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A Meta–Analytic Framework for Efficiently Identifying1

Progression Groups in Highway Condition Analysis2

Rawle Prince 1, Matthew Byrne 2, Tony Parry 3
3

ABSTRACT4

The MML2DS (Minimum Message Length Two Dimensional Segmenter) criterion is5

a powerful technique for road condition data analysis developed at the Nottingham Trans-6

portation Engineering Centre (NTEC), University of Nottingham. The criterion analyses7

condition data sets by simultaneously identifying optimum trends in condition progression,8

the position in time and space of maintenance interventions, longitudinal segments within9

links, and the error likelihood of each measurement. This is done in an unsupervised man-10

ner via classification and regression models based on the Minimum Message Length met-11

ric (MML). Use of MML, however, often requires an exhaustive comparison of all possible12

models, which naturally raises considerable search–control issues. This is precisely the case13

with the MML2DS approach. This paper presents an efficient meta–analytic framework for14

controlling the generation of progression groups, which considerably reduces the search space15

prior to the application of MML2DS. This is achieved by identifying ‘founder sets’ of lon-16

gitudinal segments, around which families of segments are likely to be formed. An effective17

subset of these families is then selected, after which the MML2DS criterion is employed18

as the final arbiter to determine ultimate model configurations and fits. This approach has19

proved to be very powerful, resulting in significant improvements in efficiency to the effect20

that accurate results are obtained in a few minutes where it previously took weeks with much21
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smaller data sets. The indications are that this approach can be applied to other techniques22

besides MML2DS.23

INTRODUCTION24

Road agencies collect expansive data sets of pavement condition, forming the backbone25

of the asset management systems, which are used to identify various performance indicators26

and maintenance needs. Very often, the data collected is used to fit time series — termed pro-27

gression rates — in order to better understand surface condition indicators, such as pavement28

roughness and rutting. A road network under study may have many thousands of kilometres29

of pavement, typically divided into a series of sections: N = {Si|i ∈ {1, 2, . . . ,m}}. Each sec-30

tion S is subsequently subdivided into a series of discrete–length1 chains Si = {Ci1, . . . , Cin},31

where Cij denotes chain j of section i, and data for individual chains would be recorded32

over a number of measurement intervals, usually years. For instance, a typical chain Cj =33

{x1, . . . , xp} would comprise a series of measurements xj, recorded at various measurement34

periods, over a number of years. Table. 1 gives an example of simulated rutting data for a35

1800 meter road segment over an eleven year period. The measurements are often subject36

to noise or errors which, together with issues of unrecorded maintenance, changes in the37

measurement devices, as well as possible seasonal variation can combine to make the task of38

estimating current condition, or identifying true progression rates, very difficult.39

The MML2DS criterion introduced in (Byrne and Parry 2009) has proved to be very40

effective in identifying true trends in condition progression, the position in time and space41

of maintenance interventions, longitudinal segments within links, and the severity of errors42

among measurements. The key idea was to share data among adjacent chains in a section43

in order to identify progression groups, GSi for a section S, formed from chains that can be44

described by a common progression rate and associated maintenance intervention pattern:45

S =
⋃
G∈GSi

G, where G = {C1, . . . , Ck}.46

1Typically 10 meters, averaged over 100 meters.
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Ultimately, the criterion also identifies how data in individual measurements within a group47

relate to the group’s progression rate and maintenance intervention pattern, giving valuable48

information in terms of possible measurement errors and/or seasonal variation. Fig. 1 shows49

a progression group model for the data in Table. 1.50

Progression group models in (Byrne and Parry 2009) were identified using Minimum Mes-51

sage Length (MML) inference (Wallace 2005). MML is a powerful technique for inductive52

inference, residing at the intersection of Information Theory and Statistics, which seeks to53

minimise an objective function that estimates the validity of an inferred model. Since it54

was first introduced (Wallace and Boulton 1968), MML has been successfully applied to55

numerous settings, often outperforming rival techniques. These include, selecting the con-56

figuration of Neural Networks (Makalic et al. 2009), classification of proteins in DNA (Zakis57

et al. 1994), grouping ordered data (Fitzgibbon et al. 2000), inferring decision graphs (Tan58

and Dowe 2003), classification of spatial data (Wallace 1998), clustering of protein struc-59

tures (Edgoose et al. 1998) and bushfire prediction using decision trees (Dowe and Krusel60

1993). The issue with MML, however, is that one can only be certain that the optimum61

model has been identified after the metric has been applied to all other models. This is very62

much the case with the MML2DS criterion, especially with regard to the identification of63

progression groups. Considering all possible models is not an issue when dealing with small64

sections. However, there is an exponential increase in the number of possible progression65

group models that can be obtained from a given section, and checking all of them quickly66

becomes problematic as section lengths increase. Moreover, real world pavement networks67

can have sections with hundreds or thousands of chains and testing all progression group68

models in such settings is intractable.69

This paper presents a meta–analytic framework for pre–processing progression group70

models in order to mitigate search control issues that arose during the application of the71

MML2DS criterion. Rather than checking all possible progression group models generated72

from a section with the MML2DS criterion, a relationship metric is employed as a heuristic73
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to define initial groups around which progression groups are likely to be formed. These initial74

groups subsequently form the nucleus of larger groups, which are subsequently evaluated by a75

fitness function derived from the relationship metric. The ‘fittest’ progression group models76

are retained, and it is these that are ultimately analysed by the MML2DS criterion. More77

often that not, the set of progression group models retained is not only significantly smaller78

than the set of possible progression group models obtainable from a given section, but also79

contains the desired model. Hence, checking this reduced set with the MML2DS criterion80

generally leads to a result considerably faster that would otherwise be the case.81

This approach can be thought of as a form of subspace clustering (Vidal 2011), and is82

comparable to heuristic techniques typically used to deal with combinatorial explosion in83

this setting (Aggarwal et al. 1999; Kriegel et al. 2005). The speed–ups in the analyses were84

considerable, especially when it came to large sections, returning results in a few minutes85

where it previously took weeks, whilst maintaining the required level of accuracy.86

The paper is organized as follows. The next section provides a detailed presentation of the87

meta–analytic framework together with algorithms for its implementation. The section that88

follow discusses results and outputs obtained from experiments, while concluding remarks89

are in the section thereafter.90

THE META–ANALYTIC FRAMEWORK91

Suppose a section with n chains S = {C1, . . . , Cn} is given, where the aim is to determine92

the number of progression group models that can be generated for S. The number of chains93

in a progression group can be set to a minimum k, and let m be the number of progression94

groups that can be obtained from S. The number of possible progression group models95

obtainable from S, each with m progression groups, can be given by:96

Φ(m,n) =


1 if m = 0

n−k∑
i=k

Φ(m− 1, n− i) otherwise.

(1)97
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Consequently, the number of possible ways of combining at leastm chains is given by Ω(m,n):98

models(m,n) =

n/k∑
m=0

Φ(m,n), (2)99

where x/z denotes the integer quotient of x by z. Fig. 2 shows how the number of possible100

progression group models increases for values of n with k = 1. As can be seen, setting101

n = 15 yields 16383 possibilities, and increasing n to 21 and 23 yields 1048575 and 4194303102

possibilities, respectively. This is approximately O(1.935)n, so setting n = 60 yields a value103

well over one billion. Generating all of these possibilities on its own can be computationally104

expensive, and application of the MML2DS criterion to a 5 kilometre section, for instance,105

using the original approach is clearly not feasible.106

The Main Idea107

The technique presented is based on the idea that progression groups are formed around108

core members, or founder sets, to which other members are subsequently allocated. A109

relationship metric is employed to discover initial founder sets, which are subsequently re–110

combined to form a preliminary set of progression group models. Members of this preliminary111

set are then tested using a sort of fitness function obtained by estimating the strength of112

the stated relationship among members of a progression group, averaged over all progression113

groups in a model, and are selected or discarded based on how they compare to previously114

tested progression group models. It is this reduced set of progression group models, with115

closely related members, that is submitted to MML2DS criterion for final analysis. The116

algorithm is shown in Fig. 3.117

As shown in Fig. 3, given a section S the founder sets Sx = {X1,X2 . . .Xn} for S are118

first calculated, where each Xi = {Ci1, . . . , Cin} is a close set of chains subject to a stated119

meta–relationship and tolerance, such that S =
⋃
X∈Sx

X . Let N = {Si|i ∈ {1, 2, . . . ,m}} be120

a network under study. R ∈ C×C → R is a meta–relationship for N if there is a least upper121

bound on R — i.e. ∃τ. ∀Si ∈ N , ∀x, y ∈ Si.R (x, y) ≤ τ. It is also important that R is122

5



defined such that τ denotes the strongest possible relationship under R. A close set subject123

to a given meta–relationship is subsequently defined as follows.124

Definition 1 (close set) Let X be a set of chains in a section S and R ∈ C × C → R the125

meta–relationship on the network containing S. For a given tolerance η, where η < τ , X is126

a η–close set of chains, subject to R, if ∀x, y ∈ X .R (x, y) ∈ [η, τ ].127

Since founder sets are intended to initiate progression groups, and not replace them, the128

relationship metric R should satisfy a necessary condition for the formation of progression129

groups. For instance, if ∀x ∈ Ci, y ∈ Cj. x 6= y, but Ci and Cj share the same mean and130

standard deviation, it would be very likely that corr (Ci, Cj) ∈ [η, 1], where corr denotes131

the Pearson correlation coefficient and η some value between 0 and 1 which specifies a132

high likelihood of closeness relative to the standard deviation — e.g. 0.85 for standard133

deviation 1.5. Once the founder sets have been identified, a set of progression group models134

G = {GSx1 . . .GSxn } is then generated from Sx by considering all re–combinations of Sx such135

that each GSxi = {Gi1, . . . ,Giq}, and Gik is a union of founder sets.136

Depending on the definition of R and the value of τ , the number of elements in G can be137

very large, so relying solely on the generation of founder sets can result in little improvement138

over employing the MML2DS criterion to all possible progression group models. The next139

step, therefore, is to build a smaller set of potential progression group models for analysis140

by the MML2DS criterion in such a way that the cardinality of the reduced set is likely141

to be considerably less than the number of possible progression group models that can be142

generated from S. This is achieved by first defining the connectedness of a progression143

group, which is then averaged over all groups in a progression group model to estimate a144

‘fitness’ score for the progression group model.145

Definition 2 (connectedness) For any progression group G with cardinality k, the con-146
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nectedness of the chains in G, subject to R, is given by147

con(G) =


λ if k < 2
k−1∑
i=1

g(G[i],G[i+ 1])

k − 1
otherwise

(3)148

where λ is a default value for groups with less than 2 chains, G[i] is the ith chain in G and149

g(a, b) = |R(a, b)− τ |, for a 6= b and a adjacent to b.150

Note that since τ is the upper bound on R it follows that for a given progression group G,151

the proximity of con(G) to 0 is proportional to the strength of the relationships between152

adjacent chains in G. Correspondingly, (4) provides a means of quantifying the strength of153

relationships within a progression group model GSxi obtained from a section S, based on the154

connectedness of progression groups within it.155

conM (GSxi ) =
m∑
j=1

con(Gij)
m

, (4)156

where m is the cardinality of GSxi . Consequently, conM can be thought of as a fitness157

function for progression group models, and is employed so that increasingly ‘fitter’ models158

will ‘survive’ in order to be examined by the MML2DS criterion.159

Implementation160

Although the technique was developed in the context of the MML2DS criterion, it161

is clearly applicable to settings where other metrics may be employed. It was therefore162

implemented as a generic, higher–order function which takes the following inputs:2163

1. a generic list of elements to combine. In the context of the MML2DS criterion, this164

list is instantiated to a list of arrays denoting a section, where each array represents165

measurements over a finite number of years for a given chain in the section.166

2An example implementation in C# is available online (Prince 2015), as well as a demonstration of the
technique on the section data in Table. 1.
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2. a function representing the relationship metric which takes as input a pair of values167

of the type contained in the input list, and returns a real number.3168

3. a value for the upper bound (or denoting the strongest relation) of the relationship169

function.170

4. a value for the tolerance η used to identify founder sets.171

5. a specification of the comparison operation to be used when selecting progression172

group models for final analysis.173

The function outputs a list containing lists of lists of elements from the input list. For174

instance, the output in the context of the MML2DS criterion is a list of progression group175

models, each of which is represented by a list of list of arrays.4176

Notation The notation used in the algorithms below is as follows. Lists are denoted by177

square brackets, for example [R] is a list of real numbers and [X] a list of any type X. []178

denotes an empty list or sequence, while subscripts are used to refer to elements in a list,179

for instance xs2 refers to the second element of the list xs . len is a function that returns the180

length of a list. Given a value x and a list xs , (x :: xs) is a list with x added to the front of181

xs , while (x <> xs) is (x :: xs) providing that x is not already at the front of xs:182

(x <> xs) =

 (x :: xs) if xs = [] ∨ xs1 6= x

xs otherwise.
183

For a given list xs and some integer i, xs(≤ i) and xs(> i) denote the first i values of xs and184

the remaining values of xs , respectively. Finally, maxLen takes a list of lists as input and185

returns the length of longest element in the input list.186

3This is represented as a function delegate in (Prince 2015) while a function pointer can be used in
languages such as C or C++.

4The implementation in (Prince 2015) returns an additional value denoting the number of founder sets
generated. This is included for evaluation and can be easily omitted if required.
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Algorithm 2.1 Algorithm for identifying founder sets. The main function, founders is
called with acc = [].

Function: founders(ls ,R, τ, ac)
if ls = [] then

return acc
else if len(ls) = 1 then

als ← (ls1 :: acc)
return als

else
efs ← gps(1, ls , ls1,R, τ, [])
m← maxLen(efs)
ft ← ls(≤ m)
bk ← ls(> m)
acf ← (ft :: ac)
return founders(bk ,R, τ, acf )

end if

Function: gps(n, ls , e,R, τ, acc)
Require: n ≥ 0 ∧ acc 6= []

if (n > len(ls)− 1) then
return acc

else
xs ← ls(≤ n)
valid ← ∀x ∈ xs .R(e, x) ≤ τ
if not valid then

return acc
else

ys ← (xs :: acc)
return gps(n+ 1, ls , e,R, τ, ys)

end if
end if

Identifying founder sets187

The function to identify founder sets is shown in Algorithm. 2.1. It takes the input188

list (i.e. the representation of the section S), the relationship metric R, the tolerance τ and189

a list which serves as an accumulator. An auxiliary function gps is used to identify a block190

Bi of elements such that ∀x ∈ Bi.R(a, x) ≤ τ , where a is the first element in the list. Each191

Bi identified is a founder set, and is subsequently removed from the list and added to the192

accumulator. The function is then applied recursively to the remaining elements of the input193

list and the accumulated Bis are returned when the input list is empty.194

Re–combining founder sets195

The algorithm used to recombine founder sets to form progression group models, shown196

in Algorithm. 2.2, is based on (2). The main function allGroups implements (2) with197

k = 1. It re–combines the founder sets by accumulating the group models with i groups that198

can be formed from a list xs , where i = 1, 2, . . . , len(xs), and where the group models with i199

elements that can be formed from xs are given by the function ngroups , which implements200

(1). To form a group model with n elements from a list xs , with each group within the model201

containing at least k elements, for every j = k . . . (len(xs)− k), ngroups makes a group with202
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the first j elements of xs then recursively forms n − 1 groups from the remaining ls(> j).203

The subsidiary groups are then combined with previous ones to form a group model with j204

groups, and each group model is subsequently added to the accumulator.205

Algorithm 2.2 Calculating the possible groups from a generic list ls . The main function,
allGroups is called with acc = [].

Function: allGroups(xs , acc)
Require: xs 6= []
n← len(xs)
for i = 0 to (len(xs)− 1) do

ys ← ngroups(i, 1, xs , [])
for j = 1 to len(ys)− 1 do

acc ← (ysj :: temp)
end for

end for
return acc

Function: ngroups(n, k, ls , acc)
Require: k > 0 ∧ ls 6= []

if n ≤ 0 then
return ([ls ] :: acc)

else
for i = k to (len(ls)− k) do

ft ← ls(≤ i), bk ← ls(> i)
xs ← ngroups(n− 1, k, bk , [])
for j = 1 to len(xs) do
x← xsj, zs ← (ft :: x)
if len(zs) ≥ k then

acc ← (zs :: acc)
end if

end for
end for
return acc

end if

Applying the fitness test206

The list of progression group models returned by Algorithm. 2.2 is then processed using207

the function mtBy below208

mtBy(f, ls) =

 [] if ls = []

mtByAux (f, xs1, xs(> 1), []) otherwise,
209

where the function mtByAux is given in Algorithm. 2.3. As shown, mtByAux takes a210

generic list xs , a (fitness) function f to be applied to elements of xs , the first element a from211

xs , and an accumulator zs which serves as the queue in Fig. 3. Every subsequent element of212

ls is compared to a. If an element y is deemed to be ‘fitter’ than a, it is added to the queue213

and y is then considered as the ‘fittest’ element so far. Otherwise, it is bypassed and a is214
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compared to the next element of the list. Comparison in done using the operator compare215

which specifies the comparison to use when short–listing progression group models to the216

queue. In accordance with the desired generality of the implementation, given values x and217

y, compare can be set to either: (i) x < y, (ii) x ≤ y and (iii) |y−x| < ε for some ε ∈ (0, 1).218

The last option generalises the others in that it allows a group to be added if its fitness score219

(4) is within a defined proximity of those previously added to the queue.

Algorithm 2.3 Maintaining the ‘fittest’ elements of a list subject to a fitness function f .

Function: mtByAux (f, a, xs , zs)
if ls = [] then

return zs
else
x← xs1, n← len(xs)
ls ← xs(> n− 1)
if compare (f(a), f(x)) then

return mtByAux (f, a, ls , (a <> zs))
else

return mtByAux (f, x, ls , (x <> zs))
end if

end if

220

RESULTS AND VISUALISATIONS221

The framework was evaluated, independently and together with the MML2DS criterion,222

on simulated data for a number of pavement sections with various lengths, and with prede-223

fined amounts of progression groups and intervention points. Data for each group within a224

section was randomly sampled from a normal distribution with a unique mean and standard225

deviation, relative to the other groups within that group.226

In order to test the framework’s ability to reduce the number of generated progression227

group models, it was applied to a number of sections without any subsequent analysis. The228

data in Table. 1 was one of these sections. There are two predefined progression groups in229

this section giving rise to the following progression group model {{C1, . . . , C5}, {C6, . . . , C18}}230

as shown in Fig. 1. Applying Algorithm. 2.2 to this section returns 131071 possible231

progression groups. However, after letting R be the Pearson correlation coefficient, and232
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setting η = 0.75, τ = 1 and the comparison compare such that compare(a, b) = |a−b| < 0.03,233

the meta–analytic framework reduces this to 12 possibilities, amongst which is the expected234

progression group model.5235

For all of the sections evaluated, applying the MML2DS criterion to all possible pro-236

gression groups models would have taken days to complete,6 in addition to possible space237

complexity issues due to the generation of progression group models for long sections. It was,238

therefore, not feasible to compare the time it took the implementation of the MML2DS cri-239

terion combined with the meta–analytic framework to one without the meta–analytic frame-240

work. Instead, we investigated the trade off between accuracy and efficiency provided by241

the meta–analytic framework, and so examined the number of founder sets identified, the242

number of progression groups discovered, and the time it took to complete the analysis. In243

this way, the aim was to determine if the chosen relationship, the number of founder sets244

obtained and the subsequent reduction in the time it took to complete the analysis, had245

any significant impact on the accuracy of the analysis. Results obtained using the Pearson246

correlation coefficient corr as the relationship R are shown in Table. 2.247

As these results show, we were able to discover the expected number of progression groups248

on every occasion, even when the section lengths were very large. These results compare249

with what was obtained with the original implementation of the MML2DS criterion (Byrne250

and Parry 2009), but, in this case, results were obtained in less than fifteen minutes, even251

with the longest sections, where it took upwards of five days for sections with less than252

60 chains in (Byrne and Parry 2009). While part of this increase in performance can be253

attributed to our use of parallel programming techniques to exploit multi–core architectures254

during interactions of piecewise and mixture models, the identification of founders sets, and255

the subsequent selection of progression groups based on connectedness, considerably reduced256

the number of cases to be checked by the MML2DS criterion, and was clearly the main257

5Note, this example is implemented in (Prince 2015).
6The tests were done on a 64 bit Windows 7 machine with 8GB RAM and an Intel Core i7–4800, 2.7GHz

processor.
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reason for the performance improvements.258

This also shows that the meta–analytic framework does provide an effective technique for259

balancing the trade–off between efficiency and accuracy during the application of MML anal-260

ysis. Moreover, not only can the meta–relationship function be adapted to different settings,261

but the parameters, for controlling the relationship’s strength a well as the search space,262

can also be tailored to performance requirements on different systems, or to different do-263

mains. This approach clearly goes a long way in addressing complexity issues related to the264

MML2DS criterion, since, as can be seen from Table. 2, the time taken for results to be265

obtained depends on meta–relationships within the data set — indicated by the number of266

founder sets discovered — and not necessarily the size of the data set.267

A major limitation of this approach, however, is that it might not always be straightfor-268

ward to identify a suitable meta–relationship. Our use of the Pearson correlation coefficient269

was justified since data in each of the predefined progression groups was sampled from the270

same normal distribution. In other domains, one would expect that a fair amount of domain271

knowledge and/or experimentation would be required before a suitable meta–relationship272

can be identified.273

Visualisations274

The primary purpose of the meta–analytic framework was to control the generation of275

progression groups prior to MML2DS analysis, so outputs obtained from the final system,276

which employed the MML2DS criterion, corresponded to those obtained in the original277

application of the MML2DS criterion (Byrne and Parry 2009). As mentioned earlier, the278

aim of the MML2DS criterion was to identify the progression rates of the condition data.279

Example results are presented as shown in Fig. 5 and Fig. 4. The position of maintenance280

interventions and progression groups are shown in coloured blocks in Fig. 5, whereby each281

block is a group of adjacent intervals which share a common progression rate. Progression282

rates for selected intervals and measurement errors (i.e. outliers) are shown at the right, with283

the lower section describing the likelihood of each data point being erroneous, in relation284
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to the progression trend above it. For example, section 230 – 240 has a clear maintenance285

intervention occurring between years 2004 and 2005.286

Fig. 4 uses a colour coding to highlight where and when errors in the condition data287

appear to exist. A deeper shade of red or blue indicate a higher likelihood of erroneous data,288

where red indicates those above the trend and blue those below the trend. For instance,289

there is a clear disparity in the measurements data recorded chain 10 – 20 in 2001 and since290

this is inconsistent with measurements taken in the proceeding and following years, it is291

highlighted as an error and not caused by a maintenance intervention. This disparity may292

have been caused, for instance, by a poorly calibrated device which overestimated condition293

levels along the whole section that year. Fig. 5 also displays the position of measurement294

errors relative to the progression trend, which is displayed in a similar way to Fig. 4.295

CONCLUSION296

This paper presented a meta–analytic framework for pre–processing group permutations297

generated during the application of the MML2DS criterion. While the MML2DS criterion298

provides a novel solution to the problem of identifying progression rates, the required sharing299

of data over adjacent chains raised considerable search control issues, which potentially300

limited its applicability to real–world settings.301

By applying a relationship that satisfies a necessary condition for the formation of pro-302

gression groups, and estimating the relative connectedness of progression groups based on303

this relationship, the proposed meta–analytic framework provides a robust method of re-304

ducing the number of progression group models submitted to the MML2DS criterion for305

analysis. Empirical test have shown that, depending on the relationship selected and the306

choice of associated parameters, the set of progression group models retained usually con-307

tain the desired solution. The meta–analytic framework, therefore, provides an efficient and308

effective approach to managing the trade off between efficiency and accuracy required for309

applications of the MML2DS criterion, and MML in general, to real–world settings. There310

is no limitation to the meta–relationship that can be used, which clearly lends itself to the311
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application of different techniques, for example fuzzy logic. Moreover, the framework was312

implemented as a generic function and can be utilised in different settings, and with vari-313

ous relationship functions. However, some understanding of the data set and the problem314

domain would be required to make effective use of this approach.315

The framework also illustrates how novel search control techniques and quality data316

mining algorithms can be combined to extract information from noisy data sets without any317

significant loss in accuracy. While the progression rates were the ultimate answer sought318

by the MML2DS criterion, the progression groups obtained can provide useful information319

about past maintenance interventions. This would certainly be desirable in situations where320

maintenance records are not up–to–date, and knowledge of past maintenance can be used321

to derive strategies for the future. The next step is to apply this combined technique to322

real–world data, and we are in the process of doing so at present.323
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Chains Rutting Values
1 3.199 3.241 3.33 3.383 3.439 3.518 3.56 3.601 3.708 3.705 3.786
2 3.223 3.246 3.321 3.406 3 .451 3.514 3.555 3.639 3.725 3.781 3.857
3 3.204 3.236 3.291 3.387 3.474 3.53 3.602 3.682 3.752 3.834 3.875
4 3.167 3.247 3.346 3.444 3.525 3.568 3.652 3.747 3.789 3.838 3.943
5 3.196 4.279 3.931 2.711 6.156 3.605 2.547 3.747 3.838 3.912 4.008
6 7.231 5.297 5.303 2.409 1.823 1.855 1.841 1.869 3.895 1.931 1.931
7 5.24 5.302 5.323 5.372 1.801 1.809 1.831 4.85 1.864 1.857 1.942
8 5.267 5.291 5.364 5.418 1.795 1.839 1.838 1.862 1.937 1.881 1.923
9 5.263 5.263 5.344 5.418 1.788 1.79 1.871 1.906 1.868 1.911 1.949
10 5.263 5.316 5.354 5.42 1.793 1.801 1.858 0.787 1.876 1.907 1.94
11 5.221 5.323 5.393 5.401 1.828 1.816 1.87 1.856 1.887 1.904 1.924
12 5.26 5.306 5.315 5.4 1.826 1.799 1.84 1.888 1.887 1.908 1.929
13 3.269 5.32 7.313 5.391 1.783 1.826 1.803 1.864 1.869 1.895 1.922
14 5.249 5.304 5.356 5.397 1.829 1.81 1.845 1.849 1.883 1.907 1.915
15 5.262 7.133 4.336 5.393 1.824 1.786 1.878 1.886 1.881 1.896 1.926
16 5.235 5.315 5.349 6.388 1.801 1.845 1.872 1.854 1.896 1.902 1.933
17 5.268 3.128 5.343 5.385 2.775 1.053 1.836 1.899 2.313 1.896 0.947
18 5.207 5.295 4.369 5.403 1.82 1.789 1.849 0.897 1.903 1.905 1.912

Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

TABLE 1. Rutting values(mm) for a 1.8 kilometre section over eleven years.

19



Length Known PGs F Sets PGs Found Seconds
29 3 4 3 0.75
30 3 6 3 1.2
35 4 7 4 1.5
40 4 6 4 1.8
78 5 9 5 2.5
90 6 11 6 3.1
120 15 19 15 4.1
160 7 28 7 5.3
200 13 29 13 7.2
215 9 17 9 3.8
260 11 18 11 4.6
310 15 11 15 7.6
365 12 21 12 8.3
400 15 27 15 6.4
415 16 23 16 12.6
470 10 18 10 5.3
509 18 36 18 11.5
545 13 29 13 5.6
604 21 31 21 9.25

TABLE 2. Performance of the meta–analytic technique on a selection of simulated
sections of various lengths with predefined progression groups (PGs), showing the
number of founder sets (F Sets) found withR as the Pearson correlation coefficient, the
number of progression groups discovered, and the time taken in minutes to complete
the analysis.
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FIG. 1. Progression groups for the example section in Table. 1. There are two pro-
gression groups: (i) from 0 t0 50 meters and (ii) from 50 to 180. The position of
maintenance interventions and progression groups are shown in coloured blocks at the
left, whereby each block is a group of adjacent 10 meter chains that share the same
progression rate.
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FIG. 2. Increase in the number of possible progression group models in relation to sec-
tion lengths. Section lengths are on the horizontal axis while the number of progression
group models that can be generated are on the vertical axis.
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FIG. 3. Flowchart depicting the meta–analytic procedure applied to a section.
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FIG. 4. Progression rate and error.
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FIG. 5. Progression groups identified on a section with the fitted progression rates
and maintenance intervention patterns. There are three progression groups: (i) from
0 t0 90 meters, (ii) from 90 to 240 meters, and (iii) from 240 to 290. The position
of maintenance interventions and progression groups are shown in coloured blocks at
the left, whereby each block is a group of adjacent 10 meter chains which share the
same progression rate. Chain 230−240 has been selected, showing a clear maintenance
intervention occurring between years 2004 and 2005 and this intervention pattern exists
across all chains from 90− 100 to 230− 240.
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