
1 
 

Suitability of Mortars Produced using Laterite and Ceramic Wastes: Mechanical and 

Microscale Analysis 

 

Awoyera, P. O.a,b*, Dawson, A. R.a, Thom, N. H.a, Akinmusuru, J. O.b 

aDepartment of Civil Engineering, Faculty of Engineering, University of Nottingham, University 

Park, Nottingham NG7 2RD, UK 

bDepartment of Civil Engineering, Covenant University, Nigeria 

*Corresponding author’s email: paul.awoyera@covenantuniversity.edu.ng 

 

Abstract 

Using industrial wastes and local materials as artificial aggregates in cement based materials 

remains a relevant measure for conservation of natural sources. In this study, novel cementitious 

mixes containing pulverized ceramic blended cement, ceramic aggregate and laterite were 

systematically combined to produce cement mortars. The mortar specimens were cured in water 

for a maximum of 28 days. At maturity, nondestructive tests, X-ray CT scan and Ultrasonic pulse 

velocity, were performed on hardened mortars. Thereafter, a series of predefined properties, 

namely dry bulk density, compressive and flexural strength, water absorption coefficient (due to 

capillary) of the hardened mortars were determined. Finally, in order to understand the 

hydration mechanism of the materials as it relates to the strength properties, microscale tests, 

SEM and XRD, were used to examine the fragments of the selected mortars. From the results, a 

mortar sample containing 10% ceramic powder and 100% ceramic aggregate as replacements for 

cement and sand respectively, gave higher strength values than the reference and other mixes. 

Microstructural analysis of the best mix revealed that it has larger proportions of ettringite, 

portlandite and calcite than the reference mix, and this could be responsible for the strength 
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gained. Thus, despite the apparent low reactivity of crushed ceramic material, this can improve 

bonding in cement-based mixture, when used at an appropriate concentration. 

 

Keywords; ceramic waste, laterite, microstructural analysis, pozzolan, strength properties, 

mortar 

 
 
 
1. Introduction 
 
The last few decades have witnessed several investigations involving the use of new materials 

which can replace the conventional materials for concreting. These new materials are selected 

for investigation either because they are abundantly available or, in the case of waste materials, 

because they constitute a nuisance to the environment. Both aforementioned reasons are the 

motivations for the current study. Laterite is an abundant soil material normally found in sub-

Saharan African countries and, for decades, it has been utilized for production of bricks. On the 

other hand, during production of ceramic tiles, about 30% of the materials used unavoidably end 

up as waste. Also, ceramic wastes are found as part of construction and demolition rubble. 

Therefore, the aim of this study is to make use of both laterite and ceramic materials as 

substitutes for sand and cement in making mortars. 

In recent years, mortars made with various modified materials have been investigated [1-15]. 

Such studies have been conducted in a quest to find alternative materials which can replace 

depleting natural materials. However, approval for such materials is subject to whether their 

physical and engineering properties match those of conventional sources.  
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Due to sharp edges of its particles, broken coarse aggregate is viewed as a hazardous waste. Thus 

It would constitute an environmental benefit if ceramic, which is a hazardous wastes, can be 

incorporated into making mortar or concrete. Whether it is possible to obtain such a benefit may 

depend on the particular ceramic supply because, the performance of ceramic products can vary 

depending on the source. Ceramic products possess varying properties due to the different 

conditions and composition of materials used in their production.  

Studies such as [12, 16-18] have explored the suitability of sanitary wares, white and red ceramic 

as aggregates in mortar and concrete. Thus, it has been established that these ceramic products 

could replace natural aggregates in concrete, due to the observed strength performance of such 

concretes. Furthermore, the improved properties of concrete with ceramic can be attributed to 

the high specific surface of ceramic [13], as well as the high concentration of silica (SiO2) and 

alumina (Al2O3) in ceramic amorphous phase [19, 20]. As a result, the pozzolanic reactivity of 

ceramic in concrete can be enhanced.  

In recent years, advancement in research has led to the innovative use of laterite or lateritic soil 

as a concrete ingredient, as well as its routine use in brick production. A quantity of laterite 

ranging from 10 – 30% is recommended for a replacement of natural sand in concrete [21, 22], 

especially when a volumetric mix of 1:1.5:3 (cement; sand; gravel) is to be used. Unfortunately, 

adding large amounts of laterite to concrete may negate the strength development in concrete, 

because laterite contains fine clay materials.  

 

Currently, there are quite a number of interesting studies regarding the use of laterite [21, 23- 

25] and ceramics [16, 18] as replacement for natural aggregates. However, there are no many 
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studies [21], which have considered using both laterite and kaolin-rich material such as ceramic 

or marble products in mortar and concrete. Therefore, the current study is aimed at exploring 

different combinations of laterite and ceramic fines as a replacement for natural fine aggregate 

in mortars, and also at identifying the significant effects associated with such combinations on 

strength and microstructure properties of mortars. To help understand the observed behaviour, 

the study aims to determine the hydration products of the mortars after being cured for 28 days. 

 

 
2. Materials and method 
 
2.1 Materials 
 
The ceramics, which comprised mainly floor and wall tiles, used in this experimental work were 

sourced from different construction and demolition sites within Lagos and Ota, in southwestern 

Nigeria. The ceramic sources are from different manufacturers, but they are originally of 

stoneware ceramic source. The ceramics were washed with water in order to get rid of debris 

that stuck to the surface, and subsequently they were air-dried for a few days. Thereafter, a 

hammer mill was used to grind the ceramic into granular sizes of 2 to 4.75 mm. Another portion 

of the ceramics was pulverized to a powder size of about 50 micron. The laterite used in this 

study was collected at a depth of about 6 m, from the sidewall of an excavated lateritic soil 

profile, located within the precinct of Ota, southwestern Nigeria. The laterite was classified as A-

7-6(7), in line with the American Association of State Highway and Transportation Officials 

(AASHTO) system of soil classification. The portion of the soil that passed a 4.75 mm aperture 

size was used for the study. Ceramic powder was substituted for cement at 10%, 20% and 30%, 

laterite and ceramic fines were substituted for sand fines at different percentages. A grade 32.5 
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cement was used, which conforms to the regulations of the Standard Organization of Nigeria 

(SON), regarding mortar production. Also, natural river sand was used as part of the fine 

aggregates. Finally, drinkable water was used for mixing the mortar constituents. The physical 

properties of the aggregates are presented in Table 1. As can be seen, the laterite possessed 

about double the water absorption capacity of river sand or ceramic fines, a result that can be 

attributed to its high clay content.  [26] also made a similar observation while working on laterite 

stones. However, there is greater closeness in the specific gravity and fineness modulus values 

of the three materials. The grading curve for the aggregate used is shown in Figure 1. Also, the 

particle size gradation for cement and ceramic powder is shown in Figure 2. The ceramic powder 

particles are finer than the cement. This will facilitate adequate blending of the two materials 

[27]. The oxide composition of cement, ceramic powder and laterite was determined using X-ray 

fluorescence (XRF) and the result is presented in Figure 3. The pozzolanic potential of the ceramic 

powder used was established from a preliminary investigation [28], following the ASTM C618 

criteria.  

 

Table 1. Physical properties of aggregates 

Properties River 
sand 

Laterite Ceramic fine 

Specific gravity 2.61 2.13 2.26 
Water absorption (%) 2.24 4.70 2.52 

Fineness modulus 2.24 1.80 2.20 
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Figure 1. Particle size distribution for aggregates used 

 

Figure 2. Particle size distribution curve of cement and ceramic powder 
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Figure 3. Metallic oxide composition of laterite, cement and ceramics 

 
 
2.2 Methods 
 
Ten mortar mixes were considered as shown in Table 2, one reference mixture (Mref) – 

containing conventional materials for comparison, and nine others containing various 

combinations of ceramic powder, laterite and ceramic fines. A total of thirty mortar specimens 

were produced with standard prismatic dimensions of 40 mm x 40 mm x 160 mm in conformity 

with the requirements of   BS EN 1015-11 [29], and the average test results from triplicate 

specimens was recorded for each mix. Batching was done by weight, using a mix ratio of 1:3 

(binder: fine aggregate). The method of batching by weight was selected over the volumetric 

batching because it takes care of the variations in specific gravity of materials. A constant mixing 

water-cement (w/c) ratio of 0.6 was used.  This is similar to the mix and w/c ratio used in related 

studies [1-2, 13]. Mortar specimens were cured in water for 28 days at a temperature of about 

21 oC. 
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Table 2. Mix proportions for the mortars 

  Binder Fine aggregates w/c 

Mix 
Cement 

(g) 
Ceramic powder 

(g) 
River Sand 

(g) 
Ceramic Fines 

(g) 
Laterite 

(g) 
 

Mref 450 0 1350 0 0 0.6 

M10 405 45 0 0 1350 0.6 

M20 360 90 0 0 1350 0.6 

M30 315 135 0 0 1350 0.6 

N10 405 45 0 1350 0 0.6 

N20 360 90 0 1350 0 0.6 

N30 315 135 0 1350 0 0.6 

F25 450 0 0 337.5 1012.5 0.6 

F50 450 0 0 675 675 0.6 

F75 450 0 0 1012.5 337.5 0.6 

 
After 28 days curing, tests were performed on the specimens in three categories: physical, 

mechanical and microscale analysis. The physical properties of mortar that were determined are 

dry bulk density [30] and water absorption by capillary action [31]. Prior to determination of 

compressive strength and flexural strength [29], which constitute the mechanical properties, 

both X-ray CT scans (of selected specimens) and ultrasonic pulse velocity (UPV) measurements 

of all specimens were carried out using an X-ray CT machine and ELE pulse velocity tester 

respectively. The X-ray CT scan was performed in 2D mode, and the specimens were scanned at 

1 mm intervals. The arrangement for this test is shown in Figure 4. Normally, circular specimens 

are required for the test, because the sample must fit onto the specimen disc. However, since 

the mortar samples investigated in this study were prismatic, they were then symmetrically 

placed in a plastic container, and surrounded by aggregates, such that the sample could be 

positioned appropriately. Two selected slices of the scans were used to describe the internal 

structure of the mortars. 
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Figure 4. Test set-up for X-ray CT scan of mortar specimen 

 

The reason for the UPV determination was to relate it to the compressive strength of specimens. 

The flexural strength test was conducted using the three point loading method, such that the 

distance between supports was 100 mm and the load was at mid span, following the 

requirements of BS EN 1015-11 [29]. During the flexural tests, both the incremental load and 

corresponding deformations were obtained from a pair of linear variable differential 

transformers (LVDTs) connected to the universal testing machine (UTM), using a computerized 

data-acquisition system. The loading was applied at a rate of 0.005 mm/s by a UTM with a 200 

kN capacity. The flexural strength of mortars was calculated using Equation 1, as recommended 

in BS EN 1015-11[29].  

 

𝐹 = 1.5
𝑃𝑙

𝑏𝑑2
           Equation 1 
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Where F is the flexural strength in N/mm2, P is the load at failure in N, l is the distance between 

support rollers (100 mm), b and d correspond respectively to the width and depth of the 

specimen in mm (both 40 mm). Figure 5 shows the typical setup arrangement for the test. 

 

Figure 5. Set-up arrangement for mortar testing 

 

Finally, microscale analysis of selected higher strength specimens was conducted using SEM and 

XRD tests on parts taken from the crushed samples. The SEM analysis was performed on 2 cm 

cube specimens using the wet plotting sample preparation approach. This method does not alter 

the physical or chemical features of the specimen [32]. One side of the cube was polished with a 

silicon disc, which makes it flat and further ensures clarity of the images [33]. Specimens for XRD 

tests were pulverized using a pestle and mortal before they were mounted on an aluminum slide 

and scanned from 0 to 75° 2θ with a scan rate of 0.1 steps per minute. 
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3. Results and Discussion 

3.1 Dry bulk density  

The dry bulk density (DBD) of mortars was determined following BS EN 1015-10 [30]. It entailed 

weighing the mass of mortar prisms, which were dried in an oven at a constant temperature of 

approximately 60oC constantly until consecutive weights (within 2 hours interval) were the same. 

Consequently, the average weight was divided by the volume to obtain the DBD. The results of 

dry bulk density of mortar specimens are presented in Figure 6. Although there was only slight 

variability in the DBD of the mortars. However, the density of the reference mortar (Mref) was 

higher than those of other mixes. The high specific gravity of sand (2.61) is evidently responsible 

for the higher DBD of the reference mix, than other mixes containing either or combination of 

laterite (2.13) and ceramic fine (2.26). 

When laterite was used as the main fine aggregate in mortars (Mix M10, M20, M30), there wasn’t 

any notable change in DBD. However, some changes were seen in mixes with 100% ceramic fines 

(N10, N20, and N30), perhaps because of the packing condition of the particles. Since the DBD 

for all the samples was above 1300 kg/m3, they are therefore within the category of normal 

weight mortar [34]. 
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Figure 6. Dry bulk density of the tested mortars 
 

3.2 Water absorption by capillary action 

Water absorption of mortar by capillary action is a key property as it helps to determine the rate 

of water ingress into mortar through condensation from the atmosphere, capillary rise from 

ground water and from driving rain. In this study, broken prisms (approximately  40 mm x 40 mm 

x 80 mm) arising from flexural strength tests were used for the determination of coefficient of 

water absorption by capillary action. The test was performed in conformity with the requirement 

of BS EN 1015-18 [31]. The results for the water absorption coefficient by capillary action for all 

mortars are shown in Figure 7. It can be observed that mortars containing 100% laterite as fine 

aggregate (M10, M20, M30) present the higher values. This can be attributed to the water 

absorption property of laterite, which was the dominant aggregate in the mixes. On a general 

note, Torres and Matias [13] described the increase in the water absorption of a mortar to be as 

a result of the small pore internal structure of the mixture. However, in the reference mix (Mref) 
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and other mixes (N10, N20, N30, F50 and F75, which contain significant amounts of ceramics), 

the coefficient of water absorption was < 0.85. These reduced water absorptions were an 

indication that there were few porous structures in the mixes. During hydration, there is the 

possibility that cement particles filled up the micro pores extensively.  

 
Figure 7. Water absorption coefficient by capillary action for hardened mortar 
 
 
3.3 Compressive and flexural strength 
 
Both compressive and flexural strength tests were used to assess the mechanical properties of 

the mortar specimens. These two methods are the most commonly used for determination of 

the strength properties of cemented materials. The results of the compressive strength, and its 

correlation with UPV values, both obtained at 28 days curing, are presented in Figure 8 and Figure 

9 respectively.  

As can be seen in Figure 8, the N-mixes (N10, N20, and N30) and mix F75 developed higher 

compressive strengths than the reference mix (Mref). Ceramic incorporation in the mixes is 
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largely responsible for the change in porosity of the mortars, which in turn improved the 

compressive strengths. The highest compressive strength was developed in mix N10 (having 10% 

ceramic powder and 100% ceramic fine replacement of cement and sand respectively). The 

strength gained in mix N10 may be as a result of filler action (contributed by ceramic powder 

which is finer than cement) and the pozzolanic action of the entire mixture. According to Jamil et 

al. [5] and Chindaprasirt and Rukzon [35], filling actions aid strength improvement in blended 

cemented materials, and it occurs when the substitute material is finer than the cement particles. 

With this result, it is evident that that recycled ceramic aggregate and cement paste are well 

bonded. This observation corroborates the study made on sand dune blended ceramic mortar by 

Abadou et al. [1].   

 

There is also a tendency for ceramics to speed up the pozzolanic reaction in the mixture that 

eventually results in the appreciable strength properties obtained. However, for mortars 

containing laterite, it is noted that the strengths were still lower than reference mortar at all 

material replacement levels.  

The UPV results are presented alongside the compressive strength in Figure 9, so as to deduce 

the significance of both for the mortar specimens. There was some similarity in the trend of 

compressive strength and UPV for the samples; as the UPV values increase so also do the 

compressive strengths and vice versa. Thus, since UPV is measured based on the transit time of 

an ultrasonic pulse through the solid material, then within the limit of this study, it can be inferred 

that compactness of cemented materials affects ultrasonic pulse travel time. There exist a strong 
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correlation (r=−0.97) between the compressive strength of the tested mortar samples and their 

UPV values. 

The flexural strengths of the mortars are presented in Figure 10. Similarly, just as with 

compressive strength, the flexural strength of mortars having ceramic fines as the dominant fine 

aggregate was higher than in other mixes. Also, mix N10 possessed the highest flexural strength. 

In the mortar specimens containing 100% laterite as fine aggregate (M10, M20, and M30), both 

compressive and flexural strengths decreased with increasing ceramic powder. On the other 

hand, with mortars containing 100% ceramic fine aggregate, 10% ceramic powder substitution 

for cement gave the highest strength, but compressive and flexural strength then reduced as the 

ceramic powder content increased. Increased alumina (Al2O3) composition as a result of 

increased ceramic content can contribute to the reduction in strength, excess of alumina being 

known to weaken the strength of cemented materials [36].  In addition, a 25% replacement of 

ceramic fines gave higher strength than the reference mortar, but strength then reduced as the 

laterite concrete was increased. 

The stress versus strain curve of selected mortar mixes is presented in Figure 11. The failure mode 

of all mortars was brittle-like except for mixes N10 and N20, where the mortars appear somewhat 

ductile as the loading was increased. It is a common phenomenon that cemented materials would 

fail by explosive cracking, where loading returns to the zero position (immediately) at failure, but 

with the incorporation of ceramics, there was improvement in the ductility of the mortars. 
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Figure 8. Compressive strength of tested mortars 

 

 

Figure 9. UPV and compressive strength of tested mortar specimens 

 



17 
 

 
Figure 10. Flexural strength of tested mortars 
 
 

 

Figure 11. Stress-strain curve of selected mortar specimens 
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3.4 Microscale analysis of mortars 

The intrinsic features and hydration products of selected mortars were evaluated using 

microscale analysis namely 2D X-ray CT, SEM and XRD. Following the results of the physical 

evaluation and mechanical characteristics of the mortars, further investigation was performed 

on the mortar with the best performance (N10) and the reference mortar (Mref).  

The XRD of the reference and N10 mortars are presented in Figures 12 and 13 respectively. The 

observed crystalline phases in the reference mortar include quartz, portlandite, ettringite, 

dolomite, lamite, gypsum, calcium silicate, and calcite. However, in addition to these phases, N10 

also possessed hematite, albite and anorthite. The appearance of high intensity quartz peaks in 

the two mortars was an indication of pure silica, readily available in sand and ceramics [6, 37]. 

Therefore, emphasis will be focused on the dominant hydration products of cemented materials. 

From Figure 12 (Mref) and Figure 13 (N10), the occurrence of ettringite, portlandite and calcite 

peaks were at 2θ values 42.5o, 34o and 29.5o respectively. Higher intensities of these peaks were 

seen in the N10 mix, which can be due to a more stable pozzolanic reaction, and a result of 

secondary hydration of calcium silicate hydrate (C-S-H). Furthermore, the hematite, albite and 

anorthite which are almost absent in the reference are clearly present in the N10 mortar as a 

result of the pozzolanic reactions between cement grains and ceramic particles. Micrographs and 

EDS of mix N10 and the reference mix are shown in Figures 14, 15 and 16, 17 respectively. The 

reference mortar contains large pores and ettringite (Figure 16). However, the N10 mortar shows 

some capillary pores and CSH (Figure 14). The EDS of N10 mortar (Figure 15) shows a higher 

amount of oxygen (O), calcium (Ca) and silica (Si), which are in the denser zones. This can be the 

major explanation for the improved strength properties of the N10 mortar, in that, higher 
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amounts of Ca, Si, and O in its dense paste zone [5], are responsible for secondary C-S-H gel 

formation. Consequently, the C-S-H gel reacts with cement hydration product Ca(OH)2 [5]. On the 

other hand, Ca, Si and O are lower in the reference mix (Figure 17). Again, the observed well 

developed structure of N10 mortar still buttress on the influence of a good effect from the filler 

and the pozzolanic action of the ceramic powder and the cement particles.   

Finally, the internal structures of the N10 mortar (Figure 18 a) and reference mortar (Figure 18 

b) were evaluated using 2D X-ray CT scans. The X-ray CT normally creates images that map the 

variation of the X-ray attenuation coefficient within an object [38]. As can be seen in Figure 18(a), 

the N10 mortar contains numerous voids, unlike the reference mortar (Figure 18b) with little 

apparent void. Higher interconnectivity of the interfacial transition zone (ITZ) between binder 

(cement and ceramic powder) and the ceramic fine in N10 mortar could be responsible for the 

increased void content. 
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Figure 12 XRD of reference mortar 

 



21 
 

 
Figure 13. XRD of mix N10 
 

 
Figure 14. SEM image of N10 
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Figure 15. EDS of identified spots on N10 SEM: Spectrum 6, 7, 8 and 9 

 

 

Figure 16. SEM image of reference mortar 
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Figure 17. Typical EDS of reference mortar 
 
 

 
 Figure 18. 2D X-ray image of (a) mix N10 (b) reference mortar 

 

4. Conclusion 

This study has explored the suitability of mortars produced using laterite and ceramic wastes as 

replacement for cement and sand. Strength properties of the specimens were evaluated and 

selected samples were further analyzed using microscale tests. Based on the results obtained, 

the following conclusions are drawn: 
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- There was no significant influence on the dry bulk density (DBD) of mortar based on the total 

substitution of laterite for sand and partial substitution of ceramic powder for cement. However, 

for mortars made with 100% ceramic fines, DBD decreased with increasing ceramic powder. 

- As far as water absorption by capillary action is concerned, mortars containing 100% laterite as 

fine aggregate present higher values, at all ceramic powder levels. It was observed that samples 

having the lowest dry bulk density, also present appreciable water absorption by capillary action. 

This was attributed to the water absorption property of laterite, which was the dominant 

aggregate in those mixes.  

- As regards the strength properties, increasing ceramic powder as cement substitute doesn’t 

give any increase in strength for either samples with 100% laterite or ceramic fines. However, the 

best strength properties were observed with mortar sample N10, which contains 10% ceramic 

powder (as replacement for cement) and 100% ceramic fine replacement for sand. Thus, the 

strength in mix N10 was far higher than that of the reference mortar, and this positive 

performance has been attributed to filler action and relative pozzolanic reaction that took place 

in the mix. Moreover, the behaviour of the mortars containing large amount of ceramic was 

ductile in response to loading, compared to the brittle failure seen in other categories of mortar.  

- Microstructural analysis of mix N10 and reference mortar has shown that the N10 mortar was 

characterized by higher 2 theta values at peaks for ettringite, portlandite and calcite, than the 

reference mortar. Also, the SEM and EDS results clearly suggest that a better compacted 

structure existed in the N10 mortar than in the reference. Thus, based on the observed results, 

mortar N10 can serve as a general purpose mortar for construction. 
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