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Abstract Patterns of intrinsic human brain activity exhibit a profile of functional connectivity that

is associated with behaviour and cognitive performance, and deteriorates with disease. This paper

investigates the relative importance of genetic factors and the common environment between

twins in determining this functional connectivity profile. Using functional magnetic resonance

imaging (fMRI) on 820 subjects from the Human Connectome Project, and

magnetoencephalographic (MEG) recordings from a subset, the heritability of connectivity among

39 cortical regions was estimated. On average over all connections, genes account for about 15%

of the observed variance in fMRI connectivity (and about 10% in alpha-band and 20% in beta-band

oscillatory power synchronisation), which substantially exceeds the contribution from the

environment shared between twins. Therefore, insofar as twins share a common upbringing, it

appears that genes, rather than the developmental environment, have the dominant role in

determining the coupling of neuronal activity.

DOI: https://doi.org/10.7554/eLife.20178.001

Introduction
Intrinsic human brain activity enables inference about the pathways and processes of information

transfer in the brain. Studying intrinsic activity, when the brain is in a resting state, has given insights

into many aspects of healthy and diseased brain function. Resting-state function is characterised by

spatially separated regions organised into networks of strongly correlated activity (Beckmann et al.,

2005; Smith et al., 2012). These networks represent both local connectivity and longer-range com-

munication. Importantly, the strength of resting-state functional connectivity reflects many aspects of

cognitive function. Connectivity in the brain changes throughout the life cycle: networks associated

with attention and control may continue to develop in late adolescence (Barnes et al., 2016) and

network integrity degrades during the ageing process (Dennis and Thompson, 2014). Many neuro-

logical diseases, including schizophrenia and Alzheimer’s disease (Sheline and Raichle, 2013; Grei-

cius, 2008), have been associated with major alterations to the strength and organisation of
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functional connectivity (Stam and van Straaten, 2012; Stam, 2014; van Straaten and Stam, 2013).

In healthy subjects, intrinsic brain activity can predict not only performance in a task, but also the

specific regions which will show increased activity during that task (Sala-Llonch et al., 2012;

Yamashita et al., 2015; Zou et al., 2013; Smith et al., 2013; Tavor et al., 2016). Furthermore,

recent evidence suggests that the organisation of human brain function at rest is associated with a

broad range of behavioural and life-style traits, and reflects a generalised measure of intelligence

(Smith et al., 2015).

Here, we set out to identify the relative importance of genetic and shared environmental factors

in determining these fundamental patterns of cortical communication. We employ functional mag-

netic resonance imaging (fMRI) recordings to perform a heritability analysis on the strength of func-

tional connectivity within a network of 39 regions. Additionally, we perform the same heritability

analysis on source-localised magnetoencephalographic (MEG) recordings (Van Veen et al., 1997)

from a subset of the subjects. This complementary analysis allows us to focus specifically on commu-

nication mediated by the coupling (correlation) of oscillatory amplitudes, within particular frequency

bands, using MEG as a more direct measure of neuronal activity that is unaffected by vascular

confounds.

We present separate analyses of functional networks estimated from the fMRI response

(Smith et al., 2013), and of MEG-derived networks in the theta (4–8 Hz), alpha (8–13 Hz) and beta

(13–30 Hz) oscillatory bands. These bands span the frequency range within which the most convinc-

ing patterns of resting-state MEG connectivity have been shown to be expressed (Hipp et al., 2012;

Baker et al., 2014; Hillebrand et al., 2012; Brookes et al., 2011; Mantini et al., 2007;

Marzetti et al., 2013; de Pasquale et al., 2012; de Pasquale et al., 2016). We employ resting-state

recordings from 820 subjects from the Human Connectome Project (HCP; WU-Minn HCP Consor-

tium et al., 2013); these data are publicly available, and have undergone a standardised pre-proc-

essing procedure. The HCP is a twin study, and the subjects from the S900 data release with all fMRI

(MEG) resting-state scans comprise 103 (19) monozygotic twin pairs, who share 100% of their

genetic structure and a common environment, and 54 (13) dizygotic twin pairs, who share 50% of

their genetic structure and a common environment. Each subject provided three MEG scans (of

6 minutes each), and four fMRI scans (of 15 minutes each). This stratified sample allows estimation of

the relative effects of genetic influence and environmental factors on the variability observed in con-

nectivity structure.

We compare the similarity in overall network structure between pairs of subjects, assessing the

extent to which the functional connectivity of two subjects becomes more alike as their proportion

of shared background and genetics increases. We fit variance-component models on each network

edge, using recently developed permutation and bootstrap-based methods for fast, accurate, non-

parametric statistical inference with family-wise control of type I errors (Chen, 2014). This provides

estimates of the mean genetic and shared environmental influences on the observed phenotypic var-

iation in cortical connectivity. We run similar heritability analyses on the oscillatory power and BOLD

variance within the regions of interest (ROIs) which constitute the network nodes, to determine

whether the observed effects of genes and developmental environment on cortical connectivity

could be attributable to simple differences in signal strength. Additionally, we analyse the heritability

of cortical folding patterns in each ROI, to investigate whether genetic control of anatomical struc-

ture contributes to the heritability of connectivity.

Results
The functional connectivity measured with fMRI was estimated among 39 functionally defined corti-

cal regions of interest (network nodes) by computing partial correlations between BOLD time

courses representing each region. ROIs were spatially contiguous, covered both hemispheres, and

were generated using fMRI from HCP subjects—see Materials and methods. The functional connec-

tivity measured with MEG, corresponding to amplitude coupling of oscillations in each frequency

band, was assessed between the same set of regions by correlating fluctuations in oscillatory power

(Engel et al., 2013; O’Neill et al., 2015). Potential confounds to these MEG functional connectivity

estimates induced by the leakage of source-reconstructed signals were reduced using a multivariate

orthogonalisation technique (Colclough et al., 2015). These methods represent established practice

for determining networks of functional connectivity in the two modalities (Varoquaux and
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Craddock, 2013; Smith et al., 2011; Smith et al., 2013; Brookes et al., 2012; Hipp et al., 2012;

Colclough et al., 2016; de Pasquale et al., 2012; Hillebrand et al., 2012). The group-averaged

functional networks are shown in Figure 1A and rendered in 3D in the supplementary videos.

The fMRI connectome shows strong bilateral connectivity, together with fronto-parietal correla-

tions and coupling between the anterior cingulate and posterior cingulate cortices, reflecting well-

known patterns of resting-state networks in fMRI (Beckmann et al., 2005; Smith et al., 2012). In the

MEG data, the alpha band shows a strongly connected visual system, with strong connectivity

from the visual cortex extending out to the temporal and parietal lobes, and a highly coupled poste-

rior cingulate. The beta-band exhibits strong bilateral coupling across the sensorimotor cortices,

with connectivity continuing through the superior parietal lobes and down to the occipital cortex.

The theta band also exhibits visual and motor connectivity. These patterns of connectivity are in gen-

eral agreement with previously reported results in these frequency bands (Hillebrand et al., 2012;

Brookes et al., 2011; Baker et al., 2014; de Pasquale et al., 2012; de Pasquale et al., 2016;

Hipp et al., 2012; Marzetti et al., 2013; Mantini et al., 2007; Colclough et al., 2015).

Figure 1B (left-hand plot, middle row) shows that the structure of fMRI and MEG networks of

functional activity are progressively more similar as the strength of relationship is increased, from

unrelated subjects, through siblings and dizygotic twins to monozygotic twins (p<10�3 in each case,

except for paMZ<DZ ¼ 0:003). (Although siblings and dizygotic twins share the same proportion of

genetic material, siblings have different ages and inevitably share less similar environments than do

twins. This may account for the significant increase in network similarity from siblings to dizygotic

twins.) Also displayed, for comparison, is the distribution of network similarity over repeated record-

ing sessions within the same subject. Tests for significance were performed by assessing the differ-

ence in mean of the logarithm of network separation, relative to the mean separation, using a non-

parametric permutation-based t-test. All 21 tests performed for this paper are quoted after a false

discovery rate correction for multiple comparisons.

A three-component variance model was fitted for the variability observed in the strength of cou-

pling in individual edges. This model ascribes proportions of the variance in a phenotype, s2, either

to additive shared genetics (A), shared environmental factors (C), or to measurement error and other

known sources of variance (E),

s
2 ¼ AþCþE :

We estimate each of these components as a fraction of the total variance, giving h2 ¼ A=s2, known

as the heritability of a trait, c2 ¼C=s2 and c2 ¼ E=s2. These components are related by the identity

h2þ c2 þ e2 ¼ 1 :

Estimates of the mean heritability and contribution from common environment over these con-

nections were constructed with bootstrapped confidence intervals, and the significance of the mean

heritability was tested using non-parametric permutation-based methods. Although there is a large

amount of variability in the data which is not attributable to either of these factors, we found that

additive genetics accounted for 17%, on average, of the functional connectivity measured with fMRI.

In MEG, 19% of the variability in oscillatory coupling strengths in the beta band, and 8% in the alpha

band, was determined by additive genetics. These estimates and comparisons are presented graphi-

cally in Figure 1C, and tabulated with confidence intervals and p-values in Supplementary files 2

and 3.

In the absence of a permutation scheme which is invariant under the null hypothesis of equal

genetic and shared environmental factors, we additionally estimate h2 � c2 with bootstrapped confi-

dence intervals to investigate the relative importance of these two components. In the fMRI data

and in beta-band oscillations, where we also find significant genetic influences, we identify a differ-

ential effect of heritability and twins’ shared environment (estimates with 95% confidence intervals,

h2 � c2 ¼ 0:15 ½0:13; 0:16� for the fMRI and h2 � c2 ¼ 0:13 ½0:04; 0:22� for the beta-band results). Permu-

tation tests for a significant contribution of heritability on each individual functional connection were

performed, but no edges were significant after correcting for family-wise error at a ¼ 0:05. Parame-

ter estimates for individual fMRI connections are shown in Figure 1—figure supplement 1.

To investigate whether our results were particular to our choice of parcellation, we re-ran our her-

itability analyses using the 15-dimensional ICA decomposition of resting-state fMRI recordings
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Figure 1. Contribution of genetic factors to functional connectivity outweighs that of the environment shared between twins. A. Grand average

functional connectome for fMRI and for the theta, alpha and beta MEG oscillatory bands. The coloured edge maps show group-average network

matrices for correlations in oscillatory amplitude in each band, and partial correlations in BOLD response, thresholded for visualisation. Nodes are

annotated by cortical region, and labelled in Supplementary file 1. 3D renderings of these connectomes are shown in Figure 1—videos 1 to 4. B.

Similarity of pairs of network matrices, separated by the relationship status of each pair. Subjects with a shared environment, and a greater proportion

of shared genetics, have more similar organisation of neuronal coupling. Violin plots show distributions of distance values between pairs of network

matrices estimated from single resting-state recording sessions, on a logarithmic scale relative to the mean network separation over all pairings, for

pairs of unrelated subjects (UN), siblings (SI), dizygotic twin pairs (DZ), monozygotic twin pairs (MZ) and for repeated sessions with the same subject

(SAME). C. Average genetic and shared environmental contributions to the variability of functional connectivity. The bar charts show the mean genetic

component (heritability, h2) and mean shared environment component (c2) from a variance decomposition model fitted on each network edge, with

95% bootstrapped confidence intervals on the mean. Annotations indicate the difference in contribution between genes and the shared or

developmental environment. The values of h2 and c2 are expressed as proportions of the total variance. The difference between their total and unity is

e2, the remaining environmental and measurement noise component. D. Average genetic and shared environmental contributions to the variability of

oscillatory power, or BOLD response, in each ROI. Stars indicate significant differences in mean value for each of the displayed comparisons:

***p<0.001; **p<0.01; *p<0.05; n.s., not significant. The non-parametric p-values were computed by permutation and corrected for multiple

comparisons over the 21 tests performed.

Figure 1 continued on next page
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released by the HCP. This parcellation contains entire resting-state networks as each node of the

decomposition, yielding a functional connectivity matrix that describes inter-network, rather than

intra-network relationships. We found significant genetic influences in the fMRI data

(h2 ¼ 0:29 ½0:26; 0:33�, p ¼ 1� 10
�4, uncorrected), but not for any of the activity recorded with MEG

(uncorrected permutation-based p-values for h2>0 were 0.69, 0.06 and 0.14 for the theta, alpha and

beta bands respectively). The parameter estimates and confidence intervals are presented in

Supplementary file 4.

The three-component model was also fitted to the variability in the logarithm of the signal power

in each ROI, in both the fMRI and MEG data. Significant influences of genetic factors, on average

over the nodes, were found only in the fMRI data (Figure 1D).

Finally, we fitted the heritability model to the cortical surface curvature of each subject, comput-

ing average h2 within each ROI (Figure 1—figure supplement 2). Cortical curvature exhibits the

highest heritability around the sensorimotor areas and insula (as has been reported previously, in an

analysis using a different sample of the HCP subjects; Sotiropoulos et al., 2015). We compared this

spatial profile of the heritability of curvature to the average heritability of network connections for

each ROI within each modality (that is, for each ROI, the average h2 of all connections involved with

that ROI). In general, no significant positive correlations were found between the spatial arrange-

ment of cortical curvature heritability and the heritability of network connections in particular ROIs.

The exception was moderate correlation (� ¼ 0:39) with the MEG theta band connectivity pattern,

for which there was no significant heritability of connection strength in the first instance. (These data

are presented in Supplementary file 5.)

Discussion
Using resting-state fMRI and MEG recordings released as part of the HCP, we have constructed the

functional network structure that expresses the coupling in MEG oscillatory power within three fre-

quency bands, and fMRI partial correlation networks, among 39 ROIs. Based on these analyses, we

make two key claims. First, genetic factors help to determine the strength and form of cortical oscil-

latory communication and functional connectivity. We have shown that the entire functional network

structure is found to be more similar for two subjects the more closely they are related, and we esti-

mate that the average heritability of individual connection strengths is about 15–18% for BOLD cor-

relations, and between 13% and 26% (1% and 25%) for correlations in beta-band (alpha-band)

power fluctuations. Second, genetic make-up is more important, on average, than the shared envi-

ronment among twins when determining the strength of these couplings (with a difference of 13–16

percentage points in fMRI and 4–22% in the MEG beta-band).

Our results are drawn from two imaging modalities, fMRI and MEG, with functional connectivities

estimated from the same set of ROIs. Our analyses with these technologies produce complementary

assessments of functional connectivity: slow time scale couplings of functional activation indexed by

BOLD response, and faster co-ordinations in oscillatory amplitude measured with MEG. (MEG is a

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.20178.002

The following video and figure supplements are available for figure 1:

Figure supplement 1. Heritabilities of fMRI connection strengths.

DOI: https://doi.org/10.7554/eLife.20178.003

Figure supplement 2. Heritability of cortical curvature, and spatial profile of the heritability of functional connections.

DOI: https://doi.org/10.7554/eLife.20178.004

Figure 1—video 1. Animated rendering of the fMRI grand-mean network matrices shown in Figure 1A.

DOI: https://doi.org/10.7554/eLife.20178.005

Figure 1—video 2. Animated rendering of the theta band (4–8 Hz) grand-mean network matrices shown in Figure 1A.

DOI: https://doi.org/10.7554/eLife.20178.006

Figure 1—video 3. Animated rendering of the alpha band (8–13 Hz) grand-mean network matrices shown in Figure 1A.

DOI: https://doi.org/10.7554/eLife.20178.007

Figure 1—video 4. Animated rendering of the beta band (13–30 Hz) grand-mean network matrices shown in Figure 1A.

DOI: https://doi.org/10.7554/eLife.20178.008
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more direct measure of neuronal oscillatory activity, unaffected by vascular confounds.) We found,

over both modalities (although, for the MEG results, only in the beta band), the same differential

pattern of influence on functional connectivity from additive genetic factors and twins’ shared devel-

opmental environments. Given the range of connectivity structures that are expressed in beta-band

oscillations and in the slow time scale couplings measured in fMRI, these results suggest that genes

have broad control over functional connectivity in the cortex, with a contribution that outweighs

shared environmental factors.

These complementary results in fMRI and MEG alpha- and beta-band oscillations, drawn from the

same parcellation, provide strong new support for a neural basis of the genetic influences on BOLD

connectivities. The heritability of functional connectivity measured with electrophysiology has been

reported before (Posthuma et al., 2005; Schutte et al., 2013; recording heritabilities of 20–75%,

predominantly in the alpha and beta bands). However, these analyses were performed between EEG

sensors, using synchronisation likelihood for network estimation, a measure that is sensitive to vol-

ume conduction artefacts. We use a connectivity metric that explicitly suppresses these artefacts

(Colclough et al., 2015; Brookes et al., 2012; Hipp et al., 2012; O’Neill et al., 2015), reducing the

influence of heritable anatomical features and cortical folding patterns on our results. Additionally,

by working with cortical reconstructions of the oscillatory sources, we gain not only substantial arte-

fact rejection (Schoffelen and Gross, 2009; Hillebrand et al., 2005) but also interpretability; the

functional networks that we identify in the beta band and which drive our genetic analyses are

mostly in motor and posterior regions, in correspondence with previous findings (Hipp et al., 2012;

Baker et al., 2014; Hillebrand et al., 2012; Brookes et al., 2011; Brookes et al., 2012;

Mantini et al., 2007; Marzetti et al., 2013; de Pasquale et al., 2012; de Pasquale et al., 2016).

Our results therefore advance the strength of the evidence for a neural mechanism that mediates

the genetic control over functional connectivity. Current data cannot, however, reveal the mechanis-

tic details of this control. We can speculate that genes will control both network dynamics (in terms

of synaptic strengths or conductance delays) as well as biophysical properties (such as the distribu-

tion of local neuron populations and their immediate feedback systems)—but in the future it may be

possible to combine neuroimaging results with large-scale biophysical models (Deco et al., 2008;

Cabral et al., 2014) to better understand these influences.

We did not find significant genetic control of functional connectivity in the theta frequency band.

This may be in part because of the difficulty in cleanly estimating functional connectivity in MEG, par-

ticularly outside the alpha and beta bands (Colclough et al., 2016), but may also be because the 89

HCP subjects with resting-state MEG scans present a much smaller sample for study than the rfMRI

HCP dataset. Even the conclusions from our alpha- and beta-band analyses, while coincident with

the results in fMRI, are necessarily summary characterisations of the role of genes and environment

on cortical oscillatory coupling. Our claims are based on significant results from robust non-paramet-

ric tests, but the confidence intervals on our parameter estimates are inevitably broad.

The primary parcellation that we employed consists of focal, contiguous regions. Our heritability

analyses therefore reflect the genetic and shared environmental influences on the strengths of con-

nections between the component nodes of the established resting-state networks (such as the

default mode, motor, visual and dorsal attention networks). In an additional analysis, we found signif-

icant effects of additive genetic factors on the strength of inter-network connections in fMRI, using

an alternative lower-dimensional parcellation based on 15 entire networks as nodes for the connec-

tome. This suggests that genetic control of functional connectivity extends across multiple spatial

scales of synchronisation. For oscillatory activity measured with MEG, it is not clear that it is mean-

ingful to summarise, in the same manner as for an fMRI inter-network analysis, the collective behav-

iour of these gross network structures using a single time course: there is growing evidence from

MEG that the extended networks from the fMRI literature are composed of smaller sub-networks

that synchronise and de-synchronise on relatively fast time scales (Baker et al., 2014; de Pasquale

et al., 2012; de Pasquale et al., 2016). That we found no significant genetic effects on the connec-

tions among this additional set of 15 networks in our MEG data may simply reflect the unsuitability

of static whole-network parcellations for this modality.

We have taken a comprehensive approach to our heritability analyses by controlling for a wide

range of potential confounds. Of the heritable effects of physiology, anatomy and noise on func-

tional connectivity, the influences of signal power, cortical folding patterns and subject motion are

perhaps most worthy of discussion.
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Higher coupling strengths are commonly observed between regions with higher signal power in

both fMRI and MEG estimates of functional connectivity. This effect can be caused just by the

increased signal to noise ratio in the observed regions, rather than any difference in underlying cou-

pling strength (Friston, 2011). We fitted a genetic and environmental factors model to the power in

each ROI of our analysis. In our MEG data, we found no influence of these factors on the measured

signal strength, and so can exclude this signal-to-noise effect as a likely confound in the beta-band

MEG results. There was a significantly heritable component to signal power in the fMRI data—but

this is not surprising in and of itself. To control for its influence on our results, we have included

measures of the signal power in each node as confound regressors in all of our genetic analyses of

functional connectivity. (Signal power is not a perfect proxy for the signal to noise ratio, as the mea-

sured power will be affected by fluctuations in both the noise and the signal.)

Cortical folding patterns have been shown to have modest heritability (Sotiropoulos et al., 2015;

Botteron et al., 2008; van Essen et al., 2014); although the strength of genetic control and the

mechanism of influence are not yet certain (Tallinen et al., 2016; Gómez-Robles et al., 2015;

Ronan and Fletcher, 2015). This has particular implications for the MEG measurements, where the

arrangement of cortical folds will have a strong impact on the signals measured outside the scalp,

and on the leakage (or volume conduction) of signals between different sensors. Our connectivity

estimates use methods that are robust to source leakage artefacts (Colclough et al., 2015;

Brookes et al., 2012; Hipp et al., 2012; O’Neill et al., 2015), and the lack of strong correlations

between the spatial profile of the heritability of cortical curvature and the heritability of edges asso-

ciated with each ROI (as shown in Figure 1—figure supplement 2 and Supplementary file 5) is

good evidence, we believe, that this confound has not seriously impacted our findings.

Subjects’ motion inside a scanner during resting-state recordings is heritable (Couvy-

Duchesne et al., 2014), and motion is a known resting-state confound for functional connectivity

analyses (Siegel et al., 2016). While our pre-processing steps include appropriate registration of

images into static reference frames, and the removal of components from the data that are associ-

ated with motion, we have additionally included in our genetic analyses a summary measure of par-

ticipants’ movements within their fMRI scans, to reduce our co-measurement of heritable motion

traits. Lastly, we are unable to specifically control for eye movement in our genetic analyses, as no

tracked eye recordings are available for the HCP resting-state scans. (Independent components of

the sensor data that correspond to eye movements are, however, removed during pre-processing.)

However, it is worth noting that although saccades and micro-saccades are thought to be linked to

gamma-band oscillatory patterns (Muthukumaraswamy, 2013; Orekhova et al., 2015), which we

did not study, there is no strong evidence-base that they influence resting-state recordings at lower

frequencies.

We used variance-component models to represent the observed variability in functional connec-

tivity as a set of contributions from additive genetic factors and from the shared developmental envi-

ronment in twin pairs. Our conclusions rest on a number of assumptions implicit in this model

(Boomsma et al., 2002). These include an assumption that people choose their partners randomly;

that the relevant genetic mechanisms are additive; and that there is no significant interaction

between genes and the shared environment—an effect which has been reported to exist in various

aspects of cognition (Nisbett et al., 2012). Most importantly, we assume that monozygotic and dizy-

gotic twin pairs will equally share exposure to environmental factors in their upbringing. If this is an

accurate assumption, then estimates of c2 and h2 are informative about the relative roles of develop-

mental environment and additive genetics in the variation of functional connectivity phenotypes.

While there is evidence in support of the equal-environment assumption (Felson, 2014;

Conley et al., 2013), it has been challenged on the basis that monozygotic twins look more alike,

behave more alike, and are treated more similarly than dizygotic twins (Joseph, 1998). Without

entering into the discussion on this point, we note that if this assumption fails in our sample, it would

lead to an overestimation of genetic heritability and an underestimation of the impact of develop-

mental environment, therefore potentially weakening our conclusions on the differential effect of

these two influences. Lastly, the c2 term in our model cannot be solely identified with developmental

environment. It encompasses all effects which are common between twins, which may include intra-

uterine and mitochondrial influences, in addition to the shared environmental factors.

Our results add substantially to the evidence for significant genetic control of human cortical con-

nectivity. Structural connectivity, the distribution of the white matter tracts across the brain that
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enable communication, is known to be highly heritable (Zhu et al., 2015; Jahanshad et al., 2012;

Kochunov et al., 2015). (A study of the heritability of structural connections with the HCP dataset

estimated a mean heritability of 25%; Sotiropoulos et al., 2015) Previous studies of the heritability

of functional connectivity with fMRI (which, in general, fail to control for subject motion, node power

or brain size, and some of which focus instead on network topology), do also find significant genetic

effects with heritability estimates lying between 20% and 60% (Smit et al., 2008; Fornito et al.,

2011; van den Heuvel et al., 2013; Thompson et al., 2013; Jansen et al., 2015; Glahn et al.,

2010). However, connectivity estimation is noisy, and as heritability is expressed as a fraction of the

observed phenotypic variance (including measurement noise), we can expect the parameter esti-

mates of heritability to change as network estimation methods improve. The important comparison,

therefore, is of the relative importance of genes to the developmental and environmental factors

shared by twins. Our observation of the stronger influence of the former over the latter on functional

connectivity is a relationship shared in several other cognitive, behavioural and physiological traits

measured in adults (Polderman et al., 2015).

Twin studies cannot probe the precise genetic mechanisms of these influences. Recent work

(Hawrylycz et al., 2015; IMAGEN consortium et al., 2015) has correlated the profiles of gene

expression in different regions of cortex, and compared these patterns of gene transcription to rest-

ing-state fMRI connectivity profiles, identifying sets of genes with co-expression patterns that reflect

networks of functional connectivity. However, detailed investigations into the specific genes affect-

ing healthy resting-state connectivity must await large datasets with coincident resting-state func-

tional imaging and genotyping. (Genetic data will soon be available both for the HCP and for the UK

Biobank imaging data.)

Taken together, our results provide strong additional evidence for a neural basis of the heritability

of functional connectivity in the human brain. We identify genetic influences both in fMRI datasets

and in (alpha- and beta-band) electrophysiological recordings, using functional network analyses on

the same cortical parcellation. Our results more comprehensively control for a wide range of impor-

tant confounds than previous work in this area. We have made particular emphasis of the increased

importance of genetics over the developmental environment in determining cortical functional con-

nectivity. The relevance and implications of this finding are widespread. Functional connectivity pro-

files are associated with intelligence, which is well-known to be heritable (Bartels et al., 2002;

Neisser et al., 1996). But connectivity is also implicated with a very broad range of behavioural and

life-style factors, including earning power, measures of health, various assessments of cognitive per-

formance, and self-reported life satisfaction (Smith et al., 2015). As the findings of the Moving To

Opportunity experiment in the United States make clear (Ludwig et al., 2013; Chetty et al., 2015),

together with results from studies on the effects of schooling, socio-economic environment and

adoption (Nisbett et al., 2012), the environment in which individuals develop can still make a signifi-

cant impact on their performance and long-term outcomes. However, while genes are not the only

important factor, results such as these presented here suggest that nature, more so than nurture, is

a major force in determining integrated cognitive function and, by extension, cognitive capability.

Materials and methods

Subjects
Four 15-minute resting-state fMRI recordings from 820 subjects were collected as part of the

HCP900 data release by the Human Connectome Project (WU-Minn HCP Consortium et al., 2013;

WU-Minn HCP Consortium et al., 2013). Additionally, 89 of these subjects provided three 6-minute

resting-state MEG recordings. All subjects are young adults (22–35 years of age) and healthy. Of the

fMRI (MEG) subjects, there are 103 (19) monozygotic and 54 (13) dizygotic complete twin pairs.

Zygosity was determined from subjects’ genotypes when available, and otherwise by self-report.

HCP data were acquired using protocols approved by the Washington University institutional

review board. Informed consent was obtained from subjects. Anonymised data are publicly available

from ConnectomeDB (db.humanconnectome.org; Hodge et al., 2016). Certain parts of the dataset

used in this study, such as the family structures of the subjects, are available subject to restricted

data usage terms, requiring researchers to ensure that the anonymity of subjects is protected (WU-

Minn HCP Consortium et al., 2013).
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fMRI analysis
Resting-state fMRI data were acquired with 2 mm isotropic spatial resolution and a temporal resolu-

tion of 0.72 s. The HCP provides comprehensively pre-processed data (WU-Minn HCP Consortium

et al., 2013) that are mapped to a standard cortical surface using a multi-modal registration algo-

rithm, MSMAll (Robinson et al., 2014; Glasser et al., 2016), and for which structured artefacts (with

origins including motion, heartbeat and cerebro-spinal fluid) have been removed by a combination

of ICA and FIX (Salimi-Khorshidi et al., 2014), FSL’s automated noise component classifier.

We estimated functional connectivity between 39 fMRI-derived cortical ROIs. We used the parcel-

lation employed in Colclough et al. (Colclough et al., 2015), which contains contiguous regions

identified from a resting-state 100-dimensional group-ICA decomposition of fMRI data from the first

200 subjects of the HCP project. Most ROIs have a symmetric counterpart in the opposite hemi-

sphere, except those on the midline such as the posterior cingulate cortex. The parcellation is shown

in Figure 2A. This parcellation was chosen because the use of contiguous, focal nodes creates a

comprehensible network model between individual regions. The low dimensionality of MEG data

restricts us to parcellations of about this number of ROIs or less: as there are only a few hundred

sensors, reconstructing time courses for more than approximately 60 different regions would be

noisy or nonsensical. This upper bound is supported by models that categorise signals as originating

within or without the MEG dewar, which suggest a limit of about 60 measurable cortical sources

(Taulu et al., 2005), and by recently developed data-driven parcellations that only find around 70

unique identifiable parcels using combined MEG and EEG data (Farahibozorg et al., 2017). To

investigate whether our results were particular to our choice of parcellation, we additionally ran our

heritability analyses on a lower-dimensional decomposition: the 15-dimensional group-ICA map

computed from the HCP900 data. The nodes in this parcellation represent entire (non-contiguous)

functional networks (such as the default mode or motor networks), and the connectivity matrix there-

fore represents inter-network dependencies. The parcellation is shown in Figure 2B.

A single BOLD time course to represent each ROI was constructed using multiple spatial regres-

sion in FSLnets. Partial correlation matrices were constructed using the tools in FSLnets, using mild

Tikhonov regularisation (l ¼ 0:01) and a conversion to Z-values with Fisher’s transform, referenced to

Figure 2. Regions of interest used for functional connectivity estimation. (A) Primary parcellation of 39 contiguous

clusters, identified from a resting-state 100-dimensional group-ICA decomposition of fMRI data from the first 200

subjects of the HCP project. (B) The 15-dimensional fMRI ICA parcellation computed by the HCP as part of the

S900 data release.

DOI: https://doi.org/10.7554/eLife.20178.009
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the standard deviation of correlations of null data. Group-level networks were estimated as the

mean Z-transformed correlation matrices over all sessions.

MEG analysis
Resting-state MEG data were acquired on a whole-head Magnes 3600 scanner (4D Neuroimaging,

San Diego, CA, USA). The data have been pre-processed to compensate for head movement, to

remove artefactual segments of time from the recordings (which might relate to head or eye move-

ment), identify recording channels which are faulty, and to regress out artefacts with clear temporal

signatures (such as eye-blinks, saccades, muscle artefacts or cardiac interference) using ICA (WU-

Minn HCP Consortium et al., 2013). Sensor-space data were down-sampled from 509 Hz to 300

Hz, with the application of an anti-aliasing filter.

MEG data from each session were source-reconstructed using a scalar beamformer (Van Veen

et al., 1997; Robinson and Vrba, 1999; Woolrich et al., 2011). Pre-computed single-shell source

models are provided by the HCP at multiple resolutions, registered into the standard co-ordinate

space of the Montreal Neuroimaging Institute (MNI). Data were filtered into the 1–30 Hz band

before being beamformed onto a 6 mm grid using normalised lead fields. Covariance estimation

was regularised using PCA rank reduction. The rank was conservatively reduced by five more than

the number of ICA components removed during preprocessing. Source estimates were normalised

by the power of the projected sensor noise. Source-space data were filtered into theta (4–8 Hz),

alpha (8–13 Hz) and beta (13–30 Hz) bands.

The same parcellations were employed for the MEG analysis as for the fMRI. As the MEG source

reconstruction was performed over a volumetric grid in the MNI’s standard space, rather than on the

cortical surface, we used the volumetric versions of the fMRI ICA decompositions to form the MEG

parcellations. A single time-course was constructed to represent each node as the first principal

component of the ROI, after weighting the PCA over voxels by the strength of the ICA spatial map.

This analysis yielded 39 time-courses for each frequency band and session for our principal parcella-

tion (and 15 for the second).

One major confound when estimating connectivity in source-localised MEG is the spatially local

bleeding of estimated sources from their true location into neighbouring regions. We compensate

for these spatial leakage confounds, which can induce spurious connectivity estimates, using a sym-

metric orthogonalisation procedure (Colclough et al., 2015) to remove all shared signal at zero lag

between the network nodes. This procedure is a multivariate extension of the orthogonalisation prin-

ciple proposed in Brookes et al., 2012; Hipp et al., 2012; and O’Neill et al., 2015. It identifies the

set of ROI time courses least displaced from the initial, uncorrected set, while enforcing mutual

orthogonality between them, with no bias related to any reordering of the nodes. This approach

suppresses any artificial correlations induced by spatial leakage, at the expense of any zero-lag con-

nections of true neuronal origin. Lastly, power envelopes of the leakage-corrected ROI time-courses

were computed by taking the absolute value of the Hilbert transform of the signals, low-pass filtering

with a cut-off of 1 Hz, and down-sampling to 2 Hz (Luckhoo et al., 2012). We illustrate this stage in

Figure 3.

Correlations between the power time-courses in each band were computed, converted to Z-val-

ues using Fisher’s transform, and standardised with reference to the standard deviation of an empiri-

cal null distribution of correlations generated from time-courses with the same temporal properties

as the data under test (see Colclough et al., 2015, for a detailed description). As for the fMRI net-

works, group-level networks were estimated as the mean Z-transformed correlation matrices over all

sessions.

We use slightly different network estimation methods in the two modalities. Both are correlation

measures, to maintain the similarity in analysis between the fMRI and MEG data. Partial correlation,

used in the fMRI data, is one of the most accurate and robust measures in this modality

(Smith et al., 2011; Smith et al., 2013; Marrelec et al., 2006; Varoquaux and Craddock, 2013).

However, partial correlation can be difficult to estimate, even with regularisation, and it would not

necessarily be the optimal choice for many smaller or lower quality fMRI datasets. An assessment of

the repeatability of the most common network estimation measures in MEG showed that regularised

partial correlation is relatively unreliable in this modality, and that the full correlation of the power

envelopes of oscillatory activity (as we use here) was the most repeatable approach

(Colclough et al., 2016). We have therefore attempted to use the best-practice inference methods
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in each modality. We did repeat our fMRI analysis using full correlation, rather than partial correla-

tions, and found qualitatively similar results, with no difference in the significance of the claims we

would make.

Comparison of entire network structure
Similarity between pairs of functional networks was measured as the inverse Euclidean distance

between the correlation matrices, after a logarithmic projection onto a Euclidean plane locally tan-

gent to the Riemann manifold of positive semi-definite matrices (Barachant et al., 2013; Ng et al.,

2014). This process can decouple the inter-relations between the elements within each positive-defi-

nite network matrix, and can improve the performance of classification algorithms when network

matrices are used as discriminative features. It also provides for the definition of a true distance met-

ric, where more similar matrices are projected to more proximate locations on the plane. A suitable

Euclidean space for each modality and frequency band was found as the Euclidean plane tangent to

the cone of positive semi-definite matrices, taking the geometric mean of the networks computed

from all sessions as the tangent point. The separation between each pair of network matrices in each

band was computed, forming different distributions of network similarity for pairs of subjects, split

by the shared genetics of each pair. To assess whether shared environmental factors and shared

genetics were associated with global network structure, we tested the difference in mean between

the distributions of the logarithm of network separation for pairs of unrelated subjects and pairs of

dizygotic twins, and between pairs of dizygotic twins and monozygotic twins, using a non-parametric

t-test based on 20,000 permutations of the group labels. In the fMRI data, we were also able to com-

pare unrelated subjects to siblings, and siblings to dizygotic twins.

Three-component variance models
An ACE model for the subject-to-subject variability in connection strength was fitted for each net-

work edge. This model splits the observed phenotypic variability into three factors: (A), additive

genetics or heritability (h2), (C), common environment (c2), and (E), measurement error or external

sources of variability. The three factors h2, c2 and e2 are proportions of the total variance, and there-

fore normalised such that they sum to one. The APACE system of permutation inference

(Chen, 2014) was employed, using the mean network matrix (over resting-state recording sessions)

for each subject.

On each edge, we regressed out the effect of age, the square of age, sex, an age and sex interac-

tion, an interaction between sex and the square of age, the cube root of intra-cranial volume and of

cortical volume (both estimated with FreeSurfer), a measure of subject motion in the scanner (fMRI_-

motion) and, for the fMRI data, the MR image reconstruction software version. Summary motion

Figure 3. Illustration of pipeline for MEG functional connectivity estimation. From a whole-brain source-reconstruction, a single time-course is

extracted to represent each ROI. These time-courses are bandpass filtered, then orthogonalised to remove shared signal which is potentially

attributable to spatial leakage effects. The power envelope of each time-course is computed, then correlated to form the network matrix.

DOI: https://doi.org/10.7554/eLife.20178.010
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estimates are only available for the fMRI recordings, but we use these values as a proxy measure of

subjects’ movements in both modalities. On each network edge, we included a regressor to account

for heritable changes in node power, computed as the geometric mean of the power in each of the

two nodes that each connection joins. We computed power simply as the standard deviation of the

signal (fMRI time course or MEG power envelope) in each node. In the MEG data, where the stan-

dard deviation of the power of a virtual sensor is often correlated with its mean, we additionally

include, in the same manner, a regressor formed from the ratio of the standard deviation to the

mean of the power time course.

Finally, we also regressed out a measure of the noise passed by the beamformer for each subject.

Our beamformer is described in Woolrich et al. (2011), and the noise it passes at each voxel is the

denominator of equation 4 in that paper,

HTðriÞI =s
2

eH ðriÞ
� �

;

where H is the projection of the N� 3 lead field matrix (for N sensors) that maximises power at

location ri, and s
2

e I is the noise covariance matrix. The scale of the noise is estimated from the small-

est eigenvalue of the data covariance matrix. These voxel-wise noise estimates are scaled by the

same weightings used to compute the ROI time courses, and averaged over ROIs to create a regres-

sor estimating the noisiness of the beamformer for each subject.

Estimates of heritability were computed on each edge, with family-wise error corrected p-values

computed by permutation, randomly shuffling monozygotic and dizygotic twin statuses 15,000

times. It is useful to consider a single, summary measure of functional connectivity for the entire

functional networks. The mean values of h2 and c2 were computed over all functional connections;

the p-value for mean heritability was computed by permutation, as above; confidence intervals for

h2, c2 and h2 � c2 were computed by bootstrap re-sampling twin-pairs with replacement, 15,000

times.

The ACE model was also fitted to the logarithm of the variance of the corrected power envelopes

(variance of the BOLD time course) in each ROI. This provided confidence that the conclusions of the

ACE model for functional connectivity were not being driven by heritable effects in power or SNR

within the network nodes. On each ROI, we removed the same set of regressors as for the functional

connectivity analyses (save the power variables) before fitting the model.

Lastly, the ACE model was fitted within each ROI to estimates of cortical curvature for each of the

subjects in the fMRI sample. We regressed out the effect of age, the square of age, sex, an age and

sex interaction, the cube root of intra-cranial volume and of cortical volume, subject motion and the

MR image reconstruction software version, before computing the mean heritability (h2) over all

points within each ROI. To compare spatial profiles of cortical folding with connectivity, we averaged

the heritabilities of each network connection onto their constituent nodes, to create a spatial map

suggesting the heritability of connectivity by ROI. These maps were correlated with the maps of heri-

tability of cortical curvature in each ROI, and significance assessed by permuting ROIs 5000 times.

Methodological notes
We applied a false discovery rate correction to the 21 principal statistical tests conducted for this

paper to compensate for the multiple comparisons we perform (Benjamini and Hochberg, 1995).

Uncorrected and corrected p-values are available in Supplementary files 3 and 5.

All analyses were performed in Matlab. MEG network analyses were performed with the MEG-

nets software (github.com/OHBA-analysis/MEG-ROI-nets), fMRI network analyses with the FSL-nets

software (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), and heritability analyses using APACE (the Advanced

Permutation inference for ACE models (APACE) software is available at warwick.ac.uk/tenichols/

apace).
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Kamil Ugurbil, WU-
Minn HCP Consor-
tium

2013 The Human Connectome Project
HCP900 data release

http://www.humancon-
nectome.org/study/hcp-
young-adult/document/
900-subjects-data-re-
lease

Open access dataset
available from
ConnectomeDB
(https://db.
humanconnectome.
org/app/template/
Login.vm). Account
registration is
required and access
to certain data
elements such as
family structure is
subject to restricted
use terms (please see
http://www.
humanconnectome.
org/study/hcp-young-
adult/data-use-
terms)

L J Larson-Prior, R
Oostenveld, S Della
Penna, G Michalar-
eas, F Prior, A Ba-
bajani-Feremi, J-M
Schoffelen, L Mar-
zetti, F de Pasquale,
F di Pompeo, J
Stout, Mark W
Woolrich, Q Luo, R
Bucholz, P Fries, V
Pizella, G Romani,
M Corbetta, A Z
Snyder, WU-Minn
HCP Consortium

2013 The Human Connectome Project
HCP900 MEG data release

http://www.humancon-
nectome.org/study/hcp-
young-adult/document/
900-subjects-data-re-
lease

Open access dataset
available from
ConnectomeDB
(https://db.
humanconnectome.
org/app/template/
Login.vm). Account
registration is
required and access
to certain data
elements such as
family structure is
subject to restricted
use terms (please see
http://www.
humanconnectome.
org/study/hcp-young-
adult/data-use-terms)
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