVC 1.058788171 0.940691294 + 

NM_003545.3 HIST1H4E 1.05830021 0.940691294 + 

NM_032316.3 NICN1 1.058259462 0.940691294 + 

NM_012318.1 LETM1 1.054121663 0.940691294 + 

NM_001238.1 CCNE1 1.048874604 0.940691294 + 
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Table 6.5: Genes with greatest increase in modulation following 24h hCPEpiC treatment with 
HC. 

 

Highest decrease in modulation following 24h HC treatment 

ACCESSION SYMBOL LogFC adj.P.Val Regulation 

XM_942296.1 LOC201229 -1.618517107 0.940691294 - 

NM_138284.1 IL17D -1.609309399 0.940691294 - 

NM_001039571.1 KREMEN1 -1.491588586 0.940691294 - 

XM_001129663.1 ZNF703 -1.417541925 0.940691294 - 

NM_001099639.1 ZNF146 -1.406134901 0.940691294 - 

NM_017503.2 SURF2 -1.388190377 0.940691294 - 

NM_032861.2 SERAC1 -1.357068977 0.940691294 - 

NM_004715.3 CTDP1 -1.341601661 0.940691294 - 

NM_203382.1 AMACR -1.322454647 0.940691294 - 

XR_042006.1 LOC728975 -1.313239254 0.940691294 - 

NM_003250.4 THRA -1.31102174 0.940691294 - 

NM_201443.1 TEAD4 -1.278201128 0.940691294 - 

NM_017966.4 VPS37C -1.277421609 0.940691294 - 

NM_003216.2 TEF -1.274313964 0.940691294 - 

XM_940903.2 ZC3H5 -1.260756522 0.940691294 - 

XM_001126243.1 LOC727958 -1.251062228 0.940691294 - 

NM_001031714.3 INF2 -1.249494292 0.940691294 - 

NM_001157.2 ANXA11 -1.242250167 0.940691294 - 

NM_173566.2 C22orf30 -1.241122611 0.940691294 - 

NM_004517.2 ILK -1.240379926 0.940691294 - 

NM_024330.1 SLC27A3 -1.23662906 0.940691294 - 

NM_007254.2 PNKP -1.23452579 0.940691294 - 

NM_032592.3 ACCS -1.222008813 0.940691294 - 

NM_002237.3 KCNG1 -1.216149819 0.940691294 - 

NM_199293.2 TH -1.211489511 0.940691294 - 

NM_000360.3 TH -1.20541426 0.940691294 - 

XM_933784.1 LOC646631 -1.184121994 0.940691294 - 

NM_004715.3 CTDP1 -1.160082862 0.940691294 - 

XM_939186.2 GPSM1 -1.155588438 0.940691294 - 

NM_025207.3 FLAD1 -1.151772743 0.940691294 - 

NM_138927.1 SON -1.143403342 0.940691294 - 

NM_148956.1 NSUN5 -1.142243507 0.940691294 - 

NM_018239.2 LRRC20 -1.137412518 0.940691294 - 

NM_019624.2 ABCB9 -1.137269311 0.940691294 - 

AI860517 
 

-1.134058207 0.940691294 - 

NM_017715.2 ZNF3 -1.128384459 0.940691294 - 

NM_001078172.1 FAM127B -1.122008075 0.940691294 - 

NM_001025436.1 SPAG16 -1.11450463 0.940691294 - 

NM_001099400.1 SGCE -1.111213794 0.940691294 - 

NM_001032364.1 GGT1 -1.102647995 0.940691294 - 

NM_018044.2 NSUN5 -1.098842777 0.940691294 - 

NR_002215.1 C21orf41 -1.087666362 0.940691294 - 

NM_000692.3 ALDH1B1 -1.078883914 0.940691294 - 

NM_004512.3 IL11RA -1.065073652 0.940691294 - 

NM_001038618.1 NARF -1.062693824 0.940691294 - 

NM_001752.2 CAT -1.061646196 0.940691294 - 

NM_144683.3 DHRS13 -1.056604187 0.940691294 - 

XM_001722466.1 LOC100129186 -1.053279619 0.940691294 - 

NM_030800.1 C15orf44 1.048420936 0.940691294 + 

NM_003290.1 TPM4 1.047938789 0.940691294 + 

NM_014138.3 FAM156A 1.029219145 0.940691294 + 

NM_003776.2 MRPL40 1.026678727 0.940691294 + 

NM_001347.2 DGKQ 1.020054018 0.940691294 + 

NM_031263.1 HNRPK 1.019525442 0.940691294 + 

NM_013283.3 MAT2B 1.019133506 0.940691294 + 

NM_003164.3 STX5 1.014411166 0.940691294 + 

NM_004707.2 ATG12 1.012182551 0.940691294 + 

NM_080652.2 TMEM41A 1.009371812 0.940691294 + 

NM_001008408.3 RBM33 1.007583907 0.940691294 + 

NM_001827.1 CKS2 1.004033381 0.940691294 + 

NM_000320.1 QDPR 1.003494559 0.940691294 + 

NR_002963.1 SNORA24 1.001002333 0.940691294 + 

NM_016535.3 ZNF581 1.000197545 0.940691294 + 
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NM_001029835.1 CCM2 -1.050637438 0.940691294 - 

NM_021806.1 FAM3A -1.04884977 0.940691294 - 

NM_016256.2 NAGPA -1.048299451 0.940691294 - 

NM_021807.3 EXOC4 -1.045912012 0.940691294 - 

NM_019030.2 DHX29 -1.028578702 0.940691294 - 

NM_015100.2 POGZ -1.021067942 0.940691294 - 

NM_001009814.1 KIAA0564 -1.020809998 0.940691294 - 

NM_024640.3 YRDC -1.01710884 0.940691294 - 

XM_001715452.1 LOC100132369 -1.014499755 0.940691294 - 

NM_033138.2 CALD1 -1.014440485 0.940691294 - 

NM_022087.2 GALNT11 -1.009187525 0.940691294 - 

NM_017956.2 TRMT12 -1.007277034 0.940691294 - 

NM_138431.1 MFSD3 -1.004837965 0.940691294 - 

NM_016498.3 MTP18 -1.00423326 0.940691294 - 

Table 6.6: Genes with greatest decrease in modulation following 24h hCPEpiC treatment with 
HC. 

 

Highest increase in modulation following 24h TNF-α treatment 

ACCESSION SYMBOL LogFC adj.P.Val Regulation 

NM_001042369.1 TROVE2 2.204761434 0.584900067 + 

NM_144635.3 FAM131A 2.04970528 0.955775508 + 

NM_016535.3 ZNF581 2.02994054 0.65265835 + 

AI557007 
 

1.875315457 0.584900067 + 

XR_017973.1 C12orf47 1.859400528 0.955775508 + 

NM_007279.2 U2AF2 1.827013324 0.955775508 + 

NM_005706.2 TSSC4 1.789284489 0.955775508 + 

NM_173079.1 RUNDC1 1.683385271 0.871195616 + 

NM_016066.3 GLRX2 1.659278071 0.946981573 + 

NM_033281.5 MRPS36 1.634566599 0.955775508 + 

NM_001238.1 CCNE1 1.573358027 0.955775508 + 

NM_006736.5 DNAJB2 1.541237581 0.955775508 + 

NM_032316.3 NICN1 1.534197083 0.955775508 + 

NM_145687.2 MAP4K4 1.510886851 0.584900067 + 

NM_005333.2 HCCS 1.462571812 0.955775508 + 

NM_023010.2 UPF3B 1.461098972 0.955775508 + 

NM_000320.1 QDPR 1.426906217 0.955775508 + 

NM_001157.2 ANXA11 1.423898631 0.955775508 + 

NM_001114403.1 UPLP 1.421373792 0.955775508 + 

NM_001303.2 COX10 1.403055654 0.955775508 + 

NM_175920.3 LNPEP 1.400220772 0.955775508 + 

NM_207291.1 USF2 1.390563918 0.955775508 + 

NM_001014380.1 KATNAL1 1.383954878 0.65265835 + 

NM_020177.2 FEM1C 1.373371213 0.955775508 + 

NM_018146.2 RNMTL1 1.357115642 0.65265835 + 

NM_018198.2 DNAJC11 1.347638848 0.955775508 + 

NM_004050.2 BCL2L2 1.329841433 0.955775508 + 

NM_018352.2 C4orf43 1.322405278 0.955775508 + 

NM_001080393.1 GXYLT2 1.309798569 0.955775508 + 

NM_001031727.2 MRI1 1.307426974 0.871195616 + 

NM_030809.1 CSRNP2 1.288176273 0.955775508 + 

NM_003580.2 NSMAF 1.273828468 0.955775508 + 

NM_005720.2 ARPC1B 1.270152623 0.955775508 + 

NM_181472.1 CMTM7 1.26737169 0.584900067 + 

NM_014284.2 NCDN 1.253227095 0.955775508 + 

NM_025204.2 TRABD 1.251175444 0.955775508 + 

NM_145800.2 Sep-06 1.241807627 0.955775508 + 

NM_030808.3 NDEL1 1.240594171 0.955775508 + 

NM_182984.3 TRMT2A 1.239146451 0.955775508 + 

NM_153033.1 KCTD7 1.227258019 0.955775508 + 

NM_017518.5 UCHL5IP 1.221904641 0.955775508 + 

NM_015878.4 AZIN1 1.215417578 0.584900067 + 

NM_014652.2 IPO13 1.207054219 0.955775508 + 

NM_018171.3 APPL2 1.206634958 0.955775508 + 

NM_005585.3 SMAD6 1.201777641 0.955775508 + 

NM_014614.1 PSME4 1.192380801 0.955775508 + 

NM_015609.2 C1orf144 1.189985096 0.955775508 + 

NM_021915.2 ZNF69 1.185718518 0.955775508 + 

NM_001011546.1 DSTN 1.184967928 0.955775508 + 
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NM_180989.4 GPR180 1.183839231 0.955775508 + 

XM_939218.1 LOC650132 1.176997481 0.955775508 + 

NR_004390.1 SNORA57 1.164318207 0.955775508 + 

NM_013362.1 ZNF225 1.163129491 0.955775508 + 

NM_012317.2 LDOC1 1.148813225 0.955775508 + 

NM_000271.3 NPC1 1.142125013 0.955775508 + 

NM_006493.1 CLN5 1.139582053 0.955775508 + 

BU632198 
 

1.13914528 0.907353371 + 

NM_032525.1 TUBB6 1.138677948 0.955775508 + 

NM_202001.1 ERCC1 1.136728865 0.955775508 + 

NM_138440.2 VASN 1.136090711 0.955775508 + 

NM_032548.2 ABTB1 1.135439312 0.955775508 + 

XM_933028.2 FLJ20444 1.126787156 0.955775508 + 

NM_144568.1 TMEM55B 1.119574771 0.955775508 + 

NM_032305.1 POLR3GL 1.119067289 0.955775508 + 

NM_002710.1 PPP1CC 1.103192119 0.955775508 + 

NM_133377.2 RAD1 1.098912443 0.955775508 + 

NM_020806.4 GPHN 1.097277393 0.955775508 + 

XM_942150.1 LOC652615 1.095062024 0.955775508 + 

NR_002210.1 COX6BP1 1.090689917 0.955775508 + 

NM_001042539.1 MAZ 1.087243991 0.955775508 + 

NM_014328.2 RUSC1 1.083808859 0.955775508 + 

NM_001120.3 MFSD10 1.083537373 0.955775508 + 

NM_182909.2 FILIP1L 1.082327587 0.955775508 + 

NM_145792.1 MGST1 1.079996859 0.955775508 + 

NM_178526.1 SLC25A42 1.079781771 0.955775508 + 

NM_182801.1 EGFLAM 1.074804927 0.955775508 + 

NM_015028.1 TNIK 1.072978314 0.955775508 + 

XM_001133393.1 KCMF1 1.072967471 0.955775508 + 

NM_024589.1 ROGDI 1.070492575 0.955775508 + 

NM_001560.2 IL13RA1 1.07048166 0.955775508 + 

NM_014504.1 RABGEF1 1.066525068 0.955775508 + 

AA057856 
 

1.066181521 0.955775508 + 

NM_004236.1 COPS2 1.060858632 0.955775508 + 

NM_015164.1 PLEKHM2 1.057661916 0.955775508 + 

NM_013338.3 ALG5 1.057217059 0.955775508 + 

NM_001080826.1 PRAGMIN 1.053944901 0.955775508 + 

NM_152877.1 FAS 1.046892105 0.955775508 + 

NM_030768.2 ILKAP 1.042138819 0.955775508 + 

NM_015577.1 RAI14 1.037053674 0.955775508 + 

NM_014389.1 PELP1 1.036084047 0.955775508 + 

NM_020998.2 MST1 1.035544309 0.955775508 + 

NM_012265.1 RHBDD3 1.034888895 0.955775508 + 

NM_014463.1 LSM3 1.023983145 0.955775508 + 

NM_016287.3 HP1BP3 1.020964099 0.955775508 + 

NM_018054.4 ARHGAP17 1.020419382 0.955775508 + 

NM_201453.2 CBWD3 1.016820146 0.955775508 + 

NM_033294.2 CASP1 1.016117009 0.955775508 + 

XR_018376.1 LOC648509 1.011791476 0.955775508 + 

NM_181509.1 MAP1LC3A 1.010846221 0.955775508 + 

NM_004723.2 ARHGEF2 1.008412713 0.955775508 + 

NM_144729.1 DUSP10 1.00770475 0.955775508 + 

NM_004270.3 CRSP9 1.000847525 0.955775508 + 

Table 6.7: Genes with greatest increase in modulation following 24h hCPEpiC treatment with 
TNF-α. 

 

Highest decrease in modulation following 24h TNF-α treatment 

ACCESSION SYMBOL LogFC adj.P.Val Regulation 

NM_001037633.1 SIL1 -2.232905346 0.65265835 - 

DN997246 
 

-2.026239611 0.955775508 - 

NM_180981.1 MRPL52 -1.814332862 0.565923504 - 

NM_001031714.3 INF2 -1.730860063 0.955775508 - 

XM_942296.1 LOC201229 -1.689671655 0.955775508 - 

NM_001025436.1 SPAG16 -1.676684851 0.955775508 - 

NM_032038.1 SPNS1 -1.666612656 0.955775508 - 

NM_003760.3 EIF4G3 -1.63167934 0.955775508 - 

NM_001567.2 INPPL1 -1.627556281 0.955775508 - 

NM_181716.2 CENPV -1.596925097 0.584900067 - 
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NM_000692.3 ALDH1B1 -1.594512578 0.955775508 - 

NM_001029835.1 CCM2 -1.572768338 0.955775508 - 

NM_022455.3 NSD1 -1.56673598 0.955775508 - 

NM_001099639.1 ZNF146 -1.553415179 0.955775508 - 

AL157484 
 

-1.553407098 0.955775508 - 

NM_019015.1 CHPF2 -1.532407176 0.955775508 - 

NM_002569.2 FURIN -1.499854715 0.955775508 - 

NM_003250.4 THRA -1.495391659 0.955775508 - 

NM_018235.1 CNDP2 -1.483419637 0.955775508 - 

NM_138927.1 SON -1.480605249 0.955775508 - 

NM_002818.2 PSME2 -1.452319802 0.955775508 - 

NM_015326.2 SRGAP2 -1.442133412 0.584900067 - 

NM_017702.2 DEF8 -1.430488242 0.65265835 - 

NM_173701.1 WARS -1.421049203 0.584900067 - 

NM_148956.1 NSUN5 -1.419577656 0.955775508 - 

NM_130851.1 BMP4 -1.413331418 0.955775508 - 

NM_016406.1 UFC1 -1.403097544 0.955775508 - 

NM_005587.1 MEF2A -1.40249886 0.955775508 - 

NM_003869.4 CES2 -1.399882509 0.955775508 - 

NR_003038.1 SNHG5 -1.396362397 0.793442166 - 

NM_002899.2 RBP1 -1.390078674 0.955775508 - 

XM_945932.1 LOC654135 -1.384282331 0.955775508 - 

NM_013379.2 DPP7 -1.378649284 0.955775508 - 

NM_017615.1 NSMCE4A -1.35191496 0.955775508 - 

NM_001240.2 CCNT1 -1.345221127 0.955775508 - 

NM_001038618.1 NARF -1.342172356 0.955775508 - 

NM_001009570.1 CCT7 -1.328095908 0.955775508 - 

NM_033138.2 CALD1 -1.326814255 0.955775508 - 

XM_937735.1 LOC648668 -1.322768423 0.955775508 - 

NM_001032364.1 GGT1 -1.32230675 0.955775508 - 

NM_025207.3 FLAD1 -1.319712874 0.955775508 - 

NM_017503.2 SURF2 -1.315281287 0.955775508 - 

NM_032861.2 SERAC1 -1.312624319 0.955775508 - 

NM_019030.2 DHX29 -1.309457318 0.584900067 - 

NM_178863.2 KCTD13 -1.30922989 0.955775508 - 

NM_020699.1 GATAD2B -1.300906255 0.955775508 - 

XM_001126243.1 LOC727958 -1.288813634 0.955775508 - 

NM_000679.3 ADRA1B -1.288767932 0.955775508 - 

NM_000404.1 GLB1 -1.285247762 0.955775508 - 

NM_145871.1 GSTZ1 -1.279029515 0.955775508 - 

NM_019624.2 ABCB9 -1.261849802 0.955775508 - 

XM_940903.2 ZC3H5 -1.259713359 0.955775508 - 

NM_024824.3 ZC3H14 -1.251096582 0.955775508 - 

NM_014680.2 KIAA0100 -1.245958371 0.955775508 - 

NM_017926.2 C14orf118 -1.244136203 0.955775508 - 

NM_198595.2 AFAP1 -1.243801393 0.955775508 - 

XR_017355.2 LOC644877 -1.238929092 0.955775508 - 

NM_201443.1 TEAD4 -1.236500532 0.955775508 - 

NM_004168.1 SDHA -1.224599943 0.955775508 - 

NM_013250.1 ZNF215 -1.224269513 0.946981573 - 

XM_001129663.1 ZNF703 -1.215422219 0.955775508 - 

NM_152260.1 RPUSD2 -1.215315058 0.955775508 - 

NM_017966.4 VPS37C -1.2138954 0.955775508 - 

NR_003664.1 LOC389517 -1.212238991 0.955775508 - 

XR_038849.1 LOC100128353 -1.209914802 0.955775508 - 

NM_001032289.1 SLC35A2 -1.208796436 0.955775508 - 

NM_017805.2 RASIP1 -1.202352706 0.955775508 - 

NM_170753.1 PGBD3 -1.199815614 0.955775508 - 

NM_058243.2 BRD4 -1.199284324 0.955775508 - 

NM_001004698.1 OR2W5 -1.199229569 0.955775508 - 

NM_001037163.1 C7orf70 -1.197453023 0.955775508 - 

NM_002714.2 PPP1R10 -1.191740305 0.955775508 - 

NM_024330.1 SLC27A3 -1.190992746 0.955775508 - 

NM_018464.2 CISD1 -1.190547867 0.955775508 - 

NM_018249.4 CDK5RAP2 -1.190529489 0.955775508 - 

NM_182676.1 PLTP -1.188995014 0.955775508 - 

NM_031412.2 GABARAPL1 -1.187007298 0.955775508 - 

NM_001042635.1 NGDN -1.185477626 0.955775508 - 

NM_014962.2 BTBD3 -1.1843863 0.955775508 - 

NM_013293.3 TRA2A -1.181643165 0.955775508 - 

NM_207333.2 ZNF320 -1.179819315 0.955775508 - 
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NM_207012.2 AP3M1 -1.177860649 0.955775508 - 

XM_001133202.1 KIAA0363 -1.177496779 0.584900067 - 

NM_001033564.1 C6orf225 -1.176030525 0.955775508 - 

NM_145754.2 KIFC2 -1.173667828 0.955775508 - 

NM_144563.2 RPIA -1.172920471 0.955775508 - 

NM_006371.3 CRTAP -1.171175661 0.955775508 - 

NR_002745.1 SNORD48 -1.167910511 0.955775508 - 

NM_078471.3 MYO18A -1.167504691 0.955775508 - 

NM_007010.2 DDX52 -1.165197298 0.955775508 - 

NM_178422.4 PAQR7 -1.165111966 0.955775508 - 

NM_015527.2 TBC1D10B -1.16418613 0.955775508 - 

NM_005791.1 MPHOSPH10 -1.163872605 0.955775508 - 

NM_001040144.1 CHTF8 -1.161958164 0.955775508 - 

NM_004346.3 CASP3 -1.160589426 0.955775508 - 

XM_933784.1 LOC646631 -1.158493716 0.955775508 - 

NM_013436.3 NCKAP1 -1.158107452 0.955775508 - 

XM_944131.1 LOC650280 -1.155944075 0.955775508 - 

NM_000360.3 TH -1.152995496 0.955775508 - 

NM_001281.2 TBCB -1.147928629 0.955775508 - 

NM_001042601.1 TTC14 -1.147219651 0.955775508 - 

NM_000701.6 ATP1A1 -1.141902271 0.955775508 - 

NM_004517.2 ILK -1.124574924 0.955775508 - 

NM_032656.2 DHX37 -1.124051188 0.955775508 - 

NM_199293.2 TH -1.123157787 0.955775508 - 

NM_184041.1 ALDOA -1.122494501 0.955775508 - 

NR_003249.1 HNRPDL -1.117349388 0.955775508 - 

NM_178865.3 SERINC2 -1.11303988 0.955775508 - 

NM_000820.1 GAS6 -1.111371575 0.955775508 - 

NM_025250.2 TTYH3 -1.105438448 0.955775508 - 

NM_001126.2 ADSS -1.105334518 0.955775508 - 

NM_015373.3 CBY1 -1.104477453 0.955775508 - 

NM_001039571.1 KREMEN1 -1.103669465 0.955775508 - 

NM_015172.3 BAT2D1 -1.10187173 0.955775508 - 

NM_006425.4 SLU7 -1.100769594 0.955775508 - 

NM_173680.3 ZNF775 -1.09957067 0.955775508 - 

NM_013443.3 ST6GALNAC6 -1.09804386 0.955775508 - 

NM_017804.3 DERPC -1.097920002 0.955775508 - 

NM_005197.2 CHES1 -1.089283797 0.955775508 - 

NM_004423.3 DVL3 -1.089226271 0.955775508 - 

NM_032982.2 CASP2 -1.080424851 0.955775508 - 

AU151944 
 

-1.078630198 0.955775508 - 

AK055969 
 

-1.076543838 0.955775508 - 

NM_001017981.1 RNF215 -1.069858434 0.955775508 - 

NM_003216.2 TEF -1.068750545 0.955775508 - 

NM_001006610.1 SIAH1 -1.062391759 0.955775508 - 

NM_018998.2 FBXW5 -1.061121378 0.955775508 - 

XM_001132505.1 LOC728689 -1.059648523 0.955775508 - 

NM_025128.3 MUS81 -1.054050563 0.955775508 - 

NR_002215.1 C21orf41 -1.05374944 0.955775508 - 

NM_018445.4 SELS -1.053428283 0.955775508 - 

XM_001717676.1 LOC730153 -1.051044373 0.955775508 - 

NM_001078172.1 FAM127B -1.044727813 0.955775508 - 

NM_022740.2 HIPK2 -1.044596978 0.955775508 - 

NM_180699.1 SNRNP35 -1.040146188 0.955775508 - 

NM_014161.2 MRPL18 -1.037781216 0.955775508 - 

NM_024662.1 NAT10 -1.036065392 0.955775508 - 

NM_144683.3 DHRS13 -1.034128136 0.955775508 - 

XM_001128310.1 LOC728226 -1.029545585 0.955775508 - 

NM_014164.4 FXYD5 -1.029361771 0.955775508 - 

NM_001020825.1 NR3C1 -1.028664755 0.955775508 - 

NM_001024662.1 RPL6 -1.028320831 0.955775508 - 

NM_025267.2 AARSD1 -1.021403396 0.955775508 - 

NM_001378.1 DYNC1I2 -1.021331343 0.955775508 - 

NM_023019.1 DCTN1 -1.019651969 0.955775508 - 

NM_001039199.1 TTPAL -1.019072548 0.955775508 - 

NM_015100.2 POGZ -1.018828327 0.955775508 - 

NM_022804.2 SNURF -1.018593421 0.955775508 - 

NM_007254.2 PNKP -1.017012489 0.955775508 - 

XM_001722279.1 RGPD8 -1.014760504 0.955775508 - 

NM_014886.3 NSA2 -1.013397513 0.955775508 - 

XM_001715880.1 LOC100129652 -1.011265093 0.955775508 - 
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XM_001126750.1 ABI2 -1.01062819 0.955775508 - 

NM_016391.3 HSPC111 -1.010275012 0.955775508 - 

NM_002943.2 RORA -1.008902449 0.955775508 - 

NM_001101663.1 NBPF11 -1.005899019 0.955775508 - 

NM_016360.2 TACO1 -1.005665156 0.955775508 - 

NM_152629.3 GLIS3 -1.005303869 0.955775508 - 

NM_007284.3 TWF2 -1.004314896 0.955775508 - 

NM_001194.2 HCN2 -1.00309696 0.955775508 - 

XM_001133059.1 LOC728772 -1.000268625 0.955775508 - 

Table 6.8: Genes with greatest decrease in modulation following 24h hCPEpiC treatment with 
TNF-α. 
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Highest decrease in modulation following 24h IL-6 treatment 

ACCESSION SYMBOL LogFC adj.P.Val Regulation 

NM_032592.3 ACCS -1.498903817 0.782171874 - 

XM_942296.1 LOC201229 -1.397877621 0.745735326 - 

NM_025207.3 FLAD1 -1.304327059 0.745735326 - 

NM_138284.1 IL17D -1.302034933 0.745735326 - 

NM_004715.3 CTDP1 -1.299026007 0.745735326 - 

XM_940903.2 ZC3H5 -1.289370508 0.76625971 - 

NM_201443.1 TEAD4 -1.286999502 0.745735326 - 

NM_180699.1 SNRNP35 -1.273304295 0.782171874 - 

NM_001031714.3 INF2 -1.246624878 0.782171874 - 

NM_004715.3 CTDP1 -1.234824123 0.750148358 - 

NM_203382.1 AMACR -1.15107274 0.746652514 - 

NM_001025436.1 SPAG16 -1.134640791 0.762761846 - 

XR_017355.2 LOC644877 -1.123036423 0.745735326 - 

NM_001029835.1 CCM2 -1.120814761 0.762761846 - 

XR_038716.1 LOC100131735 -1.119789368 0.77001028 - 

NM_017966.4 VPS37C -1.108133912 0.745735326 - 

NM_004563.2 PCK2 -1.101245628 0.746652514 - 

NM_178863.2 KCTD13 -1.088565153 0.789542791 - 

Highest increase in modulation following 24h IL-6 treatment 

ACCESSION SYMBOL LogFC adj.P.Val Regulation 

NM_006494.1 ERF 1.644959702 0.745735326 + 

NR_002963.1 SNORA24 1.519878405 0.745735326 + 

NR_004391.1 RNY1 1.442790773 0.745735326 + 

NM_001114403.1 UPLP 1.403447114 0.745735326 + 

NM_001042369.1 TROVE2 1.377912697 0.724447077 + 

NM_014284.2 NCDN 1.278417483 0.745735326 + 

NM_001013.3 RPS9 1.272279845 0.782171874 + 

NM_016066.3 GLRX2 1.271629817 0.745735326 + 

NM_000368.3 TSC1 1.271089613 0.688986932 + 

NR_003051.2 RMRP 1.204534867 0.782171874 + 

NM_005346.3 HSPA1B 1.197962198 0.745735326 + 

NM_006009.2 TUBA1A 1.182231439 0.745735326 + 

NM_001013.3 RPS9 1.175001933 0.802381309 + 

NM_138720.1 HIST1H2BD 1.149826756 0.746652514 + 

NM_001251.1 CD68 1.148784811 0.782171874 + 

NM_003544.2 HIST1H4B 1.14251194 0.724447077 + 

NM_003508.2 FZD9 1.135912451 0.745735326 + 

NM_012094.3 PRDX5 1.134130806 0.782171874 + 

NR_002312.1 RPPH1 1.13299077 0.745735326 + 

NM_001827.1 CKS2 1.121233978 0.74628452 + 

NM_004707.2 ATG12 1.121141732 0.745735326 + 

NM_052897.3 MBD6 1.093022492 0.724447077 + 

NR_002918.1 SNORA48 1.088700759 0.745735326 + 

XR_017149.2 LOC392437 1.085260599 0.688986932 + 

NM_138777.2 MRRF 1.080581714 0.745735326 + 

XM_930777.1 LOC642393 1.065612777 0.746652514 + 

NM_001040084.1 ANXA8 1.065487474 0.688986932 + 

NM_006556.3 PMVK 1.059544741 0.805909597 + 

NM_181839.1 PKIA 1.057169715 0.750148358 + 

NM_003543.3 HIST1H4H 1.055773503 0.805909597 + 

XM_001724769.1 LOC100134253 1.042591689 0.80561574 + 

NM_030800.1 C15orf44 1.041758059 0.746652514 + 

NM_020529.1 NFKBIA 1.038851078 0.762761846 + 

XM_208281.7 LOC285053 1.03679764 0.745735326 + 

NR_000028.1 SNORD83B 1.034499682 0.745735326 + 

NM_021961.4 TEAD1 1.026541222 0.745735326 + 

NM_004126.3 GNG11 1.014484117 0.688986932 + 

XM_939218.1 LOC650132 1.007027006 0.745735326 + 

NM_001011546.1 DSTN 1.006419932 0.724447077 + 

NM_006184.3 NUCB1 1.005040673 0.804801883 + 

XM_001725751.1 LOC100130592 1.003501072 0.782171874 + 

NM_004514.3 FOXK2 1.000123132 0.762761846 + 

Table 6.9: Genes with greatest increase in modulation following 24h hCPEpiC treatment with IL-
6.  
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-1.086900545 0.746652514 - 

XM_001714755.1 LOC100133588 -1.086208634 0.746652514 - 

NM_001099639.1 ZNF146 -1.083573899 0.745735326 - 

NM_207333.2 ZNF320 -1.073710384 0.815261485 - 

NM_001194.2 HCN2 -1.07244273 0.745735326 - 

NM_013250.1 ZNF215 -1.066554183 0.688986932 - 

NM_024640.3 YRDC -1.04086374 0.745735326 - 

NM_145754.2 KIFC2 -1.031147959 0.745735326 - 

NM_032656.2 DHX37 -1.025124679 0.745735326 - 

NM_170753.1 PGBD3 -1.023619826 0.77001028 - 

NM_003250.4 THRA -1.017799826 0.782171874 - 

NM_001037163.1 C7orf70 -1.017307233 0.805909597 - 

NM_152629.3 GLIS3 -1.015975221 0.745735326 - 

NM_012407.2 PRKCABP -1.014995577 0.688986932 - 

NM_177967.2 UBAC2 -1.011365894 0.745735326 - 

NM_198282.1 TMEM173 -1.007314766 0.805909597 - 

NM_000692.3 ALDH1B1 -1.005458305 0.762761846 - 

NM_138431.1 MFSD3 -1.000081631 0.782171874 - 

Table 6.10: Genes with greatest decrease in modulation following 24h hCPEpiC treatment with 
IL-6. 
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