
Incelli, Giorgio and Briganti, Riccardo and Dodd, 
Nicholas (2015) Absorbing–generating seaward 
boundary conditions for fully-coupled hydro-
morphodynamical solvers. Coastal Engineering, 99 . pp. 
96-108. ISSN 0378-3839 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/44700/1/09_paper%20Briganti.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No 
Derivatives licence and may be reused according to the conditions of the licence.  For more 
details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/84637022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/271807342

Absorbing-generating	seaward	boundary
conditions	for	fully-coupled	hydro-
morphodynamical	solvers

Article		in		Coastal	Engineering	·	February	2015

DOI:	10.1016/j.coastaleng.2015.02.002

CITATIONS

3

READS

62

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

ICODEP	View	project

The	effect	of	the	water	body	geometry	on	landslide-tsunamis	View	project

R.	Briganti

University	of	Nottingham

44	PUBLICATIONS			464	CITATIONS			

SEE	PROFILE

Nicholas	Dodd

University	of	Nottingham

87	PUBLICATIONS			1,394	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	R.	Briganti	on	04	February	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/271807342_Absorbing-generating_seaward_boundary_conditions_for_fully-coupled_hydro-morphodynamical_solvers?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/271807342_Absorbing-generating_seaward_boundary_conditions_for_fully-coupled_hydro-morphodynamical_solvers?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ICODEP?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-effect-of-the-water-body-geometry-on-landslide-tsunamis?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/R_Briganti?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/R_Briganti?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Nottingham?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/R_Briganti?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas_Dodd2?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas_Dodd2?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Nottingham?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas_Dodd2?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/R_Briganti?enrichId=rgreq-225b781ca7b8bcdd5d950e5e09ca855a-XXX&enrichSource=Y292ZXJQYWdlOzI3MTgwNzM0MjtBUzoxOTMwNTY4OTM2MDc5MzZAMTQyMzAzOTc1ODU5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Absorbing-generating seaward boundary conditions for
fully-coupled hydro-morphodynamical solvers

Giorgio Incellia,∗, Riccardo Brigantia, Nicholas Dodda

aUniversity of Nottingham, University park, Nottingham, NG7 2RD, UK

Abstract

This paper presents a new technique to compute open boundary conditions
for fully-coupled hydro-morphodynamical numerical solvers based on the Non-
Linear Shallow Water and the Exner equations. These conditions allow the
generation of incident signals and the absorption of reflected ones, taking into
account the bed evolution at the boundary. They use the approximations for
linear waves in shallow water and are based on the solution of the Riemann
Equations.
The proposed technique is implemented in the fully-coupled hydro-morphodynamical
numerical model of Briganti et al. (2012a).
Firstly, the generation and absorption of single monochromatic waves are stud-
ied to quantify the error after the reflected wave exited the domain. In all cases
the error is always small, giving evidence of the effectiveness of the new seaward
boundary conditions.
Furthermore, the propagation and reflection of a monochromatic wave train
over a mobile bed are considered. Both flow evolution and bed change are not
affected by spurious oscillations when long sequences of waves are tested. Ad-
ditionally, a very low mobility bed is considered to simulate a ‘virtually fixed’
bed and new boundary condition results consistently converge to those for the
hydrodynamic only case.
Finally, the reflection of a uniform bore over a mobile bed is studied. For this
case the Rankine-Hugoniot conditions provide an analytical solution. It is ap-
parent that the adopted linear approximations produce errors in the velocity
estimates. Nevertheless, the conditions perform reasonably well even in this
demanding non-linear case.
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1. Introduction

In the nearshore region the flow strongly interacts with the bottom sedi-
ments, shaping the bed. In the swash zone, in particular, the oscillatory flow
and the bed evolve with the same time scale (Kelly & Dodd, 2010). This consid-
eration has led to the development of hydro-morphodynamical numerical models5

that are able to solve the equations for the flow and bed evolution simultane-
ously, i.e. enabling full coupling.

In coastal research, fully-coupled solvers are typically applied to a system
of equations comprising the Non-Linear Shallow Water Equations (henceforth10

NLSWEs) and the Exner equation.
Given the limitations of the NLSWEs, these models are frequently forced to
locate the seaward boundary at depths where the sediment is still active. There-
fore boundary conditions should be able to prescribe the incoming flow and sed-
iment while allowing the outgoing quantities to exit the computational domain.15

At present, to the best of authors’ knowledge, such conditions for fully-coupled
models have not been formulated. In morphodynamic numerical models where
frequency dispersion is included, it is common practice is to locate the sea-
ward boundary where depth of closure is reached, typically at depths for which
the shallow water approximation is no longer appropriate. This occurs with20

well established solvers, such as Genesis (Hanson & Kraus, 1989) and XBeach
(Roelvink et al., 2009), which include sub-models for wave propagation from
deep to shallow water.

Fully-coupled models were first used in Hudson & Sweby (2003) and Hud-25

son et al. (2005), who developed a finite volume solver and tested it on a dune
migration problem. Later, finite volumes were employed by Dodd et al. (2008)
to study the formation of beach cusps. More recently Kelly & Dodd (2010),
Briganti et al. (2012b), Zhu et al. (2012) and Zhu & Dodd (2013) used different
solvers to simulate bore-driven swash flows. All these works only considered30

bed load transport. Furthermore, in these works the absorbing-generating sea-
ward boundary conditions have not been used because a single swash event was
studied and the seaward boundary was located far from the region of interest
so that any reflected perturbation would not interfere with the event considered.

35

Absorbing-generating conditions are available for the hydrodynamic equa-
tions (e.g. Kobayashi et al., 1987; van Dongeren & Svendsen, 1997) and are
usually based on the knowledge of the Riemann invariants. They were used also
in morphodynamic simulations following a simplified coupled approach (Dodd
et al., 2008). Specifically, closure of the problem was achieved by priming the40

updated bed value at the seaward boundary with that of the first inner cell at
the previous time step, i.e. imposing a horizontal bottom therein.
Savary & Zech (2007) presented a fully-coupled characteristic-based approach
for boundaries in fluvial environment. This implies that oscillatory flows are
not considered. Besides, this technique is suitable for a two fluid layer model,45

2



following the Fraccarollo & Capart (2002) approach, in which a second fluid
layer where water and sediment are mixed is considered.

The present study proposes new fully-coupled absorbing-generating seaward
boundary conditions for oscillatory flows. These are based on the solution of the50

Riemann Equations, following previous work by Kelly & Dodd (2009) and Zhu
& Dodd (2013). They include approximations for linear waves in shallow water,
so that only the incoming water surface perturbation is needed to determine
updated quantities at the seaward boundary.

55

This paper is organised in four sections. Section 1 shows the governing equa-
tions, while in Section 2 the new fully-coupled seaward boundary conditions are
explained. Section 3 presents the validation tests and Section 4 summarizes the
achieved results.

60
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2. Governing Equations

2.1. Definitions

The model used in this study solves the one-dimensional NLSWEs coupled
with the Exner sediment continuity equation for the bed evolution.
The above-mentioned equations form a system of conservation laws with source
terms:  h

uh
zb


t

+

 uh
hu2 + 1

2 gh
2

ξqs


x

=

 0

−gh∂zb∂x
0

 , (1)

where x and t are the independent variables (space and time respectively). g is
the gravitational acceleration. h, u and zb are the dependent variables, namely
the local water depth, the depth-averaged horizontal velocity and the bed level65

in the order. Figure 1 shows the variables of the hydro-morphodynamic system.

z

u(x, t)

η(x, t)

h(x, t)
zb(x, 0)

zb(x, t)

x

h0

x = xb

z = 0

z = h0

reflective boundary

seaward boundary

Figure 1: Sketch of variables for a generic mobile bed problem with a seaward (left) boundary
and a reflective (right) one.

Additionally, ξ = 1/(1− pb), where pb is bed porosity, and qs is the instan-
taneous bed load sediment transport, for which the well-known Grass formula
is used

qs = Au3, (2)

with A being a sediment mobility parameter. Note that bed load sediment
transport is appropriate for medium-coarse sand environments.

70

System (1) is solved using the TVD-MacCormack scheme (hereinafter TVD-
MCC) from Briganti et al. (2012a), which is restated in Appendix A.
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3. Fully-coupled seaward boundary conditions

3.1. Formulation of conditions75

In this section, the new fully-coupled absorbing-generating seaward bound-
ary conditions, named a Riemann Equation Boundary Conditions (henceforth
REBCs), are presented.

The NLSWEs-Exner system (1) is rewritten in primitive form: h
u
zb


t

+

 hu
1
2 u

2 + g (h+ zb)
ξqs


x

=

 0
0
0

 . (3)

It is assumed that the flow at the seaward boundary is subcritical and that
approximations for linear waves in shallow water can be used therein. These
are essentially the same assumptions made in Kobayashi et al. (1987).
The seaward boundary is located at x = xb and the incoming waves propagate
from the left to the right of Figure 1. Thus h(xb, t) can be computed from

h(xb, t) = h0 + zb(xb, 0)− zb(xb, t) + ηi(xb, t) + ηr(xb, t), (4)

where h0 is the still water depth at the seaward boundary and η is the per-
turbation from the initial water surface (i.e. h0 + zb(xb, 0)) due to the incident
(ηi) and reflected (ηr) waves respectively. In particular, ηi(xb, t) is known while
the initial reference bed level is set zb(xb, 0) = 0 (see Figure 1) and therefore
omitted in the following.
The water velocity at the seaward boundary u(xb, t) can be computed as

u(xb, t) = ui(xb, t) + ur(xb, t) , (5)

with

ui(xb, t) ≈ ηi(xb, t)

√
g

h0 − zb(xb, t)
, (6)

ur(xb, t) ≈ −ηr(xb, t)
√

g

h0 − zb(xb, t)
. (7)

ui(xb, t) is a function of ηi(xb, t), which is known, and zb(xb, t). ur(xb, t) is80

related to zb(xb, t) and ηr(xb, t) through relationship (7). The new technique
makes use of two of the three Riemann Equations associated to system (3) at
the seaward boundary to determine two unknowns, zb(xb, t) and ηr(xb, t), with
the help of relationships (4), (6) and (7).

85

The generic Riemann Equation (see Zhu, 2012 for the derivation) is written
as:

<k =
Dzb
Dt

+
λk

λk − u
Dh

Dt
+
λk
g

Du

Dt
= 0, (8)

5



cell 0 cell 1
∆x

∆t

λ1,C

λ2,A

λ3,B

ABC

P

xb x

t

tn

tn+1

Figure 2: Sketch for fully-coupled seaward boundary conditions. Empty squares on x axis
indicate cell centres.

where D·
Dt indicates the total (material) derivative and λk (k = 1, 2, 3) are the

eigenvalues of the Jacobian matrix associated to system (3). Such eigenvalues
are computed numerically (e.g. Kelly & Dodd, 2009) as no analytical expression
is available for the morphodynamic problem.
At the seaward boundary, λ1 is positive, λ2 negative, while:

λ3 > 0 if u > 0 ,

λ3 < 0 if u < 0 .

A sketch to illustrate the new technique is provided in Figure 2, where two cells
and their centres are indicated. In fact, the domain length Lx is divided in M
control volumes or cells of equal width ∆x, so that Lx = M∆x. Note that the
TVD-MCC is a hybrid scheme, as the original MCC is a finite difference scheme
whilst the TVD correction needs the knowledge of quantities at numerical cell90

interfaces. Thus, it is more convenient to refer to a finite volume domain di-
vision in cells assuming constant dependent variable values in each cell and its
centre coincident with a node in the finite difference framework.
The physical seaward boundary is set as the left edge of cell 1. Cell 0 is the one
at which the new boundary conditions are prescribed. Two consecutive time95

levels are involved here, i.e. n and n+ 1. P is the centre of cell 0 at time tn+1,
where dependent variables (h, u and zb) require updating.
Only λ2,A and λ3,B are needed. They originate from points A and B (both to
be located) at time tn and pass through P at time tn+1. Therefore, only the

6



Riemann Equations for k = 2, 3 will be used. They form a determined system100

of two equations in two unknowns (zb,P and ηr,P ). Note that zb,P = zb(P (x =
xP , t = tP = tn+1)).
Dependent variable values are available at time tn at each cell centre. At a given
time, variable and eigenspeed values are assumed to vary smoothly in space so
that linear interpolation between cells 0 and 1 gives reasonable accuracy.105

The procedure starts by estimating xA and xB . Subsequently, values for h, u
and zb at these two points are computed. Although A and B spatial coordinates
are unknown, the Courant Number condition assures that |λk|∆t < ∆x, where
∆t is the time step. Hence, the following iterative method is employed (described110

for one eigenspeed only because the other is analogous):

1. λ2 eigenspeeds at centres of cells 0 and 1 are computed (λ2,0 and λ2,1)
from dependent variables at time tn;

2. initial guesses for xA and λ2,A are made: xA = xP + ∆x
2 and λ2,A =

λ2,0+λ2,1

2 ;115

3. a new estimate for xA is computed using the additional relationship xA,new =
xP − λ2,A∆t;

4. the relative error εA between xA,new and xA, defined as

εA =
xA,new − xA

xA
,

is compared with a tolerance value (tol = 10−2):

• if εA < tol, then variable values (hA, uA, zb,A) are computed with
linear interpolation between those at cells 0 and 1;120

• if εA > tol, then a bisection method is undertaken: new xA and λ2,A

values are computed and the process goes back to point 3.

Note that if λ3,B > 0, then values will be extrapolated rather than interpolated
from those at cell centres 0 and 1. As |λ3| � |λ1,2|, the error related to the
extrapolation is assumed to be negligible.
Once dependent variables at A and B are known, the Riemann Equations can
be solved:

(zb,P − zb,A) + µ2,A(hP − hA) + ω2,A(uP − uA) =0, (9)

(zb,P − zb,B) + µ3,B(hP − hB) + ω3,B(uP − uB) =0, (10)

where

µk,j =
λk,j

λk,j − uj
, (11)

ωk,j =
λk,j
g

, (12)

7



with (k, j) = [(2, A), (3, B)]. The aforementioned equations can be rearranged
in this way:

zb,P + µ2,AhP + ω2,AuP = SA, (13)

zb,P + µ3,BhP + ω3,BuP = SB , (14)

where

Sj = (zb,j + µk,jhj + ωk,juj) , with (k, j) = [(2, A), (3, B)].

It is convenient to subtract equation (14) from (13) to eliminate zb,P :

µhP + ωuP = S, (15)

with

µ = µ2,A − µ3,B ,

ω = ω2,A − ω3,B ,

S = SA − SB .

Equations (4),(5),(6) and (7) are substituted into (13) and (15) to obtain a
system of two equations in the unknowns zb,P and ηr,P :

zb,P+µ2,A (h0 − zb,P + ηi,P + ηr,P ) +

+ω2,A

√
g

h0 − zb,P
(ηi,P − ηr,P ) = SA, (16)

µ (h0 − zb,P + ηi,P + ηr,P ) +

+ω

√
g

h0 − zb,P
(ηi,P − ηr,P ) = S. (17)

An auxiliary variable is defined as

Ω =
√
h0 − zb,P .

Note that Ω > 0 by definition (see Figure 1).
Then ηr,P is obtained from equation (17):

ηr,P = ηi,P + Ω
S − µ

(
Ω2 + 2ηi,P

)
Ωµ−√gω

(18)

and substituted into equation (16), obtaining a cubic equation in Ω:

Ω3 + a1Ω2 + a2Ω + a3 = 0, (19)

where

a1 =

√
g (ω − ωµ2,A + µω2,A)

(−µ)
, (20)

a2 =
(µh0 − µSA + Sµ2,A)

(−µ)
, (21)

a3 =

√
g (ωSA − Sω2,A − ωh0 + 2ηi,P (µω2,A − ωµ2,A))

(−µ)
. (22)

8



Equation (19) is solved through Cardano’s formula (Abramowitz & Stegun,
1972); when there are three real roots, the one that yields the closest value of
zb,P to the former at previous time tn is used as the updated bed level.125

At this point, ηr,P is computed from equation (18) and the dependent variables
at the seaward boundary cell are updated by means of (4) and (5).

In order to refine the obtained boundary values, an iterative process is in-
troduced. New eigenspeed values λk,P are computed from hP , uP and zb,P , and
then averaged with the previously estimated ones:

λ2,AP =
λ2,A + λ2,P

2
,

λ3,BP =
λ3,B + λ3,P

2
.

These averages are used to update coefficients (11) and (12), together with the
following averaged velocity values:

ujP =
uj + uP

2
with j = A,B.

Hence, Riemann Equations (9) and (10) are solved again and new dependent
variable values at P are available. This process can be repeated until subsequent
values of hP , uP and zb,P agree to a prescribed degree of accuracy.
In particular, it is convenient to define a relative error on hP as

εh =
hP,new − hP,old

hP,old
,

with new and old labelling the last and the second last computed values for hP
respectively. Iteration is then terminated when |εh| < 10−12.130

9



4. New boundary condition validation

4.1. Introduction

Seaward boundary conditions are often validated against tests of reflection
of sinusoidal waves (e.g. Wei et al., 1999). Although analytical solutions exist
for reflection over a fixed bed, none is available in the literature for a mobile135

bed case.
The validation presented here comprises a group of tests involving monochro-
matic waves and one for moving discontinuities, i.e. uniform bores.
The first test considers the full reflection of a single monochromatic wave over a
mobile bed. This test aims at quantifying the capability of the REBCs to allow140

reflected signals to exit the domain.
The second test involves a monochromatic wave train over a mobile bed. Com-
plete reflection at one end of the physical domain leads to the establishment of
standing waves. The purpose of this test is to check whether the evolution of
the bed is affected by the REBCs or not.145

Thirdly, tests of a monochromatic wave train over ‘virtually fixed’ and fixed
beds are shown. These tests aim at confirming the convergence of the fully-
coupled boundary conditions to hydrodynamic only ones when the bed mobility
tends to zero.
Finally, for a uniform bore over a mobile bed, the Rankine-Hugoniot condi-150

tions provide an exact solution (Kelly & Dodd, 2010). Therefore, a further
test involving the reflection of a morphodynamic bore is studied. This case is
very demanding for the REBCs, as in shocks the particle velocity departs from
the approximation for linear waves in shallow water (relationships (6) and (7))
adopted in the new boundary conditions. It is thus a useful test for the robust-155

ness of the REBCs.
Note that all simulations were carried out for inviscid fluid only, as often in
previous works with NLSWEs (e.g. Kelly & Dodd, 2010 and Briganti et al.,
2012b among others). In fact, including bottom friction would mask potential
spurious oscillation introduced by the REBCs.160

4.2. Monochromatic wave tests

This group of tests considered a single monochromatic wave or a monochro-
matic wave train entering an initially flat bottomed channel with uniform still
water depth h0.
The input signal was a monochromatic wave of height H, period T and wave-
length L. The tests were always carried out within the shallow water limit,
i.e. h0/L < 1/20 (Svendsen, 2005). Furthermore, the authors decided to test
less steep waves to limit their steepening caused by the adoption of the NLSWEs,
so that wave breaking was avoided. Breaking waves (bores) are considered in
Subsection 4.3.
For the mobile and the virtually fixed bed tests, the sediment mobility param-
eter A in the Grass formula was set at 4 × 10−3 s2/m and at 1 × 10−8 s2/m
respectively, following Kelly & Dodd (2009) and Briganti et al. (2012a).
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As stated in Subsection 3.1, the domain was divided in M equal cells. Two
ghost cells were used to impose the boundary conditions: cell 0 for the seaward
(left) boundary, where REBCs were prescribed, and cell M+1 for fully reflective
conditions at the right boundary. These latter read:

hM+1 = hM , (23)

uM+1 = −uM , (24)

zb,M+1 = zb,M . (25)

With reference to the numerical setup, a spatial step size ∆x of 0.10 m and a
Courant Number CN of 0.90 were chosen.
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4.2.1. Single monochromatic wave over a mobile bed

The test with a single monochromatic wave was performed using the settings
shown in Table 1.

Domain length Lx m 100.00

Still water depth h0 m 0.5 1.0 2.0 5.0

Incoming wave period T s 45.16 31.93 22.58 14.28

Incoming wave length L m 100.00

Incoming wave height H m 0.02 or 0.05 or 0.10

Sediment mobility parameter A s2m−1 4 × 10−3

Spatial step size ∆x m 0.10

Courant Number CN − 0.90

Duration of the simulations − s > 4T

Table 1: Single monochromatic wave over a mobile bed - test settings.

The aim of this test is to provide a quantification of the error in absorption
produced by the application of the REBCs and to understand if and how it
varies with the ratios h0/L and H/L, i.e. relative wavenumber and wave steep-
ness. Their variation was obtained by fixing L and changing values of h0 and
H. The values for h0 and H were selected to let the parameters h0/L and H/L
span an order of magnitude.
Firstly, four different values for h0 were chosen, corresponding to four different
incoming wave periods T for fixed L (periods were computed through the dis-
persion relationship for linear waves in shallow water). Secondly, three values
of H were adopted (see Table 1).
In this test the domain is long enough so that the generation of the incoming
signal at the seaward boundary ceases before the absorption of the reflected
wave begins. Some snapshots of Video 1 (available for the online version of this
paper) are provided in Figure 3 to illustrate the physical evolution of the flow
and bed in this test. The final bed profile shows respectively one erosional and
one depositional area moving away from the right boundary. If a single wave
with a leading trough is simulated instead, the order of the areas is reversed

11



(results not showed here).
Any wave that enters the domain should eventually exit from the seaward bound-
ary, leaving a quiescent flow state behind (see top panel for time 100 s of Figure
3). From the time history of ηr,P it is possible to identify the time level after
which its value falls below a defined threshold, so that the reflected wave can
be assumed to be completely transmitted through the seaward boundary. For
this test the threshold was set at 1/1000 of the maximum absolute value of ηi,P ,
i.e. H/2. Then, maximum and minimum values for water surface perturbation
and velocity in the whole domain were recorded after the absorption terminated.
We define the following non-dimensional estimates of (local) error:

η∗ =
ηm
H/2

,

u∗ =
um

ui,max
,

where ηm and um refer to the above maximum (or minimum) values, detected
at a certain cell m, while ui,max is the maximum velocity of the particular in-
coming wave of height H. In Figure 4 it is apparent that |η∗| and |u∗| decrease
as relative wavenumber increases and rise with incoming wave steepness. Local
errors for case with h0/L = 0.005 and H = 0.10 m are included in Figure 4 for
completeness, although in this case the sinusoidal wave clearly broke, generating
a bore (not showed here) and deteriorating the performance of REBCs. This is
the only case among those tested in which breaking occurred. In all remaining
cases the local errors are small and within the 1% threshold.
Figure 5 shows the root mean squared errors (RMSE) for water surface pertur-
bation and velocity, computed throughout the domain. The RMSE definition
is:

RMSE(q) =

(
1

M

M∑
m=1

(qm − q̃)2

) 1
2

(26)

where q indicates a generic quantity (η or u for this test), q̃ is the corresponding
expected value (which is zero for both η or u in this case) and m stands for170

the particular cell. These RMSE results confirm that errors decrease as h0/L
increases and rise with H values. Moreover, the errors remain at least 2 orders
of magnitude smaller than the respective maximum incoming signal, indicating
that the developed seaward boundary conditions are effective.

175

12



0 50 100

0.98

1

1.02

h+
z b (

m
)

Time:30.0 s

 

 

u (m/s)

−0.05 0 0.05

0 50 100
−1

−0.5

0

0.5

1
x 10

−6

x (m)

z b (
m

)

 

 

deposition
erosion

0 50 100

0.98

1

1.02

Time:65.0 s

 

 

u (m/s)

−0.05 0 0.05

0 50 100
−1

−0.5

0

0.5

1
x 10

−6

x (m)

 

 

deposition
erosion

0 50 100

0.98

1

1.02

Time:100.0 s

 

 

u (m/s)

−0.05 0 0.05

0 50 100
−1

−0.5

0

0.5

1
x 10

−6

x (m)

 

 

deposition
erosion

Figure 3: Single monochromatic wave over a mobile bed - Video 1 snapshots at three different
times - h0 = 1.0 m, T = 31.93 s and H = 0.02 m. Top panels: water surface (h+ zb) profiles
with water velocity (u) contours; bottom panels: bed level (zb) profiles.
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4.2.2. Monochromatic wave train over a mobile bed

This test was carried out with the settings summarised in Table 2.

Domain length Lx m 200.00

Still water depth h0 m 0.5 1.0

Incoming wave period T s 45.16

Incoming wave length L m 100.00 141.42

Incoming wave height H m 0.02

Sediment mobility parameter A s2m−1 4 × 10−3

Spatial step size ∆x m 0.10

Courant Number CN − 0.90

Duration of the simulation − s 2 × 105

Table 2: Monochromatic wave train over a mobile bed - test settings.

As shown in Table 2, two different values for the still water depth h0 were
considered, namely 0.5 m and 1.0 m, which correspond to wavelengths L of
100.00 m and 141.42 m respectively. The domain length was chosen in order to180

be long enough to contain at least one wavelength.
Videos 2 and 3 (available for the online version of this paper) illustrate the
physical evolution of the flow and bed for both cases. The monochromatic wave
train generates a non-linear standing wave pattern and a corresponding pattern
in the bed profile.185

Figures 6 and 7 display water depth, velocity and bed level time stacks. Wa-
ter depth and velocity ones show the effects of non-linearity, that is the wave
steepening, which is exacerbated with smaller h0. Those of the bed level exhibit
the long-term stability in time of the solution for the bed profile. The bedforms
develop and remain almost stationary, consistently with the nature of the hy-190

drodynamic field. Only small oscillations due to the non-linearity of the waves
occur.
Panels (a) and (c) of Figure 8 present the final bed level profiles for both
cases, better showing the bed pattern, which comprises a sequence of deposition-
erosion-deposition areas and two zero-bed-change points every half wavelength.195

This pattern is not altered by the location of the seaward boundary, even when
the latter is set at a non-integer multiple of L, and therefore the REBCs act
effectively as a ‘transparent’ boundary.
In contrast with linear theory, the non-linearity of the waves causes oscillation
of the nodal points and asymmetry in the deposition/erosion pattern. The more200

the wave steepens, that is in the direction of decreasing x, the more the velocity
nodes oscillate and the bed profile is affected, showing a small accretion between
consecutive depositional areas (for example see panel (a) of Figure 8).
However, the focus of this paper is on the seaward boundary conditions and
it is important to highlight that no significant spurious oscillation is generated205

at the seaward boundary and propagates into the bed level, i.e. bed level time
contours are substantially parallel to time axis.
Panels (b) and (d) of Figure 8 present the amplitudes of the first two harmonics
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of the surface standing wave for both cases. The depositional areas occur at
both sides of each wave antinode position while the erosional trough is apparent210

where wave nodes are located.
It is very interesting to note analogies with the experimental results of Figure
4, panel (e), of Landry et al., 2007, showing the final profile of a fine sand
bed which underwent standing wave action for 7.0 days. The bottom evolu-
tion pattern obtained in the present test qualitatively agrees with that of the215

reference figure, although ripples are not modelled here. Additionally, Landry
et al. (2007) explicitly mention vertical water velocities and suspended sediment
transport, which are not included in the present model.
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Figure 6: Monochromatic wave train over a mobile bed - time stacks - h0 = 0.5 m, T = 45.16 s
and H = 0.02 m. Panel (a): water surface (h + zb); panel (b): velocity (u); panel (c): bed
level (zb).
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Figure 8: Monochromatic wave train over a mobile bed - T = 45.16 s and H = 0.02 m. Panels
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4.2.3. Monochromatic wave train over virtually fixed and fixed bed220

These tests were performed with the settings shown in Table 3.

Domain length Lx m 200.00

Still water depth h0 m 0.5

Incoming wave period T s 45.16

Incoming wave length L m 100.00

Incoming wave height H m 0.02

Sediment mobility parameter A s2m−1 1 × 10−8

Spatial step size ∆x m 0.10

Courant Number CN − 0.90

Duration of the simulation − s 1000

Table 3: Monochromatic wave train over virtually fixed and fixed bed - test settings.

As reported in Table 3, the still water depth h0 was set at 0.5 m, which
corresponds to a wavelength L of 100.00 m.
For the virtually fixed bed simulation A = 1 × 10−8 s2/m, following Briganti
et al. (2012a). The fixed bed case was obtained by running the solver for the225

NLSWEs only and applying the hydrodynamic only conditions of Kobayashi
et al. (1987) at seaward boundary. The scope of these tests is to check if, when
A is very small, the results obtained with the REBCs converge to those for the
hydrodynamic only case.
Figure 9 presents water surface time stacks for the virtually fixed and fixed230

bed simulations. Firstly, panel (a) shows results obtained using the REBCs
for a virtually fixed bed. Secondly, panel (b) displays results achieved using
the hydrodynamic only boundary conditions for a fixed bed. Finally, panel (c)
shows results obtained with Kobayashi et al. (1987) conditions for fixed bed
and employing a different hydrodynamic solver, namely the finite volume solver235

from Briganti & Dodd (2009), based on the Weighted Average Flux (or WAF)
method (Toro, 2001).
Figure 9 displays excellent consistency of the results, with differences in water
surface values of the order of 10−4 m among the three cases. This figure shows
that the (morphodynamic) virtually fixed bed case converges to the (hydrody-240

namic) fixed bed one and indicates that in this limit the REBCs converge to the
hydrodynamic only boundary conditions. Moreover, the solution for the fixed
bed case is confirmed by that obtained using the finite volume solver. In the
light of this, we firmly maintain that result features, for instance wave steep-
ening and node oscillations, are not introduced by the REBCs or scheme-specific.245
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Figure 9: Monochromatic wave train over virtually fixed and fixed bed - water surface (h+zb)
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4.3. Morphodynamic bore test

This test involved the reflection of a uniform bore using the settings shown
in Table 4.

Domain length Lx m 10.00

Still water depth h0 m 1.0

Sediment mobility parameter A s2m−1 4 × 10−3

Spatial step size ∆x m 0.01

Courant Number CN − 0.80

Duration of the simulation − s 10

Table 4: Morphodynamic bore - test settings.

The domain consisted of an initially flat bottomed channel with an erodible250

bed. The still water depth h0 was set at 1.0 m while the incoming bore height
H at 0.20 m.
As previously for the wave test over a mobile bed, the parameter A was chosen
equal to 4× 10−3 s2/m.
The boundary conditions were the REBCs on the left of the domain and the255

reflective ones on the right.
With reference to the numerical setup, a spatial step size ∆x of 0.01 m and a
Courant Number CN of 0.80 were adopted for this test.
The exact solutions are calculated from the Rankine-Hugoniot conditions and
in theory the simulation should reproduce three distinct phases:260

1. an incoming bore advancing rightward with the following left side values:

h = 1.200 m , (27)

u = 6.002× 10−1 m/s , (28)

zb = 4.003× 10−4 m ; (29)

2. a reflected bore advancing leftward with the following right side values:

h = 1.418 m , (30)

u = 0.000 m/s , (31)

zb = 8.373× 10−4 m ; (32)

3. a restored quiescent flow state where dependent variables assume the right
side values of phase 2 throughout the domain.

Figure 10 provides three snapshot columns (one for each of phase) of Video 4
(available for the online version of this paper) to describe the physical evolution
of this test.
It is apparent that when the reflected bore reaches the seaward domain, it is
not fully absorbed and a part of it propagates back into the domain (see for
instance top panel for time 7.00 s in Figure 10). To provide a quantification of
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the absorption defect, the (negative) water velocity value retained in the domain
is 6.83% of (28).
It is known that the approximations for linear waves in shallow water included
in the REBCs, namely relationships (6) and (7), do not suit the bore case, as
they produced non-negligible errors in the water velocity estimates. For exam-
ple, the incoming bore velocity using (6) is 6.277 × 10−1 m/s, introducing an
absolute error of 0.275× 10−1 m/s and a relative one of 4.58% with respect to
the exact one, that is (28).
The authors investigated the aforementioned issues simulating a range of bores
of different heights. Two errors were studied and their behaviours with respect
to relative incoming bore heights (H/h0) are provided in Figure 11.
Firstly, εinc is a quantification of the error related to the adoption of approxi-
mations for linear waves in shallow water. It is defined as the relative error of
the approximate incoming bore velocity with respect to the exact one:

εinc =
ui,approx − ui,exact

ui,exact
.

Secondly, εret is an estimate of the absorption defect. It is calculated as the
ratio between the minimum (as it is negative) water velocity value retained in
the domain (after the reflected bore reached the seaward boundary) and the
incoming bore exact one:

εret =
uretained
ui,exact

.

Figure 11 shows that εinc is roughly half of the corresponding εret and that both
errors consistently tend to zero with H/h0.

265
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Figure 10: Morphodynamic bore - Video 4 snapshots at three different times - h0 = 1.0 m
and H = 0.20 m. Top panels: water surface (h+ zb) profiles with water velocity (u) contours;
bottom panels: bed level (zb) profiles.
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In particular, for H = 0.05 m, εinc ≈ 1.00% and the new exact solutions are:

1. for the incoming bore left side (advancing rightward):

h = 1.050 m , (33)

u = 1.547× 10−1 m/s , (34)

zb = 7.599× 10−6 m ; (35)

2. for the reflected bore right side (advancing leftward):

h = 1.101 m , (36)

u = 0.000 m/s , (37)

zb = 1.538× 10−5 m . (38)

Figure 12 shows that the REBCs give reasonably good results for H = 0.05 m
and this is confirmed by the fact that εret falls from 6.83% of the previous case
to 1.82% of the present one.
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Figure 12: Morphodynamic bore - profiles in the proximity of the seaward boundary at three
different times around time of reflected bore arrival therein - h0 = 1.0 m and H = 0.05 m.
Top panels: water surface (h+ zb); mid panels: velocity (u); bottom panels: bed level (zb).
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Further simulations (not shown here) demonstrate that reducing the Courant
Number or increasing the spatial resolution (i.e. adopting a smaller ∆x) do not
improve the results significantly. Moreover, even switching from the adopted
flux limiter (Minmod, see Appendix A) to others, for example Superbee or van
Leer ones (Sweby, 1984), do not yield substantial changes.275

In addition to this, a test over a virtually fixed bed was carried out and it
confirms substantially the same amount of εret for each bore height previously
simulated over a mobile bed.

280

Although the focus of the present work is on the seaward boundary, the
results in Video 4 show a numerical error in the bed profile at the reflective
boundary, i.e. after the reflection of the incoming bore the bed does not reach
the right final value but remains substantially lower therein. The authors could
not solve this issue but studied it in detail and concise analysis and discussion285

are provided in Appendix B.
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5. Discussion and conclusions

This paper presents a novel technique for deriving fully-coupled absorbing-
generating seaward boundary conditions for the NLSWEs-Exner equation sys-290

tem. Riemann Equations and approximations for linear waves in shallow water
are employed. The REBCs were validated against tests involving monochro-
matic waves and morphodynamic bores.
The performance of the technique has been quantified by analysing the restoring
of quiescence after a monochromatic wave enters and is reflected back out of295

the domain. Local (max and min) and global (RMSE) errors for water surface
perturbation and velocity reduce with decreasing incoming wave steepness and
with increasing relative wavenumber. Nearly in all considered cases, errors are
within the 1% threshold, giving evidence of the REBCs effectiveness. Perfor-
mance improves with increasing wave linearity, indicating that the linearisation300

of the velocity plays a key role in the accuracy of the conditions. This is also
confirmed in the analysis of the absorption defect for morphodynamic bore test,
in which overall REBCs performed reasonably well.
The use of the proposed boundary conditions for engineering applications im-
plies the possibility of simulating the reflection of long sequence of waves without305

altering the physical processes involved. It has been shown that the hydrody-
namics and bed evolution in the case of monochromatic wave trains over a
mobile bed are not perturbed by the errors in absorption at the seaward bound-
ary, giving confidence in the capability of the proposed conditions to simulate
engineering problems accurately.310

Finally, note that the REBCs do not depend on the particular adopted sediment
transport formula, so that more sophisticated closures for the instantaneous sed-
iment transport can be used.
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Appendix A. TVD-MacCormack scheme315

In vectorial form, system (1) reads

∂w

∂t
+
∂F(w)

∂x
= S, (A.1)

where

w = [h, hu, zb]
T

,

F =

[
hu, hu2 +

1

2
gh2, ξqs

]T
and

S =

[
0, −gh∂zb

∂x
, 0

]T
.

The TVD-MCC consists of three steps:

wp
m = wn

m −
∆t

∆x

(
Fnm+1 − Fnm

)
+ ∆tSnm+ 1

2
, (A.2)

wc
m = wn

m −
∆t

∆x

(
Fpm − Fpm−1

)
+ ∆tSp

m− 1
2

, (A.3)

wn+1
m =

1

2
(wp

m + wc
m) +

(
Dn
m+ 1

2
−Dn

m− 1
2

)
, (A.4)

where D is the TVD-function. n and m identify the values at the generic time
step n at cell m, p and c the predictor and the corrector stages in the order.
The adopted TVD-function D is

Dn
m+ 1

2
=

∆t

2∆x

3∑
k=1

[
(αkΨ(λ̄k))(1− |νk|)(1− Φ(θk))ēk

]n
m+ 1

2

, (A.5)

with the overbar indicating values at m+ 1
2 , where Roe averages are considered.

λ̄k is k-th eigenvalue of Jacobian matrix Ĵ(w) of the system (A.1) when ex-
pressed in quasi-linear form (Castro Dı́az et al., 2008) and ēk the corresponding
right eigenvector.
αk is the k-th wave strength, given by:

αk,m+ 1
2

=
∆h(λ̄aλ̄b − ū2 + c̄2) + ∆(hu)(2ū− λ̄a − λ̄b) + ∆zb c̄

2

(λ̄k − λ̄a)(λ̄k − λ̄b)
, (A.6)

with a 6= k 6= b and c =
√
gh.

Moreover, Ψ(λ̄k) is the entropy correction to λ̄k. Due to the work of Harten
and Hyman (1983), its expression is

Ψ(λ̄k) = |λ̄k| if |λ̄k| ≥ δ,
Ψ(λ̄k) = δ if |λ̄k| < δ,

(A.7)
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where δ is a small non-negative number determined by the relationship below

δ = max(0, λ̄k − λk,m, λk,m+1 − λ̄k). (A.8)

Finally, νk = λ̄k(∆t/∆x) is the local Courant Number and Φ(θk) is the flux
limiter. In this paper the following Minmod flux limiter is employed:

Φ(θk) = max (0,min(θk, 1)) , (A.9)

with θk being a smoothness ratio defined by

θk,m+ 1
2

=
αk,ṁ+ 1

2

αk,m+ 1
2

where ṁ = m− sgn
(
λ̄k
)

. (A.10)
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Appendix B. Open problem at reflective boundary

In the morphodynamic bore test, it has been observed that at last two cells
next to the reflective (right) boundary the bed level profile does not reach the
final correct value and the water free surface returns to be flat, consistently with
quiescent water (see Figure B.13).
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Figure B.13: Morphodynamic bore - profiles in the proximity of the reflective boundary at
three different times around time of incoming bore reflection therein - h0 = 1.0 m and H =
0.20 m. Top panels: water surface (h+zb); mid panels: velocity (u); bottom panels: bed level
(zb).
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The authors studied this error further through a number of additional sim-
ulations.
Firstly, suspecting of the predictor-corrector procedure embedded in the TVD-
MCC, the test was repeated applying the well-known Lax-Wendroff scheme
(Hudson, 2001) to the last cell of the domain. However, very similar results to325

those previously achieved were obtained.
Secondly, with respect to the numerical settings, it was tried to increase the
space resolution and to reduce the Courant Number, but the results did not
improve.
Thirdly, the authors switched from the (standard) Minmod flux limiter in the330

TVD function (A.5) to the Superbee and van Leer ones (Sweby, 1984). Results
demonstrated a partial dependency of the solution on the particular flux limiter
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but none of them could fix the error.
To the best of authors’ knowledge, no other result for the reflection of a bore
over a mobile bed with NLSWEs-Exner solvers could be found in the literature.335

However, the present issue shows strong analogies with a numerical error found
in gas dynamics simulations using shock-capturing schemes, known as ‘overheat-
ing’ (Donat & Marquina, 1996). It was observed in a wide range of methods,
both Eulerian and Lagrangian (Zaide & Roe, 2012), and it seems to be still an
open problem in that research field (Liou, 2012).340

The authors can highlight some points of interest about this numerical error.
Firstly, the last cell inside the domain and the boundary one have opposite but
same absolute value velocities at any time. This means that a ‘sonic point’ for
the bed level eigenspeed is always located at the reflective boundary and this
completely agrees with what experienced in gas dynamics (Toro, 1999).345

Secondly, the TVD-MCC actually can not resolve a sharp ‘theoretical’ discon-
tinuity, as all shock-capturing schemes, hence the morphodynamic bore is rep-
resented as a smeared transition over more than two cells. Some researchers in
the gas dynamics field (Menikoff, 1994) argued that this artificial shock width
causes the mismatch.350

Thirdly, the error could be related to the ‘nature’ of the sediment conserva-
tion equation, in particular to its non-linearity and to that of the whole system
(Zaide & Roe, 2012; Zaide, 2012).
About this last point and for the sake of numerical speculation, some simula-
tions were conducted adopting a linear and a quadratic relationship in u for qs,355

instead of the standard cubic one (2). Interestingly, the error disappears with
the linear formula, while persists with the quadratic one.
In addition to this, no sonic point takes place at the reflective boundary using
the quadratic formula, therefore it does not produce the error.
On the other hand, the smearing of the bore is apparent even with the linear360

formula and this implies that the artificial bore width does not cause the mis-
match by itself.
To summarise, the error at the reflective boundary appears to be first of all
related to the non-linearity of the sediment conservation equation and subse-
quently probably affected by the bore smearing.365
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