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ABSTRACT 

This paper investigates complex challenges of 

opportunistic discovery of content stored in remote 

mobile devices and delivery to the requesting nodes in 

heterogeneous mobile disconnection prone environments. 

We propose new latency aware collaborative cognitive 

caching approach suitable for content dissemination and 

query in heterogeneous opportunistic mobile networks 

and dynamic workloads. Utilising fully localised and ego 

networks multi-layer predictive heuristics about 

dynamically changing topology, dynamic resources and 

varying popularity content, our cognitive caching 

achieves high success ratio, low delays and high caching 

efficiency for very different real world dynamically 

changing mobile topologies. 
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1 INTRODUCTION 

We live in the world where smart, ubiquitous devices are 

embedded in our day-to-day activities and allow us to 

form diverse communities in which we are able to share 

rich and complex data. Increasing number of applications 

and services are being hosted in the mobile edges at a 

relatively low cost and are becoming significant content 

providers [4]. Traffic demands for these edge-hosted 

providers are increasingly challenging as the published 

data is massive (i.e. the majority of Internet traffic is now 

dominated by streamed video content [7]) and can lead to 

surges of traffic if the content becomes popular. While 

large  commercial providers use data centers to  hold their 

data and user population across a very large geo area, and 

address traffic surges by delegating content distribution to 

servers located as close as possible to the users [7], we 

address scenarios which have significantly higher 

topology dynamics (including potential disconnections) 

and more dynamic workload patterns (unknown 

publishers and subscribers distributions). Our aim is to 

maximise matching of cached content and queries while 

minimizing latency and avoiding network congestion. In 

this paper we propose design for collaborative cognitive 

caching approach that can predict and adapt to local 

dynamically changing topologies, dynamic workloads 

imposed by varying publishers and subscribers, dynamic 

content popularity while being aware of the storage and 

network resources as well as delay. At the heart of our 

approach is distributed edge based collaborative caching 

which consists of several multidimensional predictive 

analytics that build multi-attribute complementary 

predictive heuristics and utilities. We address two 

complex open questions about decisions making in 

distributed opportunistic caching: where to cache and 

what to cache. We use principles of dynamic predictive 

relative utilities and propose a collaborative algorithm 

which allows individual nodes to achieve greater utility 

than if they do not collaborate. Previous research has 

shown that collaborative caching usually outperforms 

locally optimized algorithms [13]. Note that our focus is 

not to build a protocol that forces nodes to collaborate, or 

provides protection against malicious behaviour but, 

rather, to design underlying algorithms that can 

adaptively share distributed cache space across trusted 

collaborators. 

We extend the idea of behavioural locality to exploit 

similarities between the content interests and users 

connectivity. We expand the idea of content popularity 

with popularity stability in order to minimise negative 

impact of flash crowds (e.g. caused by “fake news”). We 

tackle the challenge of maximizing the number of data 

chunks accessible with as low delay as possible even in 

sparse fragmented topologies. We propose that edge 

nodes use CafRepCache algorithm to form dynamic 

transient interest-based and data dissemination topologies 

based on predictive analysis and commonalities between 

their interest, cache and retrieval histories as well as  

connectivity histories. This provides each node with a set 

of overlay neighbours whose browsing history most 



 

 

closely resemble their own. CafRepCache emerges from 

this topology as the federation of the local caches of a 

node’s ego network and the closest available nodes. We 

argue that careful management of both replication and 

caching is necessary to address dynamic fragmented and 

sparse topologies.  

The paper begins by providing an overview of the related 

work in section II, section III introduces  CafRepCache 

model and describes its heuristics and pseudo-code, 

section IV evaluates performance of CafRepCache against 

two competing approaches (SocialCache and SmartCache) 

across a range of metrics over three heterogeneous 

realistic mobile social and vehicular traces for dynamically 

varying workloads and content popularity. Section V gives 

conclusion.  

2 RELATED WORK 

Authors in [6] combine betweeness, similarity and tie 

strength for social routing metric which directs the traffic 

to more central nodes, and thus increases the probability 

of finding optimal relay for delivering packets. However, 

increasing traffic demands will inevitably aggregate at and 

congest the points that have higher social centrality. [2] 

propose Café and CafeREP, a congestion aware mobile 

social framework for data forwarding over heterogeneous 

opportunistic networks. [9] propose Behave peer-to-peer 

cache-oriented approach for Web applications that relies 

on the principles of Behavioural Locality inspired by 

collaborative filtering but it does not support dynamic 

mobile user topologies which we do in this paper. 

[7] proposes a regional caching approach of video content 

that takes into account content global popularity as well 

as regional tastes as well. The authors propose a model 

that captures the overlap between inter-regional and 

intra-regional preferences. In [8], authors propose fully 

distributed reputation mechanism for next generation 

mobile offloading in resource constrained mobile 

networks. [3,15] describes integration of energy efficient 

location aware dynamic DHTs over dynamic and mobile 

topologies that provide service to in-situ and remote 

queries. In our paper we build on this but consider more 

complex topologies and query patterns to combine it with 

complementary decentralized multi-dimensional cognitive 

caching to reduce retrieval times drastically. 

3 COLLABORATIVE COGNITIVE CACHING 

3.1. Model 

In game theory, each node attempts to optimise its 

personal “utility”. We model our collaborative cognitive 

caching as a bargaining game inspired by heuristic 

FairCache algorithm [1] and extend it to address real 

world challenges about the lack of support for dynamic 

demand matrix, dynamic node availability and congestion 

identified in [1,7,8,9]. We do this by enabling 

responsiveness to dynamically changing network topology, 

congestion avoidance and varying patterns of content 

publishers/subscribers while allowing low latency content 

retrieval, high cache efficiency and efficient use of 

resources. Our cognitive caching utility aims to serve 

subscribers with the lowest possible delay and without 

saturating available resources, thus either using its local 

cache, or by redirecting a request to a nearby collaborative 

cache, rather than forwarding to the original source. We 

model the network G that consists of a set N of nodes and 

a set E of edges, G = (N, E). As the connectivity of the 

network and the state of the nodes change over time, we 

model each of these as time series, thus N = {Nt: t ∈ T} and 

E = {Et : t ∈ T}. The objective function for our cognitive 

cache utility can be modelled as follow: 

max�(�� −	 1
���

)
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where �� is n’s utility value and ���  is n’s social and 

resource utility for forwarding decision.  

Each node �	 ∈ �  measures its Betweeness centrality, 

Similarity and Tie Strength in order to route content 

(request) to nodes with higher centrality. We model the 

congesting rate and node's availability as follow: the 

demand for node n at time t is given by ��� =
∑ ∑ F��� (n)���∈����∈�  in which F��� (n)	denotes the number 

of paths between	� and � that contains n at time t. Each 

node �	 ∈ � in the network can have a different stress 

level at any given time t:  !�� = "#$
%# in which &� is the 

node's capacity.  !�� > 1  implies that the packet loss 

occurs. We measure delay at node n relatively as the level 

of congestion experienced by n at a given time t: 

()*+,�(�) = "#$-∑.∈/$
0$(�) , implies that level of congestion 

experienced is measured by demand D and buffered 

demand B over the number of available outlets d. We 

denote Retentiveness 1)2(�)� = 34(�) − ∑ 56�78� (�)9�:;  as 

the node’s available storage at time t, measured by sum of 

all message occupancy subtracted from the node’s buffer 

capacity. We also depict Receptiveness 1)<(�)� =
∑ (!�=> −5?84�8@80� (�))9�:;  as the delay node n adds to 

messages in order to forward them, measured by the sum 

of differences between the current time and the time each 

message was received. 



  

We assume that each node in the network �	 ∈ � has a 

cache of size &� . We denote with A a set of content 

objects that can be requested by the network. Each 

content B	 ∈ A has the object size CD . At each node �	 ∈ �, 

E�,D is the normalised request rate of the content k (i.e. 

content popularity) observed locally from n, ∑ E�,D � 1D ; 

G�,D  is the normalised aggregated request rate of the 

content k observed from all the neighbours of n, 

∑ G�,D � 1D . We define the Ego Network of each node n: 

H�� � I�	|*�,�� 	K L�� , ∀2	 ∈ !, ∀�	 ∈ �, �	 N �O  in which L� 

defines the radius measured by hop (e.g. L� � 1 means 

direct encounter) and *�,� defines the distance between n 

and its contact �. Ego network (EN) is defined here as a 

network consisting of a single node together with the 

nodes they have encountered and gives each node their 

own perspective of the network. 

To model CafRepCache strategy, we denote P�,D ∈ {0,1} as 

whether to cache content k at node n, ,�,�,D ∈ {0,1} as 

whether to forward k to neighbour � of n , Q�,�,D ∈ {0,1} as 

whether to replicate k to � and (L�,D ∈ {0,1} as whether to 

drop k at node n. Thus, the utility value of node n can be 

described as: 

�� �	R R R ��E�,DG�,DS�P�,D , ,�,�,D , Q�,�,D , (L�,D
�	∈T�D	∈U

 D
1
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where ��E�,DG�,D  weights the value of collaborative 

observation over local observations,   D  is the success 

ratio of delivering content k and !D  is the latency to 

retrieve k.  

3.2 Distributed Analytics and Heuristics  

Our work improves reliability and latency awareness of 

the current state of data dissemination and query over 

mobile edge networks to enable the following: i) local 

latency awareness; ii) real-time predictive adaptive 

response to changing local conditions; iii) support varying 

workloads, vi) support for dynamically changing content 

popularity and v) support both dense and sparse 

topologies as more realistic. 

We propose multiple mobile edge predictive analytics 

heuristics which leverage information on the local 

available resources, connectivity patterns and mobility of 

publishers/subscribers, and dynamic content popularity 

(Figure 1). Our multi-layer approach is key to enabling 

dynamic trade-off between minimising the end-to-end 

latency and maximising content delivery while enabling 

congestion avoidance. Note that we assume that any node 

can start to publish content at any time and from any 

location while being mobile (e.g. high quality video). We 

first describe our analytics, heuristics and utilities and 

then give overview of how the content gets published and 

how the subscribers can register their interests and 

retrieve the content in mobile dynamic complex sparse 

topologies. 

 

Figure 1. CafRepCache node architecture 

Our social driven analytics enables forwarding packets to 

higher centrality nodes (compared to themselves) by 

applying SimBetTS[6] utility metrics defined below. 

- Betweenness: 

 3)2 � 	∑ ∑ VWX��
VWX

�Y;Z:;��:; 		�1, [�Z�� is the number of paths 

linking i and j that includes n. 

- Similarity: 

  �5��,5 � |	�� 	∩ 	�]|	 is the similarity of contact 

between two nodes 

- Tie strength:  

! ��,5 � 	 ^�]
_��Y	^�]`	 ?84�]

a��Y	?84�]`	 0�]
"��Y	0�]			

combined both frequency and regency of contacts 

between the nodes. 

Social utility of node n compared to node m for delivering 

a packet to destination d is: 

 � �	 b	∗	/8���
/8���-	/8��] `	 d	∗	e�]��,0

e�]��,0-	e�]�],0`	 f∗	ae��,0
ae��,0-	ae�],0		

g ` 	h ` 	i � 1		
Our node-resource and delay driven analytics includes 

retentiveness - defined as percentage of remaining storage 

capacity in a node, receptiveness - defined as predictive 

delay observed by the node, congesting rate - defined as 

indication of how fast the buffer is to get filled up, as 

below. 

-Retentiveness: 

1)2�� � 	j1)2=k0�� ` �1 	 	j1)24l??8����	
-Receptiveness: 

1)<�� � 		j1)<=k0�� ` �1 	 	j1)<4l??8����  
- Congesting Rate of a node n gives local prediction of 

how fast the node is likely to congest: 

&1�� � 	 ;mm∗	nopqqrpoost�Wn$u$vq$Wws�Wx
y 	∑ as#z��,�Y	a{$vt$��,�yW

		



 

 

Congesting rate is calculated as the percentage of time a 

node or region has been congested divided by the average 

time between congestion periods for the node or region. 

Ego-network driven predictive analytics allows 

collaboration with asynchronous neighbours. Specifically, 

ego-network metric for heuristic h of node n is calculated 

as an average of the heuristic values of all the encountered 

nodes for node n. 

H�ℎ�� � 	 1�∑ ℎ(�)�
�	≠	�	∈� ,	ℎ	 ∈ I }<�+*, 1)2, 1)<, &1O		

For each of the heuristics h, we define their respective 

utilities �2�*~��, &�(�)� as measurements of their relative 

gain, loss or equality, calculated as pair-wise comparison 

between the node’s own heuristics and that of the 

encountered contacts in the following way: 

�2�*~(�, &�(�)) =
ℎ(�)

ℎ(�) + ℎ(&�(�)) 
We combine the above relative utility driven heuristics in 

order to allow highly adaptive forwarding by directing 

traffic to more central nodes while detecting and reacting 

to network congestion caused by increased topic 

popularity as below. 

!}2+*�2�*(�, &�(�)) = ;
|�| ∗ ∑ �2�*~(�, &�(�))~	∈�   

ℎ ∈ � = I }<�+*, 1)2, 1)<, &1, H�e=4 , H��8� , H��84 , H�%�O  
Our content popularity analytics is defined as: 

�(!�) = 	 A�C)L�)(!�5)�)L�}(	(!�) ∗	
!}2+* − 2�5) ∗ 3)2G))�)CC	(!�) ∗ 1)<)�<,	(!�)	

�(!�)	 measures probability caching decision over a 

certain period (i.e. temporal locality) in which P is the 

weight that identify the content popularity. 

Betweeness(Ti) is the temporal function that measures the 

time gap between continuous requests and Recency(Ti) 

denotes the most recent interest request. P(Ti) aims to 

provide tradeoff between current observed content 

popularity versus long terms  interest in it in order to 

balance between potentially fake news and long term 

useful content. When a caching node detects it is likely to 

start congesting, it ranks the content in terms of its 

popularity and delegates the least popular content to a 

suitable node. Nodes suitability is ranked in terms of the 

same multi-criteria metric we described (social, resources 

and workload). 

Our total combined utility does not achieve the global 

optimum. [14] have shown that attaining a global 

optimum often disadvantages some parties e.g. nodes may 

be unfairly exploited by other caches redirects (at the cost 

of their own performance): Contrary to this we enable 

high performance efficiency of individual caches while 

avoiding draining the resources of other nodes and 

decreasing their performances. 

Each node has a unique ID and every routed message has 

an associated key and state information which may 

contain content topics and content data, publishers IDs, 

subscribers IDs, timestamps, location, IDs of other 

encountered nodes, times stamps of these meetings etc. 

Contents are tagged with a set of attributes which are 

hashed and stored in DHT-like overlay that effectively 

matches the hash value of interest with attributes 

representing the content. When interest packet reaches 

the nearest cached content or the publisher, the node 

forwards the actual content data back to the subscriber 

using CafRepCache forwarding scheme. During content 

retrieval process, using interest forwarding table, relay 

node matches the content topic and summary vector of 

the subscriber with the information it has about the 

published content, and forwards it to the subscriber. 

Along with forwarding the content or queries to next 

hops that have high social centrality and resources, 

intermediate nodes decide whether to cache the content, 

forward it or delegate it in case of resources limitations. 

We provide CafRepCache pseudo code below:  

List CafRepCacheUtils = {} 

For each Contact in scan do:  
    Contact.NodeHeuristics = exchNodeHeurInfo(Contact)  

    Contact.CalculcateNodeUtilities(Contact.NodeHeuristics)  
    Contact.CafRepCacheHeuristics = exchCafRepCacheHeurInfo(Contact)  

    Contact.CalculateCafRepCacheUtility(Contact.CafRepCacheHeuristics) 

    CafRepCacheUtils.Insert(Contact) 
    Contact.TopicPopularity = exchTopicPopularityInfo(Contact) 

    Contact.CalculateTopicPopularity(Contact.TopicPopularity) 

End For 

List CacheBuffer = {} 

For each Contact in reverse sort CafRepCacheUtils  do: 

    If recv = Contact.recvPublisherTopic then: 

        CacheBuffer.append(recv) 

    End If 

    Contact.SendingRate = CafRepCache.ComputeSendingRate(Contact) 
    Contact.ReplRate = CafRepCache.ComputeReplRate(Contact) 

    Vector ContactSTL = Contact.obtainSubsribersTopicList(Contact)  

    Buffer SendBuffer = {}  
    For each Topic in reverse sort CacheBuffer do:  

        While Node.isCongested() do: 

            Node.delegate(Topic, Contact) 

        While End 

        If exists ContactSTL(Topic) then: 

            Vector ContactTopicSV =  
 Contact.obtainSummaryVector(Contact, Topic)  

            For Chunk in Node.Topic.SV complement ContactTopicSV do:  

                Chunk.ReplCount = Repl  
                ReplicaBuffer.append(Chunk) 

            End For 

        End If 

    End For 

    ChunksSent = Contact.Replicate(ReplicaBuffer)  

End For 

4 EVALUATION 

We provide systematic analysis of three dynamic 

collaborative in network caching strategies depending on 



  

how they choose caching locations: 1) preferring nodes 

with high social utility (i.e. betweeness and similarity 

centrality) to enable congruency with underlying mobile 

topology and caching closer to the mobile subscribers, 2) 

preferring nodes with high social and resource utility to 

allow caching close to the dynamic mobile subscribers 

while being congestion-aware and avoiding it and 3) social 

and congestion aware caching with replication to enable 

optimal caching in the face of dynamic mobile topologies 

which are prone to fragmentation. For each strategy, we 

assume that nodes with highest respective utility metrics 

were preferred when choosing caching locations and that 

the cached content was then retrieved by the increasing 

number of random subscribers using the same forwarding 

algorithm. As mobility and connectivity of the nodes have 

a major impact on the performance of any opportunistic 

communication protocols, it is fundamental to evaluate 

CafRepCache over multiple heterogeneous real world 

mobile data sets. Thus, we use three traces in ONE [5] 

which vary highly in terms of periods of disconnections, 

periods of connectivity and islands of connectivity [3]: 

Infocom 2006 [10], RollerNet [11] and San Francisco [12] 

described below. Infocom trace [10] is a 4 day trace that 

consists of 78 volunteers equipped with Bluetooth devices 

and additional 20 static long-range devices placed at 

various semi-static and static locations of the conference 

venue. RollerNet [11] trace spans three hours during 

which 62 roller-bladers travel about 20 miles in Paris and 

utilize Bluetooth on their cell phones for communication. 

San Francisco Cab Trace [12] are GPS traces of 550 cabs 

over a period of 30 days in the San Francisco Bay Area. 

Figure 2a shows that SocialCache success ratio in Infocom 

starts off with 60% for low to medium percentage of 

subscribers but then decreases to about 40% in the face of 

increasing congestion and workload. SmartCache keeps 

success ratio around 80% while CafRepCache  increases it 

from 80% to above 90%. This is due to CafeRepCache 

profiting from both adaptive caching and smart partial 

replication. For RollerNet trace (Figure 2b) success ratios 

are high for both SmartCache (80%) and CafRepCache 

(90%), while SocialCache manages to keep around 60%. For 

San Francisco trace (Figure 2c), CafRepCache shows 

significant improvements (ranging from 70 to 80%) 

compared to SocialCache  (48% to 38%  and SmartCache 

(48% to 58%) as it can predict and cope with network 

fragmentations more efficiently. In Figure 3, we observe 

that SocialCache shows highest delays of answered 

queries across all three traces and they are increasing with 

the increasing load and congestion. SmartCache shows 

delay improvements for each trace with a slight increase 

for increasing workloads. Only CafRepCache keeps 

significantly lower delays for all traces and also decreases 

delays in the presence of increasing number of subscribers 

and content popularity. 
 

 
(a)                                             (b)                                             (c) 

Figure 2. Success ratio for Infocom, RollerNet and San Francisco traces for increasing content popularity 

 
(a)                                             (b)                                                (c) 

Figure 3. Retrieval delays for Infocom, RollerNet and San Francisco traces for increasing content popularity 



 

 

 

SocialCache heuristics perform well because they allow 

congruency with distributed mobile data queries and 

dynamic interactions while depicting dynamics of the 

underlying topology (all three topologies have social 

character [3] with social metrics being applicable). 

SmartCache is more successful compared to SocialCache 

as it performs in network predictive resource analytics 

and rebalances the caching nodes locations so that it 

avoids congestion and delays, while keeping high social 

metrics to drive caching closer to the subscribers. 

CafRepCache is most successful as it includes both social 

and resource metrics, but when the caching node predicts 

that it is likely to get congested, but it delegates caching of 

the least popular content from its local cache to another 

node that has most appropriate contact it meets.  

We evaluate efficiency of CafeRepCache individual caches 

in terms of how much of the cached content they store is 

delivered to the subscribers and show in Table 1 that it is 

90% (Infocom), 70% (San Francisco) and 84% (RollerNet). 

Individual partial replication efficiency is very high 93% 

(Infocom), 68% (San Francisco) and 67% (RollerNet) (Table 

1). This shows that our collaborative and adaptive 

cognitive caching manages to select highly suitable 

locations for caching and replication as well as suitable 

content chunks to cache and replicate when needed. 

Table1: Location Efficiency 

Location 

Efficiency 

Infocom 

2006  

San 

Francisco 

RollerNet 

Replication 90% 70% 84% 

Caching 93% 68% 87% 

5 CONCLUSIONS 

We showed that multi-path content and interest 

forwarding with adaptive collaborative cognitive caching 

and replication can make drastic performance 

improvements for data sharing in complex temporal 

fragmented mobile topologies. Our results show that our 

cognitive collaborative caching manages to maintain high 

success ratio of answered queries, high efficiency of 

caches and short download times in the face of 

heterogeneous topologies, dynamic resources and 

increasing topic popularity.  In case of hostile nodes and 

fake news, we plan to investigate fully distributed 

reputation schemes and integrate them in the current data 

dissemination and sharing approaches. Similarly, further 

exploration of energy efficient data sharing approaches 

are necessary making current smart data dissemination 

and query approaches usable in opportunistic networks. 
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