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Abstract

An open question in facial landmark localization in
video is whether one should perform tracking or tracking-
by-detection (i.e. face alignment). Tracking produces fit-
tings of high accuracy but is prone to drifting. Tracking-by-
detection is drift-free but results in low accuracy fittings.

To provide a solution to this problem, we describe the
very first, to the best of our knowledge, synergistic ap-
proach between detection (face alignment) and tracking
which completely eliminates drifting from face tracking, and
does not merely perform tracking-by-detection. Our first
main contribution is to show that one can achieve this syn-
ergy between detection and tracking using a principled opti-
mization framework based on the theory of Global Variable
Consensus Optimization using ADMM; Our second contri-
bution is to show how the proposed analytic framework can
be integrated within state-of-the-art discriminative meth-
ods for face alignment and tracking based on cascaded re-
gression and deeply learned features. Overall, we call our
method Discriminative Global Consensus Model (DGCM).
Our third contribution is to show that DGCM achieves large
performance improvement over the currently best perform-
ing face tracking methods on the most challenging category
of the 300-VW dataset.

1. Introduction

Face alignment is the problem of localizing a set of land-
marks on human faces in still images. Face tracking is the
problem of localizing the facial landmarks for all frames
of a given video. Most face tracking methods are exten-
sions of face alignment methods; the main difference is
that, in face alignment, initialization is performed from the
bounding box of a face detector, whereas in face tracking,
from the shape of the previously tracked frame. Because
changes in facial pose and expression from one frame to
the next one are typically small, in tracking, initialization is
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Figure 1. Overview of DGCM: our method performs landmark lo-
calization in video via a synergy between face alignment (i.e. de-
tection) and tracking. This synergy is achieved by solving a Global
Consensus Optimization problem using ADMM. We assume that
different detection and tracking initializations define different op-
timization sub-problems. At each iteration of DGCM, the inde-
pendent shape updates for each sub-problem are coupled through
the ADMM updates. Notably, both the detector and tracker used
in DGCM are trained in a discriminative manner.

much closer to the “correct” solution, allowing the tracker
to track large changes in pose and expression over the whole
video. Such changes are typically difficult to accurately de-
tect with a face alignment method that merely uses a bound-
ing box initialization which lacks any information regarding
pose, expression and identity. Nonetheless, tracking comes
along with an important drawback: drifting. Errors in the
tracked shapes can accumulate over time which in turn re-
sults in poorer and poorer initialization, and eventually can
make the tracker lose tracking. Note that the most common
way to deal with drifting is to perform face alignment per
each video frame separately: this is known as tracking-by-
detection; however, as mentioned earlier, this is sub-optimal
because it completely discards shape information from pre-
viously tracked frame(s). In this paper, we propose the very



first synergistic approach between tracking and detection
that completely eliminates drifting from tracking, and does
not merely perform tracking by detection.

To improve landmark localization in video, prior work
has considered a few fairly orthogonal directions like im-
proving the fitting method used [5, 29, 17, 9, 25, 33, 24],
multi-view models [30, 32], exploiting temporal coherency
between frames [15], incremental learning [21, 16, 1],
tracking-by-detection [28, 6], re-fitting [18] and using mul-
tiple initializations [31, 16]. Notably, in most (if not all)
of these methods, drifting is handled by just re-initializing
the tracker. To the best of our knowledge, there is no prior
method proposing a synergistic way to combine tracking
and detection in a principled manner. We show that by do-
ing so, significant performance improvement in terms of fit-
ting accuracy can be obtained.

The main idea behind our work is simple: perform face
alignment when tracking drifts or, from the opposite per-
spective, correct detection using the solution from the pre-
viously tracked frame. To achieve this synergy, we describe
a principled optimization framework for deformable model
fitting based on the theory of Global Variable Consensus
Optimization using the Alternating Direction Method of
Multipliers (ADMM) [3]. Fig. 1 shows an overview of our
method. In summary, our contributions are:

1. We propose the very first synergistic approach between
tracking and detection that completely eliminates drift-
ing from tracking, and does not merely perform tracking-
by-detection.

2. To this end, we propose the very first method integrat-
ing the theory of Consensus Optimization using ADMM
with the problem of deformable model fitting.

3. Although we derive our framework using analytic gra-
dient descent, we also show how to further integrate the
derived formulation into a fully discriminative one based
on cascaded regression and deeply learned features. Be-
cause of that, we call our method Discriminative Global
Consensus Model (DGCM).

4. We show that DGCM achieves significant performance
improvement over the currently best performing face
tracking methods on the most challenging category of
the 300-VW dataset [22].

2. Related work
To improve facial landmark localization in video, a num-

ber of orthogonal directions have been proposed in litera-
ture. We group them in 5 categories as follows.

The first one is to simply improve the accuracy and the
robustness of the face alignment method that is adopted for
tracking. To this end, methods based on cascaded regres-
sion have recently emerged as the state-of-the-art, see for
example [5, 29, 17, 9, 25, 33, 24, 8, 27]. The second line of

work is to make use of temporal coherency to create more
adaptive and sophisticated fitting algorithms like, for ex-
ample, the multi-view cascaded regression approaches of
[30, 32], the spatio-temporal recurrent encoder-decoder net-
work of [15] as well as the incremental learning approaches
of [21, 16, 1]. Note that all methods from the first two cat-
egories are purely tracking methods and deal with drifting
by typically relying on a SVM to detect when tracking goes
off and then re-initialize the tracking procedure.

The third category is to perform joint re-fitting of all
shapes for the whole video (i.e. offline) as in [18]. Such
methods are post-processing methods, can be applied only
when the whole video has been tracked, are typically very
slow, and have been shown to mainly correct very crude er-
rors. A fourth approach is to perform tracking-by-detection,
see for example [28, 6]. Notably, we also make use of
tracking-by-detection to eliminate drifting but synergisti-
cally with a tracker to exploit shape information from the
previously tracked frames.

A fifth approach for improving landmark localization is
to obtain multiple fittings using different initializations, and
then combine the fitted results, as in [31, 16]. Note that
both [31, 16] have only been shown how to combine the
fitted shapes obtained by applying the same face alignment
method (i.e. the same detection method), and not how to
achieve synergy between detection and tracking as proposed
in our work. Also, these methods have not been shown to
correct drifting in face tracking. More importantly, both
[31, 16] are actually post-processing methods, in which the
multiple fittings are obtained independently and then are
somehow combined. Hence, both [31, 16] are sub-optimal.

In this work, we propose a sixth orthogonal improvement
for facial landmark localization in video: synergy between
face alignment and tracking. To this end, we introduce a
novel optimization framework that integrates the theory of
Consensus Optimization using ADMM with the problem of
discriminative fitting of facial deformable models.

3. Discriminative Global Consensus Model
In this section, we describe the proposed synergistic ap-

proach for face alignment and tracking. To do so, in section
3.1, we will firstly introduce a generative facial deformable
model, which when fitted to a facial image can be used to
localize the facial landmarks. Then, in section 3.2, we de-
scribe and discuss two optimization problems for fitting our
facial deformable model, one for face alignment (i.e. detec-
tion) and one for face tracking. These problems will be the
sub-problems used in our Consensus Optimization frame-
work for deformable model fitting introduced in section 3.3.
In the same section, we also present the solution to the pro-
posed Consensus Optimization problem using an analytic
gradient descent formulation. Finally, in section 3.4, we
show how to further integrate the derived analytic gradient



descent formulation into a fully discriminative one based
on cascaded regression and deeply learned features. Over-
all, we call our method Discriminative Global Consensus
Model (DGCM).

3.1. Generative facial deformable model

In our formulation, we used a generative facial de-
formable model that is based on parametric shape and ap-
pearance models. Perhaps, the most notable example of
such models is the Active Appearance Model [7, 11]. We
chose to use the most recent parts-based formulation of [26]
which has been shown to largely outperform the holistic-
based approach. Our deformable model is built in a fully
supervised manner, from a set of training facial images Ii
each of which is annotated with u fiducial points defining
the facial shape, a vector ∈ R2u×1.
Shape model. All training facial shapes are firstly nor-
malized using Procrustes Analysis. Then, the shape model
is obtained by applying PCA on all training normalized
shapes. The model is defined in terms of a mean shape s0

and n shape eigenvectors si which form the columns of ma-
trix S ∈ R2u×n. Finally, to model similarity transforms, S
is appended with 4 additional bases [11]. Using this model,
a shape can be generated from:

s(p) = s0 + Sp, (1)

where p ∈ Rn×1 is the vector of the shape parameters.
Appearance model. All training facial images are firstly
warped to a reference frame so that similarity transforma-
tions are removed. Then, around each landmark a descrip-
tor is extracted and all descriptors are stacked in a vector
∈ RN×1 which defines the part-based facial appearance.
Finally, the appearance model is obtained by applying PCA
on all training part-based facial appearances. The appear-
ance model is defined in terms of the mean appearance A0

andm appearance eigenvectors Ai which form the columns
of matrix A ∈ RN×m. Using this model, a part-based fa-
cial appearance can be generated from:

A(c) = A0 + Ac, (2)

where c ∈ Rm×1 is the vector of the appearance param-
eters. As for the case of the descriptor used, most com-
monly, SIFT descriptors [10] are used; notably we show in
this work that if one uses deeply learned features, large im-
provements in fitting accuracy can be obtained.

3.2. Optimization problems for face alignment and
tracking

To localize the landmarks in a given facial image, one
can fit the generative deformable model of the previous sec-
tion by solving the following optimization problem:

arg min
p,c

f(p, c) = arg min
p,c
||I(s(p))−A(c)||2, (3)

where I(s(p)) ∈ RN×1 is obtained by concatenating the
descriptors extracted from the landmarks of s(p).

As mentioned earlier, the difference between face align-
ment and tracking is in the initialization. In face detection,
pinit = pdet = (p1, 0, p3, p4, 0, . . . , 0)T , where p1, and
p2, p3, are the scale and the translation parameters obtained
from the bounding box of the face detector. In face tracking,
we are looking to estimate the shape parameters for frame
t, so pinit = pt−1 where pt−1 is shape parameter vector as
estimated at frame t−1. Note that cinit = 0 for both cases.

3.3. Global Consensus optimization for deformable
model fitting

Because the problem of Eq. (3) is non-convex, a locally
optimal solution can be readily found using analytic gra-
dient descent. Because the obtained solution depends on
the initialization, we propose to view the different initial-
izations in the optimization problem of Eq. (3) as separate
optimization problems. In our case, we treat the problem
of face alignment and the problem of face tracking as sep-
arate optimization problems because the initialization for
these problems is different (although the error to be opti-
mized has the same functional form). Notice that an arbi-
trary number of initializations can be used, with the hope
that some of them will be sufficiently close to the “correct”
solution. For example, one can apply some noise to the face
detection bounding box, or to the fitted shape of the pre-
viously tracked frame to generate an arbitrary number of
initializations; the trade-off in this case is a linear increase
in computational complexity.

To make our point clearer, we follow the same notation
as in [12], to emphasize the point that gradient descent opti-
mization is used to solve the non-convex problem of Eq. (3)
and hence using initialization pinit(i) can be interpreted as
solving a different optimization problem fi(pi):

arg min
pi,ci

fi(pi, ci) = gd arg min
pi=pinit(i)

ci=0

||I(s(pi))−A(ci)||2,

(4)
where gd arg minpi=pinit(i) means “perform gradient de-
scent starting from pinit(i)” (ci is always initialized to 0).
Notice that a different parameter vector pi is used for the
i−th problem fi (the same holds also for ci).

Assume M different initializations pinit(i), i =
1, . . . ,M , each of which defining sub-problem fi as in Eq.
(4). Then, we propose to perform joint optimization so that
all sub-problems converge to the same solution. To this end,
we can formulate the following Global Variable Consensus
Optimization problem [3]:

arg min
p1,...,pM
c1,...,cM

M∑
i=1

fi(pi, ci), s.t. pi = p, , i = 1, . . . ,M.

(5)



Note that there is no need to impose constraints on ci. The
reason for this is that if the global constraints for pi of Eq.
(5) are satisfied, then necessarily ci = c, , i = 1, . . . ,M .
Actually, as we show below, ci = , i = 1, . . . ,M can
be completely eliminated from the optimization problem of
Eq. (5). The Consensus Optimization problem of Eq. (5)
can be solved using the Alternating Direction Method of
Multipliers (ADMM). Following [3], the ADMM solution
for the i−th sub-problem at iteration k + 1 is:

pk+1
i , ck+1

i := arg min
pi,ci

{fi(pi, ci)

+ (yk
i )T (pi − p̄k) +

ρ

2
||pi − p̄k||2}

yk+1
i := yk

i + ρ(pk+1
i − p̄k+1

i ), (6)

where ρ is the penalty parameter, p̄k =
∑M

i=1 pi is the av-
erage of the shape parameters at iteration k, and yk+1

i are
the auxiliary (dual) variables driving the shape parameters
of each sub-problem into consensus. In the next paragraphs,
we describe our modifications to Eq. (6) and how to solve
the optimization problem of Eq. (6).
Shape-based penalty. ADMM theory [3] allows one to
replace the quadratic term (ρ/2)||r||2 with (1/2)rTQr,
where Q is a symmetric positive definite matrix. In our
case, we chose Q = Λ−1, where Λ is the diagonal matrix
containing the eigenvalues of the shape model computed us-
ing PCA. This is equivalent of using the Mahalanobis dis-
tance in the shape parameter space. It is more intuitive than
using the standard form of the penalty and we found it nec-
essary for the algorithm to behave well.
Inexact minimization. The formulation of Eq. (6) re-
quires finding the optimal value for pi, ci at each iteration
k, which is costly because at each iteration, for each sub-
problem, an iterative Gauss-Newton minimization would be
required. However, ADMM converges even when the min-
imization is not carried out exactly [4], allowing us to per-
form a single Gauss-Newton update per iteration.
Gauss-Newton update. To perform inexact minimization
for each sub-problem (given in the first row of Eq. (6)),
we follow prior work on deformable model fitting using an-
alytic gradient descent, in particular, Gauss-Newton opti-
mization [11, 2, 26]. Given the current estimate pk

i and cki
for iteration k, we firstly perform a first-order Taylor ap-
proximation. Then, the ADMM updates are given by:

∆pi,∆ci := arg min
∆pi,∆ci

{||I(s(pk
i )) + Jk

i ∆pi

− A0 −Acki −A∆ci||2

+ (yk
i )T (pk

i + ∆pi − p̄k)

+
Λ−1

2
||pk

i + ∆pi − p̄k||2}

pk+1
i , ck+1

i := pk
i + ∆pi, c

k
i + ∆ci

yk+1
i := yk

i + Λ−1(pk+1
i − p̄k+1

i ), (7)

where Jk
i ∈ RN×n is the image Jacobian with respect to the

shape parameters pk
i . Notice that in the above minimization

problem, ∆ci does not appear in the second and third terms.
Hence, we can apply the same Gauss-Newton approach of
[26] which by-passes the calculation of ∆c, and at each it-
eration solves only for ∆p (for more details on why this is
possible see [26]). By doing so, the ADMM updates are:

∆pi := arg min
∆pi

{||I(s(pk
i )) + Jk

i ∆pi −A0||2P

+ (yk
i )T (pk

i + ∆pi − p̄k)

+
Λ−1

2
||pk

i + ∆pi − p̄k||2}

pk+1
i := pk

i + ∆pi

yk+1
i := yk

i + Λ−1(pk+1
i − p̄k+1

i ), (8)

where ||x||2P = xTPx is the weighted `2-norm of a vector
x, P = E−AAT is a projection operator that projects-out
the appearance variation, and E is the identity matrix. No-
tice that because we work in a subspace orthogonal to the
appearance variation, ∆c has been completely eliminated
from the optimization problem. Finally, by solving the op-
timization problem of Eq. (8), we obtain the final ADMM
updates rules for our Consensus Optimization problem:

∆pi := −(Hk
i,P )−1{(Jk

i,P )T (I(s(pk
i ))−A0) + yk

i

+ Λ−1(pk
i − p̄k)}

pk+1
i := pk

i + ∆pi

yk+1
i := yk

i + Λ−1(pk+1
i − p̄k+1

i ), (9)

where Jk
i,P = PJk

i and Hk
i,P = JT

i,PJi,P + Λ−1 are the
projected-out image-based Jacobian and Hessian for the i-
th sub-problem at iteration k.
Overall algorithm. At each iteration k, and for the i−th
sub-problem/initialization, the proposed algorithm firstly
computes the image-based Jk

i,P , Hk
i,P (and its inverse), and

then uses the first and second rows of Eq. (9) to update the
shape parameters for this sub-problem. This process is re-
peated for all sub-problems, and then the new average of the
shape parameter vector pk+1

i is obtained. Then, this is used
to update the auxiliary variables for each sub-problem from
the last row of Eq. (9).

3.4. Discriminative Global Consensus optimization

In the previous section, we derived the ADMM updates
for solving the Consensus Optimization problem for de-
formable model fitting using analytic gradient descent. As
it has been noted in a number of works in literature (e.g.
[5, 29, 17, 9, 25, 33, 24]), fitting algorithms based on an-
alytic gradient have a small basin of attraction and hence
they can be trapped in local minima when initialization is
far from the correct solution. Additionally, such algorithms



are relatively slow because the image-based Jacobian, Hes-
sian and its inverse need to be re-computed per iteration. To
circumvent this problem, recent state-of-the-art face align-
ment methods have suggested learning “averaged” descent
directions in a discriminative manner using the framework
of cascaded regression [5, 29, 17, 9, 25, 33, 24]. In this
section, we show how to incorporate this type of discrim-
inative training into the proposed analytic formulation for
Consensus Optimization introduced in the previous section.

While most works in Cascaded Regression estimate a di-
rect mapping between image features and shape updates,
the ADMM update for ∆pi in Eq. (9) does not allow this
requiring the calculation of Hk

i,P at each iteration. There-
fore, we will proceed based on PO-CR [25] which is the
only method that explicitly calculates averaged Jacobians
(and then Hessians) at each iteration from data.

We will firstly review PO-CR [25]: AssumingH training
images Ii, i = 1, . . . ,H with ground truth shape parame-
ters p∗

i , and K perturbed shapes for each image pk
i,j , j =

1, . . . ,K at level (iteration) k of the cascade, and denoting
∆pi,j = p∗

i − pk
i,j , PO-CR learns an averaged projected-

out Jacobian Ĵk
P = PĴk at level (iteration) k of the cascade

by solving the following optimization problem

arg min
Ĵk
P

H∑
i=1

K∑
j=1

||I(s(pk
i,j)) + Jk∆pi,j −A0||2P. (10)

After computing Ĵk
P , PO-CR further computes the aver-

aged Hessian Ĥk
P = (Ĵk

P )T Ĵk
P and its inverse. The aver-

aged descent directions are Rk = (Ĥk
P )−1(Ĵk

P )T and for
each training sample the shape update is given by ∆pi,j =
Rk(I(s(pk

i,j)−A0)). We note that the problem of Eq. (10)
is derived from the problem of deformable model fitting of
Eq. (3) that has no constraints. We also note that training
a model for face alignment or tracking depends on how the
perturbed shapes are produced. For face alignment, the per-
turbed shapes at the first iteration are produced in order to
capture the statistics of the face detector used whereas for
tracking the shape changes between consecutive frames.

We now describe the training of the detection and track-
ing models within our Consensus Optimization framework.
For each training image Ii, we assumeKd perturbed shapes
for training the detection model and Ktr perturbed shapes
for training the tracking model. In our case, and in analogy
to the unconstrained optimization problem of Eq. (10), to
estimate the averaged Jacobian for detection (or tracking) at
iteration k, the optimization problem of Eq. (8) will be used.
In particular, Ĵd,k

P for the detection model is estimated (us-

ing the Kd perturbed shapes for each training image) from

Ĵd,k
P = arg min

Ĵk
P

H∑
i=1

Kd∑
j=1

{||I(s(pk
i,j)) + Jk∆pi,j −A0||2P

+ (yk
i )T (pk

i,j + ∆pi,j − p̄k
i )

+
Λ−1

2
||pk

i,j + ∆pi,j − p̄k
i ||2}, (11)

and similarly using the tracking initializations Ktr one can
compute Ĵtr,k

P for the tracking model. It is evident from
Eq. (11) that Ĵk

P does not depend on the second and third
terms and hence the optimization problem reduces to the
one of Eq. (10). Hence, at each iteration, we estimate
Ĵd,k
P and Ĵtr,k

P separately. Following this, we then estimate
the averaged ADMM Hessian Ĥd,k

P = (Ĵd,k
P )T Ĵd,k

P + Λ−1

and its inverse, and similarly we do the same for Ĥtr,k
P .

Hence, at each iteration, the averaged descent directions
for the detection and tracking models are estimated inde-
pendently, and the shape updates are also calculated in a
similar fashion. This results in a very intuitive algorithm:
during training, the averaged descent directions for detec-
tion and tracking are estimated dis-jointly giving rise to
independent models which during testing are then forced
to agree through the coupling of the ADMM updates of
Eq. (9) 1. More specifically, testing is performed as fol-
lows: For each sub-problem/initialization, at iteration k,
we use the detection model {Ĵd,k

P , (Ĥd,k
P )−1} or the track-

ing model {Ĵtr,k
P , (Ĥtr,k

P )−1} to update ∆pi from the first
row of Eq. (9), depending on whether that particular
sub-problem/initialization corresponds to face alignment or
tracking. Then, the average shape parameter vectors pk+1

i

over all initializations are computed and the auxiliary vari-
ables for each sub-problem yk+1

i are also updated through
the last row of Eq. (9).

The complexity of the proposed method at test time de-
pends linearly on the number of initializations used. For
M initializations, the complexity per iteration isO(MnN),
where O(nN) is the complexity of the original PO-CR.

4. Experiments
We primarily evaluate the performance of the proposed

DGCM on the 300-VW test set [22]. This is by far the
most challenging and large-scale face tracking dataset to
date containing 121,278 frames. Note that this is the only
publicly available large scale face tracking dataset. Addi-
tionally, in section 4.4, we also report the results of another

1Note that one could also apply the ADMM updates of Eq. (9) during
training as follows: rather than updating each sample independently, one
could group all Kd + Ktr perturbed shapes for each training image, and
then at each iteration compute the ADMM updates of Eq. (9). However,
there is no real benefit to enforce this kind of consensus as during training
all perturbations for all training images will converge anyway.



experiment on the 300-W test set [19] and our cats dataset,
illustrating how DGCM can enhance the performance of hu-
man and animal face alignment for the case of poor face
detection initializations (note that this is not a tracking ex-
periment).

4.1. Performance evaluation

300-VW consists of 3 categories of increasing diffi-
culty: A (62,135 frames), B (32,805 frames) and C (26,338
frames). C is by far the most challenging. We report results
on category C, and for the results of categories B and A, see
supplementary material. Following prior work, results are
reported for the 49 inner points.

DGCM consists of two models for landmark localiza-
tion, one for face alignment (i.e. detection) and one for
face tracking, both trained using the discriminative ADMM
framework described in section 3.4. Although our frame-
work allows for an arbitrary number of initializations for
detection and tracking, we merely used one for detection
and one for tracking 2. This means that, compared to [25],
the complexity of the DGCM model used in our evaluations
is just doubled.

We trained our face alignment model on all training data
from the 300-W competition [20] using also the statistics of
the face detector of [13] that was used to initialize our face
alignment model for all frames of the video sequences. We
trained our tracking model on the same data using also the
statistics capturing the shape changes between consecutive
frames from the 300-VW training set. Similarly to [1] and
[21], a simple SVM was used to detect the cases that the
tracker gets lost. We used two types of features for training
DGCM: (1) SIFT features [10] as in [25], and (2) conv-3
features using VGG-16 [23] 3. We report interesting self-
evaluation results in section 4.2 and comparison with the
state-of-the-art in section 4.3.

4.2. Self-evaluation

In this section, we compare the performance of DGCM
with two related methods of interest. The first method
performs tracking-by-detection alone (i.e. face alignment
for each frame) using the same face detector for initial-
ization (as the one used in DGCM). The second method
performs face tracking alone using the shape initialization
from the previously tracked frame. Both the face alignment
and tracking methods are trained using PO-CR on the same
training data as the one that DGCM was trained on.

2We also tried more initializations but we observed little difference in
performance. The reason for this is that most of the cases that the fittings
were no good were cases in which both the detector and the tracker were
unable to fit the particular image even when initialisation is perfect, for
example some very low quality videos.

3The conv-3 feature maps of the VGG network were up-sampled to
have the same resolution as the input and then features were extracted at the
landmarks locations. Note that we used the provided pre-trained network.

Table 1. Comparison between Tracking-conv and Detector-conv
on category C. The table shows the percentage of frames for which
one method provides more accurate fitting results over the other.

Method # frames % frames AUC@0.08
Tracking 9682 36.76 55.94
Detection 16656 63.24 58.58

Fig. 3 shows the obtained results from all videos of cat-
egory C. The results for each video separately, for conv
features only, are also shown in Fig. 4 and in terms of the
Area Under the Curve @ 0.08 error in Table 2. Our main
conclusions from these experiments are:

• Using conv features results in large performance im-
provement over SIFT.

• Fig. 3 shows that DGCM consistently results in perfor-
mance improvement for both SIFT and conv features.
The biggest improvement is observed for the case of Cat-
egory C and conv features, where the improvement over
the detector is about 6−7% almost across the whole spec-
trum of the pt-pt-error. This performance improvement
becomes more notable for specific videos (74, 86, 87, 96,
99, 113) as Fig. 4 and Table 2 show.

• This performance improvement is obtained even though
the tracker seems to perform much worse compared to the
detector. As shown in Table 1, for Category C and conv
features, we found that the tracker (alone) outperforms
the detector (alone) only for the 36% of the total number
of frames. By improving our tracker, further boosting in
DGCM performance is expected.

• As expected, the tracker typically produces more accu-
rate fittings compared to the detector when there are grad-
ual large variations in pose and expression. Such exam-
ples are included in the first 4 images (from left to right)
of Fig. 2. Also, when the tracker’s initialization is poor,
the detector produces better fitting results. Examples of
such cases are displayed in the last 4 images of Fig. 2.

• Finally, with very few exceptions, DGCM works better
or at least comparably with the second best performing
method. Such examples are displayed in the last row of
Fig. 2. One exception to this is video #95, where we
observe that DGCM is worse than both the detector and
tracker. We attribute this to the following reason: for
this video, the detector and tracker seem to work equally
poorly. The reason is that the tracker is re-initialized
for about 40% of the frames literally “converting” the
tracker to detector. However, in our ADMM, the tracker
is always initialised from the result of the previous frame
which because of the difficulty of the video is poor.

4.3. Comparison with state-of-the-art

In this section, we compare DGCM and the two best
performing methods of the 300-VW competition [32, 28],



Figure 2. First row (red): Tracking fittings. Second row (blue): Detection fittings. Third row (green): DGCM fittings. The normalized error
for each fitting is displayed on the top-left corner. First 4 images (from left to right): Tracker works better than the detector. Last 4 images:
Detector works better than the tracker. In all 8 cases, DGCM works better or comparably with the second best performing method.

Table 2. Area under curve @ 0.08 error for Tracking-conv, Detection-conv, and DGCM-conv for each individual video of category C.
The numbers are percentages.

Meth./Vi. #74 #75 #86 #87 #95 #96 #97 #98 #99 #100 #111 #112 #113 #114
Tracking 48.43 55.90 63.37 66.66 46.31 64.45 50.25 55.97 62.75 24.55 61.66 73.99 51.32 47.47
Detection 47.43 58.35 62.10 64.46 46.96 64.42 55.10 61.03 67.88 36.98 63.80 75.96 56.00 51.29
DGCM 51.77 58.02 66.13 69.08 44.48 68.85 55.75 61.20 71.44 35.01 61.38 76.86 58.43 52.87

Figure 3. Comparison between DGCM with Detection (alone) and
Tracking (alone) on category C of 300-VW.

the state-of-the-art face alignment method of [24], and the
state-of-the-art tracker of [21]. Fig. 5 shows the obtained
results on category C. We note that (a) DGCM based on
conv features is by far the best performing method, and
(b) DGCM based on SIFT features is consistently the sec-
ond best method. Finally, the very competitive method of
[21] proposes incremental learning to enhance tracking ac-
curacy. Such an improvement is orthogonal to our frame-

work, and is the focus of future work.

4.4. Detection experiment

In this section, we performed another experiment illus-
trating how DGCM can be used for enhancing detection
(i.e. face alignment) performance for the case of poor ini-
tialization. The experiment was performed on two differ-
ent datasets, namely (a) the publicly available 300-W test
set [19], containing 600 images captured in indoor and out-
door environments, and (b) our cats dataset 4 consisting of
2000 images, out of which 200 are kept for testing and the
rest for training. In particular, we used two noise levels for
initializing a PO-CR detector based on conv features, and
DGCM (using also PO-CR and conv features). In both
cases, initializations were produced by scaling and translat-
ing the ground truth bounding boxes using a noise distribu-
tion, defined by σnoise.

When the noise level is low, PO-CR for both human and
cat faces produces good results even when only 1 initializa-
tion is used (green line in Fig. 6). However, when the noise
level is high, the performance of PO-CR drops significantly
even when multiple, 5 in these experiments, initializations
are used and the median of the 5 fittings for each image is
taken as the final fitting (dashed green line in Fig. 6). On the

4a subset of the Oxford-IIIT-Pet dataset [14].



Figure 4. Comparison between DGCM-conv with Detection-
conv (alone) and Tracking-conv (alone) on all 14 videos of cat-
egory C.

Figure 5. Comparison between DGCM and state-of-the art on cat-
egory C of 300-VW.

Figure 6. PO-CR detector vs DGCM for different noise levels of
initialization on 300-W testset (left) and cats dataset (right). For
large noise levels, DGCM shows little loss in performance.

contrary, when 5 initializations are used for DGCM, there
is very little loss in performance, as the black line in Fig. 6
illustrates.

5. Conclusions
We proposed a method for achieving synergy between

face alignment and tracking based on the principled frame-
work of Global Variable Consensus Optimization using
ADMM. We also showed how the proposed formulation can
be integrated with state-of-the-art discriminative methods
for face alignment and tracking based on cascaded regres-
sion and deeply learned features. Contrary to prior work in
face tracking, our method is both drifting-free and, at the
same time, able to exploit shape information from the pre-
viously tracked frame. Finally, we demonstrated that our
method results in large performance improvement over the
state-of-the-art on the 300-VW dataset.
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