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Abstract

We study the e↵ects of magnetic fields in the context of magnetic field density-

functional theory (BDFT), where the energy is a functional of the electron density ⇢

and the magnetic field B. We show that this approach is a worthwhile alternative to

current-density functional theory (CDFT) and may provide a viable route to the study

of many magnetic phenomena using density-functional theory (DFT). The relationship

between BDFT and CDFT is developed and clarified within the framework of the four-

way correspondence of saddle functions and their convex and concave parents in convex

analysis. By decomposing the energy into its Kohn–Sham components, we demonstrate

that the magnetizability is mainly determined by those energy components that are

related to the density. For existing density functional approximations, this implies

that, for the magnetizability, improvements of the density will be more beneficial than

introducing a magnetic-field dependence in the correlation functional. However, once a
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good charge density is achieved, we show that high accuracy is likely only obtainable by

including magnetic-field dependence. We demonstrate that adiabatic-connection (AC)

curves at di↵erent field strengths resemble one another closely provided each curve is

calculated at the equilibrium geometry of that field strength. In contrast, if all AC

curves are calculated at the equilibrium geometry of the field-free system, then the

curves change strongly with increasing field strength due to the increasing importance

of static correlation. This holds also for density functional approximations, for which we

demonstrate that the main error encountered in the presence of a field is already present

at zero field strength, indicating that density-functional approximations may be applied

to systems in strong fields, without the need to treat additional static correlation.

1 Introduction

Magnetic fields and their e↵ects on atoms and molecules have for many years been an active

area of research in physics and chemistry. Of particular interest are molecular magnetic

properties such as NMR shielding constants and magnetizabilities, which are measurable

physical observables and an important application area of quantum chemistry. We also

note an interest in the e↵ects of ultra-strong magnetic fields on atoms and molecules in

astrophysics.1–3 From a theoretical point of view, the study of molecules in ultra-strong

magnetic fields can give new insight, such as the recent discovery of a hitherto unknown

perpendicular paramagnetic bonding mechanism.4

In general, for the computation of molecular magnetic properties, the performance of

Kohn–Sham density-functional theory (DFT) is still not satisfactory.5–7 For an improvement

in density-functional approximations (DFAs), it is necessary to understand the e↵ect of a

magnetic field on the components of the Kohn–Sham energy—in particular, on the correlation

functional. The development of such functionals is an active field of research.7–9 In this paper,

we analyse for the first time the field dependence of the Kohn–Sham energy components,

using the adiabatic connection (AC).
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There are two di↵erent ways of including the e↵ects of magnetic fields in DFT. In current-

density-functional theory (CDFT), a current dependence is introduced in the universal density

functional, which then depends on the density and paramagnetic current density.10,11 In

magnetic-field density-functional theory (BDFT), we introduce instead a field dependence in

the density functional.12 Here, we develop CDFT and BDFT within a common framework—

namely, the four-way correspondence of conjugate saddle functions and their convex and

concave parents,13 allowing us to relate and compare the CDFT and BDFT correlation

functionals.

For the construction of exchange–correlation functionals, AC curves have in the past

provided useful insight.14–21 However, so far, this has been done only in the absence of

magnetic fields. To examine and understand the performance of exact DFT and of DFAs

in magnetic fields, we extend the studies of AC curves to include a magnetic field, within

the framework of BDFT. We consider two regimes: the weak-field regime to understand and

model magnetic properties better and the strong-field regime to improve our understanding

of fundamental physical and chemical concepts. We begin with weak fields, computing

derivatives of the energy, relevant to molecular properties, using the finite-di↵erence method.

The energy and derivatives are decomposed into their Kohn–Sham components and analysed

individually. We investigate to what extent a field dependence in the density functional may

improve the computation of the magnetizability (proportional to the second derivative of the

energy with respect to the magnetic field strength). Finally, we consider strong magnetic

fields, studying AC curves for exact DFT and DFAs under such conditions.

The remainder of the paper is organized as follows. The structure of Kohn–Sham DFT

in magnetic fields is outlined in Section 2, comparing the BDFT and CDFT formalisms. In

Section 3, we introduce the AC for BDFT, allowing for a detailed analysis of the correlation

energy. Computational details are given in Section 4. Our results in the weak- and strong-field

regimes are presented and discussed in Section 5. Finally, Section 6 gives concluding remarks

and directions for future work.
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2 DFT in a magnetic field

In this section, we discuss DFT in the presence of a magnetic field—in particular, we develop

CDFT and BDFT within the framework of convex conjugation, setting up and relating the

Hohenberg–Kohn and Lieb variation principles for these theories. We begin with a review of

DFT.

2.1 Ground-state energy in the absence of a magnetic field

In the absence of a magnetic field, the electronic Hamiltonian of an N -electron system in an

external scalar potential v is given by

H�(v) = T + �W +
NX

i=1

v(ri), (1)

where T is theN -electron kinetic-energy operator andW theN -electron two-electron repulsion

operator. We have included in the Hamiltonian the interaction-strength parameter �, which

is equal to one for the fully interacting (physical) system and zero for the noninteracting

system. According to the Rayleigh–Ritz variation principle, the ground-state energy is given

by

E�(v) = inf
�2DN

tr �H�(v), (2)

where DN is the set of all normalized N -electron density matrices with a finite kinetic energy.

With v 2 �⇤ = L3/2(R3) + L1(R3), the requirement that � 2 DN also guarantees a finite

total energy with associated density ⇢ 2 � = L3(R3) \ L1(R3).22

From the linearity of H�(v) in v in Eq. (1) and from the Rayleigh–Ritz variation principle

in Eq. (2), it follows that E�(v) is concave in v. To see this, let v1 and v2 be two external

potentials in �⇤ and select 0 < µ < 1. From the linearity of the Hamiltonian in the potential,
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we obtain H�(µv1 + (1� µ)v2) = µH�(v1) + (1� µ)H�(v2), from which concavity follows:

E�(µv1 + (1� µ)v2) = inf
�2DN

tr � (µH�(v1) + (1� µ)H�(v2))

� inf
�2DN

tr �µH�(v1) + inf
�2DN

tr �(1� µ)H�(v2)

= µE�(v1) + (1� µ)E�(v2). (3)

An additional property of the energy that follows from the Rayleigh–Ritz variation principle

is upper semi-continuity—a weak form of continuity important in convex analysis.23 Upper

semi-continuous concave functions are said to be closed concave.

2.2 DFT in the absence of a magnetic field

From the closed concavity of the ground-state energy, it follows that there exists a unique

function F�(⇢), the universal density functional, such that22

E�(v) = inf
⇢2�

[F�(⇢) + (v|⇢)] , (4)

F�(⇢) = sup
v2�⇤

[E�(v)� (v|⇢)] , (5)

where (v|⇢) = R
v(r)⇢(r)dr. Moreover, F is closed convex, meaning that �F is closed concave.

It is a general result of convex analysis that there exists a unique one-to-one correspondence

between all closed convex functions on � and all closed concave functions on its dual �⇤; see

Ref. 23. The functions E� and F�, related in the manner of Eqs. (4) and (5), are said to

be conjugate functions: each function contains all information needed to generate the other

function by convex or concave conjugation. In the following, we will use the theory of convex

conjugation to develop and relate BDFT and CDFT, within a common framework.

We refer to Eqs. (4) and (5) as the Hohenberg–Kohn and Lieb variation principles,

respectively. We note that the density functional of Eq. (5) may be written in the constrained-
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search form22,24

F�(⇢) = min
� 7!⇢

tr �(T + �W ), (6)

where a minimizing density always exists.

2.3 Ground-state energy in a magnetic field

Consider now an electronic system in the presence of a magnetic field B, represented by a

vector potential A such that B = r⇥A. The electronic Hamiltonian now becomes

H�(v,A) = T (A) + �W +
NX

i=1

v(ri), (7)

where the (mechanical) kinetic-energy operator takes the form

T (A) =
1

2

NX

i=1

�� iri +A(ri)
�2
. (8)

We are interested in the ground-state energy E�(v,B) = inf�2DN tr �H�(v,A), where the

Hamiltonian is linear in v but quadratic in A,

H�(v,A) = H�(v)� i
NX

i=1

A(ri) ·ri +
1

2

NX

i=1

A2(ri), (9)

where A = |A|. As a result, E�(v,B) is not concave in B and we cannot directly apply the

theory of convex conjugation to the energy expressed in this manner.

To prepare for DFT, we therefore change variables from (v,A) to (u,A) where u = v+ 1
2
A2

and introduce a Hamiltonian H̄�(u,A) that is linear in both potentials25

H̄�(u,A) = H�(u)� i
NX

i=1

A(ri) ·ri. (10)

From the Rayleigh–Ritz variation principle and the linearity of this Hamiltonian in the
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potentials, it follows that the resulting ground-state energy

E�(u,A) = inf
�2DN

tr �H̄�(u,A) (11)

is closed concave—both separately with respect to each variable or jointly with respect to

both variables. As such, E� is amenable to convex conjugation, as described in the next

section. The ability to apply convex analysis to E�(u,A) allows us to establish useful formal

properties and relations between BDFT and CDFT. The energy may always be re-expressed

in terms of v and B via the simple relation E�(v,B) = E�(v � 1
2
A2,A).

2.4 DFT in a magnetic field

Applying the biconjugation theorem to E�(u,A) for a fixed A, transforming only u, we obtain

the Hohenberg–Kohn and Lieb variation principles of magnetic-field density-functional theory

(BDFT) 12

E�(u,A) = inf
⇢
[F�(⇢,A) + (u|⇢)] , (12)

F�(⇢,A) = sup
u

[E�(u,A)� (u|⇢)] , (13)

where the density functional F�(⇢,A) is a convex–concave saddle function, closed convex in

⇢ for fixed A and concave in A for fixed ⇢.26 Alternatively, transforming both variables of

E�(u,A), we arrive at current-density-functional theory (CDFT) 10,11

E�(u,A) = inf
⇢,jp

[G�(⇢, jp) + (u|⇢) + (A|jp)] , (14)

G�(⇢, jp) = sup
u,A

[E�(u,A)� (u|⇢)� (A|jp)] , (15)

where jp is the paramagnetic current density and we have introduced the notation (A|jp) =
R
A(r) · jp(r)dr. The density functional G�(⇢, jp) is closed convex by construction. The
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relationships between the ground-state energy E�(v,A) and the density functionals F�(⇢,A)

and G�(⇢, jp) is depicted in Fig. 1, which also contains the concave–convex saddle function

H�(v, jp). For the general theory of the four-way correspondence of Fig. 1, see Refs. 13 and

26.

From the four-way correspondence of saddle functions, it follows that BDFT and CDFT

density functionals are related in the manner

F�(⇢,A) = inf
jp

[G�(⇢, jp) + (A|jp)] , (16)

G�(⇢, jp) = sup
A

[F�(⇢,A)� (A|jp)] . (17)

Whereas Eq. (17) follows easily by substituting Eq. (13) into Eq. (15), the variation principle

in Eq. (16) is more di�cult to establish but follows from the general theory of saddle functions.

We also note that the BDFT and CDFT density functionals may be expressed in the equivalent

constrained-search form

F�(⇢,A) = min
� 7!⇢

tr � [T (A) + �W ]� 1
2
(A2|⇢), (18)

G�(⇢, jp) = inf
� 7!(⇢,jp)

tr �(T (0) + �W ). (19)

Unlike for DFT in Eq. (6) and BDFT in Eq. (18), it is unknown whether a minimizing density

matrix always exists in Eq. (19).

Whereas CDFT was developed by Vignale and Rasolt in 198710,11 and formulated in terms

of convex conjugation by Tellgren et al. in 2012,25 the theory of BDFT was presented by

Grayce and Harris in 1994.12 In their paper, Grayce and Harris presented two formulations of

BDFT, using real or complex orbitals. We discuss here only the more conventional, complex

formulation of BDFT, relating it to CDFT by the variation principles in Eqs. (18) and (19).

We note that BDFT and CDFT are considerably less developed than DFT, both formally

and practically, although significant recent progress has been made in developing practical
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implementations of CDFT.7–9,27 CDFT Kohn–Sham theory may be set up in the usual manner

(see Ref. 25 for further discussion). However, although the noninteracting N -representability

problem has been solved for four or more Kohn–Sham orbitals in CDFT, it remains severe

for single-orbital systems and an open question for two- and three-orbital systems.28 When

fractionally occupied Kohn–Sham orbitals are allowed, the CDFT N -representability problem

is completely solved.29 It is an open question whether the density functional of BDFT is

easier or more di�cult to model than the density functional of CDFT.

2.5 Kohn–Sham decomposition in BDFT and CDFT

Kohn–Sham theory conventionally employs a noninteracting system with integer occupation

numbers, corresponding to a Slater determinant. Less commonly, fractional occupation

may be considered in ensemble formalisms and occurs at the Fermi level for degenerate

ground states. The Kohn–Sham decompositions of the BDFT and CDFT density functionals,

respectively, are given by

F�(⇢,A) = Ts(⇢,A) + �J(⇢) + Fxc,�(⇢,A), (20)

G�(⇢, jp) = Ks(⇢, jp) + �J(⇢) + Gxc,�(⇢, jp), (21)

where Ts and Ks are the noninteracting ensemble BDFT and CDFT density functionals. With

fractional occupation allowed, Ts = F0 and Ks = G0. In the case of integer occupations,

Ts � F0 and Ks � G0, with equality for typical, nondegenerate systems. The functional J(⇢)

in Eqs. (20) and (21) is the Hartree functional,

J(⇢) =

ZZ
⇢(r1)⇢(r2)r

�1
12 dr1dr2, (22)

whereas Fxc,�(⇢,A) and Gxc,�(⇢, jp) are the BDFT and CDFT exchange–correlation energies,

respectively. Expressing the ground-state energy E�(u,A) in terms of F�(⇢,A) and G�(⇢, jp),
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we obtain

E�(u,A) = Ts(⇢,A) + �J(⇢) + Fxc,�(⇢,A) + (u|⇢),

= Ks(⇢, jp) + �J(⇢) + Gxc,�(⇢, jp) + (u|⇢) + (jp|A), (23)

where (⇢, jp) are the minimizing ground-state density and paramagnetic current density

associated with (u,A).

From Eqs. (18) and (19), we find that the noninteracting density functionals may be

expressed in the constrained-search form

Ts(⇢,A) = inf
� 7!⇢

tr � T (A)� 1
2
(A2|⇢), (24)

Ks(⇢, jp) = inf
� 7!(⇢,jp)

tr � T (0) = inf
� 7!(⇢,jp)

tr � T (A)� (A|jp)� 1
2
(A2|⇢), (25)

which upon substitution in Eq. (23) shows that the sum of the noninteracting kinetic energy

and the exchange–correlation energies in BDFT and CDFT are identical:

inf
� 7!⇢

tr � T (A) + Fxc(⇢,A) = inf
� 7!(⇢,jp)

tr � T (A) + Gxc(⇢, jp). (26)

Whereas the minimizing noninteracting density matrix in CDFT reproduces both the density

⇢ and the paramagnetic current density jp of the physical system, the corresponding density

matrix in BDFT is required only to reproduce the density ⇢. As a result, the noninteracting

mechanical kinetic energy in CDFT is an upper bound to the corresponding kinetic energy in

BDFT,

inf
� 7!(⇢,jp)

tr � T (A) � inf
� 7!⇢

tr � T (A). (27)

From Eq. (26), it then follows that the BDFT exchange–correlation energy is an upper bound
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to the corresponding CDFT exchange–correlation energy

Fxc,�(⇢,A) � Gxc,�(⇢, jp), (28)

where (⇢, jp) are the ground-state density and paramagnetic current density associated with

(u,A).

Since in BDFT the noninteracting density matrix � of Eq. (24) needs only reproduce the

density ⇢ (as in standard DFT), Kohn–Sham BDFT does not su↵er from theN -representability

problem of Kohn–Sham CDFT, where the noninteracting density matrix � of Eq. (25) must

also reproduce the paramagnetic current density jp.

2.6 Density-only exchange–correlation functionals

The exact ground-state energy may be obtained from either the BDFT or CDFT variation

principle, in the following alternative manners:

E�(u,A) = inf
⇢
(Ts(⇢,A) + �J(⇢) + Fxc,�(⇢,A) + (u|⇢))

= inf
⇢,jp

(Ks(⇢, jp) + �J(⇢) + Gxc,�(⇢, jp) + (u|⇢) + (jp|A)) .
(29)

Let us now approximate the exchange–correlation functionals Fxc,�(⇢,A) and Gxc,�(⇢, jp)

with the same density-only functional Fxc,�(⇢) in Eq. (29). We then obtain the following

approximate BDFT and CDFT ground state energies, denoted by bDFT and cDFT,

EbDFT
� (u,A) = inf

⇢
(Ts(⇢,A) + �J(⇢) + Fxc,�(⇢) + (u|⇢)) , (30)

EcDFT
� (u,A) = inf

⇢

✓
inf
jp

�Ks(⇢, jp) + (jp|A)
�
+ �J(⇢) + Fxc,�(⇢) + (u|⇢)

◆
. (31)

These approximate ground-state energy functionals turn out to be identical. From the

expressions for Ts(⇢,A) and Ks(⇢, jp) given in Eqs. (24) and (25), respectively, we find

Ts(⇢,A) = infjp
�Ks(⇢, jp) + (jp|A)

�
and the identification of the functionals follows. Hence,
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under the approximation Fxc,�(⇢,A) = Gxc,�(⇢, jp) = Fxc,�(⇢), the BDFT and CDFT Kohn–

Sham systems coincide, although the kinetic-energy functionals Ts and Ks remain di↵erent. As

we shall see, the noninteracting kinetic energy provides the dominant magnetic contribution

to the total energy, the exchange–correlation contribution being much smaller.

3 Adiabatic connection

To study of the AC in BDFT, we generalize the procedure of Teale, Coriani, and Helgaker21

to nonzero field strengths. In this manner, high-accuracy AC curves may be generated from

accurate wave functions, as will be discussed in Section 3.1. The resulting AC curves give

valuable information about the role of dynamical and static correlation in BDFT. They may

also be used to benchmark DFAs, whose AC curves are obtained by scaling, as discussed in

Section 3.2

3.1 Adiabatic connection for BDFT

We have formulated BDFT with magnetic field B in terms of the gauge-dependent vector

potential A satisfying B = r ⇥ A. To connect with the original BDFT formulation by

Grayce and Harris,12 we may rely on gauge invariance to write

E�(v,B) = E�(v � 1

2
A2,A), (32)

F�(⇢,B) = F�(⇢,A) +
1

2
(⇢|A2), (33)

Ts(⇢,B) = Ts(⇢,A) +
1

2
(⇢|A2). (34)
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Note that E� is a functional of u, while E� is a functional of v. These definitions yield the

following BDFT Hohenberg–Kohn and Lieb variation principles, respectively

E�(v,B) = inf
⇢
[F�(⇢,B) + (v|⇢)] , (35)

F�(⇢,B) = sup
v

[E�(v,B)� (v|⇢)] . (36)

In this formulation of BDFT, all quantities are manifestly gauge invariant.

To set up the AC of BDFT, we proceed in the usual manner, rewriting the density

functional as

F�(⇢,B) = Ts(⇢,B) +

Z �

0

dFµ(⇢,B)

dµ
dµ. (37)

This expression is rigorous in the ensemble case, when Ts(⇢,B) = F0(⇢,B), and relies on an

approximation or additional nondegeneracy assumption in the case of integer occupation.

Assuming that a maximizing potential v exists in the Lieb variation principle of Eq. (34), we

obtain

F�(⇢,B) = tr �⇢,B
� H�(0,B) (38)

where �⇢,B
� is the ground-state density matrix for the maximizing potential. By the Hellmann–

Feynman theorem, we then obtain the following expression for the BDFT density functional

F�(⇢,B) = Ts(⇢,B) +

Z �

0

tr �⇢,B
µ W dµ. (39)

Introducing the BDFT exchange and correlation functionals by

Ex(⇢,B) = tr �⇢,B
0 W � J(⇢), (40)

Ec,�(⇢,B) =

Z �

0

Wµ(⇢,B) dµ (41)
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in terms of the field-dependent AC correlation integrand

Wc,�(⇢,B) = tr
⇣
�⇢,B
� � �⇢,B

0

⌘
W, (42)

we arrive at the BDFT density functional

F�(⇢,B) = Ts(⇢,B) + �J(⇢) + Exc,�(⇢,B) (43)

where Exc,�(⇢,B) = �Ex(⇢,B) + Ec,�(⇢,B).

We here study the BDFT correlation energy in Eq. (41) by calculating the monotonically

decreasing BDFT correlation integrand Wc,�(⇢,B) for interaction strengths in the interval

[0, 1] by means of the Lieb variation principle. The quality of the AC integrand is determined

by the quality of the underlying wave-function model used for E�(v,B) in the Lieb variation

principle in Eq. (36).

3.2 AC curves for approximate density functionals

Given the wealth of existing approximations for Ec(⇢) in DFT, we may consider developing

approximations that generalize existing forms to Ec(⇢,B) = Ec,1(⇢,B) in BDFT; in the

simplest approximation, we may ignore the field dependence of Ec(⇢,B) entirely. To compare

and evaluate such approximate functionals against the benchmark AC data, uniform scaling

relations may be employed.

For an explicit approximate functional, AC curves can be computed using the formula30

Wc,�(⇢,B) =
@

@�
(�2Ec(⇢1/�,B)), (44)

where

⇢1/�(r) = ��3⇢(r/�) = ��3⇢(r0), (45)
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in terms of the scaled coordinate by r0 = r/�. The scaling formula for the BDFT correlation

energy given in Eq. (44) follows in the same way as for standard DFT:

Wc,�(⇢,B) =
@

@�
Ec,�(⇢,B) =

@

@�
(F�(⇢,B)� Ts(⇢,B)� �J(⇢)� �Ex(⇢))

=
@

@�
�2

�
F (⇢1/�,B)� Ts(⇢1/�,B)� J(⇢1/�)� Ex(⇢1/�)

�

=
@

@�
�2Ec(⇢1/�,B), (46)

where we have used Eq. (41) in the first step, Eq. (43) in the second step, the coordinate

scaling relations

F�(⇢,B) = �2F�(⇢1/�,B), Ts(⇢,B) = �2Ts(⇢1/�,B), (47)

J(⇢) = �J(⇢1/�), Ex(⇢) = �Ex(⇢1/�), (48)

in the third step, and finally Eq. (43) again in the last step. For a field-dependent correlation

functional that depends locally on the density, the correlation energy can be obtained as

Ec(⇢1/�,B) =

Z
✏c(⇢1/�(r),B) dr = �3

Z
✏c(�

�3⇢(r),B) dr. (49)

For functionals that also depend locally on the gradient, we have that

@⇢1/�(r)

@r
= ��3@⇢(r

0)

@r
= ��3@⇢(r

0)

@r0
@r0

@r
= ��4@⇢(r

0)

@r0
. (50)

At the LDA and GGA levels of refinement, standard functionals may be employed, neglecting

the field dependence.

For meta-GGA functionals, the kinetic-energy density is also needed. From Eq. (45), it
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follows that the orbitals and their derivatives scale as

�
1/�
i (r) = ��3/2�i(r

0), (51)

@�
1/�
i (r)

@r
= �� 3

2
@r0

@r

@�(r0)

@r0
= �� 5

2
@�(r0)

@r0
, (52)

implying that the kinetic-energy density ⌧0 transforms as

⌧
1/�
0 (r) =

1

2

occX

i=0

�����
@�

1/�
i (r)

@r

�����

2

= ��5⌧0(r
0). (53)

In a magnetic field, the kinetic-energy density must be modified to ensure gauge invariance.

One such modification is to use the physical kinetic-energy density proposed by Maximo↵

and Scuseria,31 here given in the scaled form

⌧
1/�
phys(r) =

1

2

X

l

��(�ir+A(r))�1/�
l (r)|2. (54)

Finally, from A1/�(r) = ��1A(r0), we obtain ⌧
1/�
phys(r) = ��5⌧phys(r0). The AC curves for

meta-GGAs can then be obtained by using the scaled density in Eq. (49) along with the

scaled gradient in Eq. (50) and the scaled kinetic-energy density in Eq. (53), replacing ⌧0 by

⌧phys.

4 Computational details

Except where noted, all calculations have been performed using the LONDON quantum-chemistry

software.32,33 For evaluation of the exchange–correlation functionals, this code uses the XCFun

library.34 To ensure gauge-origin independence, London atomic orbitals35 are used throughout.

Unless otherwise stated, we use the aug-cc-pVTZ basis set of Dunning and coworkers36,37 in

Cartesian rather than spherical-harmonic form. This basis is used for both the orbital and

potential expansions in the Lieb optimizations. In particular, we take the FCI or coupled-
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cluster density of the interacting system ⇢ and perform the Lieb optimization as in Refs.

38,39, with a singular-value decomposition of 10�6 a.u. for the Hessian. From the one-electron

density matrix generated in the Lieb optimization at � = 0, the Kohn–Sham components

Ts(⇢), J(⇢), (v|⇢), and Ex(⇢) are obtained directly, whereas Ec(⇢) is obtained by subtracting

Ts(⇢) + J(⇢) + (v|⇢) + Ex(⇢) from the corresponding FCI or coupled-cluster ground-state

energy at � = 1.

We have used bond lengths 1.4a0 for H2, 5.7a0 for He2, and 3.028a0 for LiH. The geometries

for HF, H2O, NH3, CH4, CO, and N2 are from Refs. 5,6, optimized at the CCSD(T)/cc-pVTZ

level of theory.

We remark that in all the Lieb optimizations corresponding to Eqs. (37), (38), and (39),

we let the reference density ⇢ = ⇢(B) depend on the external magnetic field, in order to

track the field-dependent ground state. Hence, the B-dependence we see in our AC curves is

a direct dependence combined with an indirect dependence due to the changing reference

density.

5 Results and discussion

This section consists of two parts. First, in Section 5.1, we explore the weak-field regime by

studying the magnetizability for a number of atomic and molecular systems. In Section 5.2,

we study the AC at di↵erent field strengths for H2 and LiH, yielding insight into the

magnetic-field dependence of the correlation energy up to a field strength of one atomic unit,

B0 = 2.35 ⇥ 105 T. In both subsections, the performance of various DFAs is assessed by

comparing with accurate Kohn–Sham values, obtained at the full-configuration-interaction

(FCI) and coupled-cluster doubles (CCD) levels of theory using the Lieb variation principle.
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5.1 Magnetizability

For the singlet closed-shell atomic and molecular systems considered here, the magnetizability,

⇠ = � d2E(B)

dB2

����
B=0

, (55)

describes the behaviour of the system in the weak-field regime: E(B) = E(0)� 1
2
⇠B2 + · · · .

Before considering ⇠ itself, we examine in Section 5.1.1 the dependence of the total electronic

energy and its Kohn–Sham components on the magnetic field. Next, we calculate ⇠ and

its Kohn–Sham components accurately for some small systems in Section 5.1.2, comparing

with standard DFAs in Section 5.1.3. We conclude by considering the importance of the field

dependence of the BDFT correlation functional in Section 5.1.4.

5.1.1 Energy of H2 in a perpendicular magnetic field

In Fig. 2, we have plotted the FCI/aug-cc-pVTZ energy of H2 and its Kohn–Sham components

against the strength of a perpendicular magnetic field, relative to the corresponding zero-field

values. The plot covers a wide field range, up to 0.03B0 (about 7000T). The calculated

energies correspond to the points in the figure. For the total energy, the curves joining these

points are plots of E(B) � E(0) ⇡ �1
2
⇠B2, whose curvature is �⇠. Similar functions are

plotted for the Kohn–Sham energy components against the field strength. In Table 1, we

have listed the total energy and the Kohn–Sham components at zero field and at 0.03B0. All

calculations have been carried out at the zero-field equilibrium geometry of H2.

The total energy of H2 increases diamagnetically in the field, with a large positive

contribution from Ts(⇢,B), a large negative contribution from (v|⇢), and smaller but still

large contributions from J(⇢) > 0 and Ex(⇢,B) < 0. The Kohn–Sham correlation energy

Ec(⇢,B) makes a much smaller (negative) contribution. For this particular system, the

Hartree energy J(⇢) changes in a manner that closely follows that of the total energy. While

the increase in Ts(⇢,B) in the field is a reflection of the induced precessional motion of the
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electrons (closed-shell diamagnetism), the increase in J(⇢) and the decrease in (v|⇢) and

Ex(⇢,B) follow from the concomitant contraction of the atomic densities in the field.

The quadratic curve �1
2
⇠B2 describes the field variation of the total energy (and likewise

for the Kohn–Sham components) to a remarkably high accuracy over the full field range in

Fig. 2.

Adding the nuclear repulsion to the total electronic energy in Table 1, we obtain Etot(B =

0.0B0) = �1.1730Eh and Etot(B = 0.03B0) = �1.1726Eh. These FCI results at the aug-

cc-pVTZ level can be compared with the parallel-field quantum-Monte-Carlo results for H2

of Doma et al.,40 where a quadratic fit for small field strengths up to B = 0.05B0 gives

Eref
tot(B = 0.03B0) = �1.1722Eh, with Eref

tot(B = 0.0) = �1.1734Eh.

Table 1: The total electronic energy and its Kohn–Sham components of H2 with bond distance
1.4a0 at zero field and at B = 0.03B0 (perpendicular) calculated at the FCI/aug-cc-pVTZ
level (atomic units, Eh).

E Ts J (v|⇢) Ex Ec

B = 0.00 �1.8870 1.1381 1.3217 �3.6461 �0.6608 �0.0399
B = 0.03 �1.8867 1.1389 1.3220 �3.6468 �0.6610 �0.0398

5.1.2 FCI Kohn–Sham magnetizabilities

Table 2 contains the magnetizability ⇠ and its Kohn–Sham components for H2, He, He2, and

Be calculated at the FCI/aug-cc-pVTZ level of theory and for LiH at the FCI/cc-pVTZ level

for theory. For the diatomic systems, the field direction is perpendicular to the molecular axis.

All derivatives have been obtained by finite di↵erence, using the LONDON code for di↵erent

values of the magnetic field.

The magnitudes and signs of the Kohn–Sham contributions to the magnetizability ⇠ in

Table 2 are as expected from the discussion in Section 5.1.1. In particular, electron correlation
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Table 2: The magnetizability ⇠ and its Kohn–Sham components calculated using FCI/aug-cc-
pVTZ theory (FCI/cc-pVTZ for LiH) (atomic units, EhB

�2
0 and perpendicular field)

⇠ ⇠Ts ⇠J ⇠v ⇠x ⇠c
H2 �0.763 �1.877 �0.751 1.475 0.375 0.014
He �0.399 �1.197 �0.434 1.019 0.217 �0.004
He2 �0.798 �2.392 �0.874 2.043 0.434 �0.008
Be �2.721 �8.032 �6.380 10.324 1.221 0.162
LiH �2.010 �5.254 �5.467 6.851 1.915 �0.063

makes the smallest contribution to ⇠, with ⇠c ranging from �1% for He to 6% for Be. Although

fairly small, the correlation contribution to the magnetizability varies widely in magnitude

and sign for the di↵erent systems, suggesting competing e↵ects.

It is worth commenting on the magnetizability of the 1S atoms He and Be. For these

atoms, there is no paramagnetic contribution to ⇠, which is a simple expectation value

⇠diaTs
= �1

6

R
⇢(r)r2 dr. In our finite-di↵erence calculations, this term enters as part of the

kinetic-energy contribution ⇠Ts , which also contains nonvanishing canonical kinetic-energy

contribution ⇠canTs
. The sum of the contributions to the magnetizability from the canonical

kinetic energy and all other Kohn–Sham terms vanishes for 1S atoms: ⇠canTs
+⇠J+⇠v+⇠x+⇠c = 0.

5.1.3 DFA Kohn–Sham magnetizabilities

Table 3 contains, for the PBE, BLYP, B97, and TPSS exchange–correlation functionals,

the errors in the Kohn–Sham contributions to the magnetizability of H2 relative to the

FCI/aug-cc-pVTZ contributions listed in Table 2.

The use of an approximate exchange–correlation functional a↵ects the magnetizability of

an atom or a molecule in two ways. First, it gives an error in the optimized ground-state

density in the Hohenberg–Kohn variation principle; second, it gives an error in the exchange–

correlation contribution to the magnetizability calculated from a given density. With this in

mind, we have in Table 3 listed the errors in the Kohn–Sham components (relative to the

FCI values) calculated both from the FCI ground-state density and from the ground-state

density optimized using the given approximate exchange–correlation functional.
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Table 3: The magnetizability ⇠ and its Kohn–Sham components for H2 in a perpendicular
magnetic field, calculated using FCI theory and various DFAs. For the DFA calculations
the results are given both with the FCI density and the DFA density (atomic units, EhB

�2
0 ).

All DFA values are relative to the FCI values, irrespective of the density used in the DFA
evaluation. For TPSS, we work with ⌧phys of Eq. (54).

⇠ ⇠Ts ⇠J ⇠v ⇠xc
FCI �0.763 �1.877 �0.751 1.475 0.390
�PBE @ ⇢FCI �0.036 0 0 0 �0.036
�BLYP @ ⇢FCI �0.033 0 0 0 �0.033
�B97 @ ⇢FCI �0.024 0 0 0 �0.024
�TPSS @ ⇢FCI �0.016 0 0 0 �0.016
�PBE @ ⇢PBE �0.022 �0.065 �0.069 +0.102 +0.010
�BLYP @ ⇢BLYP �0.025 �0.071 �0.073 +0.110 +0.009
�B97 @ ⇢B97 �0.011 �0.030 �0.039 +0.051 +0.007
�TPSS @ ⇢TPSS �0.002 �0.015 �0.027 +0.030 +0.011

From Table 3, we see that the use of the FCI ground-state density gives an error in ⇠

ranging from �0.016EhB
�2
0 (2%) for the TPSS functional to �0.036EhB

�2
0 (5%) for the

PBE functional. Since the FCI density is used, the errors arise only from the exchange–

correlation functional, all other Kohn–Sham terms having been treated exactly. The error of

the approximate exchange–correlation functionals evaluated with their own self–consistent

density ranges from 5% to 10%.

For each approximate exchange-correlation functional in Table 3, the error in ⇠ is smallest

when ⇠ is calculated from the optimized self-consistent field (SCF) density, with errors ranging

from �0.002EhB
�2
0 for the TPSS functional to �0.025EhB

�2
0 for the BLYP functional. Among

the four contributions to the total magnetizability ⇠, we observe in all cases a largest (positive)

error in ⇠v, with slightly smaller (but negative) errors in ⇠J and ⇠Ts . In all cases, the smallest

error is in ⇠xc. It is noteworthy that the error in ⇠xc changes sign from negative for the FCI

density to positive for the SCF density, while its magnitude is reduced by a factor of two to four.

However, because of error cancellations, the error in ⇠ is of the same order of magnitude as the

error in ⇠xc. Since ⇠Ts , ⇠J and ⇠v are determined by the density, improved magnetizabilities in
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actual Kohn-Sham calculations, with a DFA, require an exchange-correlation functional that

yields both superior SCF electron densities and more accurate ⇠xc values. The challenge of

obtaining accurate electron densities with DFAs has very recently been highlighted in Ref. 41.

In the next section, we will explore the importance of including an explicit field dependence

in the correlation functional, to reduce the exchange–correlation error.

5.1.4 Field-contribution to ⇠c in BDFT

Practically all Kohn–Sham BDFT calculations of magnetizabilities use standard exchange–

correlation functionals, ignoring the field dependence. Having studied the errors of typical

DFAs, we now consider the importance of the field dependence of the correlation functional

Ec(⇢,B) in BDFT. In Refs. 6 and 42, we studied in a similar manner the importance of the

current contribution to the correlation functional Ec(⇢, jp) in CDFT, for NMR constants.

In Table 4, we have, for a number of systems, calculated the CCSD(T) magnetizability ⇠CC

and its correlation contribution, as obtained by subtracting the Hartree–Fock magnetizability

⇠HF. The CCSD(T) correlation contribution of the magnetizability ⇠corr = ⇠CC � ⇠HF is to a

good approximation equal to the correlation contribution ⇠c in BDFT.

To estimate the field contribution to ⇠c, we have calculated, by the Lieb variation principle,

the Kohn–Sham potential, orbitals, and orbital energies corresponding to the CCSD(T) density.

From these Kohn–Sham quantities, we have calculated the magnetizability ⇠KS(CC) by standard

linear-response theory, neglecting all field dependence. Finally, the field contribution to ⇠c is

estimated as ⇠Bc = ⇠CC � ⇠KS(CC). For the total magnetizability, we used the CFOUR code;43

for the Lieb calculation, the DALTON code.44,45

For the noble gas atoms He and Ne, there is no field contribution: ⇠Bc = 0. For the

molecules studied, ⇠Bc ranges from about 7% of the total correlation contribution for the HF

molecule to 66% for CO and 154% for N2. Clearly, the accurate calculation of magnetizabilities
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Table 4: The CCSD(T)/aug-cc-pVQZ magnetizability ⇠CC, the CCSD(T) correlation contribu-
tion ⇠corr, and the field contribution ⇠Bc to the BDFT correlation term ⇠c. In the first column,
the total magnetizability is for comparison given in SI units (JT�210�30), the remaining
numbers are in atomic units (EhB

�2
0 ).

⇠CC (SI) ⇠CC ⇠corr ⇠Bc
He �31.42 �0.398 �0.003 0.0
Ne �126.0 �1.597 �0.035 0.0
HF �176.9 �2.242 �0.055 �0.004
H2O �236.1 �2.992 �0.062 �0.010
NH3 �291.2 �3.643 �0.048 �0.012
CH4 �319.7 �4.052 �0.077 �0.045
CO �210.9 �2.673 �0.082 �0.054
N2 �206.2 �2.613 �0.045 �0.068

in Kohn–Sham theory is only possible with the inclusion of a field dependence in the correlation

functional Ec(⇢,B).

These results are consistent with previous work5 and consistent with the magnitude of

induced currents in these molecules—see, for example, Ref. 46 for plots of induced currents.

Around the hydrogen atoms, the currents are generally weak and as such the systems with

only one heavy atom and multiple hydrogen atoms (HF, H2O, NH3) have magnetizabilities

that depend only weakly on the current corrections.

5.2 Adiabatic connection in a magnetic field

In this section, we consider the AC for molecules in a magnetic field. We begin by calculating

and modelling accurate FCI AC curves of H2 and LiH in Section 5.2.1 (at the zero-field

equilibrium geometry) and in Section 5.2.2 (at the field optimized geometry). Finally, in

Section 5.2.3, the performance of some standard DFAs is analysed by comparing their AC

curves with the corresponding FCI curves.

5.2.1 FCI AC curves at a fixed geometry

In Fig. 3, we have plotted AC curves for H2 at its zero-field equilibrium geometry, in a

perpendicular magnetic field of di↵erent field strengths B. With increasing field strength,
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the curves become more bent, indicative of increasing importance of static correlation. The

explanation of this behaviour is as follows: In the magnetic field, the atomic densities contract,

decreasing the overlap between the two atoms and reducing the equilibrium bond length.4 If

we now increase the field strength while maintaining the geometry at the zero-field equilibrium,

the bond length will always be larger than the equilibrium at the given field strength. This

e↵ective stretching of the bond through the magnetic field is accompanied with increased

static correlation.

Table 5: Field dependence of the THC parameters s = W 0
THC(0) and a = WTHC(1), (atomic

units, Eh)

0.0 0.2 0.4 0.6 0.8

global fit
s �0.131 �0.134 �0.142 �0.153 �0.167
a �0.192 �0.195 �0.202 �0.211 �0.219

end-point fit
s �0.125 �0.128 �0.135 �0.145 �0.157
a �0.208 �0.211 �0.220 �0.230 �0.241

We now apply the AC model developed by Teale, Helgaker, and Coriani (THC) in Ref.

21. The THC AC integrand is given by

WTHC(�) =
as�(4a+ s�)

(2a+ s�)2
, (56)

where s = W 0
THC(0) is the initial slope and a = WTHC(1) is the asymptotic value in the

strongly interacting limit. The parameters s and a may be fitted for WTHC(�) to reproduce

W(�) calculated ab initio. The THC model performs best when s and a are fitted globally,

but a good agreement is also obtained by adjusting s and a to give W 0
THC(0) = W 0(0) and

WTHC(1) = W(1), which is achieved by setting s = W 0(0) and then

a =
s2 � 4st+ s

p
s2 + 8st

8(t� s)
(57)
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with t = W(1). Although based on Görling–Levy perturbation theory, the THC model is

able to capture static correlation.21

In Fig. 3, the globally fitted AC curve is hardly visible due to its good agreement with the

exact AC curve, whereas the curve with s = W 0(0) and a = W(1) deviates slightly but is still

very close, capturing the correct overall behaviour—namely, the increase of static correlation

with increasing field strength. The end-point fitted curve becomes only marginally worse

with increasing magnetic field strength. For longer bond lengths of 3a0 and 5a0, the model

performs slightly worse, but this is already true at zero field strength (see Ref. 21) and not

primarily an e↵ect of the magnetic field.

Table 5 shows how the THC parameters change with increasing magnetic field. The

s parameter agrees better between the two fits than does the a parameter. The second

(physically more justified) fit reveals how the initial AC slope s becomes more negative

with increasing magnetic field. The slope increases in magnitude more strongly in stronger

magnetic fields.

Our calculations indicate that the same models (such as the two-parameter THC model)

can be used for AC curves with and without magnetic fields. However, we have not attempted

here to model directly the changes in the s and a parameters induced by the field in the

TCH model. Such an approach may be a useful way to add empirical field corrections to

existing DFA correlation functionals.

5.2.2 FCI AC curves at optimized geometry

At a fixed geometry, the e↵ective bond stretching leads to an increased curvature of the AC

curves with increasing field strength, corresponding to an increase of static correlation. This

e↵ect is removed by calculating the AC curve at the optimized equilibrium geometry for each

field strength. Indeed, Fig. 4 reveals that, when studied at the field-dependent equilibrium

geometry, the AC curve is not much a↵ected by the magnetic field.

Integrating the AC curves W(�) from � = 0 to � = 1, we obtain the correlation energy.
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From zero field to a field strength of 0.6B0, the correlation energy of H2 changes by only

�0.002Eh. The corresponding change in the kinetic correlation energy is about 0.002Eh,

as expected in the dynamical correlation regime, in which the kinetic correlation energy is

approximately equal to minus the total correlation energy.

In Fig. 5, we have plotted the di↵erence between AC curves in a field and the zero-field

curves, normalized by the factor B2,

�Wc,�(B) =
Wc,�(⇢B, B)�Wc,�(⇢0, 0)

B2
. (58)

In the weak-field regime, this quantity depends on � but is independent of B. Any variation

with B in Fig. 5 is therefore an indication of higher-order e↵ects. For H2 and LiH, these e↵ects

are in the opposite direction to the quadratic response. There is also a reduced curvature

with respect to � with increasing field strength. At least for the systems studied, we take the

pronounced trends to indicate that Wc,�(⇢B, B) can be modelled as the sum of Wc,�(⇢0, 0)

and an additive correction in the strong-field regime B ⇠ B0.

5.2.3 DFA AC curves at optimized geometry

Finally, we consider AC curves for molecules in a strong magnetic field for some standard

DFAs. In Fig. 6, AC curves for H2 and LiH at B = 0 and B = 0.6B0 for several DFAs are

compared with the corresponding FCI curve for H2 and the CCD curve for LiH. The DFA

curves have been calculated using the self-consistently optimized DFA ground-state density.

Calculations on H2 showed that use of the FCI density (in place of the self-consistent DFA

density) has no visible impact on the AC curves.

The plots show that the behaviour of the AC curves is similar at the two field strengths.

Among the DFAs, the TPSS functional performs best relative to FCI theory, while the LYP

curve shows a considerably poorer curvature than the other DFAs.

For LiH, all DFAs yield a too steep initial slope; see Table 6. For H2, the PBE and
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TPSS(⌧phys) initial slopes are slightly steeper than the FCI slope, while the LYP slope is

less steep, both with and without magnetic field. Since the AC curve integrates to the total

correlation energy, a steeper initial slope is necessary for an increased absolute correlation

energy. This behaviour is correctly captured by the PBE and TPSS(⌧phys) functionals but

not by the LYP functional.

Table 6: For the AC curves of Fig. 6, the initial slope is given for all considered functionals
(atomic units, B in B0 and slopes in Eh. )

B Lieb PBE LYP TPSS
H2 0.0 �0.095 �0.104 �0.097 �0.101

0.6 �0.097 �0.109 �0.090 �0.105
LiH 0.0 �0.149 �0.186 �0.265 �0.194

0.6 �0.141 �0.206 �0.256 �0.208

6 Conclusions

The extensions of DFT to systems in the presence of magnetic fields, magnetic-field density-

functional theory (BDFT) and current density-functional theory (CDFT), were introduced

within the framework of convex analysis. In particular, the four-way correspondence of

saddle functions and their concave and convex parents was used to elucidate the relationships

between these alternative DFT approaches to molecules in a magnetic field. The Kohn–

Sham decompositions of the density functionals in BDFT and CDFT were compared and

a relationship between their exchange–correlation functionals was established; the BDFT

exchange–correlation energy being an upper bound to the CDFT exchange–correlation energy.

The e↵ect of a magnetic field on the Kohn–Sham energy components in BDFT was studied

using high-level ab initio theory. In the weak-field regime, the second derivative of the energy

with respect to the magnetic field (i.e., the negative magnetizability) and its contributions

were studied in detail. Our calculations highlighted the fact that present DFAs give poor
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charge densities, suggesting that significant improvements can only be obtained by developing

DFAs with improved SCF densities. For the molecules studied, the field-dependence of the

BDFT correlation energy contributes up to 2.6% of the total magnetizability (for N2), which

is comparable to the total correlation contribution. Hence, once accurate charge densities are

achieved, field-dependent contributions cannot be neglected for high-accuracy calculations.

To analyse the role of electron correlation in BDFT further, we studied the AC integrand

at di↵erent field strengths. At a fixed molecular geometry, a compression of the charge density

with increasing field strength leads to an increased amount of static correlation (increased

curvature of the AC curve). However, this e↵ect is relatively subtle and existing models for

the AC integrand are able to capture this behaviour. For the DFAs considered here, the most

accurate AC integrands were provided by generalized meta-GGA functionals in the context

of BDFT, consistent with previous findings for CDFT.7 However, the dominant errors in the

correlation functionals are those already present in the absence of a field, indicating the need

for an improvement in the parent zero-field functionals and their associated charge densities

before the benefit of field-dependent corrections can be realized.
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Figure 1: The four-way correspondence of DFT in a magnetic field, relating the concave
function E�, the concave–convex saddle function F�, the convex function G�, and the convex–
concave saddle function H�. Each function depends on the two adjacent variables. The
downward conjugations ⇢ ! u and jp ! A are minimizations with positive pairings +(u|⇢)
and +(A|jp), respectively, while the upward conjugations u ! ⇢ and A ! jp are maxi-
mizations with negative pairings �(u|⇢) and �(A|jp), respectively. The Hohenberg–Kohn
variation principle corresponds in BDFT to the partial conjugation ⇢ ! u from F� to E� in
CDFT to the full conjugation (⇢, jp) ! (u,A) from G� to E�.
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Figure 2: The Kohn–Sham energy components of H2 relative to the zero-field values as a
function of the magnetic field strength (atomic units, B in B0 and � in Eh). The curves
show the second-order approximation to the energy components (see text for details), with
curvatures equal to the negative magnetizability at zero field (and its Kohn–Sham components).
All calculations have been carried out at the FCI/aug-cc-pVTZ level of theory, at the zero-field
equilibrium geometry.
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Figure 3: AC curves for H2 at di↵erent magnetic field strengths with fixed bond length 2.1a0
(1.5 times the zero-field equilibrium bond length). The full lines show accurate ab initio
AC integrands using the FCI density for each magnetic field strength. The dashed lines
correspond to the THC model in Eq. (56) using s = W 0(0) and a = W(1). The dotted lines
show the same model with globally fitted parameters s and a, which are nearly on top of the
accurate curves (atomic units, Wc in Eh).
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(a) H2, calculations at the FCI / aug-cc-pVTZ level.(b) LiH, calculations at the CCD / aug-cc-pVTZ
level.

Figure 4: AC curves of H2 and LiH in a perpendicular magnetic field (atomic units, Wc in
Eh). Each curve is calculated at the equilibrium bond distance in the applied field.

(a) H2, calculations at the FCI / aug-cc-pVTZ level.(b) LiH, calculations at the CCD / aug-cc-pVTZ
level.

Figure 5: �Wc(B) curves of H2 and LiH in a perpendicular magnetic field (atomic units, Wc

in Eh). Each curve is calculated at the equilibrium bond distance in the applied field.
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(a) H2, B = 0.0B0 (b) H2, B = 0.6B0

(c) LiH, B = 0.0B0 (d) LiH, B = 0.6B0

Figure 6: AC curves for H2 and LiH with optimized density at each field strength (atomic
units, Wc in Eh). For the DFA calculations the SCF density is used. For the ab initio
calculations for H2 the FCI density is used and for LiH the CCD density is used.
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