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Abstract 1 

The remote sensing science and applications communities have developed increasingly reliable, 2 

consistent, and robust approaches for capturing land dynamics to meet a range of information 3 

needs. Statistically robust and transparent approaches for assessing accuracy and estimating area 4 

of change are critical to ensure the integrity of land change information.  We provide 5 

practitioners with a set of “good practice” recommendations for designing and implementing an 6 

accuracy assessment of a change map and estimating area based on the reference sample data. 7 

The good practice recommendations address the three major components: of the process 8 

including the sampling design, response design and analysis. The primary good practice 9 

recommendations for assessing accuracy and estimating area are: (i) implement a probability 10 

sampling design that is chosen to achieve the priority objectives of accuracy and area estimation 11 

while also satisfying practical constraints such as cost and available sources of reference data; 12 

(ii) implement a response design protocol that is based on reference data sources that provide 13 

sufficient spatial and temporal representation to accurately label each unit in the sample (i.e., the 14 

“reference classification” will be considerably more accurate than the map classification being 15 

evaluated); (iii) implement an analysis that is consistent with the sampling design and response 16 

design protocols; (iv) summarize the accuracy assessment by reporting the estimated error matrix 17 

in terms of proportion of area and estimates of overall accuracy, user’s accuracy (or commission 18 

error), and producer’s accuracy (or omission error); (v) estimate area of classes (e.g., types of 19 

change such as wetland loss or types of no changepersistence such as stable forest) based on the 20 

reference classification of the sample units; (vi) quantify uncertainty by reporting confidence 21 

intervals for accuracy and area parameters; (vii) evaluate variability and potential error in the 22 
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reference classification; and (viii) document deviations from good practice that may substantially 23 

affect the results. An example application is provided to illustrate the recommended process.  24 
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1. Introduction 25 

Land change maps quantify a wide range of processes including wildfire (Schroeder et al., 2011), 26 

forest harvest (Olofsson et al., 2011), forest disturbance (Huang et al., 2010), land use pressure 27 

(Drummond and Loveland, 2010) and urban expansion (Jeon et al., 2013). Map users and 28 

producers are acutely interested in communicating and understanding the quality of these maps. 29 

Accordingly, guidance on how to assess accuracy of these maps in a consistent and transparent 30 

manner is a necessity. The use of remote sensing products depicting change for scientific, 31 

management, or policy support activities, all require quantitative accuracy statements to buttress 32 

the confidence in the information generated and in any subsequent reporting or inferences made. 33 

Area estimation, whether of change in land cover/use or of status of land cover/use at a single 34 

date, is a natural value-added use of land change maps in many local, national and global land 35 

accounting applications. For example, the amount of land area allocated for a specific use is a 36 

key country reporting requirement to the United Nations (UN) Food and Agriculture 37 

Organization (FAO) statistics and the global forest resources assessment (FAO, 2010) and as 38 

well as for countries reporting under the Kyoto protocol and the evolving activities for the UN 39 

Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation – 40 

UN-REDD (UN-REDD, 2008; Grassi et al., 2008). Estimates of forest extent or deforestation are 41 

often derived via remote sensing (cf. Achard et al., 2002; DeFries et al., 2002; Hansen et al., 42 

2010) , and area estimation also plays a prominent role in ongoing efforts to establish 43 

scientifically valid protocols for forest change monitoring in the context of specific accounting 44 

applications to policy approaches for reducing greenhouse gas emissions from forests (DeFries et 45 

al., 2007; GOFC-GOLD, 2011).   46 
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Area estimation also plays a prominent role in ongoing efforts to establish scientifically valid 47 

protocols for forest change monitoring in the context of specific accounting applications to 48 

policy approaches for reducing greenhouse gas emissions from forests (DeFries et al., 2007; 49 

GOFC-GOLD, 2011). One approach to quantifying greenhouse gas emissions from forests, an 50 

important component of carbon accounting, is based on estimating the area of forest change and 51 

then applying emissions factors associated with these changes to translate the area changes into 52 

emissions (Herold and Skutsch, 2011). Thus, understanding the uncertainty in area change 53 

estimates is one key factor determining the accuracy of the overall emission and for assessing the 54 

performance and impact of climate change mitigation activities to reduce these emissions 55 

(GOFC-GOLD, 2011; Herold et al., 2011). Furthermore, the efforts of the UN-REDD clearly call 56 

for area estimates of deforestation and degradation with known uncertainty (UN-REDD, 2008). 57 

The reporting obligations of national governments also benefit from a capacity to quantitatively 58 

report on accuracy of products and to build confidence in the reported outcomes (Wulder et al., 59 

2007). Forest certification programs, aimed at ensuring sustainable forest management practices, 60 

also require scientifically accepted means for monitoring land-based changes in a transparent and 61 

quantifiable manner. 62 

A key strength of remote sensing is that it enables spatially exhaustive, wall-to-wall 63 

coverage, of the area of interest. ButHowever, as might be expected with any mapping process, 64 

the results are rarely perfect. Placing spatially and categorically continuous conditions into 65 

discrete classes will may result in confusion at the categorical transitions. Error can also result 66 

from the change mapping process, the data used, and analyst biases (Foody, 2010). Change 67 

detection and mapping approaches using remotely sensed data are increasingly robust, with 68 

improvements aimed at the mitigation of these sources of error. However, any map made from 69 
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remotely sensed data can be assumed to contain some error, with the areas calculated from the 70 

map (e.g., pixel counting) also potentially subject to bias. An accuracy assessment identifies the 71 

errors of the classification, and the sample data can be used for estimating both accuracy and 72 

area along with the uncertainty of these estimates. While the notion of accuracy assessment is 73 

well-established within the remote sensing community (Foody, 2002; Strahler et al., 2006), 74 

studies of land change routinely fail to assess the accuracy of the final change maps and few 75 

published studies of land change make full use of the information obtained from accuracy 76 

assessments (Olofsson et al., 2013).  77 

1.1 Good Practice Recommendations 78 

In this article, we synthesise the current status of key steps and methods that are needed to 79 

complete an accuracy assessment of a land change map and to estimate area of land change. The 80 

This article addresses the fundamental protocols required to produce scientifically rigorous and 81 

transparent estimates of accuracy and area. The set of good practice recommendations provides 82 

guidelines to assist both scientists and practitioners in the design and implementation of accuracy 83 

assessment and area estimation methods applied to land change assessments using remote 84 

sensing. The accuracy and area estimation objectives are linked via a map of change. A change 85 

map provides a spatially explicit depiction of change and this spatial information can be readily 86 

aggregated to calculate the total mapped area or the proportion of mapped area of change for the 87 

region of interest (ROI). Accuracy assessment addresses questions related to how well locations 88 

of mapped change correspond to actual areas of change. A fundamental premise of the 89 

recommended good practices methodology is that the change map will be subject to an accuracy 90 

assessment based on a sample of higher quality change information (i.e., the reference 91 

classification). The higher quality reference classification is compared to the map classification 92 
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on a location-specific basis to quantify accuracy of the change map and to estimate area. 93 

Although it is possible to estimate area of change without producing a change map (Achard et 94 

al., 2002; FAO, 2010; Hansen et al., 2010), we will assume that a map of change exists (although 95 

there will not necessarily be a map for each date). The focus for this document is change between 96 

two dates.  97 

At the outset bBefore any detailed planning of the response and sampling designs is 98 

undertaken, a basic visual assessment should be conducted to identify obvious errors and 99 

concerns in the remotely sensed product. This assessment provides an evaluation of the map’s 100 

suitability for the intended application and should detect if a map is so unsuitable for use that 101 

there is no value in proceeding to a more detailed assessment. The visual assessment should also 102 

highlight errors that are easy to remove enabling the map to be refined prior to initiating a 103 

detailed assessment or confirm that no obvious concerns exist and the map is ready for further 104 

rigorous evaluation. 105 

We separate the accuracy assessment methodology into three major components, the 106 

response design, sampling design, and analysis (Stehman and Czaplewski, 1998).  The response 107 

design encompasses all aspects of the protocol that lead to determining whether the map and 108 

reference classifications are in agreement. Because it is often impractical to apply the response 109 

design to the entire ROI, a subset of the area is sampled. The sampling design is the protocol for 110 

selecting that subset of the ROI.  The analysis includes protocols for defining how to quantify 111 

accuracy along with the formulas and inference framework for estimating accuracy and area and 112 

quantifying uncertainty of these estimates. A separate section of this guidance document is 113 

devoted to each of these three major components of accuracy assessment methodology. These 114 

sections are followed by an example of the recommended workflow. 115 
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1.2 Context of Good Practice Recommendations 116 

The good practice recommendations are intended to represent a synthesis of the current science 117 

of accuracy assessment and area estimation. We fully anticipate that improved methods will be 118 

developed over time. As the designation of “best practice” implies a singular approach, we prefer 119 

the use of “good practice” to indicate that “best” is relative and will vary, with one hard-coded 120 

approach not always appropriate. In communicating good practices, desirable features and 121 

selection criteria can be followed to ensure that the protocol applied satisfies – as thoroughly as 122 

possible – the accuracy and area estimation recommendations. The good practices 123 

recommendations do not preclude the existence of other acceptable practices, but instead 124 

represent protocols that, if implemented correctly, would ensure scientific credibility of the 125 

results. Furthermore, the recommendations presented herein allow flexibility to choose specific 126 

details of the different components of the methodology. For example, while the general 127 

recommendation for the sampling design is to implement a probability sampling protocol, there 128 

are numerous sampling designs that meet this criterion (Stehman, 2009). Similarly, the response 129 

design protocol allows flexibility to use a variety of different sources for determining the 130 

reference classification and multiple options exist for defining agreement between the map and 131 

reference classifications. The good practices recommendations represent an ideal to strive for, 132 

but it is likely that most projects will not satisfy every recommendation. Documenting and 133 

justifying deviations from good practices are expected features of many accuracy assessment and 134 

area estimation studies. For the most part, the good practice recommendations consist of methods 135 

for which there is considerable experience of practical use in the remote sensing community.  136 

These good practice recommendations for area estimation and accuracy assessment of land 137 

change build on earlier guidelines for single-date land-cover maps described by Strahler et al. 138 
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(2006). Strahler et al. (2006) presented general guiding principles of good practices with less 139 

emphasis on details of methodology. In the intervening years since Strahler et al. (2006), 140 

additional theory and practical application related to accuracy assessment and area estimation 141 

have been accumulated, and this current document avails upon these developments to delve more 142 

deeply into methodological details. We do not attempt to provide an exhaustive description of 143 

methods given the range of issues and the highly application-specific nature of the topic. Instead, 144 

our purpose is to focus upon the main issues needed to establish a common basis of good 145 

practice methodology that will be generally applicable and result in transparent methods and 146 

rigorous estimates of accuracy and area. A list of recommendations for all components of the 147 

process (sampling design, response design, and analysis) is presented in the Summary (Section 148 

6).  149 

Estimating area and accuracy of change maps introduces additional methodological 150 

challenges that were not within the scope addressed by Strahler et al. (2006). In particular, the 151 

area estimation objective was not addressed at all by Strahler et al. (2006). Accuracy assessment 152 

of change highlights many unique challenges, including the dynamic nature of the reference data, 153 

and aspects of the change features including type, severity, persistence, and area, as examples. 154 

Another challenge is that change is usually a rare feature over a given landscape. The accuracy 155 

of a map and the area estimates derived with its aid are a function of the land- cover mosaic 156 

under study, the underlying imagery and the methods applied. Accuracy and area estimates for 157 

the same region will, for example, vary if using a per-pixel or object-based classification or if the 158 

spatial resolution of the imagery is altered and different methods vary in value for a given 159 

application (cf. Duro et al., 2012; Baker et al., 2013; Johnson, 2013). 160 
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The Our recommendations also focus on methods for providing robust estimates of land 161 

(area) change and its uncertainties. A primary use of such estimates is in analysis and accounting 162 

frameworks such as national inventories. In evolving frameworks compensating for successful 163 

climate change mitigation actions in the forest sector (such as REDD+, DeFries et al., 2007), the 164 

consideration of  uncertainties are likely linked with financial incentives and are subject to 165 

critical international political negotiations on reporting and verification (Sanz-Sanchez et al., 166 

2013). Understanding and management of uncertainties in area change is essential, in particularly 167 

since because data and capacity gaps in forest monitoring are large in many developing countries 168 

(Romijn et al., 2012). Accuracy assessments should also focus on identifying and addressing 169 

error sources, and prioritize on capacity development needs to provide continuous improvements 170 

and reduce uncertainties in the estimates over time. This also includes assessing the value of data 171 

streams from evolving monitoring technologies (de Sy et al., 2012; Pratihast et al., 2013) where 172 

the ultimate impact on lower uncertainties need to be proven in operational contexts. Thus, the 173 

methods of good practice presented here are generic for providing robust estimates, and having 174 

agreed-upon tools to do so will provide the saliency and legitimacy for using them in quantifying 175 

improvements in monitoring systems, and for dealing with uncertainties in financial 176 

compensation schemes (e.g., for climate change mitigation actions). 177 

This article synthesizes key steps and methods needed to complete an accuracy assessment of 178 

a change map and to estimate area and accuracy of the map classes. It addresses the protocols 179 

required to produce scientifically rigorous and transparent estimates of accuracy and area. 180 
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2. Sampling Design 181 

The sampling design is the protocol for selecting the subset of spatial units (e.g., pixels or 182 

polygons) that will form the basis of the accuracy assessment. Choosing a sampling design 183 

requires taking into a consideration of the specific objectives of the accuracy assessment and a 184 

prioritized list of desirable design criteria. The most critical recommendation is that the sampling 185 

design should be a probability sampling design. An essential element of probability sampling is 186 

that randomization is incorporated in the sample selection protocol. Probability sampling is 187 

defined in terms of inclusion probabilities, where an inclusion probability relates the likelihood 188 

of a given unit being included in the sample (Stehman, 2000). The two conditions defining a 189 

probability sample are that the inclusion probability must be known for each unit selected in the 190 

sample and the inclusion probability must be greater than zero for all units in the ROI (Stehman, 191 

2001).  192 

A variety of probability sampling designs are applicable to accuracy assessment and area 193 

estimation, with the most commonly used designs,  being simple random, stratified random, and 194 

systematic (Stehman, 2009). Non-probability sampling protocols include purposely selecting 195 

sample units (e.g., choosing units that are convenient to access units), restricting the sample to 196 

homogeneous areas, and implementing a complex or ad hoc selection protocol for which it is not 197 

possible to derive the inclusion probabilities. The condition that the inclusion probabilities must 198 

be known for the units selected in the sample must be adhered to. These inclusion probabilities 199 

are the basis of the estimates of accuracy and area, so if they are not known, the probabilistic 200 

basis for design-based inference (see Section 4.2) is forfeited. It is difficult to envision a 201 

circumstance in which a deviation from this condition of probability sampling (i.e., known 202 

inclusion probabilities) would be acceptable in rigorous scientific research. 203 
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In practice, it is not always possible to adhere perfectly to a probability sampling protocol 204 

(Stehman, 2001). For example, if the response design specifies field visits to sample locations, it 205 

may be too dangerous or too expensive to access some of the sample units. Conversely, 206 

persistent cloud coverage or lack of useable imagery for portions of the ROI may prevent 207 

obtaining the reference classification for some sample units. The reference data are often derived 208 

from another set of imagery and the spatial and temporal coverage of reference data might be 209 

different from the coverage of the imagery used to create the map. If the reference classification 210 

for a sample unit cannot be obtained, the inclusion probability is zero for that unit. All deviations 211 

from the probability sampling protocol should be documented and quantified to the greatest 212 

extent possible. For example, the proportion of the selected sample units for which cloud cover 213 

prevented assessment of the unit should be reported, or the proportion of area of the ROI for 214 

which the reference imagery is not available should be documented. Whereas probability 215 

sampling ensures representation of the population via the rigorous probabilistic basis of inference 216 

established, when a large proportion of the ROI is not available to be sampled, the question of 217 

how well the sample represents the population must be addressed by subjective judgment.  218 

2.1. Choosing the Sampling Design 219 

The major decisions in choosing a sampling design relate to trade-offs among different designs 220 

in terms of advantages to meet specified accuracy objectives and priority desirable design 221 

criteria. The objectives commonly specified are to estimate overall accuracy, user’s accuracy (or 222 

commission error), producer’s accuracy (or omission error), and area of each class (e.g., area of 223 

each type of land change). Estimates for subregions of the ROI are also often of interest (cf. 224 

Scepan, 1999). Desirable sampling design criteria include: probability sampling design; , easey 225 

and practicality of to implementation; , cost effectiveness; , representative spatially well 226 
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distributioned acrossover the ROI; , small standard errors in theyields accuracy and area 227 

estimates, that have small standard errors; easey to of accommodatinge a change in sample size 228 

at any step in the implementation of the design; , and availability of an approximately unbiased 229 

estimator of variance. Determining whether certain any or all of these desirable design criteria 230 

have been satisfied by the chosen sampling design may be subjective. For example, determining 231 

what constitutes a small standard error will depend on the application and may vary for different 232 

estimates within the same project. There are also precedents for defining an accuracy target and 233 

desired error bounds as a means for determination of sample size using standard statistical theory 234 

(Wulder et al., 2006a) (see also Section 5.1.1).  235 

Stehman and Foody (2009) provide an overview and comparison of the basic sampling 236 

designs typically applied to accuracy assessment. Stehman (2009) provides a more expansive 237 

review of sampling design options and discusses how these designs fulfill different objectives 238 

and desirable design criteria. A variety of sampling designs will satisfy good practice guidelines 239 

so the key is to choose a design well suited for a given application. Three key decisions that 240 

strongly influence the choice of sampling design are whether to use strata, whether to use 241 

clusters, and whether to implement a systematic or simple random selection protocol (Stehman, 242 

2009). Each of these decisions will be discussed in the following subsections. 243 

2.1.1. Strata 244 

There is Often often there is a desire to partition the ROI into discrete, mutually exclusive 245 

subsets or strata (e.g., a global map could be stratified geographically by continents). 246 

Stratification is a partitioning of the ROI in which each assessment unit is assigned to a single 247 

stratum. The two most common attributes used to construct strata are the classes determined 248 

from the map and geographic subregions within the ROI. Stratification is implemented for two 249 



14 

primary purposes. The first purpose is when the strata are of interest for reporting results (e.g., 250 

accuracy and area are reported by land- cover class or by geographic subregion). The second use 251 

of stratification is to improve the precision of the accuracy and area estimates. For example, 252 

when strata are created for the objective of reporting accuracy by strata, the stratified design 253 

allows specifying a sample size for each stratum to ensure that a precise estimate is obtained for 254 

each stratum. Land change often occupies a small proportion of the landscape, so a change 255 

stratum can be identified and the sample size allocated to this stratum can be large enough to 256 

produce a small standard error for the change user’s accuracy estimate. 257 

The practical reality is that limited resources will likely be available for the reference sample 258 

and this constraint will strongly impact sample allocation decisions because different allocations 259 

favour different estimation objectives. For example, allocating equal sample sizes to all strata 260 

favours estimation of user’s accuracy over estimation of overall and producer’s accuracies 261 

(Stehman, 2012). Conversely, the standard errors for estimating producer’s and overall 262 

accuracies are typically smaller for proportional allocation (i.e., the sample size allocated to each 263 

stratum is proportional to the area of the stratum) relative to equal allocation. As a compromise 264 

between favouring user’s versus producer’s and overall accuracies, the allocation recommended 265 

is to shift the allocation slightly away from proportional allocation by increasing the sample size 266 

in the rarer classes, but the sample size for the rare classes should not be increased to the point 267 

where the final allocation is equal allocation (see Section 5 for an example). The sample size 268 

allocation decision can be informed by calculating the anticipated standard errors (see Sections 269 

4.3 and 4.4) for different sample sizes and different allocations. An ineffective allocation of 270 

sample size to strata will not result in biased estimators of accuracy or area, but it may result in 271 

larger standard errors (see Section 5 for an example). 272 
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When stratified sampling is applied to a single date land-cover map, it is usually feasible to 273 

define a stratum for each land-cover class (Wulder et al., 2007). Identifying an effective 274 

stratification for change can be more challenging. A common approach is to use a map of change 275 

to identify the strata, and such strata are effective for estimating user’s accuracy of change 276 

precisely. However, the number of different types of change may be so large that defining every 277 

change type as a stratum is not advisable. For example, in a post-classification comparison of 278 

two land-cover maps, that each include with a map legend that includes 8 land-cover classes, 279 

there are 56 possible types of change in the final change map. If each stratum must receive a 280 

relatively large sample to achieve a precise user’s accuracy estimate, the overall sample size may 281 

be unaffordable.  282 

The trade-offs between precision of user’s accuracy, producer’s accuracy, and area estimates 283 

from different sample size allocations become exacerbated as the number of strata increases. 284 

Some types of change may be very unlikely to occur and consequently could be eliminated as 285 

strata. To further reduce the number of strata, strata could be defined on the basis of generalized 286 

change categories (Wickham et al., 2013). For example, a stratum could be change from any 287 

class to urban (i.e., urban gain), and another stratum could be change to any class from forest 288 

(i.e., forest loss). These generalized or aggregated change strata are obviously less focused on all 289 

possible individual change types. For example, the forest loss stratum could include forest to 290 

developed, forest to water, or forest to cropland. These generalized change strata would allow for 291 

specifying the sample size allocated to different general change types, but within one of the 292 

generalized strata, the sample size allocated to the individual change types would be proportional 293 

to the area of that change type. For example, if the most common type of forest loss is to 294 

cropland and the least common change is forest loss to water, many more of the sample units 295 
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within the forest loss stratum will be forest-to-cropland-conversion. Strahler et al. (2006, Fig. 296 

5.2, p. 32) provides additional examples of aggregated change classes that could be used as 297 

strata. 298 

The desire to limit the number of strata motivates discussion of subpopulation estimation as it 299 

relates to sampling design. A subpopulation is any subset of the ROI, for example a particular 300 

type of change or a particular subregion. Subpopulations can be defined as strata, but it is not 301 

necessary for a subpopulation to be defined as a stratum to produce an estimate for that 302 

subpopulation. For example, when aggregating multiple types of change into a generalized 303 

change stratum, it would still be possible to estimate accuracy of each of the subpopulations 304 

representing the individual types of change making up the aggregated change stratum. 305 

However,But if these subpopulations are not defined as strata, the sample size representing the 306 

subpopulation may not be large enough to obtain a precise estimate. Resources available for 307 

accuracy assessment may require limiting the number of strata used in the design, so prioritizing 308 

subpopulations may be necessary to establish which subpopulations are defined as strata.  309 

It is sometimes the case that several maps will be assessed based on a common accuracy 310 

assessment sample. This forces a decision on whether the strata should be based on a single map 311 

(and if so, which map) or if the strata should be defined by a combination of the multiple maps. 312 

Once strata are defined and the sample is selected using these strata, the strata become a fixed 313 

feature of the design because the analysis is dependent on the estimation weight associated with 314 

each sample unit and this weight is determined by the sampling design. Fortunately, whatever the 315 

decision is to define strata when multiple maps are to be assessed, the sample reference data are 316 

still valid to assess any of the maps, even if the strata are defined on the basis of a single map. 317 

The principles of estimation outlined in the Analysis Section (Section 4) must be adhered to, and 318 
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this simply requires using the estimation weights for the sample units determined by the original 319 

stratified selection protocol. The impact of the choice of strata will be reflected in the standard 320 

errors of the estimates. Olofsson et al. (2012) and Stehman et al. (2012) discuss sampling design 321 

issues associated with constructing a reference validation database that would allow assessment 322 

of multiple maps. 323 

To summarize the recommendations related to the important question of whether to 324 

incorporate stratification in the sampling design, stratifying by mapped change and by 325 

subregions is justified to achieve the objective of precise class-specific accuracy and to report 326 

accuracy by subregion. If the overall sample size is not adequate to support both class-specific 327 

and subregion accuracy estimates, the subregional stratification may be omitted and accuracy by 328 

subregion relegated to the status of subpopulation estimation. The recommended allocation of 329 

sample size to the strata defined by the map classes is to increase the sample size for the rarer 330 

classes making the sample size per stratum more equitable than what would result from 331 

proportional allocation, but not pushing to the point of equal allocation. The rationale for this 332 

recommendation is that user’s accuracy is often a priority objective and we can control the 333 

precision of the user’s accuracy estimates by the choice of sample allocation. However, the 334 

trade-off is that a design allocation chosen solely for the objective of user’s accuracy precision 335 

(i.e., equal allocation) may be detrimental to precision of estimates of overall accuracy, 336 

producer’s accuracy, and area, so a compromise allocation is in order. Lastly, defining 337 

aggregations of change types as strata may be necessary if the number of strata needs to be 338 

limited, and accuracy and area estimates for the individual change types would be obtained as 339 

subpopulation estimates. 340 
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2.1.2. Cluster Sampling 341 

A cluster is a sampling unit that consists of one or more of the basic assessment units specified 342 

by the response design. For example, a cluster could be a 3 x 3 block of 9 pixels or a 1 km x 1 343 

km cluster containing 100 1 ha assessment units. In cluster sampling, a sample of clusters is 344 

selected and the spatial units within each cluster are therefore selected as a group rather than 345 

selected as individual entities. Each of the spatial units within a cluster is still interpreted as a 346 

separate unit even though it is selected into the sample as part of a cluster. For example, a 3 x 3 347 

pixel cluster would require obtaining the reference classification for individual pixels within the 348 

cluster.  349 

The primary motivation for cluster sampling is to reduce the cost of data collection. For 350 

example, if field visits are required to obtain the reference classification, transit time and costs 351 

may be reduced if the sample units are grouped spatially into clusters. Zimmerman et al. (2013) 352 

used cluster sampling to reduce the number of raster images (i.e., clusters) required because the 353 

primary cost of the sampling protocol was associated with processing the very high resolution 354 

images used for reference data.  As another example, Stehman and Selkowitz (2010) used a 27 355 

km x 27 km cluster sampling unit to constrain sample locations to a single day of flight time per 356 

cluster when the reference data were collected by aircraft. Cluster sampling may also be 357 

motivated by the objectives of an accuracy assessment. For example, a cluster sampling unit 358 

becomes necessary to assess accuracy at multiple spatial supports (e.g., single pixel, 1 ha unit, 359 

and 1 km2 unit).  360 

The cost savings gained by cluster sampling should be substantial before choosing this 361 

design because the correlation among units within a cluster (i.e., intracluster correlation) often 362 

reduces precision relative to a simple random sample of equal size.  Focusing on the specific 363 
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example of estimating land-cover area in Europe, Gallego (2012) showed that a 10 km x 10 km 364 

sampling unit produced equivalent information to that of a simple random sample of only 25 365 

points or fewer.  The low yield of information per cluster diminishes the cost advantage of 366 

cluster sampling if the intracluster correlation is high. Another potential disadvantage of cluster 367 

sampling is that it complicates stratification when the strata are the map classes and the 368 

assessment unit is a pixel. In the simplest setting, each cluster would be assigned to a stratum, 369 

but rules have to be established for assigning a cluster to a stratum when the cluster includes area 370 

of several different classes. Cluster sampling can be combined with stratification of pixels by the 371 

map class of each pixel in a two-stage stratified cluster sampling approach (Stehman et al., 2003, 372 

2008), but such designs require more complex analysis and implementation protocols than what 373 

are required of a stratified design without clusters. Because of the added complexity of cluster 374 

sampling introduces for sampling design (e.g., accommodating stratification within a cluster 375 

sampling design) and estimation (e.g., estimating standard errors), we recommend this design 376 

only in cases for which the objectives require a cluster sampling unit or in which the cost savings 377 

or practical advantages of cluster sampling are substantial. 378 

2.1.3. Systematic vs. Random Selection 379 

The two most common selection protocols implemented in accuracy assessment are simple 380 

random and systematic sampling (we define “systematic” as selecting a starting point at random 381 

with equal probability and then sampling with a fixed distance between sample locations). Both 382 

protocols can be implemented to select units from within strata or to select clusters, and both can 383 

be applied to a ROI that is not partitioned into strata or clusters. Unbiased estimators of the 384 

various accuracy parameters are available from either systematic or simple random selection, so 385 

the bias criterion is not a basis for choosing between these options. Instead, the choice of simple 386 
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random versus systematic depends on how each selection protocol satisfies the priority desirable 387 

design criteria (Stehman, 2009). For example, systematic sampling is often simpler to implement 388 

when the response design is based on field visits, but the greater convenience of systematic 389 

versus simple random is diminished when working with imagery or aerial photographs as a 390 

source of the reference data. Typically, systematic selection will yield more precise estimates 391 

than simple random selection, but systematic sampling requires use of a variance approximation 392 

so if unbiased variance estimation is a priority criterion, simple random is preferred. Simple 393 

random selection also is advantageous if it is likely that the sample size will need to be modified 394 

during the course of the accuracy assessment (Stehman et al., 2012). A scenario in which 395 

systematic selection opportunistically arises is when accuracy assessment reference data can be 396 

simultaneously obtained in conjunction with another field sampling activity. For example, many 397 

national forest inventories employ a systematic sample of field plots (Tomppo et al., 2010) and 398 

these field plot data may be an inexpensive, high quality source of reference data. In general, the 399 

simple random selection protocol will better satisfy the desirable design criteria and is the 400 

recommended option. However, systematic selection is also nearly always acceptable. 401 

2.2. A Recommended Good Practice Sampling Design 402 

Stratified random sampling is a practical design that satisfies the basic accuracy assessment 403 

objectives and most of the desirable design criteria. Stratified random sampling affords the 404 

option to increase the sample size in classes that occupy a small proportion of area to reduce the 405 

standard errors of the class-specific accuracy estimates for these rare classes. Thus this design 406 

addresses the key objective of estimating class-specific accuracy. In regard to the desirable 407 

design criteria, stratified random sampling is a probability sampling design and it is one of the 408 

easier designs to implement. Stratified sampling is commonly used in accuracy assessment so it 409 



21 

has an advantage of being familiar to the remote sensing community (cf. Mayaux et al., 2006; 410 

Cakir et al., 2006; Huang et al., 2010; Olofsson et al., 2011). Increasing or decreasing the sample 411 

size after the data collection has begun is readily accommodated by stratified random sampling, 412 

and unbiased variance estimators are available thus avoiding the need to use variance 413 

approximations. An assumption implicit in this recommendation is that change between two 414 

dates is of interest.  Little work has been done to investigateing the effective use of strata for 415 

multiple change periods.  Stratifying by a change map also assumes that it is possible to obtain 416 

the reference data for the initial date of the change period given that the change map will not be 417 

available until the end date of the change period.  If this is not possible, stratification is still an 418 

option but the strata would need to be constructed on the basis of predicted change.In the case of 419 

stratification based on a change map, it is assumed that reference data for the sampled locations 420 

exists for the initial date of the change period (e.g., archived imagery or aerial photography is 421 

available). If the reference data must be obtained in real time (e.g., via ground visit), it would not 422 

be possible to stratify by a change map that does not yet exist at the initial date. An alternative 423 

would be to stratify by anticipated change or predicted change, with the effectiveness of such 424 

strata dependent on how well the predicted change matched with the ensuing reality of change. 425 

3. Response Design 426 

For the accuracy assessment objective, the response design encompasses all steps of the protocol 427 

that lead to a decision regarding agreement of the reference and map classifications. For area 428 

estimation, the response design provides the best available classification of change for each 429 

spatial unit sampled. The Ffour major features of the response design are the spatial unit, the 430 

source or sources of information used to determine the reference classification, the labelling 431 
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protocol for the reference classification, and a definition of agreement. Each of these major 432 

features is discussed in the following subsections.  433 

3.1. Spatial Assessment Unit 434 

The spatial unit that serves as the basis for the location-specific comparison of the reference 435 

classification and map classification can be a pixel, polygon (or segment), or block (Stehman and 436 

Wickham, 2011). The ROI is partitioned based on the chosen spatial unit (i.e., the region is 437 

completely tiled by these non-overlapping spatial units). Commonly, the pixel is selected as the 438 

spatial unit. The pixel is an arbitrary unit defined mainly by the properties of the sensing system 439 

used to acquire the remotely sensed data or a function of the grid used to sub-divide space in a 440 

raster based data set. A polygon is defined as a unit of area, perhaps irregular in shape, 441 

representing a meaningful feature of land cover. For example, a polygon may be delineated from 442 

a map such that the area within the polygon has the same map classification (e.g., the entire 443 

polygon is stable forest or the entire polygon represents an area of change from forest to urban). 444 

Polygons defined on the basis of a map will be called “map polygons.” Alternatively, a polygon 445 

could be delineated on the basis of the reference classification as an area within which the 446 

reference class is the same. A polygon delineated on the basis of the reference classification will 447 

be called a “reference polygon”. A “block” spatial assessment unit is defined as a rectangular 448 

array of pixels (e.g., a 3 x 3 block of pixels). Irrespective of the spatial unit selected, it is 449 

important to note that some spatial units may be impure, that isi.e., they represent an area of 450 

more than one class. Mixed pixels are, for example common, especially in coarse spatial 451 

resolution data. Similarly, it is, for example, possible that a map polygon is not internally 452 

homogeneous in terms of the reference classification, and a reference polygon may not be 453 

internally homogeneous in terms of the map classification. A polygon defined by a segmentation 454 
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algorithm would not necessarily be homogeneous in terms of either the map or the reference 455 

classifications. 456 

Pixels, polygons, or blocks can be used as the spatial unit in accuracy assessment.  457 

Regardless of the unit chosen, a critical feature of the response design protocol is that the 458 

spatially explicit character of the accuracy assessment must be retained.  Practitioners should aim 459 

to have reference data with an equal or finer level of detail than the data used to create the map, 460 

but we make no recommendation is made regarding the choice of spatial assessment unit. 461 

However, once the spatial assessment unit has been chosen, there will be good practice 462 

recommendations associated with that specific unit and the choice of spatial unit also has 463 

implications on the sampling design (Stehman and Wickham, 2011) and analysis. Estimates of 464 

accuracy and area derived from the same map but through the use of different spatial units may 465 

be unequal. 466 

3.2. Sources of Reference Data  467 

The reference classification can be determined from a variety of sources ranging from actual 468 

ground visits to the sample locations or the use of aerial photography or satellite imagery. There 469 

are two ways toTo ensure that the reference classification is of higher quality than the map 470 

classification:, either the reference source has to be of higher quality than what was used to 471 

create the map classification, and 2)or if using the same source material for both the map and 472 

reference classifications, the process to create the reference classification has to be more accurate 473 

than the process used to create the classification being evaluated. (e.g.For example, if Landsat 474 

imagery is used to create the map and Landsat is the only available imagery for the accuracy 475 

assessment, then the process for obtaining the reference classification has to be more accurate 476 

than the process for obtaining the map classification). FurtherAdditionally, other spatial data may 477 
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be used to improve the quality of the reference classification, such as forest inventory data or 478 

some form of vector data (e.g., roads, pipelines, or crop records). In this subsection, different 479 

potential sources of reference data for assessing accuracy of change are identified and strengths 480 

and weaknesses of these sources are described.  481 

Possible reference data sources include field plots, aerial photography, forest inventory data, 482 

airborne video, lidar, and satellite imagery (Table 1). Additional sources of freely accessible 483 

reference data may also be opportunistically available from data mining and crowdsourcing 484 

(Iwao et al., 2006; Foody and Boyd, 2013). and silvicultural records (Hyyppä et al., 2000; 485 

Wulder et al., 2006a).  486 

 487 

<< TABLE 1 HERE >> 488 

 489 

Practical considerations regarding costs often influence the selection of reference data, or the use 490 

of existing data. While existing or lower cost data may be desirable from a purchase perspective, 491 

the use of disparate data sources will result in additional effort by project analysts to deal with 492 

exceptions and inconsistencies. A key to using disparate data sources is to have the reference 493 

data that are actually used in the accuracy assessment be, as much as possible, invariant to 494 

source. For example, the creation of attributed change polygons makes the polygon the common 495 

denominator, rather than the source data. Creating polygonal change units in a portable format 496 

and populating a minimum set of fields to support a consistent labelling protocol is desirable. 497 

The information to be recorded for each change unit is itemized in Table 2.  498 

 499 

<< TABLE 2 HERE >> 500 
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 501 

Ideally a data source is available for the entire with uniform likelihood over the ROI, 502 

representing the change types and dates of interest, at a low cost. The realities versus the ideal 503 

result in a series of considerations are detailed in Table 3. For instance, if the ROI is small, the 504 

costs may be less of an issue and access may not be relevant. For large area projects over poorly 505 

monitored areas, existing data sources are not often available so data purchase and interpretation 506 

costs become the dominant criteria. The ease of interpretation and consistency of source 507 

reference data permits economies in the project flow for the analysts and also promotes 508 

automation of repeated activities. Further, the development of a well documented and consistent 509 

change validation data set will have utility for multiple projects and purposes.  510 

 511 

<< TABLE 3 HERE >> 512 

 513 

Both high- and very high spatial resolution satellite data are viable candidates for reference data. 514 

Imagery is typically considered as very high spatial resolution (VHSR) with a spatial resolution 515 

of when pixels are sided < 1 m and high spatial resolution (HSR) with a spatial resolution of < 10 516 

m. Both data sources provide information that is finer than the data used in most large area 517 

monitoring projects, which would typically have use imagery with a spatial resolution of greater 518 

than 10 m. At the fine spatial resolution of satellite-borne VHSR imagery, panchromatic is often 519 

the only spectral information collected. The typical 400 to 900 nm panchromatic data with small 520 

pixels (0.50 m in the case of WorldView-1) closely resemble large scale aerial photography and 521 

can be interpreted using established aerial photograph interpretation techniques (Wulder et al., 522 

2008a) or subject to digital analyses (cf. Falkowski et al., 2009). Both the SPOT Image® and 523 
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DigitalGlobe® archives can be accessed through Google Earth™, with the image extents by year 524 

portrayed. The presence of freely accessible high spatial resolution imagery online, freely 525 

accessible, through Google Earth™ also presents low cost interpretation options. Limitations of 526 

this approach include a lack of data prior to the initiation of the high spatial resolution satellite 527 

commercial era (circa 2000), spatial distribution of available imagery, and the actual temporal 528 

revisit of the images available. The reported temporal revisit can be on the order of days based 529 

upon an ability to point the sensor head. For instance, IKONOS has off-nadir revisit of 3 to 5 530 

days, with 144 days required for nadir revisit (Wulder et al. 2008b). The implication is that when 531 

the sun-surface-sensor viewing geometry changes the structure captured changes, such that trees 532 

evident on one image may be occluded in another. For a given on-line accessible source of 533 

satellite imagery, it should not be expected that historical, archival, global coverage from launch 534 

to present exist should not be expected.  Regardless, the ability to view images from multiple 535 

years can help determine that date when a change (e.g., a disturbance) occurred. The additional 536 

context provided around particular change events aids with interpretation of change type (e.g., 537 

determination of harvesting versus forest removal in support of agricultural expansion). 538 

Development and sharing of a change data base, once interpreted and attributed following 539 

defined procedures, leveraging Google Earth™ is a consideration for global or large area 540 

accuracy assessment activities.  541 

There are few, if any, reference data sources that are available with a uniform likelihood 542 

globally. There are some archival datasets with wide global coverage (e.g., Kompsat); although, 543 

the utility of these data sets may be limited. The utility of any given data reference data source 544 

when used to capture and relate change is the date or represented by vintage of the data. While 545 

less of an issue with satellite data, air photos and maps may not be of a known vintage. 546 
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Acquisition dates of historic photos are often lost, plus maps are often representative of a period, 547 

not a singular date. Knowing the conditions that previously existed may not be helpful if the date 548 

of change occurrence is not known.  549 

Over some regions, land use change and silvicultural records may also be available to inform 550 

on the land- cover change. Note that forest harvesting is a land- cover change relating a 551 

successional stage, rather than a land use change (which implies a permanent change in how a 552 

particular parcel of land is used – e.g., forestry to agriculture). The This distinction is important 553 

for both monitoring and reporting purposes as the permanent removal of forests has differing 554 

carbon consequences than a forest harvesting (Kurz, 2010). 555 

While the good practice guidelines advocate for use of reference data of finer spatial 556 

resolution than the map product, this is especially so for single date interpretations of the 557 

reference data. Following the opening of the Landsat archive by the USGS (Woodcock et al., 558 

2008), time series of imagery creates created new opportunities for using imagery of the same 559 

spatial resolution (e.g., Landsat) when archival data are available. Simple visual approaches may 560 

be applied, such as in Figure 1, where a change event (fire) that is evident in 2010 can be timed 561 

quite precisely by the evidence captured (smoke plume) showing when the fire is occurreding. 562 

This type of change dating is rather opportunistic and not to be commonly expected.  563 

 564 

<<FIGURE 1 HERE>> 565 

 566 

Figure 1. Landsat data can be used for the visual dating of change, with the fire event in progress 567 

in Inset A, August 3, 2010, with the burned forest outcome evident in Inset B, September 20, 568 

2010, Yukon, Canada (Landsat Path 55, Row 18). 569 
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 570 

A more reliable means for determining the timing of change events can be from developing 571 

and interrogating time series of images (Kennedy et al., 2010). To ensure the quality of time 572 

series transitions developed, Cohen et al. (2010) created a logic and tool for determining the 573 

timing and nature of changes captured (TimeSync, http://timesync.forestry.oregonstate.edu/). 574 

Based upon the image collection and archiving protocols present through the history of Landsat, 575 

the spatial and temporal coverage of imagery is not uniform. The temporal precision possible for 576 

dating changes based upon time series analysis is likely weaker for locations that already have a 577 

paucity of data. This situation is due to the historic practices followed at given Landsat receiving 578 

stations through to the commercial era (during the 1980s) when fewer images were collected and 579 

archived (Wulder et al., 2012). It should not be assumed that the temporal density possible for 580 

the conterminous United States is possible for all other regions (Schroeder et al., 2011).  581 

Another critical aspect of the response design is that the change period represented by the 582 

reference classification must be synchronous with the change period of the classification.  583 

Consider a map representing change between 2000 and 2010. To capture near anniversary dates 584 

(within year) and athe northern hemisphere peak photosynthetic period, the imagery used for this 585 

hypothetical project was collected July 15, 2000, and 10 years later, July 15 2010. The reference 586 

data should be collected in 2010, but ideally not after July 15 (assuming similar satellite overpass 587 

times) to avoid confusion. Data collected after July 15, 2010 will have to be vetted to ensure the 588 

change present in the reference data did not occur after the product date of the change map. 589 

Imagery from the same year is desired but may not always be possible. As such, it is required 590 

that the change reference data includes approximates the date the change occurred as precisely as 591 

possibleavailable. Multiple images help refine the timing of the change event. Mismatched 592 
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change periods between the map and reference classifications would be a major source of 593 

reference data error. 594 

3.3. Reference Labelling Protocol 595 

The labelling protocol refers to the steps in the response design that take the information 596 

provided by the reference data and convert that information to the label or labels constituting the 597 

reference classification. Labelling is far from trivial with numerous definitions for land- cover 598 

classes in use (cf. Comber et al., 2008 ) although recent developments such as the FAO’s Land 599 

Cover Classification system (LCCS) may act to enhance interoperability (Ahlqvist, 2008).  The 600 

labelling protocol should also include specification of a minimum mapping unit (MMU) for the 601 

reference classification. The MMU can have important implications for accuracy assessment and 602 

area estimation. For example, increasing the size of the MMU will lead to a reduction in the 603 

representation of classes that occupy small, often fragmented, patches (Saura, 2002). Changing 604 

the MMU can also impact on accuracy estimates, although the effect is most apparent when a 605 

large change is made (Knight and Lunetta, 2003). Clearly, sSmall patches present a challenge to 606 

mapping (cf. He et al., 2011) and the accuracy of their mapping will degrade as the MMU is 607 

increased. However,  but it is possible that overall map accuracy may increase with a larger 608 

MMU, making it is important to ensure that attention is focused on an appropriate measure of 609 

accuracy for the application in-hand. The precise effects of the MMU will vary as a function of 610 

the land- cover mosaic under study and the imagery used. The MMU specified for the response 611 

design does not necessarily have to match the MMU specified for the map. In fact, if the 612 

reference classification is intended to apply to a variety of maps, it would be likely that the 613 

MMU of the reference classification does not match the map classification for all maps that 614 

might be assessed. Often the reference imagery or information will permit distinguishing smaller 615 
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patches or features than can be distinguished from the map so a smaller MMU will be possible 616 

for the reference classification. 617 

The easiest case for the labelling protocol occurs when the assessment unit is homogeneous 618 

and a single reference class label can be assigned (the reference class could be a type of change). 619 

But oOften, however, the situation will be more complex making class labelling less certain. For 620 

example, the assessment unit may contain a mixture of classes, and even if the unit is 621 

homogeneous, it may be difficult to assign a single label (e.g., change type) because the unit is 622 

not unambiguously one of the classes in the legend but instead falls between two of the discrete 623 

class options in the legend (i.e., land- cover classes are a continuum represented on a discrete 624 

scale). A variety of options exist for labelling a unit when a single reference label does not 625 

adequately represent the uncertainty of a unit. One or more alternate reference class labels can be 626 

assigned to account for ambiguity in the reference classification. Another option when defining 627 

agreement is to construct a weighted agreement based on how closely the different classes are 628 

related. For example, in the GlobCover assessment, a “matrix” of class relationships was 629 

established (Mayaux et al., 2006, GLC2000). A fuzzy reference labelling protocol may also be 630 

employed, for examplesuch as the linguistic scale devised by Gopal and Woodcock (1994) or a 631 

fuzzy membership vector in which the reference label for a unit specifies a membership value for 632 

each class (Foody, 1996; Binaghi et al., 1999). Another option for mixed units is to specify the 633 

proportion of area of each class present in the unit (Foody et al., 1992; Lewis and Brown, 2001).  634 

A different characterization of uncertainty in the reference classification is obtained by assigning 635 

a confidence rating that represents the interpreter’s perception of uncertainty in the reference 636 

classification for that unit. For example, low, moderate and high confidence ratings would 637 

indicate increasing confidence on the part of the interpreter that the reference classification is 638 
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correct. Typically this information can then be used in the analysis to subset results by 639 

confidence rating (Powell et al., 2004; Wickham et al., 2001, Table 4). 640 

The response design should include protocols to enhance consistency of the reference class 641 

labelling. For example, interpretation keys should be created if visual assessment is used to 642 

obtain the reference classification (Kelly et al., 1999) and specific instructions to translate 643 

quantitative field data into reference labels should be provided and documented. If multiple 644 

interpreters are used, training interpreters to ensure consistency is critical. Interpreters should be 645 

in communication throughout the process to discuss and review difficult cases and to agree upon 646 

a common approach to labelling such cases. Difficult cases should be noted for future reference 647 

and consensus development (e.g., the imagery is retained and accessible, and the decision 648 

process leading to the reference label of the case is documented). Rather than solely visual 649 

approaches, entire high spatial resolution images can be classified, with the underlying imagery 650 

also maintained and accessible as support information to the accuracy assessment (that is, to 651 

gain/ensure confidence in the categories selected for a given location). 652 

3.4. Defining Agreement 653 

Once the map and reference classifications have been obtained for a given spatial unit, rules for 654 

defining agreement must be specified before proceeding to the analyses that quantify accuracy. 655 

In the simplest case, a single class label is present for the map and a single label is provided by 656 

the reference classification. If these labels agree, the map class is correct for that unit, ;and if the 657 

labels disagree, the type of misclassification is readily identified. Defining agreement becomes 658 

more complex if the assessment unit is not homogeneous or if more than a single one class label 659 

is assigned by the map or reference classification. For example, if the reference classification 660 

provides a primary and secondary reference label, agreement can be defined as a match between 661 
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the map label and either the primary or secondary reference label.  If the reference classification 662 

consists of a vector of proportions of area of the classes present in the assessment unit (e.g., the 663 

area proportions of the classes are 0.2, 0.5, and 0.3), agreement can be defined as the proportion 664 

of area for which the map and reference labels are the same.  The critical feature of the protocol 665 

for defining agreement is that it allows construction of an error matrix in which the elements of 666 

the matrix represent proportion of area of agreement and disagreement between the map and 667 

reference classifications.  These proportions (in terms of area) achieve the necessary spatially 668 

explicit assessment of map accuracy and the requirements for area estimation. 669 

3.5. Reference Classification Uncertainty: Geolocation and Interpreter Variability 670 

In an ideal case, the reference classification is based on a reference data set of such quality that 671 

the sample labels represent the ground truth (i.e. a “gold standard” reference data set). However, 672 

the reference classification is subject to uncertainty, and an assessment of this uncertainty should 673 

be conducted.  Small errors in the reference data set can lead to large biases of the estimators of 674 

both classification accuracy and class area (Foody, 2010; 2013). Two potential sources of 675 

uncertainty in the reference classification are the uncertainty associated with spatial co-676 

registration of the map and reference location (Pontius, 2000) and uncertainty associated with the 677 

interpretation of the reference data (Pontius and Lippitt, 2006).  678 

Geolocation error is defined as a mismatch between the location of the spatial assessment 679 

unit identified from the map and the location identified from the reference data. The response 680 

design should be constructed to minimize geolocation error. For instance, it is common for plots 681 

to have a GPS position. The quality of the GPS position can be related by to the type of 682 

instrument used, which can provide an indication of spatial precision. The length of time, 683 

number of position measures to resolve the location, and the number of satellites are also aspects 684 
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that can be recorded. The magnitude of geolocation error should be characterized by 685 

documenting the spatial location quality of the map and reference data sources (e.g., GPS units, 686 

aerial photography, or satellite imagery). If airborne imagery is to be used, aircraft positioning 687 

and pointing information should be collected. The GPS location of the aircraft does not 688 

necessarily indicate the position of the point on the ground that is captured in photographic or 689 

video data. A slight roll of the aircraft can create a mismatch between the recorded and actual 690 

positions. Error in the classification may be incorrectly indicated due to these spatial 691 

mismatches, especially for smaller change events or rare classes.  692 

Interpreter uncertainty can be separated into two parts: 1) interpreter bias is defined as an 693 

error in the assignment of the reference class to the spatial unit; 2) interpreter variability is a 694 

difference between the reference class assigned to the same spatial unit by different interpreters 695 

(i.e., interpreter variability is the complement of among interpreter agreement). Although iIdeally 696 

an assessment of both interpreter bias and interpreter variability would be conducted, ; in 697 

practice, assessing only interpreter variability may be feasible. The difficulty hindering 698 

assessment of interpreter bias is whether a “gold standard” of truth exists against which the 699 

interpreted reference classification can be compared. For example, on-the-ground reference data 700 

may serve to establish the gold standard of truth for land cover at a single date, but a gold 701 

standard for change based on field visits would be much more difficult and costly to establish. 702 

Comparison of interpreters to an “expert” interpreter is a practical but less satisfying option for 703 

quantifying interpreter bias and the success of this approach depends on how closely the expert 704 

classification mimics the gold standard. A distinction between the accuracy assessment of land 705 

cover and change does exist, whereby the continuous nature of land cover benefits more from 706 

field visits. Depending on the change categories of interest, field visits may not be as 707 
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informative. For example, slower continuous changes may benefit from field visits, but rapid 708 

stand replacing disturbances may not. The date of change, if not captured in silvicultural records 709 

or fire maps, may actually be better captured from imagery of known vintage than through field 710 

visits (Cohen et al., 2010).    711 

If multiple interpreters or interpreter teams are providing the reference classification, 712 

interpreter variability can be assessed by having interpreters classify a common sample of 713 

locations. Ideally, the sample would include locations covering a variety of classes to allow 714 

evaluating how interpreter variability differs by class (e.g., do interpreters consistently agree for 715 

some classes, but not others).  The quality of the interpreters in terms of the accuracy of their 716 

labelling may also be assessed directly from the data generated (Foody et al., 2013). If this 717 

evaluation sample is selected using a probability sampling design (see Section 2), estimates of 718 

interpreter variability will have a strong inferential basis and results from the sample can be 719 

rigorously inferred to the population of all interpretations. If multiple interpreters operating 720 

independently are employed to determine the reference classification for each sample location, a 721 

number of considerations may affect the decision of how many interpreters are used. Wulder et 722 

al. (2007) who used seven interpreters in a land cover labelling protocol, detail the issues that 723 

arise when using multiple interpreters, noting common disagreement between interpreters, 724 

especially for more refined and rare classes. Ensuring that consensus is reached, rather than an 725 

aggregation of independent interpretations, is also possible. Also using airborne video data, 726 

Powell et al. (2004) required five interpreters to agree upon a specific class, with the outcome 727 

then treated as a “gold standard”. While some disagreement could be linked to difficulty in 728 

identifying the vegetation in the video, other sources of disagreement included data entry error 729 

and misreading of sample labels. These are sources of error that can be mitigated by using 730 
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intelligent data management and entry tools. Wulder et al. (2007), recommend the use of an 731 

independent evaluation protocol, followed by cross-calibration, and the revisit of problematic 732 

classes. This would allow for the use of fewer resources and interpreters yet still gain the benefit 733 

of multiple interpreters.  734 

A number of issues arise when using multiple interpreters to obtain the reference 735 

classification (Wulder et al. 2007). Disagreements among interpreters evaluating the same 736 

sampling unit are likely. These disagreements may be resolved by a consensus agreement on the 737 

reference class; for example, Powell et al. (2004) required five interpreters to agree upon a 738 

specific class, with the outcome then treated as a “gold standard”. Constant communication 739 

among the multiple interpreters to discuss and document difficult cases is important to foster 740 

enhanced consistency and accuracy of the reference labeling process (Wickham et al. 2013). 741 

The response design protocols described in this section have has focused on land- cover 742 

changes that can be characterised by a complete change in class type: conversions of cover. In 743 

some studies attention is focused on more subtle changes or modifications of land cover, as 744 

changes in land cover can be considered as processes (Gomez et al., 2011) with depletions gains 745 

and accruals losses in vegetation captured and possible to assign a label (Kennedy et al., 2010). 746 

Cohen et al. (2010) show how investigation of time series of satellite imagery supported by 747 

period photography can illuminate on subtle changes in forest conditions (such as decline due to 748 

insects or water stress and conversely recovery of forests following disturbance). The importance 749 

of the ability to capture and label subtle changes is dependent upon the goals of the change 750 

classification. The interest in quantifying emissions of CO2 to the atmosphere, a full accounting 751 

of subtle changes is increasingly desired, with capture of degradation (FAO, 2011) – while 752 

difficult – of interest for averting and related documentation of deforestation (UN-REDD, 2008).  753 
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The response design protocols presented also do not address the situation in which the map 754 

provides information as a continuous variable.  Although many of the basic concepts underlying 755 

the good practice recommendations would apply to a continuous variable, the details of 756 

methodology of the accuracy assessment methodology (cf. Riemann et al., 2010) and area 757 

estimation would likely be considerably different from the methods presented herein.   758 

4. Analysis 759 

The analysis protocol specifies the measures to be used to express accuracy and class area as 760 

well as the procedures to estimate the selected measures from the sample data acquired. In the 761 

context of studies of land change, there are two key objectives of the analysis: 1) accuracythe 762 

assessment of the accuracy of the change classification, and 2) estimation the provision of 763 

information on the area of change. The confusion or error matrix (hereafter noted as the error 764 

matrix) plays a central role in meeting both the accuracy assessment and area estimation 765 

objectives (Foody, 2013; Stehman, 2013).  766 

4.1 The Error Matrix 767 

The error matrix is a simple cross-tabulation of the class labels allocated by the classification of 768 

the remotely sensed data against the reference data for the sample sites. The error matrix 769 

organizes the acquired sample data in a way that summarizes key results and aids the 770 

quantification of accuracy and area. The main diagonal of the error matrix highlights correct 771 

classifications while the off-diagonal elements show omission and commission errors. The cell 772 

entries and marginal values of the error matrix are fundamental to both accuracy assessment and 773 

area estimation. Table 4 illustrates a four-class example error matrix of the type often used in 774 

studies of land change.  775 
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 776 

<< TABLE 4 HERE >> 777 

 778 

The rows of the error matrix represent the labels shown in a map derived from the classification 779 

of the remote sensing data and the columns represent the labels depicted in the reference data. 780 

This layout is not a universal requirement and some may wish to reverse the contents of the rows 781 

and columns. In the matrix, 𝑝𝑖𝑗 represents the proportion of area for the population that has map 782 

class i and reference class j, where “population” is defined as the full region of interest, and 𝑝𝑖𝑗 is 783 

therefore the value that would result if a census of the population were obtained (i.e., complete 784 

coverage reference classification).  785 

Accuracy parameters derived from a population error matrix of q classes include overall 786 

accuracy   787 

 788 

𝑂 = ∑ 𝑝𝑗𝑗
𝑞
𝑗=1             (1) 789 

 790 

user’s accuracy of class i (the proportion of the area mapped as class i that has reference class i) 791 

 792 

𝑈𝑖 = 𝑝𝑖𝑖/𝑝𝑖∙           (2) 793 

 794 

or its complementary measure, commission error of class i, 1 − 𝑝𝑖𝑖/𝑝𝑖∙, and producer’s accuracy 795 

of class j (the proportion of the area of reference class j that is mapped as class j),  796 

 797 

𝑃𝑗 = 𝑝𝑗𝑗/𝑝∙𝑗           (3) 798 
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 799 

or its complementary measure, omission error of class j, 1 − 𝑝𝑗𝑗/𝑝∙𝑗. A variety of other measures 800 

of accuracy has been used in remote sensing (Liu et al., 2007). A commonly used measure is the 801 

kappa coefficient of agreement (Congalton and Green, 2009). The problems associated with 802 

kappa include but are not limited to: 1) the correction for hypothetical chance agreement 803 

produces a measure that is not descriptive of the accuracy a user of the map would encounter 804 

(kappa would underestimate the probability that a random selected pixel is correctly classified); 805 

2) the correction for chance agreement used in the common formulation of kappa is based on an 806 

assumption of random chance that is not reasonable because it uses the map marginal proportions 807 

of area in the definition of chance agreement and these proportions are clearly not simply 808 

random; and 3) kappa is highly correlated with overall accuracy so reporting kappa is redundant 809 

with overall accuracy.”However, kappa has numerous problems not least an incorrect and 810 

unnecessary “correction” for chance agreement (Foody, 1992; Stehman, 1997; Liu et al., 2007; 811 

Pontius and Millones, 2011). Consistent with the recommendation in Strahler et al. (2006), the 812 

use of kappa is strongly discouraged as, despite its widespread use, it actually does not serve a 813 

useful role in accuracy assessment or area estimation. 814 

4.2 General Principles of Estimation for Good Practice 815 

The core nature of the analysis protocol is designed to achieve the objectives of estimating 816 

produce estimates of accuracy and area from the sample data.  Analysis thus requires statistical 817 

inference as the underlying scientific support for generalizing from the sample data to the 818 

population parameters and for quantifying uncertainty of the sample-based estimators. We 819 

recommend design-based inference (Särndal et al., 1992) as the framework within which 820 

estimation is conducted.  A fundamental tenet of design-based inference is that the specific 821 
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estimators for accuracy, area, and the variances of these estimators depend on the sampling 822 

design implemented; different estimators are appropriate for different sampling designs. It is, 823 

Ttherefore, it is essential that only unbiased or consistent estimators should be used. In practical 824 

terms, this means that only formulas for estimating parameters and variances that account for the 825 

inclusion probabilities associated with the sampling design implemented should be used.  All 826 

recommended good practice estimators meet this condition, but the versions of the estimators 827 

presented are usually forms where the individual inclusion probabilities do not appear explicitly. 828 

4.3 Estimating Accuracy 829 

The cell entries of the error matrix and the population parameters derived from it must be 830 

estimated from a sample. Suppose the sample-based estimator of 𝑝𝑖𝑗 is denoted as �̂�𝑖𝑗. Once �̂�𝑖𝑗 831 

is available for each element of the error matrix, parameters can be estimated by substituting �̂�𝑖𝑗 832 

for 𝑝𝑖𝑗 in the formulas for the parameters. Accordingly, the error matrix should be reported in 833 

terms of these estimated area proportions, �̂�𝑖𝑗, and not in terms of sample counts, 𝑛𝑖𝑗.  The 834 

specific formula for estimating 𝑝𝑖𝑗 depends on the sampling design used. For equal probability 835 

sampling designs (e.g., simple random and systematic sampling) and stratified random sampling 836 

in which the strata correspond to the map classes, 837 

 838 

�̂�𝑖𝑗 = 𝑊𝑖
𝑛𝑖𝑗

𝑛𝑖∙
           (4)  839 

 840 

where 𝑊𝑖 is the proportion of area mapped as class i. For simple random and systematic 841 

sampling, Eq. (4) is a poststratified estimator of 𝑝𝑖𝑗 (Card, 1982) and for these sampling designs 842 

the poststratified estimator is recommended because it will have better precision than the 843 



40 

estimators commonly used (cf. Stehman and Foody, 2009).  Substituting  �̂�𝑖𝑗 of Eq. (4) into 844 

Eqns. 1-3 yields estimators of overall, user’s, and producer’s accuracies. These formulas are 845 

simpler special cases of a more general estimation approach described in Strahler et al. (2006, 846 

Eqn. 3.1).   847 

The sampling variability associated with the accuracy estimates should be quantified by 848 

reporting standard errors. The variance estimators are provided below, and taking the square root 849 

of the estimated variance results in the standard error of the estimator. For overall accuracy, the 850 

estimated variance is 851 

 852 

�̂�(�̂�) = ∑ 𝑊𝑖
2�̂�𝑖(1 − �̂�𝑖)/(𝑛𝑖∙ − 1)𝑞

𝑖=1        (5) 853 

  854 

For user’s accuracy of map class 𝑖, the estimated variance is  855 

 856 

�̂�(�̂�𝑖) = �̂�𝑖(1 − �̂�𝑖)/(𝑛𝑖∙ − 1)        (6) 857 

 858 

For producer’s accuracy of reference class 𝑗 = 𝑘, the estimated variance is 859 

 860 

�̂�(�̂�𝑗) =
1

�̂�∙𝑗
2 [

𝑁𝑗.
2(1−�̂�𝑗)

2
�̂�𝑗(1−�̂�𝑗)

𝑛𝑗.−1
+ �̂�𝑗

2 ∑ 𝑁𝑖∙
2 𝑛𝑖𝑗

𝑛𝑖∙
(1 −

𝑛𝑖𝑗

𝑛𝑖∙
) /(𝑛𝑖∙

𝑞
𝑖≠𝑗 − 1)]   (7) 861 

 862 

where �̂�∙𝑗 = ∑
𝑁𝑖∙

𝑛𝑖∙
𝑛𝑖𝑗

𝑞
𝑖=1  is the estimated marginal total number of pixels of reference class 𝑗,  𝑁𝑗∙ 863 

is the marginal total of map class j and 𝑛𝑗∙ is the total number of sample units in map class j.  864 

These are the usual variance estimators applied to the stratified sampling, and the estimators 865 
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would be viewed as poststratified variance estimators for simple random and systematic 866 

sampling. For systematic sampling, the variance estimators are approximations that usually result 867 

in overestimation of variance. These variance estimators are also based on assumptions that the 868 

assessment unit for the response design is a pixel and each pixel has a hard classification for the 869 

map and a hard classification for the reference data. The variance estimators would not apply to a 870 

polygon assessment unit or to a mixed pixel situation. 871 

4.4 Estimating Area 872 

The error matrix also provides the basis for estimating the area of classes such as those 873 

representing change and no-change. Indeed, tThe population error matrix (Table 4) provides two 874 

different approaches for estimating the proportion of area. Suppose we are interested in 875 

estimating the proportion of area of class k. The row and column totals are the sums of the 𝑝𝑖𝑗 876 

values in the respective rows and columns. Thus, the row total 𝑝𝑘∙ represents the proportion of 877 

area mapped as class k (e.g., if k is a change class such as forest loss then 𝑝𝑘∙ is the proportion of 878 

area mapped as forest loss) and the column total 𝑝∙𝑘 represents the proportion of area of class k 879 

as determined from the reference classification (e.g., 𝑝∙𝑘 would be the proportion of area of forest 880 

loss as determined from the reference classification).  881 

The two area proportion parameters for class k (i.e., 𝑝𝑘∙ and 𝑝∙𝑘) are unlikely to have the 882 

same value, so a decision arises as to which parameter should be the focus. Once a change map is 883 

complete, 𝑝𝑘∙ is known, but because the reference classification is available only for a sample, 884 

𝑝∙𝑘 must be estimated from the sample. Consequently, the need to estimate 𝑝∙𝑘 introduces 885 

uncertainty in the form of sampling variability, whereas 𝑝𝑘∙ is not subject to sampling variability 886 

(Stehman, 2005).The map-based parameter 𝑝𝑘∙ is known with certainty but likely biased because 887 

of classification error. Conversely, 𝑝∙𝑘 is determined from the reference classification., and, 888 
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tTherefore, 𝑝∙𝑘 should have smaller bias than 𝑝𝑘∙ (i.e., the bias attributable to reference data error 889 

is smaller than the bias attributable to map classification error). The “good practice” guidelines 890 

are founded on the premise that the reference classification is of superior quality to the map 891 

classification and that the sampling design implemented yields estimates with small standard 892 

errors.  Consequently, we recommend that area estimation should be based on 𝑝∙𝑘, the proportion 893 

of area derived from the reference classification.  894 

A variety of estimators has been proposed for estimating 𝑝∙𝑘 from the error matrix.  For any 895 

sampling design and response design leading to an estimated error matrix with 𝑝𝑖𝑗 in terms of 896 

proportion of area, a direct estimator of the proportion of area of class k is  897 

 898 

�̂�∙𝑘 = ∑ �̂�𝑖𝑘
𝑞
𝑖=1            (8) 899 

 900 

This estimator is simply the sum of the estimated area proportions of class k as determined from 901 

the reference classification (i.e., the sum of column k of the estimated error matrix). If the 902 

sampling design is simple random, systematic, or stratified random with the map classes defined 903 

as the strata, Eq. (8) would be computed using   �̂�𝑖𝑗 = 𝑊𝑖
𝑛𝑖𝑗

𝑛𝑖∙
 leading to the often used special 904 

case estimator 905 

                                                           906 

�̂�∙𝑘 = ∑ 𝑊𝑖
𝑛𝑖𝑘

𝑛𝑖∙

𝑞
𝑖=1           (9) 907 

 908 

This estimator is a poststratified estimator for simple random and systematic sampling, and it is 909 

the direct stratified estimator of 𝑝∙𝑘 for stratified random sampling when the map classes are the 910 

strata. For these sampling designs, the stratified estimator (Eq. 9) generally has better precision 911 
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than a variety of alternative estimators of area (Stehman, 2013) and consequently the stratified 912 

estimator is recommended.  913 

For the stratified estimator of proportion of area (Eq. 9), the standard error is estimated by  914 

 915 

𝑆(�̂�∙𝑘) =  √∑ 𝑊𝑖
2

𝑛𝑖𝑘
𝑛𝑖∙

(1−
𝑛𝑖𝑘
𝑛𝑖∙

)

𝑛𝑖∙−1𝑖 = √∑
𝑊𝑖𝑝𝑖𝑘−�̂�𝑖𝑘

2

𝑛𝑖∙−1𝑖       (10) 916 

 917 

where 𝑛𝑖𝑘 is the sample count at cell (i,k) in the error matrix, Wi is the area proportion of map 918 

class i, and the summation is over the q classes. For systematic sampling, Eq. (10) is an 919 

approximation that is typically an overestimate for the actual standard error of systematic 920 

sampling.  The estimated area of class k is �̂�𝑘 = 𝐴 × �̂�∙𝑘, where A is the total map area. The 921 

standard error of the estimated area is given by 922 

  923 

𝑆(�̂�𝑘) = 𝐴 × 𝑆(�̂�∙𝑘)           (11) 924 

 925 

An approximate 95% confidence interval is obtained as �̂�𝑘 ± 1.96 × 𝑆(�̂�𝑘). 926 

5. Example of Good Practices: Estimating Area and Assessing 927 

Accuracy of Forest Change  928 

The following hypothetical example illustrates the workflow of assessing accuracy of a forest 929 

change map and estimating area. Consider a change map for 2000 to 2010 consisting of two 930 

change classes and two stable classes: deforestation, forest gain, stable forest and stable non-931 

forest. The map was produced by supervised classification of data from Landsat ETM+ with the 932 
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objective of estimating the gross rates of forest loss and gain. The first step in the assessment was 933 

to visually inspect the change map and identify obvious errors by comparing the classified results 934 

to the Landsat data of 2000 and 2010. Misclassified regions were relabelled before proceeding to 935 

the rigorous evaluation of the map. After obvious errors were removed, the areas of the map 936 

classes were 200,000 Landsat pixels (18,000 ha) of deforestation, 150,000 pixels (13,500 ha) of 937 

forest gain, 3,200,000 pixels (288,000 ha) of stable forest, and 6,450,000 pixels (580,500 ha) of 938 

stable non-forest. The two change classes thus occupy 3.5% of the total map area. The accuracy 939 

assessment was designed for the objectives of estimating overall and class-specific accuracies, 940 

areas of the individual classes (as determined by the reference classification), and confidence 941 

intervals for each accuracy and area parameter. The spatial assessment unit in this example is a 942 

Landsat pixel (30 m × 30 m). 943 

5.1 Sampling Design  944 

A stratified random sampling design with the four map classes as strata adheres to the 945 

recommended practices outlined in Section 2.3 and satisfies the accuracy assessment and area 946 

estimation objectives. In the next two subsections, we present sample size and sample allocation 947 

planning calculations for the stratified design. Sample size planning is an inexact science because 948 

it is dependent on information on accuracy and area information that must be speculative prior to 949 

conducting the actual accuracy assessment. Nevertheless, these planning calculations can provide 950 

informative insight into the choices of sample size and sample allocation to strata.  951 

5.1.1 Determining the Sample Size 952 

For simple random sampling and targeting overall accuracy as the estimation objective, Cochran 953 

(1977, Eq. 4.2) suggests using a sample size of  954 

 955 
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𝑛 =  
𝑧2𝑂(1−𝑂)

𝑑2
           (12) 956 

 957 

where O is the overall accuracy expressed as a proportion, z is a percentile from the standard 958 

normal distribution (𝑧 = 1.96 for a 95% confidence interval, 𝑧 =  1.645 for a 90% confidence 959 

interval), and d is the desired half-width of the confidence interval of O. Eq. (12) provides a 960 

starting point for assessing sample size for the limited scope of estimating overall accuracy. 961 

For stratified random sampling, Cochran (1977, Eq. 5.25) provides the following sample size 962 

formula (the cost of sampling each stratum is assumed the same): 963 

 964 

𝑛 =  
(∑ 𝑊𝑖𝑆𝑖)2

[𝑆(�̂�)]2+(1/𝑁) ∑ 𝑊𝑖𝑆𝑖
2 ≈ (

∑ 𝑊𝑖𝑆𝑖

𝑆(�̂�)
)

2

        (13) 965 

 966 

where N = number of units in the ROI, 𝑆(�̂�)  is the standard error of the estimated overall 967 

accuracy that we would like to achieve, 𝑊𝑖 is the mapped proportion of area of class i, and 𝑆𝑖 is 968 

the standard deviation of stratum i, 𝑆𝑖 = √𝑈𝑖(1 − 𝑈𝑖) (Cochran, 1977, Eq. 5.55). Because N is 969 

typically large (e.g., over 10 million pixels in this example), the second term in the denominator 970 

of Eq. (13) can be ignored. We specify a target standard error for overall accuracy of 0.01. 971 

Suppose from past experience with similar change mapping efforts we know that errors of 972 

commission are relatively common for the change classes while the stable classes are more 973 

accurate (e.g., Olofsson et al., 2010; 2011). Consequently, we conjecture that user’s accuracies of 974 

the two change classes will be 0.70 for deforestation and 0.60 for forest gain, and user’s 975 

accuracies of the stable classes will be 0.90 for stable forest and 0.95 for stable non-forest. The 976 
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resulting sample size from Eq. (13) is n = 641. These sample size calculations should be repeated 977 

for a variety of choices of 𝑆(�̂�) and 𝑈𝑖 before reaching a final decision.  978 

5.1.2. Determine Sample Allocation to Strata 979 

Once we have chosen the overall sample size is chosen, we determine the allocation of the 980 

sample to strata needs to be determined. It is important that the sample size allocation results in 981 

precise estimates of accuracy and area. Stehman (2012) identifies four different approaches to 982 

sample allocation: proportional, equal, optimal and power allocation. In proportional allocation, 983 

the sample size per map class is proportional to the relative area of the map class. In this 984 

example, and which is usually the case when mapping land change, the mapped areas of change 985 

are small relative to other classes so proportional allocation will lead to small sample sizes in the 986 

rare classes (unless n is very large) and imprecise estimates of user’s accuracy for these rare 987 

classes. Allocating an equal sample size to all strata targets estimation of user’s accuracy of each 988 

map class but equal allocation is not optimized for estimating area and overall accuracy. Neyman 989 

optimal allocation (Cochran, 1977) can be used to minimize the variance of the estimator of 990 

overall accuracy or the estimator of area, but optimal allocation becomes difficult to implement 991 

when multiple estimation objectives are of interest as will be the case when estimating accuracy 992 

and area of several land-cover classes or land-cover change types.  993 

We suggest the following simplified approach to sample size allocation. Allocate a sample 994 

size of 50-100 for each change strata using the variance estimator for user’s accuracy (Eq. 6) to 995 

decide the sample size needed to achieve certain standard errors for the assumed estimated user’s 996 

accuracy for that class. The sample size allocated to these rare class strata will also be affected 997 

by the total sample size, n, available to allocate. A small overall sample sizen might allow for 998 

only 50 sample units per rare class stratum. Suppose that n-r sample units remain after a sample 999 
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size of r units has been allocated to the rare class strata. The sample size of n-r is then allocated 1000 

proportionally to the area of each remaining stratum.  The anticipated estimated variances can 1001 

then be computed (based on the sample size allocation) for user’s and overall accuracy and area 1002 

using Eqs. (5), (6) and (10). The sample size allocation process can be iterated until an allocation 1003 

is found that yields satisfactory anticipated standard errors for the key accuracy and area 1004 

estimates. The effect of the choice of sample allocation will be observed in the standard errors of 1005 

the estimates, however, a poor allocation of sample size to strata will not result in biased 1006 

estimators. 1007 

In this example, we know the mapped areas of the four map classes (𝑊𝑖), we have 1008 

conjectured values of user’s accuracies and standard errors of the strata, and we have estimated a 1009 

total sample size of 641 (Table 5). The resulting sample sizes for proportional and equal 1010 

allocation are shown in Table 5. As described above, neither of these is optimal and we want to 1011 

find a compromise between the two. We start by allocating 100 sample units each to the change 1012 

classes and then allocate the remainder of the sample size proportionally to the stable classes. 1013 

This gives the allocation in column “Alloc1”. Since the recommendation is to allocate between 1014 

50 and 100 sample units in the change strata, we introduce two additional allocations with 75 and 1015 

50 sample units in the change strata, respectively (“Alloc2” and “Alloc3”). To determine which 1016 

of these allocations to use, we need to examine the standard errors of the estimated user’s 1017 

accuracy, estimated overall accuracy, and estimated areas using Eq. (5), (6) and (10).  1018 

 1019 

<< TABLE 5 HERE >> 1020 

 1021 



48 

It is necessary to speculate the outcome of the accuracy assessment to compute the anticipated 1022 

standard errors for each sample allocation considered.  The hypothesized error matrix in Table 6 1023 

reflects the anticipated outcome that the change classes will be rare and have lower class-specific 1024 

accuracies than the two stable classes.  The population error matrix was also constructed to yield 1025 

the hypothesized accuracies input into the sample size planning calculations of the previous 1026 

section.  When creating the hypothesized error matrix used for sample size and sample allocation 1027 

planning, we should draw upon any past experience for insight into the accuracy of the map to be 1028 

produced. 1029 

 1030 

<< TABLE 6 HERE >> 1031 

 1032 

Table 7 shows the standard errors of the user’s and overall accuracies and estimated areas of both 1033 

deforestation and stable forest for each of the five sample allocations in Table 5 and the 1034 

hypothetical population error matrix of Table 6. No single allocation is best for all estimation 1035 

objectives, so a choice among competing objectives is necessary. The emphasis on prioritizing 1036 

objectives during the planning stage (Section 2) becomes particularly relevant to the decision of 1037 

sample allocation because different allocations favour different estimation objectives. For 1038 

example, equal allocation gives the smallest standard error of the user’s accuracy of deforestation 1039 

but a high standard error of the estimated area of deforestation. Proportional allocation will result 1040 

in smaller standard errors of overall accuracy and area of stable forest but the standard error for 1041 

estimated user’s accuracy of deforestation is two to four times larger than the corresponding 1042 

standard errors for other sample allocations. In this case, “Alloc1-3” provide allocations that 1043 
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generate relatively small standard errors for the different estimates. We will choose “Alloc2” 1044 

with 75 sample units in the two change classes. 1045 

 1046 

<< TABLE 7 HERE >> 1047 

5.2 Estimating Accuracy, Area and Confidence Intervals 1048 

To create the reference classification for labelling each sample unit, a combination of Landsat 1049 

data from the USGS open archive together with GoogleEarthTM provides a source of cost free 1050 

reference data. Our hypothetical map was produced using Landsat, and the good practice 1051 

recommendations stipulate that if using the same data for creation of both the map and reference 1052 

classifications, the process of creating the latter should be of higher quality than the map-making 1053 

process. The process of labelling the sample units thus has to be more accurate than supervised 1054 

classification. A manual inspection by three analysts of each of the sample units using a set of 1055 

Landsat images together with GoogleEarthTM  imagery acquired around the same time as the 1056 

images used to make the map is assumed to be a more accurate process than supervised 1057 

classification. Suppose tThe error matrix resulting from this response design and sample is 1058 

presented in terms of the sample counts displayed in Table 8, and the computations for the 1059 

accuracy and area estimates are detailed in the following two subsections.  1060 

 1061 

<< TABLE 8 HERE >> 1062 

 1063 

5.2.1. Estimating Accuracy 1064 

Because the sampling design is stratified random using the map classes as strata, the cell entries 1065 

of the error matrix are estimated using Eq. (4).  1066 
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 1067 

<< TABLE 9 HERE >> 1068 

 1069 

We can now estimate user’s accuracy �̂�𝑖 =
𝑝𝑖𝑖

𝑝𝑖∙
; producer’s accuracy �̂�𝑗 =

𝑝𝑗𝑗

𝑝∙𝑗
; and overall 1070 

accuracy �̂� = ∑ �̂�𝑗𝑗
𝑞
𝑗=1  using the estimated area proportions. Variances for these accuracy 1071 

measures are estimated using Eq. (5)-(7). 95% confidence intervals are estimated as 1072 

± 1.96√�̂�(�̂�𝑖) (replace �̂�𝑖 with �̂�𝑗 and �̂� for the producer’s and overall accuracies). In this case, 1073 

the estimated user’s accuracy (± 95% confidence interval) is 0.88 ± 0.07  for deforestation, 1074 

0.73 ± 0.10 for forest gain, 0.93 ± 0.04 for stable forest, and 0.96 ± 0.02 for stable non-forest. 1075 

The estimated producer’s accuracy is 0.75 ± 0.21 for deforestation, 0.85 ± 0.23 for forest gain, 1076 

0.93 ± 0.03 for stable forest, and 0.96 ± 0.01 for stable non-forest. The estimated overall 1077 

accuracy is 0.95 ± 0.02. 1078 

5.2.2. Estimating Area and Uncertainty 1079 

The next step is to use the estimated area proportions in Table 9 to estimate the area of each 1080 

class. The row totals of the error matrix in Table 9 give the mapped area proportions (which are 1081 

also given by Wi) while the column totals give the estimated area proportions according to the 1082 

reference data. Multiplying the latter by the total map area gives the stratified area estimate of 1083 

each class according to the reference data. For example, the estimated area of deforestation 1084 

according to the reference data is �̂�1 = �̂�∙1 × 𝐴𝑡𝑜𝑡 = 0.024 × 10,000,000 pixels = 235,086 1085 

pixels = 21,158 ha. The mapped area of deforestation (𝐴𝑚,1) of 200,000 pixels was thus 1086 

underestimated by 35,086 pixels or 3,158 ha. 1087 
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The second step is to estimate a confidence interval for the area of each class. From Eq. (10), 1088 

𝑆(�̂�∙1) = 0.0035 and the standard error for the estimated area of forest loss is 𝑆(�̂�1) =  𝑆(�̂�∙1) ×1089 

𝐴𝑡𝑜𝑡  =  0.0035 × 10,000,000 =  34,097  pixels. The margin of error of the confidence interval 1090 

is 1.96 × 34,097 = 68,418 pixels = 6,158 ha. We have thus estimated the area of deforestation 1091 

with a 95% confidence interval: 21, 158 ± 6,158  ha. The area estimate with a 95% confidence 1092 

interval of the forest gain class is 11,686 ± 3,756 ha; stable forest is 285,770 ± 15,510 ha and 1093 

stable non-forest 581,386 ± 16,282 ha. 1094 

This example has illustrated the workflow of assessing accuracy, and estimating area and 1095 

confidence intervals of area of the classes of a change map. While this is fairly straightforward 1096 

once the error matrix has been constructed, the example highlights the need to consider different 1097 

objectives when designing the sample. 1098 

A tool for estimating unbiased accuracy measures and areas with 95% confidence intervals 1099 

can be downloaded from www.people.bu.edu/olofsson/ (click ‘Research’ > 1100 

‘Accuracy/Uncertainty’). The tool is implemented in Matlab™.  1101 

6. Summary 1102 

Conducting an accuracy assessment of a land change map serves multiple purposes. In addition 1103 

to the obvious purpose of quantifying the accuracy of the map, the reference sample serves as the 1104 

basis of estimates of area of each class where area is defined by the reference classification., and 1105 

t The accuracy assessment sample data also contribute to estimates of uncertainty of the area 1106 

estimates. Without an accuracy assessment, there is no way to communicate map quality in a 1107 

quantitative and meaningful fashion. We acknowledge that there is no singular “best” approach 1108 

and the recommendations provided do not preclude the existence of other acceptable practices. 1109 
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However, by following the “good practice” recommendations presented by this paper, scientific 1110 

credibility of the accuracy and area estimates is ensured. The “good practice” recommendations 1111 

are summarized as follows, organized by the three major components of the accuracy assessment 1112 

methodology, the sampling design, response design, and analysis: 1113 

6.1 General 1114 

 Visually inspect the map and correct obvious errors before conducting the accuracy 1115 

assessment 1116 

 Accuracy and area estimates will be determined from a classification (i.e., the reference 1117 

classification) that is of higher quality than the land change map being evaluated   1118 

 A sampling approach is needed because the cost of obtaining the reference classification 1119 

for the entire region of interest will be prohibitive 1120 

 The sample used for accuracy assessment and area estimation is separate from 1121 

(independent of) the data used to train or develop the classification 1122 

6.2 Sampling design 1123 

 Implement a probability sampling design to provide a rigorous foundation via design-1124 

based sampling inference 1125 

 Document and quantify any deviations from the probability sampling protocol 1126 

 Choose a sampling design on the basis of specified accuracy objectives and prioritized 1127 

desirable design criteria 1128 

 Sampling design guidelines  1129 

o Stratify by map class to reduce standard errors of class-specific accuracy 1130 

estimates 1131 
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o If resources are adequate, stratify by subregions to reduce standard errors of 1132 

subregion-specific estimates 1133 

o Use cluster sampling if it provides a substantial cost savings or if the objectives 1134 

require a cluster unit for the assessment 1135 

o Both simple random and systemic selection protocols are acceptable options 1136 

 The recommended allocation of sample size to strata (assuming the map classes are the 1137 

strata) is to increase the sample size for rare change classes to achieve an acceptable 1138 

standard error for estimated user’s accuracies and to allocate the remaining sample size 1139 

roughly proportional to the area occupied by the common classes 1140 

 Use sample size and optimal allocation planning calculations as a guide to decisions on 1141 

total sample size and sample allocation 1142 

 Evaluate the potential outcome of sample size and sample allocation decisions on the 1143 

standard errors of accuracy and area estimates for hypothetical error matrices based on 1144 

the anticipated accuracy of the map 1145 

 Stratified random sampling using the map classification to define strata is a simple, but 1146 

generally applicable design that will typically satisfy most accuracy and area estimation 1147 

objectives and desirable design criteria 1148 

6.3 Response design 1149 

 Reference data should be of higher quality than the data used for creating the map, or if 1150 

using the same source, the process of creating the reference classification should be more 1151 

accurate than the process of creating the map 1152 

 High overhead cost may eliminate field visits as a source of reference data 1153 
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 The reference data should provide sufficient temporal representation consistent with the 1154 

change period of the map 1155 

 Data from the Landsat open archive in combination with high spatial resolution imagery 1156 

provide a low-cost and often useful source of reference data (national photograph 1157 

archives, satellite photo archives (e.g., Kompsat), and the collections available through 1158 

Google Earth™ are possible high resolution imagery sources) 1159 

 Specify protocols for accounting for uncertainty in assigning the reference classifications 1160 

 Assign each sample unit a primary and secondary label (secondary not required if there is 1161 

highly confidencet in the primary label) 1162 

 Include an interpreter specified confidence for each reference label (e.g., high, medium, 1163 

or low confidence) 1164 

 Implement protocols to ensure consistency among individual interpreters or teams of 1165 

interpreters  1166 

 Specify a protocol for defining agreement between the map and reference classifications 1167 

that will lead to an error matrix expressed in terms of proportion of area 1168 

 6.4 Analysis 1169 

 Report the error matrix in terms of estimated area proportions  1170 

 Report the area (or proportion of area) of each class as determined from the map 1171 

 Report user’s accuracy (or commission error), producer’s accuracy (or omission 1172 

error), and overall accuracy (Equations 1-3) 1173 

 Avoid use of the kappa coefficient of agreement for reporting accuracy of land 1174 

change maps 1175 
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 Estimate the area of each class according to the classification determined from the 1176 

reference data 1177 

 Use estimators of accuracy and area that are unbiased or consistent 1178 

 For simple random, systematic, and stratified random sampling when the map classes 1179 

are defined as strata, use stratified estimators of accuracy (Eqs. 5-7) and a stratified 1180 

estimator of area (Eq. 9) 1181 

 Quantify sampling variability of the accuracy and area estimates by reporting 1182 

standard errors or confidence intervals 1183 

 Use design-based inference to define estimator properties and to quantify uncertainty 1184 

 Assess the impact of reference data uncertainty on the accuracy and area estimates 1185 

The recommendations provided are intended to serve as guidelines for choosing from among 1186 

options of sampling design, response design, and analysis that will yield rigorous and defensible 1187 

accuracy and area estimates. But good practice is not static.  As improvements in technology 1188 

become available and new methods are developed, good practice recommendations will evolve 1189 

over time.  Also, as practical experience accumulates with using new technology and 1190 

methodologiesy, good practice recommendations will be further amended to provide even more 1191 

efficient yet still rigorous methods to estimate accuracy and area of land change. 1192 

  1193 
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 1452 

Table 1. Possible reference data sources  1453 

Reference data source Exemplar citation 

Field plots Hyyppä et al. 2000 

Air photography Skirvin et al. (2004) 

Forest inventory data McRoberts (2011); Wulder et al. (2006b) 

Airborne video Wulder et al. (2007) 

Lidar Lindberg et al. (2012) 

Satellite imagery 

Crowdsourcing 

Scepan (1999); Cohen et al. (2010) 

Iwao et al. (2006); Foody and Boyd (2013) 
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69 

Table 2. Example characteristics to record for each change polygon. Some attributes can be 1456 

generated in the GIS; others will need to be entered by the analyst. Notion is that information is 1457 

captured and carried to provide insights and a record regarding the changes captured. The aim is 1458 

that the change polygons can be used in a manner that is invariant to source, but that metadata is 1459 

captured to explain or better understand any data related anomalies that may emerge.   1460 

Attribute Definition / comments.  

Change Area Area changed, e.g., polygon size in hectares 

Change Perimeter Perimeter of polygon, in meters  

Change Type Notation of change type, harvest, fire, insect, urban expansion, 

agricultural development 

Change Date As possible, note the change date. May be available from other records, 

e.g., when a fire occurred, or the acquisition date of the image or 

photography used. 

Data Source Note the data source from which the change polygon is made 

Analyst Name or code to denote the interpreter 

Date Interpreted Note the date when the interpretation occurred 
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Table 3. Elements for consideration when selecting reference data 1463 

Element Considerations 

Cost What is the budget? What amount per unit of reference data can be 

purchased? Is the interpretation / labelling protocol efficient? 

Ease of access Varies by data type. Can field visits be made? Is archival image data 

available? 

Ease of use Is the data produced in a consistent fashion? Is it in formats that are 

commonly used? 

Opportunity for 

consistency 

Can protocols be developed and applied in a systematic and repetitive 

fashion? Can some tasks be automated?  

Vintage – temporal 

representation  

Is the data representative of a time or time period that is relevant to the 

change product under consideration? 

Spatial coverage Are there opportunities for multiple reference sites from a given 

reference data source? 

Interpretability of  

change types  

Does the data source capture and portray the change types of interest? 

E.g., is the spatial resolution sufficiently fine to enable interpretation?  

Geolocation Can the candidate reference data source be assumed to be accurately 

positioned? Will additional geolocation activities be required? 
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71 

Table 4. Population error matrix of four classes with cell entries (𝑝𝑖𝑗) expressed in terms of 1466 

proportion of area as suggested by good practice recommendations. 1467 

  Reference  

   Class 1 Class 2 Class 3 Class 4 Total 

M
ap

 

Class 1 p11 p12 p13 p14 p1· 

Class 2 p21 p22 p23 p24 p2· 

Class 3 p31 p32 p32 p34 p3· 

Class 4 p41 p42 p43 p44 p4· 

 Total p·1 p·2 p·3 p·4 1 
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Table 5.  Information needed to decide allocation of sample size to strata. The information 1470 

includes the mapped area proportions (𝑊𝑖), conjectured values of user’s accuracies (𝑈𝑖) and 1471 

standard deviations (𝑆𝑖) of the strata.  Columns 5-9 contain five different allocations.  1472 

Strata (i) 𝑊𝑖 𝑈𝑖 𝑆𝑖 Equal Alloc1 Alloc2 Alloc3 Prop 

1 Deforestation 0.020 0.700 0.458 160 100 75 50 13 

2 Forest gain 0.015 0.600 0.490 160 100 75 50 10 

3 Stable forest 0.320 0.900 0.300 160 149 165 182 205 

4 Stable non-forest 0.645 0.950 0.218 160 292 325 358 413 
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Table 6.  Hypothetical population error matrix expressed in terms of proportion of area (see 1475 

Section 4) used for sample size and sample allocation planning calculations.  1476 

  Reference   

 
  

Defore- 

Station 

Forest 

gain 

Stable 

forest 

Stable 

non-forest 
Total (𝑊𝑖) 𝑈𝑖 

M
ap

 

Deforestation 0.014 0 0.003 0.003 0.020 0.70 

Forest gain 0 0.009 0.003 0.003 0.015 0.60 

Stable forest 0.002 0 0.288 0.030 0.320 0.90 

Stable non-forest 0.004 0.002 0.025 0.614 0.645 0.95 

 Total 0.020 0.011 0.319 0.650 1  
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Table 7. Standard errors of selected accuracy and area estimates for different sample size 1479 

allocations to strata (Table 5) and the hypothetical population error matrix (Table 6). Standard 1480 

errors are shown for estimated overall accuracy, estimated user’s accuracy for the rare class 1481 

deforestation (𝑖 = 1) and the common class stable forest (𝑖 = 3), and estimated area (in units of 1482 

hectares) of deforestation and area of stable forest. 1483 

Allocation 𝑆(�̂�) 𝑆(�̂�1) 𝑆(�̂�3) 𝑆(�̂�1) 𝑆(�̂�3) 

Equal 0.013 0.036 0.024 4035 11,306 

Alloc1 0.011 0.046 0.025 3307   9,744 

Alloc2 0.011 0.053 0.023 3138   9,270 

Alloc3 0.010 0.065 0.022 3125   8,860 

Proportional 0.010 0.132 0.021 3600   8,614 
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Table 8. Description of sample data as an error matrix of sample counts, 𝑛𝑖𝑗 (see Table 9 for 1486 

recommended estimated error matrix used to report accuracy results). 1487 

  Reference    

 
  

Defore-

station 

Forest  

gain 

Stable  

forest 

Stable  

non-forest 
Total 𝐴𝑚,𝑖 [pixels] 𝑊𝑖 

M
ap

 

Deforestation 66 0 5 4 75 200,000 0.020 

Forest gain 0 55 8 12 75 150,000 0.015 

Stable forest 1 0 153 11 165 3,200,000 0.320 

Stable non-forest 2 1 9 313 325 6,450,000 0.645 

 Total 69 56 175 340 640 10,000,000 1 
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Table 9. The error matrix in Table 8 populated by estimated proportions of area. 1490 

  Reference   

 
  

Defore-

station 

Forest 

gain 

Stable 

forest 

Stable non-

forest 
Total (𝑊𝑖) 𝐴𝑚,𝑖 [pixels] 

M
ap

 

Deforestation 0.0176 0 0.0013 0.0011 0.020 200,000 

Forest gain 0 0.0110 0.0016 0.0024 0.015 150,000 

Stable forest 0.0019 0 0.2967 0.0213 0.320 3,200,000 

Stable non-forest 0.0040 0.0020 0.0179 0.6212 0.645 6,450,000 

 Total 0.0235 0.0130 0.3175 0.6460 1 10,000,000 
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Figure 1 1498 


