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Accelerating Petri-Net Simulations using NVIDIA Graphics Processing Units

Panayioti C. Yianni1, Luis C. Neves2, Dovile Rama2, John D. AndrewsI2

Abstract

Stochastic Petri-Nets (PNs) are combined with General-Purpose Graphics Processing Units (GPGPUs)

to develop a fast and low cost framework for PN modelling. GPGPUs are composed of many smaller,

parallel compute units which has made them ideally suited to highly parallelized computing tasks.

Monte Carlo (MC) simulation is used to evaluate the probabilistic performance of the system. The

high computational cost of this approach is mitigated through parallelisation. The efficiency of different

approaches to parallelization of the problem is evaluated. The developed framework is then used on

a PN model example which supports decision-making in the field of infrastructure asset management.

The model incorporates deterioration, inspection and maintenance into a complete decision-support

tool. The results obtained show that this method allows the combination of complex PN modelling

with rapid computation in a desktop computer.
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1. Introduction

Petri-Nets (PNs) have been gaining in popularity in the field of Operations Research, specifically

for work-flow management systems (Salimifard and Wright, 2001), supply chains (Viswanadham and

Raghavan, 2000) and enterprise resource planning (Aloini et al., 2012). One of the limitations of PNs in

conjunction with probabilistic transitions is the requirement for Monte Carlo (MC) simulations resulting

in high computational cost. Studies have been undertaken into accelerating PNs with General-Purpose

Graphics Processing Units (GPGPUs), however these have mostly been in the fields of Biology and

Physics.

The use of MC methods is very popular in science, engineering and economics research. Over time

MC-based models have gotten progressively more sophisticated which often means longer computa-

tion times, limiting their applicability. The use of Graphics Processing Units (GPUs) in academia as

GPGPUs is gaining in popularity as it has the potential to dramatically decrease computation time

allowing for much faster throughput. At the same time, the technological development of GPUs and
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their progression into general computing has meant that the cost per computing core has dropped

significantly.

This study investigates the suitability of GPGPU acceleration with PNs for a decision support

tool, in this case using an example from asset management. Asset management models often combine

engineering, management and economics to be able to make informed decisions. A simple PN example

is used as a proof of concept and then the same approach is applied to an established railway bridge

model. This model was selected as it contains a number of complex PN features and therefore would

be appropriate to test the suitability of GPGPU acceleration. The bridge model used as the example

in this study provides predictions of condition over time, including the effects of maintenance actions

and the associated costs.

Although the study uses a railway bridge asset management example, many of the topics discussed

are appropriate for GPGPU acceleration of general decision support PN models. As decision support

tools become more engrained into business practices and as the adoption of PNs as a modelling approach

becomes more common, their efficient computation will become more important.

2. Simulation Acceleration using GPGPUs

A number of studies have been undertaken in the field of Physics to accelerate MC-based models

with GPGPUs. Although not directly related to PNs, the application of the GPGPU to the modelling

approach is relevant.

Tomov et al. (2005) performed a study to investigate the suitability of GPGPUs with 2D and 3D

Ising models. An Ising model represents the spin of magnetism in a lattice structure. Each of the

magnets can be in one of two states. The model becomes more complex when considered in a 3D space.

The authors state that the common way of incorporating MC methods into the Ising model is to choose a

random path through the magnets, at each magnet generating a random number which decides whether

the spin should be reversed or not. At this time the Compute Unified Device Architecture (CUDA)

framework (the standard framework for GPGPU development currently) was yet to be established and

so an older framework known as Cg was used. The GPU used was an NVIDIA NV30, a high-end GPU

from 2003. The authors conclude that the GPGPU implementation of the Ising model is three times

faster than the Central Processing Unit (CPU) implementation on average. This holds true for both

the 2D and 3D examples tested. The authors mention that the GPGPU performance may have been

limited due to branching as the contemporary GPU used for this study did not support this feature.

Preis et al. (2009) also perform a study using GPGPUs on Ising models, testing both 2D and 3D

models. They use an NVIDIA GeForce GTX 280, a high-end GPU from 2008. The CUDA framework

had been released by this time. They use a checker-board pattern approach to make the computation

more efficient. They achieve a 60 times speed-up factor in the 2D Ising model test and a 35 times

speed-up factor in the 3D scenario.
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Yang et al. (2007) used the power of GPGPUs to accelerate molecular dynamics. The study involved

simulations to calculate thermal properties. The process of simulating molecules involves a 3D grid of

interacting nodes. Simulations are carried out where the amount of energy passed from atom to atom

is recorded. The stochastic nature of the modelling is due to the movement of molecules based on a

decision which uses random numbers. They used an NVIDIA GeForce 7800 GTX, a high-end card from

2005. They used the Cg programming framework with 600,000 iterations per simulation. The number

of atoms in the simulation was tested against the execution time. The results show that the execution

time almost follows an exponential curve with the number of atoms in the simulation. In every test, the

GPGPU execution is quicker than that of the CPU. The authors conclude that their average speed-up

factor is between 10 and 11 times using the GPGPU.

van Meel et al. (2008) also use GPGPUs with molecular dynamics. They implement the N-squared

molecular dynamics algorithm for their simulations. In contrast to Yang et al. (2007), the CUDA

framework had been released by this point. They perform an interesting comparison between the

simulations performed on (1) a CPU, (2) GPGPU with Cg and (3) GPGPU with CUDA. As well as

the update in programming framework, they use a newer GPU from Yang et al. (2007): an NVIDIA

GeForce 8800 GTX. Their results show that the GPGPU with Cg performs around 40 times faster

than the CPU implementation. Using the newer CUDA framework, they manage an 80 times speed-up

factor over the CPU execution.

Geist et al. (2005) was one of the first studies to try to accelerate PNs with GPGPUs. They use an

NVIDIA GeForce 6800 Ultra, a high-end GPU from 2004. The authors create a PN simulator using Cg

called “Cgpetri”. They compare this to serial PN simulators “xpetri” (Geist et al., 1994) and “SPNP”

(Hirel et al., 2000). The example of the dining philosophers was used in the study, created by E. W.

Dijkstra, but formalised by Hoare (1978). This is a common example of a PN with conflict conditions.

These arise because each philosopher requires two forks to eat with, however there are too few forks

to satisfy each diner. Therefore, the resource must be shared which means that the diners alternate

between two condition states. They test the example ranging from 25 diners to 400 diners, recording the

execution time. When there are few diners, execution on the CPU is faster as the data does not need to

be packaged, passed to the GPGPU and then transferred back after computation. However, the critical

point in this example is at 50 philosophers; beyond which the GPGPU based simulator outperforms the

serial simulators. For example, when the number of philosophers reaches 75, the execution time of the

serial simulator SPNP is approximately 38 seconds. This is almost twice as long as that of the GPGPU

based simulator, which is approximately equal to 18 seconds. The serial simulators follow an almost

exponential execution time with the number of diners, however when run with Cgpetri the execution

time is approximately linear as a function of the number of diners.

Geist et al. (2005) also apply this approach to a Lattice-Boltzmann example. This is commonly

used for fluid dynamics where a series of partial differential equations are to be solved. The more points
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that are created in the simulation, the more detailed the resulting outputs. There has been studies

performed to parallelize Lattice-Boltzmann models and a common approach is to divide the problem

into “subcubes” for concurrent computation. The authors propose a PN to schedule the computation of

these subcubes to increase efficiency. Again they compare Cgpetri to xpetri and SPNP. They increase

the number of places in the flow net, recording the execution time. Again, it can be seen that when

the number of places in the flow net is small, the overhead of using the GPGPU means that the

execution is slower. However, the advantage of the GPGPU quickly shows its strength as the execution

time is almost the same across the whole range of places tested whilst the serial simulators experience

significant slow down. The authors close with a comment that Moore’s Law, a characteristic applied

to CPU development, means that their performance seems to double every 18 months (Schaller, 1997).

However, the rate of development of GPUs is closer to doubling every 6 months. Therefore, not only

was the GPGPU already accelerating the simulations but the difference was set to increase even more.

Chalkidis et al. (2011) also attempt to accelerate PNs with GPGPUs. They use a real world example

from the field of biology, specifically microbiology, and medicine. They claim that using a state-of-the

art modelling approach, PNs in this instance, with GPGPU acceleration is the next step in producing

fast, accurate, modelling results. They use the CUDA programming framework with an NVIDIA

GeForce 8800, a mid-range GPU from 2006. They explain that they use Hybrid Functional PNs and

detail its decomposition for GPGPU programming. They mention that the possible acceleration could

be significant if they could parallelize their PN. They do so by splitting their PN into three processes

hierarchically. Processes one and two are able to be simulated concurrently as they do not interact

directly. Then process three can use the results of processes one and two to finish the simulation.

Theoretically, by using this approach the PN simulation could experience a 1.5 times speed-up factor in

serial operation. However, when considering the massively parallel characteristic of GPUs, the speed-up

could be significantly higher. They conclude by saying that their average PN acceleration when using

the GPGPU was 18 times faster than the serial execution.

In summary, a number of studies have been undertaken accelerating simulations in the fields of

Physics and Mathematics. Table 1 shows the results of the average speed-up factor in each of these

studies. It can be seen that earlier implementations using Cg did not provide as much speed-up as later

versions using CUDA. This occurs because: (1) the CUDA framework provided updated algorithms,

processes and techniques which would help efficiency and (2) although the studies were carried out with

contemporary CPUs and GPUs, the advancement of GPU compute capability outstrips the development

of CPUs and so the difference in compute performance grows with time.

3. Petri-Nets

PNs (Petri, 1962) have become increasingly popular in modelling economic, manufacturing and

scientific processes as well as in the field of Operations Research. Dehnert et al. (2002) employed
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Table 1: Results of the execution time of a simple PN when computing on various devices.

Study Approach Framework Speed-up Factor
Tomov et al. (2005) 2D, 3D Ising Model Cg 3
Yang et al. (2007) Molecular Dynamics Cg 10-11
Chalkidis et al. (2011) Hybrid Functional Petri-Nets CUDA 18
Preis et al. (2009) 3D Ising Model CUDA 35
van Meel et al. (2008) Molecular Dynamics Cg 40
Preis et al. (2009) 2D Ising Model CUDA 60
van Meel et al. (2008) Molecular Dynamics CUDA 80

coloured stochastic PNs to model and evaluate workflow management in business processes. Proposed

method merges control and data flow as well as organisational aspects in a single business process

model. The performance of the constructed model is evaluated by discrete-event simulations. Hosseini

et al. (1999) used generalised stochastic PNs to represent and analyse a hybrid maintenance model

of systems with both deterioration and Poisson failures. The great modelling power of PNs allowed

complex features to be easily incorporated into the model, such as pre-planned and on- condition

maintenance, imperfect and sequential inspections as well as dealing with different deterioration rates

at different deterioration stages. This makes the model more applicable to real world complex systems.

Archetti et al. (1987) used stochastic PNs for the analysis of flexible manufacturing systems. They

developed a technique for evaluating the performance of a transfer line whose stations are subject to

failures, during which work pieces can be either blocked or routed to other machines. The authors

computed the mean manufacturing time of work pieces in a transfer line under different control policies

of a work piece using a proposed marked token technique.

PNs are constructed with two types of nodes: places and transitions. Places refer to the state

of the system or an activity being undertaken in the system. Transitions cause the movement of

tokens from place to place, indicating a change in the system state. Simple transitions are triggered

by a time delay. No two transitions or places can be directly connected. Tokens are one of the most

important components of a PN, their presence or absence in a place indicates the current system state.

For example, a token occupying a place labelled “processing” could indicate that the system is in a

processing activity before the next procedure. A transition, in this example, could then move the token

to a place labelled “processed” when the procedure had been completed. The dependencies between

places and transitions are represented by edges, connecting the places and transitions to form the net

of a PN. More details can be found in Schneeweiss (2004).

PN transitions can be programmed with a wide variety of different time delays; the most basic

being a fixed time delay e.g. 3 time intervals. More advanced transitions can be embedded with

stochastic time delays. For example, in the field of reliability, the Weibull distribution is very popular

for representing asset lifetimes (Rama and Andrews, 2013). To be able to use this in a PN, the transition

would have to sample from the distribution to generate a transition time, which requires the use of

a random number. Therefore, the PN must be simulated with a large enough sample size to gain an
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understanding of the average system behaviour. This process often relies on a MC approach, hence the

dependency between stochastic PNs and MC.

Additional PN features can be used in the model, if required, including multiplicity and inhibitor

edges. Multiplicity is designed to modify the number of tokens required for the transition to be enabled.

For example, an edge marked with “3” would mean that the transition would only be enabled when

the connected place contained three or more tokens. Inhibitor edges are used to restrict firing of a

transition. The presence/absence of a token in the corresponding place can either enable or disable the

inhibitor edge from activation which in turn allows or disallows the transition to fire. More advanced

PN features can be found in (Le and Andrews, 2016).

3.1. Example Algorithm for Petri-Net Simulation

An example algorithm for PN simulation can be seen in Figure 1, represented by a flow diagram.

The initial set-up of the PN is represented as an input node as often there will be some processing of

data to construct the PN. Then the number of samples required will be represented by a loop. Within

each of the samples there will be a further loop. This process starts with the checking of the transitions

to see which are enabled (stage 4 in Figure 1). This can be quite a computationally expensive process as

every transition needs to be checked to see if all its input places are marked (contain at least one token)

and there are no active inhibitors on the transition (Jensen and Kristensen, 2009). The transitions

which are enabled can then generate a transition firing time; stochastic transitions would call random

numbers at this stage. Conflicts (i.e. two transitions are due to fire at the same time using the same

input tokens) must be avoided (stage 6 in Figure 1). Two transitions with the same transition time that

do not interfere with each other can fire simultaneously. The enabled transition(s) with the shortest

transition time would be selected for firing. The simulation time is then increased to the point of the

next transition firing. Upon firing, the input tokens are removed from the places. New tokens are

generated in the output places (Andrews, 2013). Stage 9 in the figure represents a post-firing check

which is to remove any transitions which were marked as enabled but are no longer enabled as the token

has moved from the input place. The simulation time is checked to see whether the required simulated

period has finished (e.g. 50 years). If not, the process restarts from stage 4. When the simulation time

has elapsed, the sample is complete. Stage 11 checks whether the required number of samples has been

run. Stage 12 aggregates the results as an output node as often the results will be analysed afterwards.

Finally, the algorithm terminates.

3.2. Pleasingly Parallel Algorithms

An algorithm which is able to work in parallel gives a good opportunity for speed-up if the execution

time is unsatisfactory. Algorithms which have this feature were known as “embarrassingly parallel”

however due to the connotation of this phrase has recently been replaced with “perfectly parallel” or

“pleasingly parallel”.
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1. Start

2. Initial Setup

3. Begin Sample Simulation

4. Check for Enabled Transitions

5. Select Soonest Firing Transition

6. Conflict Avoidance

7. Increment Simulation Time

8. Fire Transition

9. Verify Enabled Transitions

10. Finish
Sample
Simu-
lation

11.
Samples
Collected

12. Aggregate Results

13. Finish

yes

no

yes

no

Figure 1: Flowchart of a stochastic Petri-Net (PN).

There are a number of different ways to parallelize PNs. Chalkidis et al. (2011) demonstrated a

PN which could be split up for the purposes of parallelization. The overall PN was split up into three

sections. The two independent sections of the PN were simulated in parallel to reduce compute times.

Then the third was able to aggregate the outcome of the two independent sections to simulate the

overall model outcome. The advantage of this method is that it promotes hierarchical PNs where a

number of sub-nets can be simulated in parallel. The nets further up the hierarchy are then able to

continue with the simulation aggregating the outcome of their subordinate sub-nets.

Some systems are not able to be modelled with independent sub-nets. In these instances, an

alternative parallelisation approach must be used. Rather than trying to parallelize the PN itself,

the MC method can be parallelized. In this method, the number of samples required is selected. Each

sample is executed on an individual thread which takes the initial set-up data, carries out the simulation

and then passes back the necessary variables. An example schematic can be seen in Figure 2. The
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section labelled “Sample Simulations” could include Stages 4 to 10 of the PN algorithm in Figure 1.

Initial Set-up

Aggregate Results

... Sample
Simulations

Figure 2: A schematic demonstrating how a group of MC samples can be executed in parallel.

4. Processing Units

4.1. Central Processing Units (CPUs)

All computers contain a CPU which could be considered the centre of compute functionality. Tradi-

tionally, the CPU only contained one core on which to perform calculations. More recently, multi-core

CPUs have become available which are able to perform multiple calculations simultaneously. Due to

industry technologies, however, a dual-core system may be able to perform more than two calculations

in an instance. For this reason compute capabilities of a processing unit are compared in terms of the

number of “threads” which the processor is able to utilise at any given moment. For example, a modern

CPU may have four cores which could support up to eight threads.

A typical schematic of a CPU is shown in Figure 3. The CPU contains some fast temporary storage

as well as some control circuitry. These all serve to provide the cores with the data they require,

maximising throughput. The example CPU in the figure contains four cores which is typical of a

modern CPU.

4.2. Graphics Processing Units (GPUs)

A GPU is not a component which is mandatory to the make-up of a computer, unlike a CPU. Its

original purpose was for rendering graphics and has had considerable success in creation of animated

films where vast arrays of GPUs help to speed up production (Apodaca et al., 2000). Their classic role

was to take a small piece of data, for example representing the colour of a pixel in the frame of a film,
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Figure 3: A schematic of a typical CPU, recreated from NVIDIA Corporation (2015).

and apply a function to it. The more pixels that could be processed at once, the faster the production

of the overall frame would be. Hence, the evolution of the GPU as a massively parallel processing unit.

In comparison to CPUs, a GPU may have many more cores, but each individual core is slower.

A schematic of a GPU can be seen in Figure 4. It can be seen that there are many more cores than

the CPU seen in Figure 3. Additionally, rather than the whole processing unit sharing the cache and

control units, there are multiple cache and control units. This is because GPUs often have so many

cores that they are organised into a hierarchy (see Section 4.3.2).
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Figure 4: A schematic of a typical GPU, recreated from NVIDIA Corporation (2015).

4.3. Comparison of CPUs and GPUs

A typical CPU contains fewer faster cores whereas a typical GPU contains many slower cores. To be

able to compare computational output of the processing units, the number of Floating-Point Operations

Per Second (FLOPS) is computed using Equation 1.
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FLOPS = sockets · cores

socket
· clock · FLOP

cycle
(1)

Where sockets refers to the number of devices in use, cores refers to the number of compute cores

in each device, the clock refers to the frequency of the cores and the FLOP/cycle is based on the

architecture of the core with modern devices being able to compute 4 floating point operations per

cycle (Hunt, 1995).

Figure 5 shows the aggregated results of the best CPUs and GPUs, in terms of FLOPS, back to the

year 2000 (NVIDIA Corporation, 2015). The scale on the y-axis is in TFLOPS (1012 FLOPS). It can

be seen that the computational throughput of GPUs is far superior to CPUs. It is for this reason that

accelerating MC methods on modern GPUs could be advantageous.
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Figure 5: Graph comparing the computational throughput of the best CPUs and GPUs back to the millennium (NVIDIA
Corporation, 2015).

4.3.1. CUDA

The CUDA programming framework enables GPUs to be used for general programming tasks.

GPUs which are not being used in their traditional role are referred to as GPGPUs. For clarity in this

study, the physical processing unit is referred to as a GPU, however when using it in a non-traditional

role, as in this study, it is known as a GPGPU.

Other frameworks for programming on GPGPUs are available, however the CUDA framework seems

to be popular in academia (Kirk and Hwu, 2010). The framework uses a Single Instruction, Multiple

Thread (SIMT) programming model. This is geared towards performing the same operation on many

different pieces of data. For example, an array could be worked on where each thread takes an element

of the array and doubles it before re-inserting it into the array. In this example, every element is

performing the same instruction but to a different piece of data. Given the number of elements in the
10



array is fewer than the threads available, this effectively means that the time taken to carry out the

operation on every element in the array is the same as to perform one operation in serial mode.

Programming with CUDA has become more user-friendly and accessible to those who code in C

or C++. The latest iterations of CUDA can hook directly into the users Integrated Development

Environment (IDE) and includes a CUDA debugger as well as code profiler. Writing functions to be

performed on the GPGPU are known as kernels. The kernels accept a limited form of the C language,

however more features are being introduced with every iteration of the CUDA programming framework

(NVIDIA Corporation, 2015).

4.3.2. Grids, Blocks and Threads

Modern GPUs can have thousands of compute cores and are organised into groups for easier man-

agement. The Tesla K40 used in this study has a total of 2,880 cores organised into 15 groups, known

as Next Generation Streaming Multiprocessor Units (SMXs), each with 192 cores. As mentioned in

Section 4.1, the number of cores contained within a processing unit do not dictate the maximum number

of calculations that can be completed in an instance. This is because of industry developments which

means that cores are able to perform more than one calculation in an instance depending on the type

of operation (Preis et al., 2009). For this reason the number of “threads” are used rather than cores.

In the CUDA programming model, threads are the individual compute entities that carry out the

calculations. Groups of threads are known as blocks which have a maximum of 1,024 threads. Threads

are launched in multiples of 32 known as a warp e.g. a block of 512 threads is arranged as 16 warps.

In more recent iterations of the CUDA framework, a grid of blocks can be sent to the GPGPU for

calculation. Depending on the compute capability of the GPGPU, 3 dimensional grids of blocks can

be launched. The way these compute units are grouped is illustrated in Figure 6.

Grid

Block

Thread

Warp
(x32)

Figure 6: Diagram showing the hierarchy of blocks, warps and threads in the CUDA framework.
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Each grid dimension can accommodate up to 65,536 blocks. For example, the maximum number of

threads that can be launched on the Tesla K40 can be seen in Equation 2. This device is capable of 3

dimensional grids where each dimension can have a maximum of 65,536 blocks. Each block can have

a maximum of 1,024 threads. Depending on the complexity of the operations being called, the CUDA

cores will map one or more of these threads to themselves (Kirk and Hwu, 2010).

Max. Threads = 655363 · 1024 = 2.88 · 1017 (2)

4.3.3. Coding for GPGPUs

The architecture of a modern computer is such that the CPU and Random Access Memory (RAM)

are in constant communication, known as the “host” in the CUDA programming model. When com-

puting on the GPGPU, known as the “device” in the CUDA programming model, the host must send

the kernel instructions as well as the data required for computation. The process of this is usually:

1. create/load the data on the host

2. allocate space for the data on the device

3. copy the data over to the device

4. launch the kernel on the device

5. copy the data back from the device to the host and finally

6. free the device memory.

The communication between the host and device is through the Peripheral Component Interconnect

Express (PCIe) lanes of the computer. Although the bandwidth of these lanes has improved (Ajanovic,

2008), transferring data between the host and device is still time in which no computation is being

carried out. Therefore, when coding for GPGPUs it is imperative that the data transfer be as efficient

as possible (Sanders and Kandrot, 2010).

On the subject of GPGPU memory, there are various types of memory and each has its own purpose.

The global memory has a large allocated space. However, data from global memory is retrieved much

slower in comparison to the other memory types. The cache memory and registers are the fastest types

of memory. However, the size of these memory types is restricted. By reducing the amount of data as

much as possible and focusing on the most valuable data, it will enable more efficient use of the cache

and registers. Data in the cache/register is able to be retrieved much faster compared to the global

memory which can increase computational throughput.

As explained in Section 4.3.1, GPGPUs use the SIMT parallel model which means that each thread

gets the same instructions. Additionally, as mentioned in Section 4.3.2, threads are launched in groups

of 32 known as warps. Due to the way the SIMT parallel model works, every thread in a warp carries out

the same instruction at once. For this reason branching is a major performance limitation. Branching
12



occurs when, for instance, an IF statement is provided in the code where some members of the warp

satisfy the IF statement and others do not. In this instance the warp is split into two branches where

each branch executes their sections in serial. This can be a serious performance limitation and so

branching should be avoided if possible.

4.4. Generating Random Numbers

MC methods require the generation of many random numbers. An efficient method for generating

random numbers is essential to avoid computational slowdown. This is even more apparent after

parallelisation because of the relative time of computation. As is usually the case with computation

of random numbers on computers, a Pseudo Random Number Generation (PRNG) is used. General

methods of using GPGPUs with PRNGs are: (1) if the quantity of random numbers is pre-determinable,

a kernel can be written where each thread generates one or more random numbers storing them in an

array. A common technique for this method is to use the individual thread ID as the seed value for the

PRNG. (2) For situations when the quantity of random numbers is not pre-determinable, the PRNG

can be built directly into the simulation algorithm. This way the random numbers can be generated

on command.

A third approach was outlined for use in this study but was not required. This approach was for

situations when the number of simulations required was not maximising the capability of the GPGPU.

This approach used concurrent kernels working in collaboration. The kernel A would control the threads

carrying out the simulation. The idle threads would report to the second kernel, B, which would have

them generate and upkeep a pool of random numbers. The pool of random numbers would be used

by the threads in kernel A, effectively reducing the amount of time the simulation would take as the

time needed for getting a random number would simply be its selection from a pre-populated array.

The threads in kernel B would keep the array filled with fresh random numbers until the simulations

in kernel A had completed.

Before the CUDA framework had matured, those who required random numbers in their CUDA

kernels had to develop their own method (Preis et al., 2009). The current CUDA framework includes a

tool-kit for PRNG called “cuRAND” which includes many popular PRNG algorithms. In more recent

iterations of cuRAND, the Mersenne Twister algorithm has been introduced which has become almost

a de facto standard for PRNG (NVIDIA Corporation, 2010). However, its characteristic long period

and large state size (Matsumoto and Nishimura, 1998) created difficulties when porting the algorithm

over to GPGPUs. This is because GPGPUs work best with lightweight instructions and more complex

PRNGs can reduce performance. The default PRNG in cuRAND is the XORWOW algorithm, created

by Marsaglia (2003).

Nandapalan et al. (2011) performs a study comparing the different PRNG algorithms available for

GPGPU use. The focus is on the default cuRAND PRNG, XORWOW and the Mersenne Twister algo-

rithm. They found that XORWOW was more lightweight with a smaller footprint than the Mersenne
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Twister. In terms of throughput (random numbers generated per second), XORWOW had better per-

formance than the Mersenne Twister algorithm. Finally, the quality of the random numbers generated

was tested in the TestU01 Library, a standard PRNG benchmarking suite. In this battery of testing,

the Mersenne Twister failed two of the tests and the XORWOW algorithm failed three of the tests.

Overall, the default cuRAND PRNG, XORWOW, seems to be better in situations where speed and

lightness of weight are required. In problems where the quality of the random numbers is paramount,

the Mersenne Twister algorithm is still recommended.

5. GPGPU-Optimised Algorithm for Petri-Net Simulation

Although there are studies in which PNs have been accelerated with GPGPUs, there are no examples

in literature of asset management PN models being accelerated with GPGPUs. These represent a

different challenge for GPGPU acceleration due to their increased complexity using advanced transitions

with decision making capabilities (Le and Andrews, 2016). Additionally, there is evidence that GPGPUs

are not able to accelerate all types of problems with the main issues being: (1) highly branched

applications, (2) applications with large amounts of data causing memory latency mismatches and (3)

imbalanced workloads as would be experienced with MC-based PN samples (Che et al., 2013; Lee et al.,

2010).

Designing a PN simulation algorithm to take advantage of the benefits of GPGPUs, but avoid the

pitfalls, can be complex. An example GPGPU PN algorithm can be seen in Figure 7. The algorithm

begins with creating the data on the host device, in this case containing the information to form the

PN. Due to the CUDA framework being built on the C language, a common way of containerising the

data is to use a structure-of-arrays or an array-of-structures, depending on the data access type of the

problem.

The movement of data from the host to the device (stage 3 of Figure 7) can be wasteful as during

this time, no computation is being carried out. Therefore, minimisation of the data being transferred

can help with the computation time. In the context of PNs, each thread may need the complete set

of data to construct the PN. This can be an expensive process as the same set of data would have

to be moved to the device for each thread. However, it is possible to utilise the “constant memory”

bank of the device. Data in this region is marked as read-only and has the advantage of being able to

distribute the data to the threads much quicker. Therefore, with PNs, it may be beneficial to hold the

structure of the PN in constant memory so that each thread can access that base information quickly,

whilst holding the individual MC sample data within the threads personal memory.

Launching the kernel (stage 4 of Figure 7) involves setting the launch parameters, a combination

of blocks and threads. The way the parameters are configured changes how the GPGPU processes the

work. For example, if 1000 samples were required, one approach may be to consider each thread in its

own block and then creating a launch configuration with 1000 blocks each with 1 thread. However, this
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approach is often the slowest configuration as with so many blocks opening and closing, the majority of

the time is spent performing housekeeping on the device. The next most common approach is to try to

launch as few blocks at once with the maximum number of threads, in this example the configuration

would be 1 block with 1000 threads. The thread-centric approach is faster than the block-centric

approach but still suffers from low computational efficiency. Often the best launch configuration occurs

when the threads have enough to compute to mask the opening/closing overhead, but not too much

that they get bogged down with computation. This will often be problem specific, however it was found

for the Tesla K40 used in this study that a product of blocks and threads that equalled 15,360 resulted

in the quickest computation. This happens to be equal to the 15 SMX cores found in the Tesla K40

multiplied by 1024, the maximum number of threads which can be launched in a kernel.

Step 5 of Figure 7 mentions the thread ID check. This is an important step to avoid a thread

trying to access elements of an array which do not exist. This step is required because: (1) threads are

launched in groups of 32 known as warps, (2) all threads in a warp execute the same instructions and

(3) the CUDA framework uses the C language where arrays are a popular container type. Therefore, if

1000 threads were requested, the GPGPU would launch the nearest multiple of 32 threads that satisfies

the users request, in this case 1024 threads. The excess 24 threads would try to execute the same

instructions as the rest of the warp, however if there was any attempt at reading from or writing to an

array which had a size of 1000, there would be an error. Therefore, it is very common in CUDA kernels

to implement a thread ID check where any threads whose ID was greater than 1000 would be ignored.

The parallel execution seen in Figure 7 represents the PN sample simulations being executed on

the GPGPU. Each of these simulations would carry out the same set of processes as seen in stages 4

through 10 of Figure 1. However, one of the most important aspects when designing an algorithm for

GPGPU acceleration is to keep the code as lightweight as possible; i.e. to optimise and make the code

as simple as possible. Therefore, it may be necessary to try to reduce the number of PN functions to

minimise branching. For instance, for PNs which contain two types of transitions: (1) those with a

fixed time period and (2) those which are stochastic; it may be beneficial to try to convert them and use

single type transitions that yield similar results. For example, one may prioritise carefully calibrated

stochastic transitions over standard fixed time transitions. In this example, the fixed time transitions

may be converted to stochastic transitions with a similar behaviour. Performing this operation would

speed up computation because it would avoid an IF statement for each transition and consequently

possible branching occurrences whilst maintaining similar model behaviour.

Step 8 of Figure 7 represents the aggregation of the results. This too can be GPGPU accelerated

with the help of the Thrust library (NVIDIA Corporation, 2012). The Thrust library does not allow

interaction with kernels directly, however it includes some built in functions which are very useful for

PN simulations. One of the most useful is the reduce function which takes an array of any length and

then finds the average. It uses the massively parallel characteristics of the GPGPU to quickly find the
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average value.

1. Start

2. Create Host Structure

3. Transfer Data to Device

4. Launch Kernel

5. Thread ID Check

...

7. Transfer Data to Host

8. Result Reduction

9. Finish

Figure 7: A schematic demonstrating how a PN algorithm could be devised for GPGPU execution. Nodes with solid
outlines are performed on the host. Nodes with dashed outlines are performed on the device.

6. Simple Petri-Net Example

As a proof of concept, the simulations of a simple PN were accelerated using a GPGPU. The

PN can be seen in Figure 8; it contains two places, two transitions and a token. The PN represents

an asset failing and then being repaired. The transition marked “S” is a stochastic transition and

models the failing of an asset represented by a probabilistic distribution. A fixed time transition is

used to represent repair of the asset. In this example, the stochastic transition was calibrated with the

exponential distribution with a lambda value of 0.035. The fixed time transition represented an instant

repair. The sample was simulated for the equivalent of 100 years. The number of samples (1 · 108) was

chosen to provide enough time for the processing units to stabilise in their clock speeds.

The results of the analysis can be seen in Table 2. ID A1 shows the results of the PN simulated on

a single CPU core. For this study a standard quad core desktop CPU was used. The time taken for a

single CPU core was 12.89 seconds. This was measured using the C++standard library timing functions.

Using OpenMP (Dagum and Enon, 1998) allows for the simulation to be executed on all four cores of

the CPU. This reduced the compute time to 4.481 seconds; just under a 3 times speed-up factor (ID
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Figure 8: A simple PN accelerated with a GPGPU as a proof of concept .

A2). The parallelisation across multiple cores is not directly related to the single core performance,

this is because there are overheads in opening, closing and controlling multiple threads.

As mentioned in section 4.2, the individual cores of a GPU are not as robust as a single CPU

core. Therefore, when computed on a single GPU core (ID A3) the execution time was 237.8 seconds;

almost 20 times slower than with the single core CPU performance. However, when all the GPU cores

were enabled (ID A4) the time reduced to 0.085 seconds; over 150 times faster than the single core

CPU performance. This result demonstrates the performance gains possible when simulating PNs on

GPGPUs.

Table 2: Results of the execution time of a simple PN when computing on various devices.

ID Device Cores Time (s) Speed-up
Factor

A1 CPU 1 12.89 1.00
A2 CPU 4 4.481 2.87
A3 GPU 1 237.8 0.05
A4 GPU 2880 0.085 152

7. Railway Bridge Example

An established railway bridge model has been used as an example in this study. The model is

a decision support tool for asset management that is able to predict the condition of railway bridge

elements over time, maintenance efforts needed and associated cost. The model itself uses a Coloured

Petri-Net (CPN) approach with a number of advanced features. These include both advanced decision

making transitions and tuple information held within tokens to identify their attributes. The full model

contains 76 places, 108 transitions of which 36 contain advanced decision making functions. A simplified

overview of the model can be seen in Figure 9. The details of the full model can be found in Yianni et al.

(2016). The full model was was optimised by simplifying its structure and taking into consideration all

the suggestions from section 5. The optimised model has a much smaller footprint and is more suited

to GPGPU computation.

The deterioration module is the main part of both the full and optimised models. The module is the

same in both models to ensure the same deterioration behaviour. This uses a 2D system of condition
17
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Figure 9: A simplified version of the full railway bridge asset management PN model (Yianni et al., 2016).

states representing the type of defect and the extent of the defect. Here a 2D system of condition

states is used to represent the type of the defect and the extent of the defect. This has been calibrated

with historical data, provided by Network Rail (NR). As the bridge element deteriorates, there are a

number of routes through the 2D condition matrix. The industry guidelines on inspection of railway

structures (Network Rail, 2010) has been used to calibrate the inspection module. Depending on the

condition of the element, different inspection regimes are required. Elements in better condition require

less monitoring whereas those in poorer condition are inspected more frequently. This is reflected in the

optimised model too. Once an inspection has taken place, if a repair was required, then the appropriate

maintenance action would be selected. The full model includes a number of advanced asset maintenance

management features which complicate the PN. A number of these features are included in maintenance

decision and intervention modules. More PN features inevitably mean more IF statements in the code

which creates occurrences of branching. This has an adverse effect on the computation time of the

model. Therefore, in the optimised model these features have been simplified to reduce the branching

behaviour. However, the optimised model still conforms to the industry guidelines (Network Rail,

2012). After the intervention, the condition of the element improves accordingly.

The optimised model was tested on both a CPU and GPU to compare the difference in time. The

results can be seen in Table 3. The PN was run with 1 · 106 samples, fewer than was used with the
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Table 3: Results of the execution time of a complex PN when computing on various devices.

ID Device Cores Time (s) Speed-up
Factor

B1 CPU 1 16.51 1.00
B2 CPU 4 4.358 3.78
B3 GPU 1 263.0 0.06
B4 GPU 2880 0.886 18.6

first example as this PN is more complex and therefore takes longer to compute. ID B1 presents the

results of the single core CPU which totals 16.51 seconds for execution. Again, it can be seen that with

multi-core execution (ID B2) the speed-up factor is similar to that found in Table 2 (ID A2). When

comparing A3 and B3 from tables 2 and 3; the difference in time is minimal. However, when comparing

A4 and B4, it can be seen that there is a significant difference in time. This is because of the sizeable

difference in the amount of data needed to construct the PNs. Even though data condensing was

carried out, the data must be made available for every thread and this data transfer process extends

the overall execution time. The PN profiling revealed that the data transfer process commonly took

much longer than the actual compute process; this emphasises the importance of keeping the code and

data as lightweight as possible.

8. Conclusion

PNs are becoming increasingly popular in the field of Operations Research (Salimifard and Wright,

2001; Viswanadham and Raghavan, 2000; Aloini et al., 2012). CPNs are also gaining in popularity in

this field (Choi et al., 2002; Hosseini et al., 1999; Van Der Vorst et al., 2000). However, it is common

for these types of models to require MC-based simulations which can result in long compute times.

As modelling approaches grow in complexity, the compute time often follows that. However, with the

advancements of GPUs outstripping those of CPUs, acceleration of MC-based simulations is gaining

in popularity. Additionally, as time goes on: (1) the development of the CUDA framework makes the

features more powerful and user-friendly, (2) the compute performance of GPUs improves and (3) the

cost per FLOPS drops. These factors mean that the adoption of GPGPU acceleration should increase

dramatically.

One of the main complexities when using GPGPUs is understanding the difference between the

processing units of a traditional CPUs and those of a CPUs. Creating code which is lightweight to run,

contains minimal data transfers and is parallel in nature has the greatest opportunity for significant

acceleration. As GPGPU adoption grows, there is more of a push towards unification of the compute

units which will help to mask the boundaries between the host and the device.

The purpose of this study was to investigate how PN models used to support asset management

decisions can be accelerated with GPGPUs. As well as identifying the suitability of GPGPUs, the

process of adaptation of GPGPU acceleration was presented. To that effect, a simple PN with a single
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stochastic transition was used as a proof of concept. This simple PN was designed to mimic a basic

asset transitioning from a working to failed state. Acceleration of this PN resulted in over a 150 times

speed-up factor compared to a serial CPU execution.

The purpose of this study was to identify whether acceleration of PN models would be suitable for

GPGPUs for decision support tools. As well as identifying their suitability, the process of adaptation

for GPGPU acceleration was presented. To that effect, a simple PN was used as a proof of concept

with a single stochastic transition. This simple PN was designed to mimic a basic asset from a working

to failed state. Acceleration of this PN resulted in over a 150 times speed-up factor from serial CPU

execution.

A much more complex PN model for railway bridge asset management was used as the major case

study example in this study. The model contained a number of advanced decision making transitions

often associated with CPNs. An streamlining exercise was performed on this model to make it more

suitable for GPGPU execution, the details of which were documented in section 5. The resulting bridge

PN model was accelerated to almost 20 times its original speed. When the accelerated code was profiled,

it became apparent that the data transfer from the host to the device was taking the majority of the

time; emphasising the importance of minimising data transfers.

The results show that accelerating real-world stochastic PN models with GPGPUs is not only pos-

sible, but that the computational improvement is significant. It is possible to accelerate a MC-based

PN model to speeds far beyond those found on a traditional CPUs even with a simplistic approach to

GPGPU programming. This enhances the applicability of complex PN models which could otherwise

be computationally expensive. This technique can therefore be usefully adopted by practitioners to

reduce the computational burden of PN model simulations when evaluating alternative asset manage-

ment decisions of complex technical systems. This is particularly useful when modern optimisation

techniques, requiring repeated simulations of PN models, such as heuristic methods, are employed to

inform asset management decisions.

9. Future Developments

Data transfers can be one of the most expensive processes of GPGPU computation. During this

process, no computation can begin as the threads are waiting for the data required to begin their

computation. Although not possible for this study, an advanced technique known as cascading allows

for each individual thread to begin when its particular piece of data is available rather than having to

wait for the whole data transfer process to finish. Considering the compute time of the process is much

shorter than that of the data transfer, using a cascading approach may speed up computation even

further. The latest CUDA framework version, which was used in the study, does not yet support this

feature and therefore cascading could not be implemented. However, it is mentioned as a new feature of

the upcoming CUDA framework version. It is mentioned here as future readers may have access to the
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feature and would want to know of the most effective techniques for accelerating PNs with GPGPUs.

When optimising a full PN model for GPGPU acceleration, the reduction of features often leads to

fewer branching situations. However, it may also be possible to re-group the threads of a warp so that

one warp will satisfy an IF statement and another will not. In this configuration no branching would

have occurred as each whole warp will have diverged down different branches. Therefore, IF statements

in the code will have less of an effect on the overall computation time which means the reduction of PN

features will not be necessary. In this instance, the optimisation of a full PN model would not result

in any loss of functionality.

Finally, in newer versions of the CUDA framework, “streams” have been introduced. This is the

ability to use more than one GPU in a computer with modern desktops often being able to handle

up to 4 GPUs. This has the ability to speed up computation even further as all of these devices can

work concurrently. At the moment these work best with problems that have independent MC samples.

However, for larger computational problems, this may be a viable solution. The GPGPU PN algorithm

presented in this study could easily be modified to take advantage of a multi-GPU system.
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