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Abstract

This paper uses the method of conjugate duality to investigate a class

of stochastic optimal control problems where state systems are described

by stochastic differential equations with delay. For this, we first analyse

a stochastic convex problem with delay and derive the expression for the

corresponding dual problem. This enables us to obtain the relationship

between the optimalities for the two problems. Then, by linking stochastic

optimal control problems with delay with a particular type of stochastic convex

problem, the result for the latter leads to sufficient maximum principles for the

former.
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1. Introduction

There are many real-world problems providing applications for stochastic optimal

control formulations. Examples include the quadratic loss minimization problem in

portfolio optimization, and the consumption and investment problem in economics.

It is well-known that Markovian optimal control problems can be solved by using

either the method of dynamic programming or the stochastic maximum principle, the

two methods having been developed separately and independently. In particular, the

stochastic maximum principle typically involves a so-called Hamiltonian (function), a

corresponding system of adjoint stochastic differential equations; the optimal control

can be expressed in terms of the maximum of the Hamiltonian, analogous to deter-

ministic cases which were originally studied by Pontryagin. We refer readers to [21,

Chapter 3] for the general theory of the (Markovian) stochastic maximum principle.

Often, there is a need to extend these Markovian models to allow for time-lag or

time delay effects. For example, see [8] for delayed models in estimating volatility of

the price of a financial security. Also, although the efficient-market hypothesis states

that current prices of assets reveal all the necessary information from the market,

investors often take the historic performance of assets into consideration and use past

information in modelling the wealth processes of portfolios. In such circumstances,

if one uses stochastic delay differential equations (SDDEs) to model the state system,

the corresponding portfolio optimization problem becomes a stochastic optimal control

problem with (time) delay (see [3]). In contrast to Markovian optimal control problems,

for control problems where the state systems are described by SDDEs, the backward

equation of the value function, obtained by using the Bellman principle in the context

of dynamic programming, depends on the initial path of the state process, and so it

is generally infinite-dimensional. Note that, although recently developed functional

Itô calculus (see [5] and [6]) may be applied to the delayed trajectory, the classical

Itô formula cannot be applied to such a trajectory, Hence, it is generally difficult to

obtain a corresponding finite-dimensional Hamilton-Jacobi-Bellman equation to solve

the problem, except for some special cases. See for example [10] and [11].

Nevertheless, the Markovian stochastic maximum principle has been generalized to

several stochastic control problems when state systems are described by various SDDEs,



Conjugate Duality with Delay 3

see [4], [12], [13], [14] and the references therein. The types of delay considered in

these problems are usually either just discrete or both discrete and exponential moving

average, noting that, if there is only an exponential moving average delay involved in a

stochastic control problem, then it can be transferred to a higher-dimensional control

problem with discrete delay. For example, for stochastic control problems with discrete

delay, the authors of [4] and [12] establish sufficient maximum principles under different

models and assumptions, where the associated adjoint equations are introduced and

are described by anticipated backward stochastic differential equations (BSDEs) first

studied by Peng and Yang in [15]. Sufficient maximum principles for stochastic control

problems with both discrete and exponential moving average delays are obtained in

[13] and [14]. However, the results in [13] and [14] are very different: in [13], the

associated adjoint processes satisfy a triple of classical BSDEs with a restriction that

one of them needs to be identically zero, while in [14] the associated adjoint process

satisfies a single anticipated BSDE, but with a different Hamiltonian. As noted in [12],

the restriction in [13] in effect reduces the control problem to a finite-dimensional one.

Necessary maximum principles under various models are also studied by many authors;

see, for example, [4], [12] and [14]. All these results are proved mainly by using results

and techniques of stochastic calculus.

The conjugate duality method for analysing convex problems in the calculus of vari-

ations has played an important role in the study of classical optimal control problems.

In the deterministic case, Rockafellar in [18] uses the concept of conjugate convex

functions, described in his previous work [16], and the conjugate duality method to

derive the corresponding dual problem and then obtains the conditions for optimality.

After reformulating the control problem as a convex problem, Rockafellar obtains

a sufficient maximum principle for the control problem, involving the Hamiltonian

and associated adjoint equation. We refer readers to [17] and [19] for the method of

conjugate duality and its applications in control theory. Bismut in [1] and [2] generalizes

the work of [18] to Markovian convex and control problems. The method of conjugate

duality has also been generalized to study deterministic convex problems with delay

in [20], where the corresponding dual problem and the condition for optimality of the

convex problems have been obtained in [20]. However, these results have not been
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connected to maximum principles for stochastic optimal controls with delay.

In this paper, departing from various stochastic calculus approaches used in studying

stochastic control problems with delay in the literature, we generalize the results of [1]

on Markovian control problems and of [20] on deterministic convex problems with delay.

In particular, we extend the method of conjugate duality to study stochastic optimal

control problems with either just discrete delay or both discrete and exponential moving

average delays. For this and for clarity, we first investigate the stochastic convex

problem with discrete delay: for given convex functions L and l, minimize

Φ (X) = E

[∫ T

0

L
(
t,X (t) , X (t− δ) , Ẋ (t) , HX (t)

)
dt

]
+ E

[
l
(
X (T )

)]
,

whereX ranges through a certain family of Itô processes, Ẋ andHX denote respectively

the drift and diffusion coefficients of X and δ ∈ (0, T ) is a given deterministic length of

delay. We assume that X(t) = x0(t) for t ∈ [−δ, 0] for a given deterministic continuous

function x0. Note that, equivalently, we could maximize Φ if L and l were concave,

for example, replacing L and l by −L and −l. We investigate the corresponding

dual problem and the conditions for optimization of the above problem. As noted in

[20], the dependence on X(t − δ) in the convex problem results in its dependence on

future values in its ‘dual’ process. Unlike the deterministic case, the ‘time’ cannot

be reversed in the stochastic case. The novelty in our approach to overcome this

difficulty lies in the use of conditional expectations in the characterization of dual

processes and the use of the martingale representation theorem to identify them as

solutions to BSDEs. Then, we consider stochastic optimal control problems with just

discrete delay. We connect stochastic control problems with delay with stochastic

convex problems. This allows us to use the conditions for optimality of the convex

problems to prove sufficient maximum principles for stochastic control problems with

delay. In particular, we derive the Hamiltonian and the associated adjoint equations

and express the sufficient maximum principles in terms of them, where the adjoint

equations are anticipated BSDEs. Finally, with fairly straightforward modifications,

we extend our results in both the stochastic convex and control problems to allow the

model to include both discrete and exponential moving average delays. Although it is

not included in the paper, the approach that we take can easily be extended further

to include a Lévy jump measure or regime-switching in stochastic convex problems
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with delay. This can then be used to obtain stochastic maximum principles in the

corresponding control problems.

To be able to use the results in stochastic convex problems with delay, we require

some extra conditions on the functions involved. Some of these conditions are stronger

than those obtained using the stochastic calculus approach in the literature. Apart

from these technical conditions, if only a discrete delay is involved, our result on the

sufficient maximum principle is similar to those in [4] and [12] when their models are

restricted to ours. Note that some apparent differences in the signs of some functions

involved are the consequence of our problem being minimization and those in these

papers being maximization. However, if both types of delay are involved, our result

improves those in [14] and in [13], when the model in the latter is jump-free. Moreover,

our approach of using the conjugate duality method unifies the Hamiltonian and the

associated adjoint equations involved in the maximum principles for control problems

with either just discrete delay or with both discrete and exponential moving average

delays: those for the former are a special case for the latter.

The remainder of the paper is organized as follows. In Section 2, we describe

the setting for the stochastic convex problem with (discrete) delay. In Section 3,

we use conditional expectations to characterize dual processes and the martingale

representation theorem to link them with the solutions of BSDEs. This enables us

to derive the corresponding dual problem and, using the method of conjugate duality,

obtain conditions for optimality. In Section 4, we concentrate on stochastic optimal

control problems with discrete delay. We show how they can be reformulated as the

convex problems described in Section 2. Then, the application of the conditions

for optimality obtained in Section 3 leads to sufficient maximum principles for the

stochastic control problem with discrete delay. We also give an example to show how

the results in the previous section can be used to obtain the optimal control. In Section

5, by modifying our previous arguments, we extend our results to stochastic control

problems with both discrete and exponential moving average delays.
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2. A stochastic convex problem with discrete delay

Let (Ω,F ,P) be a complete probability space and T ∈ (0,∞) be a fixed time horizon.

For a fixed positive integer m, write B(t) = B(ω, t) for a standard m-dimensional

Brownian motion and {F(t)}t∈[0,T ] for the filtration generated by B such that the

usual conditions hold (see [9, Definition 2.25]).

In addition to m, we also fix an integer n > 0 and introduce the following four

functional spaces, where we have suppressed ω for notational simplicity:

L2(F(T );Rn): the space of F(T )-measurable, Rn-valued random variables X for

which the norm

‖X‖2 =
{

E
[
|X|2

]}1/2

is finite.

L2∞
F ([0, T ];Rn): the space of F(t)-progressively measurable, Rn-valued stochastic

processes X for which the norm

‖X‖2∞ =

{
E

[
ess sup
06t6T

|X(t)|2
]}1/2

is finite.

L21
F ([0, T ];Rn): the space of F(t)-progressively measurable, Rn-valued stochastic

processes X for which the norm

‖X‖21 =

E

(∫ T

0

∣∣X(t)
∣∣dt)2


1/2

is finite.

L22
F ([0, T ];Rn×m): the space of F(t)-progressively measurable, Rn×m-valued stochas-

tic processes H for which the norm

‖H‖22 =

{
E

[∫ T

0

∣∣H(t)
∣∣2dt]}1/2

is finite, where elements in Rn×m are represented by n×m matrices and so |H(t)|2 =

〈H(t), H(t)〉 = tr(H(t)>H(t)).

In what follows, we simply write the above functional spaces as L2, L2∞
F , L21

F and

L22
F respectively and, as above, suppress ω in functions and stochastic processes for

notational simplicity, unless it is necessary for clarity.
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Write X = L21
F ×L22

F , let δ ∈ (0, T ) be fixed and x0 ∈ C([−δ, 0];Rn) be a given initial

deterministic continuous function. Note that

max
−δ6t60

|x0 (t)|2 <∞.

We identify (Ẋ,HX) ∈ X with the continuous F(t)-adapted stochastic process X :

Ω× [−δ, T ]→ Rn defined by

X(t) = X (ω, t)

=


x0 (t) , t ∈ [−δ, 0],

x0 (0) +

∫ t

0

Ẋ(s) ds+

∫ t

0

HX(s) dB(s), t ∈ [0, T ].

(1)

Here the representation of X by (Ẋ,HX) ∈ X is unique up to indistinguishability

(see [9, Definition 1.3]). Note that, since it is continuous, X is F(t)-progressively

measurable. Moreover, we define the delayed stochastic process Xδ associated with X

by

Xδ(t) = X(t− δ), t ∈ [0, T ].

Proposition 2.1. For X defined by (1), we have that Xδ ∈ L2∞
F and X(T ) ∈ L2.

Proof. By Doob’s Maximal Inequality (see [9, page 14]), the definition of X implies

that X ∈ L2∞
F when it is restricted to [0, T ]. Then, by noting that

sup
06t6T

|Xδ(t)|2 6 2

{
max
−δ6t60

|x0(t)|2 + sup
06t6T

|X(t)|2
}

and that |X(T )|2 6 sup
06t6T

|X(t)|2, the required results follow. �

Although the domain for X defined by (1) is [−δ, T ] for fixed ω ∈ Ω, for simplicity,

we shall in the following regard X as being in L2∞
F as its path in [−δ, 0] is fixed.

Let L : Ω× [0, T ]× Rn × Rn × Rn × Rn×m → R ∪ {∞} and l : Ω× Rn → R ∪ {∞}

be two given functions. Define functions IL on L2∞
F × L2∞

F × L21
F × L22

F and Jl on L2

respectively by

IL (X,Y, Z,H) = E

[∫ T

0

L
(
t,X(t), Y (t), Z(t), H(t)

)
dt

]
and

Jl(X) = E
[
l
(
X
)]
.
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To ensure that L and l are measurable, and that IL and Jl are strictly greater than −∞,

not identically ∞ and are convex, as well as to be able to apply the conjugate duality

method to IL and Jl, we make the following assumptions throughout this paper.

Assumption I. (a) L and l are not identically ∞; when they are finite, L is a lower

semi-continuous convex function on Rn ×Rn ×Rn ×Rn×m, for any (ω, t) ∈ Ω× [0, T ],

and l is a lower semi-continuous convex function on Rn, for any ω ∈ Ω.

(b) L is F∗ × B(Rn)× B(Rn)× B(Rn)× B(Rn×m)-measurable and l is F × B(Rn)-

measurable, where F∗ for the completion of F × B([0, T ]) with respect to dP⊗dt.

Note that, in the presence of (a), the condition (b) is equivalent to L and l being

‘normal convex integrands’, a concept introduced in [16] (See also [18, page 180]).

Assumption I ensures that, for any (X,Y, Z,H) ∈ L2∞
F × L2∞

F × L21
F × L22

F and XT ∈

L2, L(ω, t,X(ω, t), Y (ω, t), Z(ω, t), H(ω, t)) and l(ω,XT (ω)) are F∗- and F-measurable

respectively.

Assumption II. (i) There exist (X,Y, Z,H) ∈ L21
F ×L21

F ×L2∞
F ×L22

F and a R-valued

F(t)-progressively measurable stochastic process τ1 satisfying

E

[∫ T

0

∣∣τ1 (t)
∣∣dt] <∞,

such that for any (x, y, z) ∈ Rn×3 and h ∈ Rn×m

L (t, x, y, z, h) >
〈
(x, y, z, h), (X (t) , Y (t) , Z (t) , H (t))

〉
− τ1 (t) , dP⊗dt-a.s.

(ii) There exist X ∈ L2 and a R-valued F(T )-measurable random variable ϑ1

satisfying E[|ϑ1|] <∞, such that for any x ∈ Rn

l(x) >
〈
x,X

〉
− ϑ1, dP -a.s.

Assumption III. (i) There exist (X,Y, Z,H) ∈ L2∞
F ×L2∞

F ×L21
F ×L22

F and a R-valued

F(t)-progressively measurable stochastic process τ2 satisfying

E

[∫ T

0

∣∣τ2 (t)
∣∣dt] <∞,

such that

L
(
t,X (t) , Y (t) , Z (t) , H (t)

)
6 τ2 (t) , dP⊗dt-a.s.
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(ii) There exist X ∈ L2 and a R-valued F(T )-measurable random variable ϑ2

satisfying E
[∣∣ϑ2

∣∣] <∞, such that

l
(
ω,X

)
6 ϑ2, dP -a.s.

Proposition 2.2. Under Assumptions I & II for L and l, we have that IL > −∞,

Jl > −∞, that both IL and Jl are not identically ∞ and that both IL and Jl are

convex.

The proof of Proposition 2.2 is essentially the same as the proof for the deterministic

case given in [18, Proposition 1]. Hence we omit it here.

Now, for given L, l, x0, δ and for X defined by (1), we define a function Φ of X in

terms of IL and Jl by

Φ(X) = IL

(
X,Xδ, Ẋ,HX

)
+ Jl

(
X(T )

)
. (2)

It follows directly from Proposition 2.2 that Φ > −∞ and that Φ is convex.

For such a function Φ we define, in a similar fashion to delay-free convex problems,

the stochastic convex problem with discrete delay as follows.

Definition 2.1. The stochastic convex problem with discrete delay associated with L

and l is to find X̄ ∈ X realizing

inf
X∈X

Φ(X), (3)

where X is identified with (Ẋ,HX) using (1). We refer to the function Φ and the

problem (3) as the primal function and problem respectively. Any X ∈ X such that

Φ(X) < ∞ will be called a feasible solution of this primal problem. Moreover, any

feasible solution X̄ that achieves the infimum in (3) will be called an optimal solution

to the primal problem.

Note that, if Φ is identically ∞, no X ∈ X will be regarded as an optimal solution.

Note also that our setting-up and definition of the primal function and problem bear

a similarity to those studied in [1]. However, the extra delayed variable Xδ introduced

in the primal function and problem is a function of X, and so the methods and results

in [1] cannot be applied directly to our problem.
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Moreover, similarly to that for the corresponding deterministic convex problem with

delay studied in [20, page 172], we define a family of perturbed functions F of Φ on X,

parameterized by (θ, ξ, η) ∈ L2 × L2∞
F × L2∞

F , by

Fθ,ξ,η(X) = IL
(
X + ξ,Xδ + η, Ẋ,HX

)
+ Jl

(
X(T )− θ

)
. (4)

Compared with the perturbed functions used for the delay-free deterministic convex

problem in [18, Section 7] and for the Markovian convex problem in [1, Definition III-1],

the function F here depends on an extra parameter η to take account of the delayed

variable Xδ in IL.

Accordingly, a family of perturbed optimization problems parameterized by (θ, ξ, η)

is to find X̄ ∈ X realizing

inf
X∈X

Fθ,ξ,η (X) .

This results in the corresponding optimal value function φ on L2×L2∞
F ×L2∞

F defined

by

φ (θ, ξ, η) = inf
X∈X

Fθ,ξ,η (X) . (5)

In particular, the relationship between F and Φ gives that

φ(0, 0, 0) = inf
X∈X

F0,0,0 (X) = inf
X∈X

Φ(X).

Clearly, F is a composition of Φ with a certain affine mapping. Thus, F is greater

than −∞ and is a convex function of X, which implies the convexity of φ.

Proposition 2.3. The optimal value function φ defined by (5) is a convex function

on L2 × L2∞
F × L2∞

F .

3. The dual problem and conditions for optimality

We now apply a duality approach of convex analysis to obtain the corresponding

dual problem to the primal problem given by Definition 2.1 and to relate the optimality

of (3) with minimizers of the corresponding dual problem.

3.1. Pairings and conjugate convex functions

The fundamental notion for applying the conjugate duality method is the concept

of paired linear spaces, or simply paired spaces, associated with a particular duality
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pairing, or simply pairing, which is an R-valued bilinear form defined on the paired

spaces. Following the convention described in [19, page 13], when we say that two

linear spaces are paired spaces, then a pairing has been specified and these two spaces

are respectively equipped with compatible topologies (see [19]) with respect to that

pairing.

Throughout this paper, we shall pair Euclidean space Rn with itself via the Euclidean

inner product. To derive the dual problem to (3), we pair L2 with itself via the pairing

defined by

� XT , X
∗
T � = E

[〈
XT , X

∗
T

〉]
; (6)

pair L22
F with itself via the pairing defined by

� H,H∗ � = E

[∫ T

0

〈H (t) , H∗ (t)〉 dt

]
; (7)

pair L21
F with L2∞

F via the pairing defined by

� X,X∗ � = E

[∫ T

0

〈
X (t) , X∗ (t)

〉
dt

]
. (8)

Since Φ is defined in terms of the functions L and l, to derive its dual we let, for any

fixed (ω, t) ∈ Ω× [0, T ], L∗ and l∗ be the usual conjugate convex functions of L and l

with respect to the pairing given by the Euclidean inner product. A similar argument

to that for [18, Theorem 2] shows that, since L and l satisfy Assumptions I, II & III, L∗

and l∗ also satisfy the corresponding Assumptions I, II & III. Moreover, since all four

spaces defined in Section 2 are decomposable (see [16, page 532]), by Proposition 2.2,

the conjugate duality given by [16, Theorem 2] can be generalized directly to relate

IL∗ and Jl∗ to IL and Jl as follows, where IL∗ and Jl∗ are defined similarly to IL and

Jl respectively.

Proposition 3.1. Under Assumptions I, II & III, IL and IL∗ are the conjugate convex

functions of each other with respect to the pairing, between the product spaces L2∞
F ×

L2∞
F ×L21

F ×L22
F and L21

F ×L21
F ×L2∞

F ×L22
F , induced directly from (7) and (8). Similarly,

Jl and Jl∗ are the conjugate convex functions of each other with respect to the pairing

(6).



12 Z. WANG, D.J. HODGE and H. LE

Noting that φ defined by (5) is convex by Proposition 2.3, the conjugate convex

function φ∗ of φ, with respect to the pairing induced from (6) and (8) between L2 ×

L2∞
F × L2∞

F and L2 × L21
F × L21

F , is given by

φ∗ (θ∗, ξ∗, η∗)

= sup
(θ,ξ,η)∈L2×L2∞

F ×L2∞
F

{
� (θ, ξ, η) , (θ∗, ξ∗, η∗)� −φ (θ, ξ, η)

}
.

(9)

Then, any solution to the optimization problem

inf
(θ∗,ξ∗,η∗)∈L2×L21

F ×L21
F

φ∗(θ∗, ξ∗, η∗)

is related to the optimality of our primal problem (3). To see this, setting (θ, ξ, η) =

(0, 0, 0) on the right-hand-side of (9), we have

φ∗(θ∗, ξ∗, η∗) > −φ (0, 0, 0) = − inf
X∈X1

Φ(X), (10)

for all (θ∗, ξ∗, η∗) ∈ L2 × L21
F × L21

F , which implies

inf
(θ∗,ξ∗,η∗)∈L2×L21

F ×L21
F

φ∗(θ∗, ξ∗, η∗) + inf
X∈X

Φ(X) > 0. (11)

In particular, if there exist (θ̄∗, ξ̄∗, η̄∗) ∈ L2 × L21
F × L21

F and X̄ ∈ X such that the

equality in (11) holds, then

0 6 φ∗(θ̄∗, ξ̄∗, η̄∗) + Φ(X) = −Φ(X̄) + Φ(X), ∀X ∈ X,

that is, X̄ is an optimal solution to the primal problem (3).

3.2. The dual problem

For the Markovian convex problem studied in [1], the corresponding φ∗ has been

expressed in terms of the corresponding IL∗ and Jl∗ in a similar manner to that for the

corresponding primal function in terms of IL and Jl. Unfortunately, the introduction

of the extra parameter η∗ in (9) to pair with η in (5), due to the delayed variable

Xδ, makes this no longer the case; a phenomenon clear from the deterministic convex

problem with delay studied in [20].

To find an expression for φ∗, we write P = L2×L21
F and, for (PT , Ṗ ) ∈ P, define the

continuous F(t)-adapted stochastic process P by

P (t) = E

[
PT −

∫ T

t

Ṗ (s) ds
∣∣∣F (t)

]
, t ∈ [0, T ]. (12)
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Clearly, P (0) is a constant. By the martingale representation theorem, there exists a

unique HP ∈ L22
F such that, for t ∈ [0, T ],

P (t) = PT −
∫ T

t

Ṗ (s) ds−
∫ T

t

HP (s) dB(s), dP -a.s. (13)

as {F(t)}t∈[0,T ] is generated by B. Moreover, by Doob’s Maximal Inequality, it follows

from (13) that, if (PT , Ṗ ) ∈ P, then P ∈ L2∞
F . As for X ∈ X, we shall identify P

with (PT , Ṗ ) ∈ P using (12). However, unlike X, the identification (12) is implicit

and it results in the explicit identification of P with (PT , Ṗ ,HP ) ∈ L2 × L21
F × L22

F

by (13). Moreover, this explicit identification of P shows that P is the solution of

a stochastic differential equation with a terminal, rather than an initial, condition,

i.e. P is the solution to a BSDE. Note that the corresponding P in the deterministic

convex problem with delay studied in [20, Proposition 3.1], which follows an ordinary

differential equation with a terminal condition, can be equivalently expressed as the

solution of an ordinary differential equation with an fixed initial condition, in a similar

manner to that for X in the corresponding primal problem described in [20, page 167].

The identification of P here described by a BSDE is not equivalent to the identification

for X given by (1). The process P ∈ P defined in such a way plays an important role

in our derivation of the expression for φ∗ as given in the following theorem, which

generalizes the result [20, Proposition 3.1] for the deterministic convex problem with

delay.

Theorem 3.1. Suppose that Assumptions I, II & III hold. For any given (θ∗, ξ∗, η∗) ∈

L2 × L21
F × L21

F , let (PT , Ṗ , Q̇) ∈ P× L21
F be defined by


PT = θ∗

Ṗ (t) = ξ∗(t) + E
[
η∗(t+ δ)I[0,T−δ](t)

∣∣F(t)
]

Q̇(t) = η∗(t),

(14)

where IA denotes the indicator function of set A, and identify P by (12) with (PT , Ṗ ) ∈
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P. Then, Ψ : P× L21
F → R ∪ {∞}, defined by

Ψ(P, Q̇) = IL∗
(
Ṗ − E

[
Q̇(·+ δ) I[0,T−δ](·)

∣∣∣F(·)
]
, Q̇, P,HP

)
+ Jl∗(−PT )

+ E
[〈
PT , x0(0)

〉]
− E

[∫ δ

0

〈
Q̇(t), x0(t− δ)

〉
dt

]

− E

[∫ T

0

〈
Ṗ (t), x0(0)

〉
dt

]
,

(15)

satisfies Ψ(P, Q̇) = φ∗(θ∗, ξ∗, η∗), where HP is specified by (13).

Proof. First, by Jensen’s Inequality and Fubini’s Theorem, the fact that η∗ is in L21
F

implies that E
[
η∗(·+ δ)I[0,T−δ](·)

∣∣F(·)
]
∈ L21

F , so that Ṗ defined by (14) is in L21
F .

Using (5) and F defined by (4), we can re-express φ∗ given by (9) as

φ∗ (θ∗, ξ∗, η∗)

= sup
(Ẋ,HX )∈X

(θ,ξ,η)∈L2×L2∞F ×L2∞F

{
E

[∫ T

0

(
〈ξ (t) , ξ∗ (t)〉+ 〈η (t) , η∗ (t)〉

)
dt

]
(16)

+ E
[〈
θ, θ∗

〉]
− IL

(
X + ξ,Xδ + η, Ẋ,HX

)
− Jl

(
X(T )− θ

)}
.

Then, setting θ′ = X(T )− θ, ξ′ = X + ξ and η′ = Xδ + η, it follows from (16) that

φ∗(θ∗, ξ∗, η∗)

= sup
θ′∈L2

{E[〈θ′,−θ∗〉]− Jl(θ′)}

+ sup
(Ẋ,HX )∈X

(ξ′,η′)∈L2∞F ×L2∞F

{
E

[∫ T

0

〈
(ξ′(t), η′(t)), (ξ∗(t), η∗(t))

〉
dt

]

+ E
[〈
X (T ) , θ∗

〉]
− IL

(
ξ′, η′, Ẋ,HX

)
(17)

− E

[∫ T

0

(
〈X (t) , ξ∗ (t)〉+ 〈Xδ (t) , η∗ (t)〉

)
dt

]}
.

To simplify this, we use the relationship between X and Xδ to re-express the final
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term on the right-hand-side of (17) as

E

[∫ T

0

(〈X(t), ξ∗(t)〉+ 〈Xδ(t), η
∗(t)〉) dt

]

= E

[∫ T

0

〈
X(t), ξ∗(t) + η∗(t+ δ) I[0,T−δ](t)

〉
dt

]

+ E

[∫ T

0

〈x0(t− δ) I[0,δ](t), η∗(t)〉 dt

]
(18)

= E

[∫ T

0

〈
X (t) , ξ∗ (t) + E

[
η∗ (t+ δ) I[0,T−δ] (t)

∣∣F (t)
]〉
dt

]

+ E

[∫ δ

0

〈x0(t− δ), η∗(t)〉 dt

]
.

On the other hand, using the expression (13) for P and applying the Itô formula to〈
P (t), X(t)

〉
, we get

E
[〈
X(T ), PT

〉]
−
〈
x0(0), P (0)

〉
= E

[∫ T

0

〈
Ẋ(t), P (t)

〉
dt

]
+ E

[∫ T

0

〈
X(t), Ṗ (t)

〉
dt

]

+ E

[∫ T

0

〈HX(t), HP (t)〉 dt

]
,

(19)

recalling that P (0) is a constant. Similarly, by applying the Itô formula to 〈P (t), x0(0)〉,

we have

〈
x0 (0) , P (0)

〉
= −E

[∫ T

0

〈
x0 (0) , Ṗ (t)

〉
dt

]
+ E

[〈
x0 (0) , PT

〉]
. (20)

Then, replacing PT and Ṗ in (19) and in (20) by their definitions (14), these two

equations lead to

E

[∫ T

0

〈
X(t), ξ∗ (t) + E

[
Q̇ (t+ δ) I[0,T−δ] (t)

∣∣∣F (t)
]〉
dt

]
= E

[〈
X(T ), θ∗

〉
−
〈
x0 (0) , θ∗

〉]
− E

[∫ T

0

〈
(Ẋ(t), HX(t)), (P (t), HP (t))

〉
dt

]
(21)

− E

[∫ T

0

(〈
x0(0), η∗(t) + E

[
Q̇(t+ δ) I[0,T−δ](t)

∣∣∣F(t)
]〉)

dt

]
,
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the left-hand-side of which is equal to the first term of the right-hand-side of the second

equality in (18). Finally, we substitute (18) into (17), using (21) and Proposition 3.1,

to obtain

φ∗ (θ∗, ξ∗, η∗)

= sup
(Ẋ,HX )∈L21F ×L22F
(ξ′,η′)∈L2∞F ×L2∞F

{
� (ξ′, η′, Ẋ,HX), (ξ∗, Q̇, P,HP )� −IL

(
ξ′, η′, Ẋ,HX

)}

+ sup
θ′∈L2

{
� θ′,−θ∗ � −Jl(θ′)

}
+ E

[〈
x0(0), θ∗

〉]
− E

[∫ δ

0

〈
x0 (t− δ) , Q̇ (t)

〉
dt

]

− E

[∫ T

0

〈
x0 (0) , ξ∗ (t) + E

[
Q̇ (t+ δ) I [0,T−δ] (t)

∣∣∣F (t)
]〉
dt

]
= IL∗

(
Ṗ − E

[
Q̇(·+ δ) I[0,T−δ](·)

∣∣∣F(·)
]
, Q̇, P,HP

)
+ Jl∗(−PT )

+ E
[〈
PT , x0(0)

〉]
− E

[∫ δ

0

〈
Q̇ (t) , x0(t− δ)

〉
dt

]
− E

[∫ T

0

〈
Ṗ (t), x0(0)

〉
dt

]
,

as required. �

Although the relationship we obtained between Ψ and φ∗ bears some similarity to

that between the corresponding functions obtained [20] for the deterministic convex

problem with delay, our proof is different from that in [20]. In particular, we need to

deal with the issue of an anticipated (or time advanced) variable.

Using (14), we can re-express the pairing� (θ, ξ, η), (θ∗, ξ∗, η∗)� in terms of (P, Q̇)

as

� (θ, ξ, η) , (P, Q̇)�

=� (θ, ξ, η),
(
PT , Ṗ − E

[
Q̇ (·+ δ) I[0,T−δ] (·)

∣∣∣F (·)
]
, Q̇
)
�

= E

[∫ T

0

〈
ξ(t), Ṗ (t)− E

[
Q̇(t+ δ) I[0,T−δ](t) |F (t)

]〉
dt

]
(22)

+ E
[〈
θ, PT

〉]
+ E

[∫ T

0

〈
η(t), Q̇(t)

〉
dt

]
,

where P is identified with (PT , Ṗ ) via (12). This generalizes the pairing for the

deterministic convex problem with delay given in [20, page 183]. Then, using the
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pairing (22) and Theorem 3.1, we can re-express Ψ(P, Q̇) given by (15) as

Ψ(P, Q̇) = sup
(θ,ξ,η)∈L2×L2∞

F ×L2∞
F

{
� (P, Q̇), (θ, ξ, η)� −φ (θ, ξ, η)

}
. (23)

By using Proposition 3.1 and noting Proposition 2.2, we see that Ψ is strictly greater

than −∞ and is convex.

Definition 3.1. Ψ is called a stochastic convex dual function of Φ. The corresponding

stochastic convex dual problem to (3) over P×L21
F is to find (P̄ , ˙̄Q) ∈ P×L21

F realizing

inf
(P,Q̇)∈P×L21

F

Ψ
(
P, Q̇

)
. (24)

Similarly to the primal problem defined by Definition 2.1, any (P, Q̇) ∈ P × L21
F such

that Ψ(P, Q̇) <∞ will be called a feasible solution of the dual problem. we shall call a

feasible solution (P̄ , ˙̄Q) which achieves the infimum in (24) an optimal solution to the

dual problem.

Unlike the classical convex problem, although we call Ψ the dual to Φ, the space

P × L21
F on which Ψ is defined is not the paired space, with respect to the pairing

defined in Section 2, to the space X on which Φ is defined on account of the fact that

the convex problems we study also depends Xδ. The reason that Ψ is called the dual

to Φ will become clear in the next subsection.

If there is no delay in the model, corresponding to δ = 0, Xδ is identical with X

and so there exists a function L̂ : Ω× [0, T ]× Rn × Rn × Rn×m → R ∪ {∞} satisfying

the corresponding Assumptions I, II & III such that L(ω, t, x, x, z, h) = L̂(ω, t, x, z, h).

Then, the optimal value function φ, corresponding to L̂ and l, depends only on (θ, ξ).

Hence, Theorem 3.1 gives that P = (PT , Ṗ ) ∈ P is identical with (θ∗, ξ∗), so that

Ψ(P ) = φ∗(θ∗, ξ∗), and

Ψ(P ) = IL̂∗(Ṗ , P,HP ) + Jl∗(−PT ) + E[〈PT , x0(0)〉]− E

[∫ T

0

〈Ṗ (t), x0(0)〉 dt

]
.

Applying the same technique as that in (20) to the last two terms on the right-hand-side

of the above equation, we obtain that

Ψ(P ) = IL̂∗
(
Ṗ , P,HP

)
+ Jl∗(−PT ) +

〈
P (0), x0(0)

〉
,

recovering the dual function given in [1, Definition II-1] with fixed initial value P (0).
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3.3. Relationship between the optimalities for dual problems

The following relationship between the primal function Φ and its dual function Ψ is

a direct consequence of (10) and Theorem 3.1.

Proposition 3.2. For any X = (Ẋ,HX) ∈ X and (P, Q̇) ∈ P× L21
F ,

Φ(X) + Ψ(P, Q̇) > 0. (25)

We now use stochastic calculus to obtain the relationships between the optimal

solutions of the primal and its dual problems as follows. This result generalizes [1,

Theorem IV-2] for the Markovian convex problems. In particular, the third equivalent

condition given below provides the crucial basis in the next section for us to derive

the Hamiltonian and the associated adjoint equation for stochastic optimal control

problems with discrete delay.

Theorem 3.2. For any given X̄ ∈ X and (P̄ , ˙̄Q) ∈ P × L21
F , the following three

statements are equivalent:

(i)

Φ(X̄) + Ψ(P̄ , ˙̄Q) = 0. (26)

(ii) X̄ and (P̄ , ˙̄Q) are respectively optimal solutions to the primal problem (3) and

its dual problem (24), and the equality in (25) is attained.

(iii)

L∗
(
t, ˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]
, ˙̄Q(t), P̄ (t), HP̄ (t)

)
+ L

(
t, X̄(t), X̄δ(t),

˙̄X(t), HX̄(t)
)
−
〈 ˙̄Q(t), X̄δ(t)

〉
−
〈

˙̄P (t)− E
[

˙̄Q(t+ δ) I[0,T−δ](t) |F (t)
]
, X̄(t)

〉
−
〈
(P̄ (t), HP̄ (t)), ( ˙̄X(t), HX̄(t))

〉
= 0, dP⊗dt-a.s.

(27)

and

l
(
X̄(T )

)
+ l∗

(
−P̄T

)
+
〈
P̄T , X̄(T )

〉
= 0, dP -a.s. (28)

where HP̄ is specified by P̄ via (13).

Note that if ∂L and ∂l denote the sub-differential sets of L and l, conditions (27)
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and (28) are respectively equivalent to(
˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]
, ˙̄Q(t), P̄ (t), HP̄ (t)

)
∈∂L

(
t, X̄(t), X̄δ(t),

˙̄X(t), HX̄(t)
)
, dP⊗dt-a.s.

and

−P̄ (T ) ∈ ∂l
(
X̄(T )

)
, dP -a.s.

(see [18, page 207]).

Proof. (i) ⇔ (ii): Suppose that (26) holds. Then, the equality in (25) is attained.

Moreover, it follows from (25) that (P̄ , ˙̄Q) is an optimal solution to (24) and that X̄ is

an optimal solution to (3).

Conversely, if X̄ and (P̄ , ˙̄Q) are optimal solutions to (3) and (24) respectively,

then (26) follows by combining (25) with the assumption that the equality therein

is attained.

(i) ⇔ (iii): Suppose that (27) and (28) hold for the given X̄ and (P̄ , ˙̄Q). Taking

the integral of the left-hand-side of (27) over [0, T ], adding the left-hand-side of (28)

and then taking the expectation, we have (26) using the expressions (2) for Φ and (15)

for Ψ.

Conversely, it follows from (2) and (15) that (26) is equivalent to

E

[∫ T

0

A1(t) dt

]
+ E[A2] = 0, (29)

where A1 is the process defined by the left-hand-side of (27) and A2 is the random

variable defined by the left-hand-side of (28). Since, for fixed (ω, t) ∈ Ω × [0, T ], L∗

and l∗ are the conjugate convex functions of L and l respectively, A1 and A2 are

nonnegative. Then, the equality (29) implies that A1(t) = 0, dP⊗dt-a.s., and A2 = 0,

dP-a.s., so that both (27) and (28) hold. �

4. A stochastic optimal control problem with discrete delay

Having obtained the conditions for optimality of the stochastic convex problem with

delay, we now turn our attention to the stochastic optimal control problem with discrete

delay.
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Let U ⊂ Rr be a convex set, where r > 0 is a given integer; b : [0, T ]×Rn×Rn×U→

Rn and σ : [0, T ]× Rn × Rn × U→ Rn×m be two given measurable functions and the

continuous F(t)-adapted state process X : Ω × [−δ, T ] → Rn be described by the

controlled SDDE
dX (t) = b

(
t,X (t) , Xδ (t) , u (t)

)
dt

+σ
(
t,X (t) , Xδ (t) , u (t)

)
dB (t) , t ∈ [0, T ],

X (t) = x0 (t) , t ∈ [−δ, 0],

(30)

where x0, Xδ, δ are as defined in Section 2 and u : Ω × [0, T ] → U is an F(t)-adapted

control process. For given continuous functions G : [0, T ] × Rn × Rn × U → R and

g : Rn → R, the cost functional J associated with the controlled SDDE (30) is defined

by

J(u) = E

[∫ T

0

G
(
t,X(t), Xδ(t), u(t)

)
dt+ g

(
X(T )

)]
.

Let U denote the space of admissible controls u for which the controlled SDDE (30)

admits a unique strong solution {X(t)}t∈[−δ,T ] and the cost functional J is finite.

Definition 4.1. The stochastic optimal control problem with discrete delay associated

with the controlled SDDE (30) and the cost functional J is to find ū ∈ U realizing

inf
u∈U

J(u). (31)

We shall call ū an optimal control.

Note that, this optimal control problem is a special case of the stochastic optimal

control problems considered in [4, 12], where the models also include the discrete

delayed control uδ.

4.1. Reformulation of the problem

To use the results for the stochastic convex problem with delay, obtained in the

previous section, to study the control problem (31), we link the problem (31) with a

particular convex problem (3) as follows. For (ω, t, x, y, z, h) ∈ Ω× [0, T ]×Rn ×Rn ×

Rn × Rn×m, define the set C = C(t, x, y, z, h) by

C(t, x, y, z, h) =

{
u ∈ U |z = b (t, x, y, u) and h = σ (t, x, y, u)

}
. (32)
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Using C, take the functions L and l respectively in the primal function (2) to be

L (t, x, y, z, h) =

 inf
u∈C

G (t, x, y, u) , if C 6= ∅,

∞, otherwise,
(33)

and

l(x) = g(x). (34)

With L and l so defined, the control problem (31) becomes a particular stochastic

convex problem (3).

If r = n and if b and σ are both affine functions of (x, y, u), the corresponding C

defined above contains a single element, determined by n(1 +m) linear equations, if it

is not empty. Then, the expression for the corresponding L simplifies. Moreover, under

appropriate assumptions on the coefficients of these affine functions and on G and g,

including the convexity of G and g, it can be checked that the corresponding problem

(3) satisfies the required Assumptions I, II & III. The following example demonstrates

that this connection makes it possible to express an optimal control ū of (31) in terms

of solutions to the corresponding dual problem.

Example 4.1. For simplicity, we set n = m = 1. Suppose that U = R; that b(t, x, y, u)

and σ(t, x, y, u) in (30) are given by b(t, x, y, u) = a1(t)x+ b1(t)y + c1(t)u

σ(t, x, y, u) = a2(t)x+ b2(t)y + c2(t)u,

where ai, bi and ci are given R-valued continuous functions on [0, T ] and c1(t)2+c2(t)2 6=

0, for all t ∈ [0, T ]; and that

G(t, x, y, u) =
1

2
c3(t)u2 and g(x) = a3x

2,

where c3 : [0, T ] → R+ is continuous and a3 > 0 is a constant. Then, Assumptions I,

II & III are satisfied and the corresponding stochastic convex primal problem (3) is

inf
X∈X

{
E

[∫ T

0

1

2
c3(t)u2(t)dt

]
+ E[g(X(T ))]

}
, (35)

subject to  Ẋ(t) = a1(t)X(t) + b1(t)Xδ(t) + c1(t)u(t)

HX(t) = a2(t)X(t) + b2(t)Xδ(t) + c2(t)u(t)
dP⊗dt-a.s. (36)
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where X is identified with (Ẋ,HX) ∈ X via (1).

For P identified with (PT , Ṗ ) ∈ P via (12), since l(x) = g(x),

l∗
(
− PT

)
=
P 2
T

4a3
.

Similarly, the expression (33) for L gives that

L∗
(
t, Ṗ (t)− E

[
Q̇(t+ δ) I[0,T−δ](t) |F (t)

]
, Q̇(t), P (t), HP (t)

)
= sup

(x,y)∈R2

{
x
(
Ṗ (t)− E

[
Q̇(t+ δ) I [0,T−δ](t) |F (t)

])
+ yQ̇(t)

+
(
a1(t)x+ b1(t)y

)
P (t) +

(
a2(t)x+ b2(t)y

)
HP (t)

}
+ sup
u∈R

{
u
(
c1(t)P (t) + c2(t)HP (t)

)
− 1

2
c3(t)u2

}
(37)

for (P, Q̇) ∈ P×L21
F , where HP is specified by P via (13) and PT = −2a3X(T ) by (28).

To find an explicit expression for L∗ in (37), we take the derivatives, with respect to

x and y respectively, of the function within the first bracket on the right-hand-side of

(37). We obtain that the corresponding derivatives are zero if and only if
Ṗ (t) = E

[
Q̇(t+ δ) I [0,T−δ](t)

∣∣F (t)
]
− a1(t)P (t)− a2(t)HP (t)

Q̇(t) = −b1(t)P (t)− b2(t)HP (t).
(38)

Similarly, taking the derivative, with respect to u, of the function within the second

bracket on the right-hand-side of (37), we see that the corresponding derivative is zero

if and only if

u =
1

c3(t)
{c1(t)P (t) + c2(t)HP (t)}. (39)

This gives that

L∗
(
t, Ṗ (t)− E

[
Q̇(t+ δ) I[0,T−δ](t) |F (t)

]
, Q̇(t), P (t), HP (t)

)
=


1

2c3(t)

{
c1(t)P (t) + c2(t)HP (t)

}2

, if (38) holds,

∞, otherwise.

Now, if (u,X, P, Q̇) is such that u satisfies (39); X is identified with (Ẋ,HX), where

(Ẋ,HX) is defined by (36); and P is identified with (−2a3X(T ), Ṗ ), where (Ṗ , Q̇)

satisfies (38), then it can be verified that the two equalities in Theorem 3.2(iii) hold

for such (u,X, P, Q̇). Thus, by Theorem 3.2, u is an optimal control for the control

problem corresponding to (35). �
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Note that, if we replace g in Example 4.1 by g(x) = a3x, the above argument and

derivation can be repeated except that l∗(−PT ) becomes zero. Then, the modification

to the result is that PT = −a3 rather than −2a3X(T ). Since PT becomes a constant,

the corresponding HP is zero and P is deterministic (see [4]). Thus, the corresponding

optimal u is also deterministic and given by u = c1(t)P (t)/c3(t).

For more general b, σ,G and g, to ensure that the set C is not empty and that the

link of the stochastic control problem (31) to the stochastic convex problem (3) enables

us to apply Theorem 3.2, we make the following assumptions.

Hypothesis I. The functions b and σ are continuous with respect to (t, u) ∈ [0, T ]×U;

and are Lipschitz continuous with respect to (x, y) ∈ Rn × Rn with the Lipschitz

constant independent of (t, u) ∈ [0, T ] × U. Moreover, there exists a constant c1 > 0

such that for f(t, x, y, u) = b(t, x, y, u) or σ(t, x, y, u),

|f (t, 0, 0, u)| ≤ c1, ∀(t, u) ∈ [0, T ]× U. (40)

Hypothesis II. g is a convex function of x. Moreover, there exist constants c2 ∈ R

and c3 > 0 such that
c2 6 G (t, x, y, u) 6 c3

(
1 + |x|2 + |y|2

)
, ∀(t, x, y, u) ∈ [0, T ]× Rn × Rn × U,

c2 6 g (x) 6 c3(1 + |x|2), ∀x ∈ Rn.

We now show that, under these two hypotheses, L and l defined by (33) and (34)

satisfy Assumptions I, II & III, except for the convexity requirement for L.

It is straightforward to verify that, under these hypotheses, L and l so defined

are lower semi-continuous and are not identically ∞. Moreover, the argument for

the Markovian control problems in [1, page 393] can be generalized to show that the

conditions in (b) of Assumption I for L and l are satisfied. Thus, except for the required

convexity of L, all conditions in Assumption I are satisfied by L and l. We now show,

in the following proposition, that the remaining two assumptions are also satisfied.

Proposition 4.1. Under Hypotheses I & II, the functions L and l defined respectively

by (33) and (34) satisfy Assumptions II & III.

Proof. By Hypothesis II, G and g are bounded below, which implies that L and l

are bounded below. Hence, L and l satisfy Assumption II.
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On the other hand, Hypothesis I implies that, for any given û ∈ U , there exists a

unique F(t)-adapted solution X̂ to (30) such that X̂, X̂δ ∈ L22
F (see [4, Theorem 2.2]).

Hence,

Ĉ = C
(
t, X̂(t), X̂δ(t),

˙̂
X(t), HX̂(t)

)
6= ∅,

where 
˙̂
X(t) = b

(
t, X̂(t), X̂δ(t), û(t)

)
HX̂(t) = σ

(
t, X̂(t), X̂δ(t), û(t)

) dP⊗dt-a.s.

In particular, by the Cauchy-Schwarz Inequality, (40) and the fact that X̂, X̂δ ∈ L22
F

together imply that
˙̂
X ∈ L21

F and HX̂ ∈ L22
F .

Since Ĉ is not empty and since Hypothesis II holds, we have

L
(
t, X̂(t), X̂δ(t),

˙̂
X(t), HX̂(t)

)
= inf
u∈Ĉ

G
(
t, X̂(t), X̂δ(t), u

)
6 c3

(
1 + |X̂(t)|2 + |X̂δ(t)|2

)
, dP⊗dt-a.s.

and

l
(
X̂(T )

)
= g
(
X̂(T )

)
6 c3

(
1 +

∣∣∣X̂(T )
∣∣∣2) , dP -a.s.

Thus, taking τ2 and θ2 in Assumption III to be c3(1 + |X̂(t)|2 + |X̂δ(t)|2) and c3(1 +

|X̂(T )|2) respectively, we see that τ2 and θ2 satisfy the required conditions, so that L

and l satisfy Assumption III. �

Turning to the convexity of L, which is not guaranteed by Hypothesis I & II, but is

required for Assumption I, the following proposition gives a sufficient condition for it

to hold.

Proposition 4.2. Let H : [0, T ]× Rn × Rn × U× Rn × Rn×m → R be defined by

H(t, x, y, u, p, h) =
〈
b (t, x, y, u) , p

〉
+
〈
σ (t, x, y, u) , h

〉
−G

(
t, x, y, u

)
. (41)

If H is concave with respect to (x, y, u), then L defined by (33) is a convex function

with respect to (x, y, z, h).

Proof. Let

L̃(t, x, y, z, h) =inf
u∈U

{
sup

(p,hp)∈Rn×Rn×m

{
〈(z, h), (p, hp)〉−H(t, x, y, u, p, hp)

}}
. (42)
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Then, the expression (41) for H gives

L̃ (t, x, y, z, h) = inf
u∈U

{
G (t, x, y, u)

+ sup
(p,hp)∈Rn×Rn×m

{
〈(z − b (t, x, y, u) , h− σ (t, x, y, u)), (p, hp)〉

}}
.

(43)

For C = C(t, x, y, z, h) as defined in (32), if C = ∅, then (z−b (t, x, y, u) , h−σ (t, x, y, u)) 6=

(0, 0) and so the supremum in (43) is ∞, which implies that L̃ = ∞. Otherwise,

L̃ (t, x, y, z, h) = inf
u∈C

G (t, x, y, u). Hence, L̃ = L, where L is defined by (33).

Since H is linear in (p, hp), 〈(z, h), (p, hp)〉−H (t, x, y, u, p, hp) is convex in (u, p, hp)

by the assumption. Then, the order of the supremum and the infimum on the right-

hand-side of (42) can be exchanged (see [17, Corollary 37.2.2]) so that

L(t, x, y, z, h) = sup
(p,hp)∈Rn×Rn×m

{
〈(z, h), (p, hp)〉 − Ĥ (t, x, y, p, hp)

}
, (44)

where Ĥ(t, x, y, p, hp) = sup
u∈U
H (t, x, y, u, p, hp). Since U is a convex set, it is easy to

check that Ĥ is concave in (x, y) and convex in (p, hp). Therefore, (44) implies that L

is convex in (x, y, z, h) as required. �

To end this subsection, we use an example to demonstrate that there are indeed

stochastic control problems where at least one of b and σ is not an affine function of

(x, y, u), but which can be reformulated as stochastic convex problems studied in the

previous sections.

Example 4.2. We assume that n = m = r = 1. Suppose that U = (0, 2π]; that

b(t, x, y, u) = sin(x+ y + u), σ(t, x, y, u) = y;

and that G(t, x, y, u) = |x + sin(x + y + u)| and g(x) = x2. The functions so chosen

satisfy Hypotheses I and II. Moreover,

C(t, x, y, z, h) = {u ∈ (0, 2π] | z = sin(x+ y + u) and h = y}

and C(t, x, y, z, h) 6= ∅ if and only if |z| 6 1. This gives that

L(t, x, y, z, h) =

 |x+ z|, if |z| 6 1 and h = y,

∞, otherwise.
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Clearly, L is a convex function of (x, y, z, h). Hence, by Proposition 4.1, as well as

the discussion prior to it, the stochastic control problem associated with b, σ,G and g

defined here is transformed into a stochastic convex problem of the type studied in the

previous sections. �

4.2. Stochastic maximum principles

We now use Theorem 3.2, in particular conditions (27) and (28), to derive the

sufficient conditions for optimality, as well as the expressions for the Hamiltonian and

associated adjoint equation, for the problem (31).

For the control problem (31), define the processes (P,HP ) ∈ L2∞
F × L22

F by the

following anticipated BSDE

dP (t) = −

{
∂H
∂x

(t) + E

[
∂H
∂y

(t+ δ) I[0,T−δ](t)

∣∣∣∣F(t)

]}
dt

+HP (t) dB(t) t ∈ [0, T ),

P (T ) = −∂g
∂x

(
X(T )

)
,

(45)

where H is defined by (41), where we have used the shorthand notation

∂H
∂x

(t) =
∂H
∂x

(
t,X(t), Xδ(t), u(t), P (t), HP (t)

)
and similarly for the partial derivative ∂H

∂y (t+ δ), and where we assume the necessary

differentiability of H.

Note that, if δ = 0 so that there is no delay in the model, H defined by (41) is

independent of y, corresponding to Xδ. Then, the corresponding H and equation (45)

are termed as the (stochastic) Hamiltonian (function) and the adjoint equation due to

their link with the deterministic cases (see [21, Chapter 3]). We adopt them for our

model and the following result justifies this usage.

Theorem 4.1. Assume that Hypotheses I & II hold and that L defined by (33) is

convex with respect to (x, y, z, h). In addition, assume that U is compact and that the

functions b, σ and G are continuously differentiable with respect to (x, y) and that g is

continuously differentiable with respect to x. Suppose that X̄ ∈ X and (P̄ , ˙̄Q) ∈ P×L21
F

together satisfy (27) and (28) with L and l being defined by (33) and (34) respectively.

Then, it is necessary that there exists a ū ∈ U realizing (31). Moreover,
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(i) X̄ is the unique strong solution of the controlled SDDE (30) with u in the

functions b and σ replaced by ū;

(ii) (P̄ ,HP̄ ) is a solution of the adjoint equation (45) with (X,Xδ, u) replaced by

(X̄, X̄δ, ū), where HP̄ is specified by P̄ via (13);

(iii) dP⊗dt-a.s.,

H
(
t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t)

)
= max

u∈U
H
(
t, X̄(t), X̄δ(t), u, P̄ (t), HP̄ (t)

)
,

(46)

where H is defined by (41).

Proof. Given that the control problem (31) has been reformulated as the correspond-

ing primal problem (3), with L defined by (33) being convex, Assumptions I, II & III

are satisfied by the reformulated problem (3). Moreover, under the given conditions, it

follows from Theorem 3.2(ii) that X̄ is a solution of the corresponding primal problem

(3).

By (27),

L∗
(
t, ˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]
, ˙̄Q(t), P̄ (t), HP̄ (t)

)
=
〈
X̄(t), ˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]〉
+
〈
X̄δ(t),

˙̄Q(t)
〉

+
〈
( ˙̄X(t), HX̄(t)), (P̄ (t), HP̄ (t))

〉
− L

(
t, X̄(t), X̄δ(t),

˙̄X(t), HX̄(t)
)
, dP⊗dt-a.s.,

(47)

where ( ˙̄X,HX̄) is defined by (1) with X replaced by X̄ and where HP̄ is specified by P̄

via (13). On the other hand, using the expression (33) for L and using the definition

of conjugation functions, L∗ in (47) can also be expressed, in terms of b, σ and G, as

L∗
(
t, ˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]
, ˙̄Q(t), P̄ (t), HP̄ (t)

)
= sup

(x,y)∈Rn×Rn
max
u∈U

{〈
˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]
, x
〉

+
〈 ˙̄Q(t), y

〉
+
〈
P̄ (t), b(t, x, y, u)

〉
+ 〈HP̄ (t), σ(t, x, y, u)〉 −G

(
t, x, y, u

)}
.

(48)

Since U is compact, (47) and (48) together imply that, for the given X̄ and (P̄ , ˙̄Q), it
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is necessary that there is a ū ∈ U such that ( ˙̄X,HX̄) has the expression ˙̄X(t) = b
(
t, X̄(t), X̄δ(t), ū(t)

)
HX̄(t) = σ

(
t, X̄(t), X̄δ(t), ū(t)

) dP⊗dt-a.s. (49)

and that the ‘sup max’ in (48) is attained at
(
X̄(t), X̄δ(t), ū(t)

)
, dP⊗dt-a.s. Noting

the fact that X̄ is a solution of the corresponding primal problem (3), (49) implies that

ū is an optimal control for the control problem (31) and that X̄ is the unique solution

to (30) with u replaced by ū, i.e. (i) holds.

Using the expression (41) for H, it also follows from (47) and (48) that

H
(
t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t)

)
= max

u∈U
H
(
t, X̄(t), X̄δ(t), u, P̄ (t), HP̄ (t)

)
i.e. (iii) holds.

To show (ii), we note first that, using the expression (41) for H again, (47) and (48)

together imply further that, dP⊗dt-a.s.〈
X̄(t), ˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]〉
+
〈
X̄δ(t),

˙̄Q(t)
〉

+H
(
t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t)

)
= max

(x,y)∈Rn×Rn

{〈
x, ˙̄P (t)− E

[
˙̄Q(t+ δ) I[0,T−δ](t) |F (t)

]〉
+
〈
y, ˙̄Q(t)

〉
+H

(
t, x, y, ū(t), P̄ (t), HP̄ (t)

)}
.

(50)

Since b, σ and G are differentiable with respect to (x, y), by taking the derivatives

with respect to x and y of the function within the bracket on the right-hand-side of

the above equation, the fact that the maximum in the above equation is attained at

(X̄(t), X̄δ(t)), dP⊗dt-a.s., implies that

˙̄P (t) = −∂H̄
∂x

(t) + E
[

˙̄Q(t+ δ) I[0,T−δ](t) |F (t)
]
, dP⊗dt-a.s., (51)

and

˙̄Q(t) = −∂H̄
∂y

(t), dP⊗dt-a.s., (52)

where H̄(t) = H
(
t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t)

)
. Replacing ˙̄Q in (51) using (52) gives

˙̄P (t) =− ∂H̄
∂x

(
t
)
− E

[
∂H̄
∂y

(
t+ δ

)
I[0,T−δ](t)

∣∣∣∣F(t)

]
, dP⊗dt-a.s. (53)
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Similarly, by (28), we have

l∗
(
−P̄T

)
=
〈
−P̄T , X̄(T )

〉
− l
(
X̄(T )

)
, dP -a.s.

Since l∗ is the conjugate convex function of l and since l = g, the above, together with

the definitions of conjugate functions, implies that〈
−P̄T , X̄(T )

〉
− g
(
X̄(T )

)
= sup
x∈Rn

{〈
x,−P̄T

〉
− g(x)

}
, dP -a.s.

Taking the derivative, with respect to x, of the function within the bracket on the

right-hand-side of the above equation, we see that P̄T must satisfy the condition that

P̄T = −∂g
∂x

(
X̄ (T )

)
, dP -a.s. (54)

Now, since P̄ = (P̄T ,
˙̄P ) ∈ P, using (13), (53) and (54) gives that

P̄ (t)

=− ∂g

∂x

(
X̄ (T )

)
+

∫ T

t

{
E

[
∂H̄
∂y

(
s+ δ

)
I[0,T−δ] (s)

∣∣∣∣F (s)

]
+
∂H̄
∂x

(
s
)}
ds

−
∫ T

t

HP̄ (s) dB (s), dP -a.s.

i.e. (ii) holds. �

Note that, rather than defining them, the proof of the above theorem uses the

techniques of conjugate duality to derive the Hamiltonian H and the associated adjoint

equation for the problem (31). If δ = 0, the Hamiltonian H is independent of y, which

corresponds to the delayed variable, and then the adjoint equation (45) reduces to a

classic BSDE studied in [21, Chapter 3].

Recall that, by Proposition 4.2, the concavity condition on the Hamiltonian H

implies the required convexity of L. Under such a concavity condition on H, the proof

of Theorem 4.1 can be modified to give the following sufficient maximum principle.

Theorem 4.2. In addition to Hypotheses I & II, we assume further that the functions

b, σ and G are continuously differentiable with respect to (x, y), that g is continuously

differentiable with respect to x and that H(t, x, y, u, p, h) is concave with respect to

(x, y, u). Let ū ∈ U , X̄ be the solution to the controlled SDDE (30) associated with

ū, and (P̄ ,HP̄ ) be the solution to the adjoint equation (45) associated with (ū, X̄). If

(ū, X̄, P̄ ) satisfies (46), then ū is an optimal solution for the control problem (31).
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Proof. For the given ū, X̄ and (P̄ ,HP̄ ), we have P̄T , ˙̄P and ˙̄Q respectively defined

by (54), (51) and (52). Under the given conditions, P̄T ∈ L2, ˙̄P ∈ L21
F and ˙̄Q ∈ L21

F .

It follows from (13) and from the uniqueness of the martingale representation that

P̄ is identified with (P̄T ,
˙̄P ) ∈ P via (12). Furthermore, given that (ū, X̄, P̄ ) satisfies

(46), the argument in the proof of Theorem 4.1, together with the given concavity of

H, shows that, for such (P̄ , ˙̄Q), the ‘sup max’ in (48) is attained at (X̄, X̄δ, ū), i.e.

(27) holds. Similarly, the proof of Theorem 4.1 also shows that (28) holds. Thus, the

required result follows from Theorem 3.2. �

Comparing with [4], [12] and [14], the above sufficient stochastic maximum principle

is proved using the method of conjugate duality, for which we require Hypotheses I

& II. Otherwise, the other conditions set in the theorem are similar to those required

in [4, Theorem 3.2] and the result is similar to those in [4], [12] and [14] when their

models are restricted to ours.

5. The inclusion of exponential moving average delay

The methods and results obtained in the preceding sections can be extended to

include an exponential moving average delay, in addition to the discrete delay Xδ, in

the model. That is, the continuous F(t)-adapted state process X is described by the

controlled SDDE
dX(t) = b

(
t,X(t), Xa(t), Xδ(t), u(t)

)
dt

+σ
(
t,X(t), Xa(t), Xδ(t), u(t)

)
dB(t), t ∈ (0, T ],

X(t) = x0(t), t ∈ [−δ, 0],

(55)

where x0, Xδ, δ and u are as defined before and Xa denotes the exponential moving

average delay of X given by

Xa(t) =

∫ 0

−δ
eλsX(t+ s) ds, t ∈ [0, T ].

The functions G and g may also depend respectively on Xa and Xa(T ), and the

associated optimal control problem is to find ū ∈ U realizing

inf
u∈U

Ja(u), (56)
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where

Ja(u) = E

[∫ T

0

G
(
t,X(t), Xa(t), Xδ(t), u(t)

)
dt+ g(X(T ), Xa(T ))

]
.

Note that this type of stochastic control problem with delay was studied in [13], where

the authors obtain a sufficient condition for the maximum principle using methods of

stochastic calculus.

As in [7], we introduce the state process V : Ω× [0, T ]→ Rn defined by
dV (t) =

{
X(t)− λV (t)− e−λδXδ(t)

}
dt, t ∈ [0, T ],

V (0) = v0 =

∫ 0

−δ
eλsx0(s) ds.

(57)

Then, V (t) = Xa(t) and so the combined SDDE for W = (X,V ), given by (55) with

Xa replaced by V and (57), is equivalent to the original controlled SDDE (55) for X. In

terms of this new combined SDDE, the stochastic optimal control problem associated

with (55) becomes a stochastic optimal control problem with discrete delay, where its

drift and diffusion coefficients are independent of Vδ.

To derive the adjoint equations and the stochastic maximum principle for the

stochastic optimal control problem associated with (55), and to improve the results in

[13, 14], we modify our previous conjugate duality approach to extend it toW = (X,V ).

For this, in addition to X ∈ X, we identify (V̇ ,HV ) ∈ X with the continuous F(t)-

adapted stochastic process V : Ω× [0, T ]→ Rn defined by

V (t) = v0 +

∫ t

0

V̇ (s) ds+

∫ t

0

HV (s) dB(s),

in a similar fashion to the identification of X with (Ẋ,HX) ∈ X. At the same time,

take La and la to be modifications of L and l in Section 2, so that they depend also

on (V, V̇ ,HV ) and on V (T ) respectively. Then, the corresponding stochastic convex

problem with discrete delay is to find (X̄, V̄ ) ∈ X× X realizing

inf
(X,V )∈X×X

Φa(X,V ), (58)

where

Φa(X,V ) = ILa

(
X,V,Xδ, Ẋ, V̇ ,HX , HV

)
+ Jla

(
X(T ), V (T )

)
.

Adapting the arguments in Section 3, in addition to P = (PT , Ṗ ) ∈ P, we require

another continuous F(t)-adapted stochastic process P a to pair with V ∈ X, where
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P a : Ω × [0, T ] → Rn is identified with (P aT , Ṗ
a) ∈ P in the same sense that P is

identified with (PT , Ṗ ) using (12). Assuming that La and la satisfy the appropriately

modified Assumptions I, II & III of Section 2, the argument for the proof of Theorem

3.1 can be used to obtain the dual problem to (58) to be realising

inf
(P,Pa,Q̇)∈P×P×L21

F

Ψa(P, P a, Q̇), (59)

where

Ψa(P, P a, Q̇)

=IL∗a

(
Ṗ−E

[
Q̇(·+ δ)I[0,T−δ](·)

∣∣∣F(·)
]
, Ṗ a, Q̇, P, P a, HP , HPa

)
+ Jl∗a(−PT ,−P aT )− E

[∫ T

0

〈
Q̇ (t) , x0(t− δ) I[0,δ](t)

〉
dt

]

− E

[∫ T

0

(〈
Ṗ (t), x0(0)

〉
+
〈
Ṗ a(t), v0

〉)
dt

]
+ E

[〈
(PT , P

a
T ), (x0(0), v0)

〉]
and where HPa ∈ L22

F is obtained by applying the martingale representation theorem to

P a ∈ P as for HP obtained from P via (13). Since the combined SDDE is independent

of Vδ, the inclusion of P a in Ψa does not result in the dependence of Ψa on an additional

Qa as was the case for the inclusion of Q in Ψ. The expression for Ψa then enables us

to modify the proof of Theorem 3.2 to obtain the following equivalent conditions for

optimality of this new stochastic convex problem.

Theorem 5.1. For any given (X̄, V̄ ) ∈ X × X and (P̄ , P̄ a, ˙̄Q) ∈ P × P × L21
F , the

following three statements are equivalent:

(i)

Φa(X̄, V̄ ) + Ψa(P̄ , P̄ a, ˙̄Q) = 0.

(ii) (X̄, V̄ ) and (P̄ , P̄ a, ˙̄Q) are respectively optimal solutions to the primal problem

(58) and its dual problem (59), and

inf
(X,V )∈X×X

Φa(X,V ) = − inf
(P,Pa,Q̇)∈P×P×L21

F

Ψa(P, P a, Q̇).
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(iii)

L∗a

(
t, ˙̄P (t)−E

[
˙̄Q(t+δ)I[0,T−δ](t) |F(t)

]
, ˙̄P a(t), ˙̄Q(t), P̄ (t),P̄ a(t), HP̄ (t), HP̄a(t)

)
+ La

(
t, X̄(t), V̄ (t), X̄δ(t),

˙̄X(t), ˙̄V (t), HX̄(t), HV̄ (t)
)
−
〈

˙̄Q(t), X̄δ(t)
〉

−
〈

˙̄P (t)−E
[

˙̄Q(t+ δ)I[0,T−δ](t)
∣∣∣F(t)

]
, X̄(t)

〉
−
〈
(P̄ (t), HP̄ (t)), ( ˙̄X(t), HX̄(t))

〉
−
〈

˙̄P a(t), V̄ (t)
〉
−
〈(
P̄ a(t), HP̄a(t)), ( ˙̄V (t), HV̄ (t))

〉
= 0, dP⊗dt−a.s.

and

la
(
X̄(T ), V̄ (T )

)
+ l∗a

(
−P̄T ,−P̄ aT

)
+
〈
(P̄T , P̄

a
T ), (X̄(T ), V̄ (T ))

〉
= 0, dP−a.s.

Returning to the optimal control problem (56), by adapting the technique for the

proof of Theorem 4.1, we see similarly that Theorem 5.1 implies the following extension

of Theorem 4.1 to have a sufficient condition for optimality of (56), involving the

Hamiltonian Ha of the problem (56) defined by

Ha(t, x, y, z, u, p, r, hp, hr) =
〈
b(t, x, y, z, u), p

〉
+
〈
x− λy − e−λδz, r

〉
+ 〈σ(t, x, y, z, u), hp〉 −G(t, x, y, z, u),

and associated adjoint equations.

Theorem 5.2. Under the modified conditions to those in Theorem 4.1, suppose that

(X̄, V̄ ) ∈ X× X and (P̄ , P̄ a, ˙̄Q) ∈ P× P× L21
F together satisfy the two equalities given

in Theorem 5.1(iii) with La and la being defined using G and g in a similar manner

to that specified in Section 4. Then, it is necessary that there is a ū ∈ U realising (56).

Moreover,

(i) X̄ is the unique strong solution of the controlled SDDE (55) with u in the

functions b and σ replaced by ū;

(ii) (P̄ ,HP̄ ) and (P̄ a, HP̄a) are solutions of the following adjoint equations with

(X,Xa, Xδ, u) replaced by (X̄, X̄a, X̄δ, ū):

dP (t) = −

{
∂Ha
∂x

(t) + E

[
∂Ha
∂z

(t+ δ) I[0,T−δ](t)

∣∣∣∣F(t)

]}
dt

+HP (t) dB(t), t ∈ [0, T ),

P (T ) = −∂g
∂x

(
X(T ), Xa(T )

)
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and 
dP a(t) = −∂Ha

∂y
(t)dt+HPa(t) dB(t), t ∈ [0, T ],

P a(T ) = −∂g
∂y

(
X(T ), Xa(T )

)
where HP̄ and HP̄a are respectively specified by P̄ and P̄ a via (13).

(iii) dP⊗dt-a.s.,

Ha
(
t, X̄(t), X̄a(t), X̄δ(t), ū(t), P̄ (t), P̄ a(t), HP̄ (t), HP̄a(t)

)
= max

u∈U
Ha
(
t, X̄(t), X̄a(t), X̄δ(t), u, P̄ (t), P̄ a(t), HP̄ (t), HP̄a(t)

)
.

(60)

Note that the adjoint equations derived here are different from those defined in [13]:

instead of the adjoint equations for a triple of stochastic processes in [13], we have

those for paired stochastic processes. In addition, instead of a classic controlled BSDE

as in [13], one of the adjoint equations here is described by an anticipated BSDE. Note

also that the Hamiltonian and adjoint equations here are both different from those

defined in [14].

Similarly, we can generalize Theorem 4.2 to obtain the following sufficient stochastic

maximum principle for the control problem (56). In particular, it requires weaker

assumptions than those in [13, Theorem 2.2] and in [14, Theorem 3.1], of which our

result is therefore a generalization.

Theorem 5.3. In addition to modified Hypotheses I & II, we assume further that the

functions b, σ and G are continuously differentiable with respect to (x, y, z), that g is

continuously differentiable with respect to (x, y) and that Ha(t, x, y, z, u, p, r, hp, hr) is

concave with respect to (x, y, z, u). Let ū ∈ U , X̄ be the solution to the controlled SDDE

(55) associated with ū, and (P̄ ,HP̄ ) and (P̄ a, HP̄a) be the solutions to the adjoint

equations (5.2) and (5.2) associated with (ū, X̄). If (ū, X̄, P̄ , P̄ a) satisfies (60), then ū

is an optimal solution for the control problem (56).

We note that, if (55) is independent of Xa, then the Hamiltonian and the associated

adjoint equations involved in the maximum principles for the control problem (56)

coincide with those obtained in Section 4 for the corresponding control problem with

just discrete delay. Hence, our results in Section 4 become a special case of those for the

optimal control problems with both discrete and exponential moving average delays.
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Finally, we finish the paper by considering the following simple control problem

with both discrete and exponential moving average delays. Note that it usually cannot

be solved using the results either of [14] or of [13] as, for the former, g needs to be

independent of y and, for the latter, the parameters need to satisfy the constraints

f3e
−λδ = b1(t)a3, b1(t) 6= 0 and

e−λδf1(t)

b1(t)
− λ = a1(t) + b1(t)eλδ,

to ensure that one of the adjoint processes there be identically zero.

Example 5.1. As in Example 4.1, we set n = m = 1. Suppose that U = R; that

b(t, x, y, z, u) = a1(t)x+ f1(t)y + b1(t)z + c1(t)u

σ(t, x, y, z, u) = a2(t)x+ f2(t)y + b2(t)z + c2(t)u;

and that

G(t, x, y, xd, u) =
1

2
c3(t)u2 and g(x, y) = a3x+ f3y,

where a1, a2, a3, b1, b2, c1, c2, c3 are as given in Example 4.1, f1 and f2 are R-valued

continuous functions and f3 ∈ R is a constant.

Similarly to Example 4.1, it can be verified that this control problem can be refor-

mulated as a particular convex problem, where the corresponding Assumptions I, II &

III are satisfied. The Hamiltonian for this problem is given by

Ha(t, x, y, z, u, p, r, hp, hr) = {a1(t)x+ f1(t)y + b1(t)z + c1(t)u} p

+ {a2(t)x+ f2(t)y + b2(t)z + c2(t)u} hp

+
{
x− λy − e−λδz

}
r − 1

2
c3(t)u2,

which satisfies the concavity condition required by Theorem 5.3. The associated paired

adjoint processes are

dP (t) = −
{
a1(t)P (t) + P a(t) + a2(t)HP (t)

+ E
[{
b1(t)P (t+ δ)− e−λδP a(t+ δ)

+ b2(t)HP (t+ δ)
}
I[0,T−δ](t)

∣∣F(t)
]}
dt

+HP (t)dB(t), t ∈ [0, T ],

P (T ) = −a3



36 Z. WANG, D.J. HODGE and H. LE

and 
dP a(t) = −{f1(t)P (t)− λP a(t) + f2(t)HP (t)} dt

+HPa(t)dB(t), t ∈ [0, T ],

P a(T ) = −f3.

By taking the derivative, with respect to u, of Ha, we find that

ū(t) =
1

c3(t)
{c1(t)P̄ (t) + c2(t)HP̄ (t)}

is an optimal control for the problem, where (P̄ ,HP̄ ), together with (P̄ a, HP̄a), is the

solution of the paired adjoint equations. It can be verified that the pair of adjoint

equations in this example admits a unique solution. In particular, since P (T ) and

P a(T ) are both constants, HP (t) = HPa(t) ≡ 0. Hence, this delayed control problem

has a deterministic solution.
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