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DECOMPOSITION OF NEURAL CIRCUITS OF HUMAN 

ATTENTION USING A MODEL-BASED ANALYSIS: SSoTS 

MODEL APPLICATION TO FMRI DATA 

EIRINI MAVRITSAKI, HARRIET ALLEN AND GLYN HUMPHREYS 

Behavioral Brain Sciences Centre, School of Psychology, University of Birmingham, UK, 

B15 2TT 

The complex neural circuits found in fMRI studies of human attention were decomposed 

using a model of spiking neurons. The model for visual search over time and space 

(sSoTS) incorporates different synaptic components (NMDA, AMPA, GABA) and a 

frequency adaptation mechanism based on IAHP current. This frequency adaptation 

current can act as a mechanism that suppresses the previously attended items. It has been 

shown [1] that when the passive process (frequency adaptation) is coupled with a process 

of active inhibition, new items can be successfully prioritized over time periods matching 

those found in psychological studies. In this study we use the model to decompose the 

neural regions mediating the processes of active attentional guidance, and the inhibition 

of distractors, in search. Activity related to excitatory guidance and inhibitory 

suppression was extracted from the model and related to different brain regions by using 

the synaptic activation from sSoTS’s maps as regressors for brain activity derived from 

standard imaging analysis techniques. The results show that sSoTS pulls-apart discrete 

brain areas mediating excitatory attentional guidance and active distractor inhibition. 

1.   Introduction 

In order to understand both the functional mechanisms and the underlying neural 

substrates of brain functions, investigators are increasingly combining behavioral 

studies with fMRI. However, given the limited spatial and temporal resolution of 

fMRI, it is often difficult to separate the different functional processes that may 

contribute to visual selection. Specifically, different functional processes can 

combine to influence selection. One way to advance the analysis of fMRI data is 

to link the data to an explicit model of performance, which does distinguish 

between the different functional processes, and which can be used to predict the 

variation in fMRI signal as the different processes take place.  Here we present 

an example of this using the Spiking Search over Time and Space (SSoTS) 

model of visual search [1]. We show how sSoTS can be used to distinguish 

fMRI signals associated with excitatory and inhibitory processes in search, 

providing a more detailed analysis of the relations between cognitive and 

neuronal function.   
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1.1.   Human visual search 

Traditionally, in visual search tasks participants are asked to find a known target 

item amongst irrelevant distracter items, and the time it takes participant to 

identify the target is measured (the reaction time (RT)). Watson and Humphreys 

[2] devised a version of visual search where both temporal and spatial features of 

targets and distracters were varied. They adapted a standard color-form 

conjunction task, but presented half of the distractors (the preview) prior to the 

other distracters and the target (when present). They showed that this preview 

search condition was facilitated relative to the standard conjunction search, with 

search efficiency approximating that found when the new items were presented 

alone (the 'single feature baseline'). Watson and Humphreys [2] proposed that 

temporal prioritization in search tasks depends, at least in part, on the active 

ignoring of old items – a process they termed visual marking. Humphreys et al. 

[3] showed that visual marking is disrupted when a secondary task must be 

conducted during the preview, consistent with the secondary task disrupting top-

down ignoring of old items. In addition, there is also evidence for top-down 

excitatory biases influencing search. For example a positive bias for expected 

target properties can offset the effects of an inhibitory bias against the features of 

old distracters [4] (induced by, for example, instructions or changes in display).   

There is now considerable evidence that search is contingent on a network 

of neural circuits in frontal and parietal cortex that control both voluntary and 

reflexive orienting of attention to visual information [5]. The inter-play between 

the different parts of this fronto-parietal circuit however remains less understood.  

Brain imaging studies of preview search [6, 7] converge to demonstrate that 

the preview period is associated with activation within the superior parietal 

cortex and the precuneus. Allen et al. [8] examined preview search both when a 

preview task was carried out alone and under conditions of secondary task load 

(a visual memory task was interleaved with preview search). In a single feature 

baseline, the participant had to locate a blue house target amongst red house 

distracters. In a conjunction condition, the same target had to be found amongst 

blue faces and red house distracters.  In the preview condition, the preview items 

(blue faces) appeared 2 sec before the search display (red houses and blue house 

target). In the visual memory task participants had to memorize the positions of 

dots presented before the preview display. Then, after the presentation of the 

preview, either the dots re-appeared or the search display was presented. When 

the dots re-appeared the task was to judge whether one had moved location. This 

study used faces and houses as search items rather that the typical lines or letters. 

This allowed Allen et al [8] to draw conclusions about the activity in stimulus-
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specific cortex (e.g. fusiform face area). Although there are differences in 

behavior with these more complex stimuli, crucially, Allen et al. [8] found a 

behavioral advantage for preview search which decreased when there was a 

memory load. Active ignoring of the preview display was associated with 

activation in a network of brain areas in posterior parietal cortex. These same 

regions were active during the visual memory task and decreased their activation 

for preview displays when the memory task was imposed. 

1.2.   Modelling human search 

Over the past ten years, increasingly sophisticated computational models of 

visual search and selection have been proposed [9-12]. These models generate a 

system-level account of performance, emerging from interactions between 

different local components. This provides an important means of examining how 

interactions within a complex network generate coherent behavior. 

The majority of models to-date have used relatively high-level connectionist 

architectures, where (e.g.) activity within any processing unit typically mimics 

the behavior of many hundreds of, rather than individual, neurons [e.g. [9]]. 

Such models not only operate at a level of abstraction across individual neurons, 

but they also very often include network properties divorced from real neuronal 

structures (e.g., with units being both excitatory and inhibitory, depending on the 

sign of their connection to other units). One exception to this approach is the 

work of Deco and colleagues [10, 13] who simulated aspects of human attention 

with models based on ‘integrate and fire’ neurons. These networks utilize 

biologically plausible activation functions and generate outputs in terms of 

neuronal spikes (rather than, e.g., a continuous value, as in many connectionist 

systems). One attempt to simulate human search over time as well as space has 

been made using the spiking Search over Time and Space model (SSoTS)[1, 14], 

which represents an extension of the original work of Deco and Zihl [10]. sSoTS 

uses a system of spiking neurons modulated by NMDA, AMPA, GABA 

transmitters along with an IAHP current, as originally presented by Deco and Rolls 

[13] (see also [15]). sSoTS is separated into processing units that encode the 

presence of independently coded features (e.g. color and form, see Figure 1).  

The feature maps can be thought as high-level representations for groups of low 

level of features. There is, in addition, a ‘location map’ in which units respond to 

the presence of any feature at a given position. At each location (in the feature 

maps and the location map), there is a pool of spiking neurons, providing some 

redundancy in the coding of visual information. The feature maps may 

correspond to collections of neurons in the posterior ventral cortex (e.g., V4), 
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while the location map may correspond to collections of neurons in dorsal 

(posterior parietal) cortex (for more information for the model see [1]). Over 

time, the model converges upon a target, with reaction times (RTs) based on the 

real-time operation of the neurons.  

     Search efficiency in sSoTS is determined by the degree of overlap between 

the features of the target and those of distracters. RT lengthen as overlap and 

competition for selection both increase. Thus, search for a conjunction target 

(sharing one feature with each of two distracters) is more difficult than search for 

a feature-defined target (differing from the distracters by a unique feature). 

Mavritsaki et al. [1, 14] showed that search in the conjunction condition also 

increased linearly as a function of the display size, mimicking ‘serial’ search. 

In addition to modeling spatial 

aspects of search, SSoSTs also 

successfully simulated data on search 

over time, in the preview search 

paradigm [2, 16]. Provided the 

interval between initial items and the 

search display is over 450 ms or so, 

the first distractors in preview search 

have little impact on behavioral 

performance [2, 16]. The sSoTS 

model generated efficient preview 

search when there was an interval of 

over 500ms between the initial items 

and the final search display. sSoTS 

mimics the behavioral time course due to the 

contribution of: (i) a spike frequency-adaptation mechanism generated from a 

slow [Ca2+]-activated K+ current, which reduces the probability of spiking after 

an input has activated a neuron for a prolonged period [17], and (ii) a top-down 

inhibitory input that forms an active bias against known distracters. The slow 

action of frequency-adaptation simulates the time course of preview search. The 

top-down inhibitory bias matches data from human studies where the detection 

of probes has been shown to be impaired when they fall at the locations of old, 

ignored distractors [18, 19]. In addition, in explorations of the parameter space 

for SSoTS, Mavritsaki et al. [1, 14] found that active inhibition was necessary to 

approximate the behavioral data on preview search. These results, using the 

sSoTS model, indicate that processes of co-operation and competition between 

processing units may not be sufficient to account for the full range of data on 

Figure 1: The architecture of the sSoTS

model: The maps outlined in bold (Blue and

House maps) receive top-down excitation (for

the expected target) and the maps linked to

the external inhibitory pool (the Blue and
Face maps) receive the top-down inhibition

(for the features of the preview).
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human selective attention and that factors such as frequency adaptation are 

required in order to simulate the temporal dynamics of visual attention.  

1.3.   Linking the model to fMRI 

Imaging studies have shown a network of regions in posterior parietal cortex 

(PPC) (including superior parietal cortex and precuneus, extending into occipital 

cortex) associated with successful prioritization of the new target and  ignoring 

of the old distracters. However, the increased activation in these regions found in 

preview search is ambiguous, because preview search is influenced by both 

positive expectancies for targets and inhibitory suppression of distracters [20]. 

This ambiguity is not apparent in the sSoTS model, though, where effects of top-

down expectancies and inhibitory biases against distracters can be distinguished. 

For example, the map associated with the feature of the old distracters that does 

not re-occur in the search display (i.e., the map for face stimuli, in Allen et al. 

[8]) uniquely receives top-down inhibition in SSoTS. The map corresponding to 

the feature of the target not present in the old distracters (i.e. houses in Allen et 

al [8]) uniquely receives top-down activation. The changes in activity over time 

in these maps may be used to predict changes in the fMRI signal linked, 

respectively, to top-down expectancies and inhibition. The distinct time courses 

of activation in the model may then be used to pull-apart activity from within the 

regions linked to preview search, allowing us to isolate the neural regions 

concerned with excitatory and inhibitory modulation of processing. We report an 

analysis of fMRI data on preview search taking this approach. 

2.   sSoTS architecture 

sSoTSs consists of spiking neurons organized into pools containing several units 

with similar biophysical properties and inputs. The simulations were based on a 

highly simplified case where there were six positions in the visual field, allowing 

up to 6 items in the final search displays. SSoTS has three layers of 

retinotopically-organized units, each containing neurons that activate on the 

basis of a stimulus falling at the appropriate spatial position. There is one layer 

for each feature dimension ("color" and "form") and one layer for the location 

map (Figure 1). The feature maps encode information related to the features of 

the items presented in an experiment – in this case, Allen et al. [8]. Here, the two 

features encoded are color and object shape (i.e. house or face). Here, the feature 

dimension "color" encoded information on the basis of whether blue or red was 

presented in the visual field at a given position i, (i=1,...,6) (creating activity in 

the red and blue feature maps). The feature dimension “form” encoded 
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information on the basis of whether there is a house or face present in the visual 

field at a given position i. The pools in the location map sum activity from the 

different feature maps to represent the overall activity for the corresponding 

positions in the visual field. Each of the layers contains one inhibitory pool (see 

also [13]) and one non-specific pool, along with the feature maps.  

The system used and the connections are illustrated in Figure 1. More 

details about the architecture of sSoTs, the organisation of the units (neurons) in 

the network and the neuronal characteristics can be found in Mavritsaki et. al [1]. 

The parameters for the simulations were established in baseline conditions 

with ‘single feature’ and ‘conjunction’ search tasks as reported by Watson and 

Humphreys [2] and Allen et al. [8] (conjunction search: blue house target vs. red 

houses and blue faces distracters; feature search: blue face target vs. red houses 

distracters). The generation of efficient and less efficient (linear) search 

functions in these conditions replicates the results of Allen et al. [8]. These same 

parameters were then used to simulate preview search.     RTs were based on the 

time taken for the firing rate of the pool in the location map to cross a relative 

threshold (thr), (for more details see [1]). Detailed simulations were run at the 

spiking level only, to match the experimental results [8]. Additionally, to 

simulate the working memory effect, we reduced slightly the top-down inhibition 

during the ‘working memory’ trials – assuming this is equivalent to the effects 

generated when human participants hold another stimulus in working memory 

during the preview period. 

3.   Applying the sSoTS model to fMRI data 

3.1.   Extraction of activation maps for top down inhibition and excitation 

During the preview period activation in the model is affected by several factors: 

top-down excitation (for the target), top-down inhibition (for old distractors) and 

passive inhibition caused by frequency adaptation. To compare the fMRI data 

with the model activation patterns we extracted activation maps from the model 

related to the above mechanisms. For example, consider preview search for a 

new blue house target amongst previewed blue faces and new red houses 

distracters [8]. In SSoTS there is positive bias applied to maps representing the 

features of targets, for Allen et al. [8] the target is a blue house, therefore the 

map that encodes the shape  “house” and the map that encodes the color “blue” 

receive top-down excitation. Furthermore, there is an inhibitory bias applied to 

maps representing the features of old distracters (distracters presented during the 

preview), these distracters are blue faces, so the map that encodes the shape 
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“face” and the map that encodes the color “blue” both receive top-down 

inhibition. By tracing activity in the house, face and blue maps, we can correlate 

brain activity with active excitatory and inhibitory biases in the model. Note that 

we are interested in activity relating to these biases and processes, not to the 

distracter features or colors. 

To extract the brain activity relating to these processes, we first extracted a 

time course of the activity in each of the sSoTS maps (2 x shape, 2 x feature and 

the location map) over the experiment of Allen et al [8]. These time courses were 

convolved with a standard estimate of the heamodynamic function and used as 

regressors for the fMRI activity. To estimate the activations associated with 

positive biases for targets and inhibitory biases against distracters (see Table 1 

and 2) we compared the activations found for each map (for both the conjunction 

and preview search conditions). Thus, for conjunction search, the positive top-

down bias was given by (Target form – Distractor form) + (Target color – 

Distractor Color), i.e: (House – Face+ Blue – Red). For preview search it was 

given by (Map with only Positive Bias –Map with no bias) + (Map with Positive 

and Negative Bias- Map with only Negative Bias), i.e: (House-Red+Blue-Face)                                                                                      

For preview search the top-down inhibition was given by (Map with only 

Negative Bias – Map with no Bias) + (Map with Positive and Negative Bias – 

Map with only Positive Bias), i.e: (Face-Red+Blue-House)                                                                                                

 
Table 1. Map extraction for Single Feature (SF), Conjunction (CJ) and Preview (PV) search. 

 

 

SF and CJ 

 Top-Down 

Excitation 

SF and CJ 

Top-Down 

Inhibition 

 PV 

Top-Down 

Excitation 

PV 

Top-Down 

Inhibition 

Face NO NO NO YES 

 House YES NO YES NO 

Blue YES NO YES YES 

Red NO NO NO NO 

3.2.   Comparison of fMRI data with model bold responses 

Activation in sSoTS was linked to the human fMRI data by taking into account 

the delay present in the fMRI bold signal (about 5-9 sec) [21]. To do this, 

activity in the model was convolved with a haemodynamic response function 

(HDR) [22-24]. Previous work by Gorchs and Deco [22] simulated the bold 

response by taking the average pool activity in a given location in the model and 

convolved this with a Poisson distribution. This result was then compared with 

bold responses taken from the fMRI data (from the corresponding simulated 
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region). Furthermore, instead of using the average pool activity the synaptic 

activity can also be employed. Deco et al. [24] used the synaptic activity from 

his model and convolved it with the haemodynamic response function suggested 

by Glover [23]. To compare our theoretical data with the fMRI experimental 

data we used the average synaptic activity from the pools in the model’s feature 

maps. The comparison took place in two steps. First we compared qualitatively 

the bold response from the fMRI data with the activation function with top-down 

inhibition similarly with previous work [22-24]. Then average synaptic pool 

activity was then directly compared with the observed bold data from Allen et al. 

[8], using the synaptic activity as regressors for the fMRI analysis.   

We note that there was no top-down inhibitory bias applied during 

conjunction search. However, activity in the same maps was examined in order 

to provide a baseline with the preview search task. After extracting the activity 

maps from the model, we averaged over 20 trials for each condition and we took 

the changing time course of activity reflecting top-down inhibition and top-down 

excitation activity for each condition. This activity was convolved using an 

assumed haemodynamic response function [24] to create a time series of 

predicted bold activity. This time series was then used as a regressor for the 

fMRI data in the contrasting search conditions. 

fMRI analysis was done using FEAT, part of fsl (www.fmrib.ox.ac.uk/fsl). 

The data were pre-processed as in Allen et al. [8], including correction for head 

movement, within scan signal intensity normalisation, high pass temporal 

filtering (to remove slow wave artifacts). The time course for each map in the 

model was entered as a separate regressor. Positive and negative biases were 

estimated by combining the regressors for each map as desribed above. Z 

(Gaussianised T/F) statistic image were thresholded using clusters determined by 

Z>2.3 and a (corrected) cluster significance thresholded of P=0.05. 

4.   Results 

The behavioural results generated by sSoTS matched the classical findings on 

single feature, conjunction and preview search [2]. Search slopes were steepest  

for the conjunction condition (“full set search”, 46 ms/item) and shallow in the 

single feature condition (the half set baseline, 14 ms/item). The search slope was 

12 ms/item in the preview condition. The slope of the preview condition 

increased when a working memory task was added (19 ms/item). See Figure 2.  

 

Activity linked to top-down inhibition in 

the maps was compared with the fMRI 

Figure 2: The slopes generated by sSoTS

for single feature search (the half set

baseline), conjunction search (the full set

baseline), standard preview search and

preview search with a working memory
load (the loaded search condition).

http://www.fmrib.ox.ac.uk/fsl
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data in precuneus by convolving the activation with the HDR. We found that the 

HDR for top-down inhibition in the preview condition was increased for preview 

search compared with conjunction search – a result that reflects the greater 

salience of the target in preview compared with conjunction search, and not the 

difficulty of the search tasks (conjunction search being the more difficult). This 

matches data reported by [8] for the precuneus (see Figure 3). 

     We then took the time courses of activation reflecting the top-down excitatory 

and inhibitory activity in sSoTS’s feature maps and applied these as regressors to 

the fMRI data associated with the preview condition reported by Allen et al. [8].  

In this study we sought areas where BOLD activity was related to excitatory and 

inhibitory activity. Allen et al. [8] reported activation in posterior parietal cortex 

(superior parietal lobe and precuneus) linked to the preview condition. We found 

a reliable correlation (p<0.001 for all correlations) in right lateral parietal cortex 

for top-down excitatory activity predicted by sSoTS. In contrast, top-down 

inhibitory activity in the model was correlated with 

fMRI activation in the medial precuneus (Z=50, Figure 4A). The model-based 

analysis distinguishes two functionally different operations taking place when 

observers attempt to ignore the preview and  prioritise search to new items [20].  

 
Figure 4: A. Top-down inhibition in the model (white area correspond to maps: (1-4)+(3-2)) was 

associated with activity the medial precuneus, while top-down excitation in the model (black area 

Figure 3: The haemodynamic response found in the precuneus in preview and

conjunction search, in Allen et al. [8] and the simulated haemodynamic response in

the location map in sSoTS.
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corresponds to maps: (2-4)+(3-1)) was associated with activity in the lateral parietal cortex (right 

hemisphere). B. Comparisons between preview and conjunction search (the full set baseline). The 

white regions reflect correlations between (i) top-down inhibitory activity in sSoTS and (ii) 

increased activation in preview compared with conjunction search. The black regions reflect 

correlations between (i) top-down excitatory activity in sSoTS and (ii) greater activation in 

conjunction search compared with preview search. C. Comparisons between the standard preview 

condition and the condition where preview search was conducted with a working memory load (the 

loaded search condition) [2]. The white regions reflect correlations between (i) top-down inhibitory 

activity in sSoTS and (ii) increased activation in standard preview search compared with the loaded 

search condition. The black regions reflect correlations between (i) top-down excitatory activity in 

sSoTS and (ii) increased activation in the loaded search condition compared with standard preview 

search. 

   We also examined the differences between bold activity in the preview and 

conjunction search conditions in relation to the activation differences between 

these conditions apparent in sSoTS (comparing activity in the critical maps in 

preview and conjunction search). In SSoTS these activation differences are 

driven by the application of top-down inhibition in preview search. The results 

showed a reliable correlation between the activation differences in sSoTS and 

increased activation in the precuneus in preview search compared with the 

conjunction condition. There was also a correlation between differences in 

activity in the conjunction and preview conditions in SSoTS and increased 

activity for the conjunction condition over the preview condition in lateral 

parietal cortex (see Figure 4B). This may reflect the increased role of excitatory 

guidance to the target in the conjunction condition.  

Finally, we evaluated the differences in activity between the standard 

preview condition and preview search conducted with a memory load. The 

differences in activity between these two conditions in sSoTS was correlated 

with (i) an increase in bold activity in the standard preview compared with the 

working memory condition in the precuneus, and (ii) an increase in bold activity 

in the working memory condition compared with the standard preview in lateral 

parietal cortex (Figure 4C). These results fit with there being reduced inhibitory 

activity under conditions of working memory load, along with an increased role 

for top-down activation for the target under the more difficult working memory 

condition. 

5.   Conclusions 

sSoTS replicated successfully the behavioral results from Allen et al. [8]. 

Activity in the model linked to top-down excitation and inhibition also correlated 

with the bold signal in posterior parietal cortex. Prior fMRI studies have 

demonstrated increased activity in posterior parietal cortex linked to preview 

search, but differences in excitatory and inhibitory influences have not been 



 11 

separated.  In SSoTS the activation associated with top-down excitation and 

inhibition can be distinguished. We showed that bold activity in the precuneus 

was associated with top-down inhibition in the model, while activity in more 

lateral parietal areas (particularly in the right hemisphere) correlated with top-

down excitation in the model. Activation in these two regions also changed 

across the search conditions in accord with changes in SSoTS. Higher activation 

in the precuneus in preview search compared with (i) conjunction search and (ii) 

the working memory condition was correlated with greater inhibitory activity in 

the model. In contrast, there was increased activity in lateral parietal cortex 

associated with increased activation in (i) conjunction search and (ii) the 

working memory condition, compared to standard preview search, linked to 

increased top-down excitation in SSoTS. These data suggest that top-down 

inhibition may play a driving role in generating efficient preview search 

compared with less efficient search conditions (conjunction search and preview 

search with a working memory load). Top-down activation, on the other hand, 

appears to play a greater role in inefficient search (conjunction search, preview 

search with a working memory load) than in efficient preview search. This may 

reflect the more prolonged search taking place, which enables a greater role for 

top-down excitation, for the target, to emerge. The analysis demonstrates that the 

model-based analysis can help to identify the functional role of different brain 

regions in search, providing a more accurate account of the neural substrates of 

visual selection. 

Finally it should be noted that, relative to the neuronal structures controlling 

attention and search in the human brain, the sSoTS model is very simplistic. For 

example, in a more realistic model, the top-down modulation of excitation and 

inhibition would come from external neurons, whose own operation should vary 

according to the neurotransmitter functions involved. In addition input coming 

into the maps should more accurately reflect the properties of neurons in earlier 

visual areas, there would be topological organization within feature and location 

maps, and local grouping in addition to global inhibitory or excitatory 

modulation. It will be both important and interesting to explore the functional 

consequences of adding in these extra factors. For now, however, the results 

indicate the utility of even a simple model for pulling apart functionally distinct 

activations at a neural level. 
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